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Figure 1. Overview of the hierarchical capabilities of the Predictive Models. Models at higher stages demonstrate more advanced
capabilities. We take the initial step in evaluating Predictive Generative Models up to the S3 stage, known as World Simulators, by
introducing a parallel evaluation framework, WorldSimBench. WorldSimBench assesses the models both Explicit Perceptual Evaluation
and Implicit Manipulative Evaluation, focusing on video generation and action transformation across three critical embodied scenarios.

Abstract
Recent advancements in predictive models
have demonstrated exceptional capabilities in
predicting the future state of objects and scenes.
However, the lack of categorization based on
inherent characteristics continues to hinder
the progress of predictive model development.
Additionally, existing benchmarks are unable
to effectively evaluate higher-capability, highly
embodied predictive models from an embodied
perspective. In this work, we classify the function-
alities of predictive models into a hierarchy and
take the first step in evaluating World Simulators
by proposing a dual evaluation framework called
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WorldSimBench. WorldSimBench includes
Explicit Perceptual Evaluation and Implicit
Manipulative Evaluation, encompassing
human preference assessments from the visual
perspective and action-level evaluations in
embodied tasks, covering three representative
embodied scenarios: Open-Ended Embodied
Environment, Autonomous Driving, and Robot
Manipulation. In the Explicit Perceptual
Evaluation, we introduce the HF-Embodied
Dataset, a video assessment dataset based on
fine-grained human feedback, which we use
to train a Human Preference Evaluator that
aligns with human perception and explicitly
assesses the visual fidelity of World Simulators.
In the Implicit Manipulative Evaluation, we
assess the video-action consistency of World
Simulators by evaluating whether the generated
situation-aware video can be accurately translated
into the correct control signals in dynamic envi-
ronments. Our comprehensive evaluation offers
key insights that can drive further innovation
in video generation models, positioning World
Simulators as a pivotal advancement toward
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embodied artificial intelligence. Project Page:
https://iranqin.github.io/WorldSimBench.github.io.

1. Introduction
Before taking action, humans make predictions based on
their objectives and observations of the current environment.
These predictions manifest in various forms, e.g., textual
planning, visual imagination of future scene changes, or
even subconscious planning at the action level. With the
development of generative models, agents driven by these
models are exhibiting predictive capabilities that enable
them to complete embodied tasks by making human-like
predictions, e.g., high-level planning (Driess et al., 2023; Li
et al., 2024), image-based guidance (Lai et al., 2023; Black
et al., 2023), or future video prediction to drive actions (Du
et al., 2023; 2024)). We refer to these models as Predictive
Models. Recently, these models have been widely applied
across various domains spanning from developing agents to
solve inference tasks to leveraging predictions for driving
robots to perform specific actions.

Nevertheless, the rich application scenarios and diverse
model designs make predictive models a broad family. How-
ever, without categorizing them based on their inherent char-
acteristics, the advancement of predictive model develop-
ment remains limited. This leads to our first question: Can
we establish a reasonable hierarchical system for Predictive
Models based on their output modality? With a well-defined
categorization, we can better target the evaluation of Predic-
tive Models from different perspectives in diverse embodied
environments, ensuring that their strengths and weaknesses
are adequately assessed. In the literature, existing evalua-
tions have typically focused on task planning capabilities
by assessing text outputs or evaluating visual outputs from
an aesthetic perspective. However, such approaches signif-
icantly limit the evaluation of highly embodied Predictive
Models, as embodied scenarios are more concerned with
physical properties (e.g., perspective consistency, object
breakability), which these methods fail to effectively assess.
This brings us to our second question: Can we conduct
a more detailed evaluation of highly embodied Predictive
Models from an embodied perspective?

To answer the first question, we categorize the functional-
ities of Predictive Models into a hierarchy from S0 to S3,
defined by the model’s capabilities and output modality,
accompanied by corresponding evaluation benchmarks as
illustrated in Fig. 1. Models are classified based on the
output modality in their output modalities. From lower to
higher stages, the models are capable of generating: text,
images, videos, and actionable videos (i.e., the videos that
can be translated into actions). It is worth noting that Predic-
tive Models at S3 capable of generating actionable videos

integrate robust 3D scene understanding and physical rule
priors to provide precise guidance for generating executable
actions. These models are closely aligned with the recently
proposed concept of World Simulators (Yang et al., 2023).

To answer the second question, we review the related bench-
marks, as listed in Tab. 1. Evaluations on models in S0

that generate text primarily focus on assessing task planning
capabilities, while S1 and S2 assessments on visual output
measure aesthetic quality through feature similarity analy-
ses with ground truth data. With clearly defined evaluation
dimensions and extensive annotated datasets, both types of
assessments can be effectively conducted. However, evalu-
ating World Simulators introduces complexities due to the
intricate physical definitions involved. Additionally, con-
ventional evaluation methods are inadequate for assessing
the actionablilty of the generated videos, as there is no defi-
nite ground truth for actionable videos towards completing
a specific embodied task. These factors pose significant
challenges to the evaluation of World Simulators.

We argue that an evaluation aligned with human percep-
tion could provide a more intuitive and accurate reflection
of the characteristics of the synthesized videos, including
their adherence to physical rules. Besides, the actionability
can be assessed through a closed-loop manner in simula-
tions deployed with a unified video-to-action policy net-
work. Considering these aspects, we take the very first step
in evaluating World Simulators by proposing a dual eval-
uation framework called WorldSimBench. As shown in
Fig. 1, WorldSimBench assesses World Simulators through
two complementary approaches: Explicit Perceptual Eval-
uation, which focuses on the Visual Quality, Condition
consistency, and Embodiment of the generated content, and
Implicit Manipulative Evaluation, which measures the
World Simulator’s performance through the conversion of
video into control signals. We present three representative
embodied scenarios: Open-Ended Embodied Environment
(OE), Autonomous Driving (AD), and Robot Manipula-
tion (RM), to thoroughly evaluate the capability of World
Simulators in generating and representing scenario-specific
attributes.

In the Explicit Perceptual Evaluation, we first define evalua-
tion criteria which is used to construct a comprehensive set
of prompts specific to each scenario. The prompt lists are
then used by various video generation models to produce
a large number of video clips. Following extensive human
feedback and annotation, these video clips are compiled into
the HF-Embodied dataset which consists of a total of 35,701
tuples with multi-dimensional scores and fine-grained hu-
man feedback. Additionally, we train Human Preference
Evaluator, using the HF-Embodied dataset to assess World
Simulators at the perceptual level, offering a robust evalu-
ation of both their visual fidelity and contextual accuracy.
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Table 1. Comparisons between existing Predictive Model benchmarks. Interactive Environment refers to the interaction with the
simulation environment during the prediction phase. Task-Level Interaction denotes that each task interacts once, whereas Action-Level
Interaction represents the frequency of interactions that occur through the generation of actions for control purposes.

Benchmark Input Modality Output Modality Based Method Stage Interactive Env. Evaluation Strategy

AgentBench (Liu et al., 2023b) Text Text LLM S0 Task-Level Human Judgement
EgoPlan-Bench (Chen et al., 2023) Text & Images Text MLLM S0 N/A Multi-choice
MMWorld (He et al., 2024) Text & Images Text MLLM S0 N/A GPT Judgement
VAB (Liu et al., 2024a) Text & Images Text MLLM S0 Task-Level Human Judgement
LEGO (Lai et al., 2023) Text & Images Image IGM S1 Task-Level Feature Similarity
VBench (Huang et al., 2024) Text Video VGM S2 N/A Feature Similarity
EvalCrafter (Liu et al., 2024b) Text & Images Video VGM S2 N/A Feature Similarity

WorldSimBench Text & Images Actionable Video VGM S3 Action-Level Human Preference Evaluator
Embodied Metric

For the Implicit Manipulative Evaluation, we deploy three
simulation environments for the three embodied scenarios
respectively. These environments are used to collect data
and train inverse dynamic or goal-based video-to-action
models capable of mapping future videos to actions. In
each of these embodied scenarios, the World Simulator is
tasked with generating situation-aware videos in real-time,
based on current observations and provided text instructions.
These generated videos are then converted into actions using
the pre-trained video-to-action models. The effectiveness
of the World Simulator is implicitly evaluated by measur-
ing the performance of the tasks, using relevant metrics to
reflect the quality and accuracy of the generated video.

In summary, the main contributions are as follows: (1)We
categorize the functionalities of Predictive Models into a
hierarchy, defined by the model’s capabilities and output
modality, to advance research and development in the field
and take the very first step in evaluating World Simula-
tors. (2)We propose a dual evaluation framework called
WorldSimBench, through Explicit Perceptual Evaluation
and Implicit Manipulative Evaluation, we conducted a com-
prehensive evaluation of the World Simulator’s capabilities
from an embodied perspective, focusing on both the vi-
sual and action levels. (3)We conducted extensive testing
across multiple models and performed a thorough analy-
sis of the experimental results. Our findings highlight the
strengths and limitations of current World Simulators and
provide actionable insights for improving future video gen-
eration models. (4)We developed HF-Embodied Dataset,
which includes fine-grained human feedback across three
scenarios and 20 dimensions, with a total of 35,701entries.
This dataset, containing both human ratings and the reasons
behind them, not only enables the evaluation of World Simu-
lators but also provides broader applications (e.g.,alignment)
for future video generation models.

2. Predictive Model Category Definition
In this section, we concretely categorize predictive models
based on the model’s capabilities and output modality. The
detailed categorization stage of Fig. 1 is illustrated below,

• Stage S0: At this stage, predictive models can generate
corresponding predictions based on instructions and obser-
vations but are limited to textual modality. Benchmarks at
this stage conduct text-level and task-completion evaluations
through output text planning.

• Stage S1: At this stage, predictive models can generate vi-
sual predictions based on instructions and observations, but
without incorporating temporal information. Benchmarks at
this stage conduct aesthetic evaluation for generated images.

• Stage S2: At this stage, predictive models can generate
corresponding video predictions based on both instructions
and observations. Yet, due to limited model capabilities,
the evaluation at this level focuses solely on the aesthetic
quality of the generated outputs.

• Stage S3: At this stage, predictive models can generate
corresponding video predictions based on instructions and
observations, with the predicted video content adhering to
physical rules and aligning with the executed actions. These
models are known as World Simulators (Ha & Schmid-
huber, 2018; Yang et al., 2023), and WorldSimBench is a
benchmark specifically designed to evaluate these World
Simulators.

The rapidly evolving field of World Simulators offers ex-
citing opportunities for advancing Artificial General Intel-
ligence, with significant potential to enhance human pro-
ductivity and creativity, especially in embodied intelligence.
Therefore, conducting a comprehensive embodied evalua-
tion of World Simulators is crucial.

3. WorldSimBench Construction
WorldSimBench evaluates the embodied capabilities of
World Simulators across two distinct levels. The Explicit
Perceptual Evaluation assesses the simulators based on
human-perceived quality across different embodied scenar-
ios, while the Implicit Manipulative Evaluation implic-
itly evaluates the simulators’ capabilities by converting the
generated videos into control signals and observing their
performance in various closed-loop embodied tasks.

3



WorldSimBench: Towards Video Generation Models as World Simulators

Massive Video Captions

Embodiment Dimensions

Task Instruction Prompt List 

Separate prompts for:
• Each evaluation dimension
• Each embodied scenario

Massive Videos with Caption Diverse Task Instruction Prompt List Fine-grained Human 
Feedback Anotation

Diverse Task Instruction Prompt Generation

Human-Level Instruction Prompt Checking

"This video demonstrates the robotic arm 

in operation as it [moves to position] 

itself [above the uppermost cups] ..."

"Close the 

gripper ..."

Data Generation Model Training

...

Instruction Prompt Generation

HF-Embodied Dataset Generation

Model
Scope

"Move the robot arm on top of pink cloth."

"Execute a right turn at the upcoming 
intersection."

"Collect sand on the plain"

Dimension:  Trajectory

Score 

Reason In some segments, the 
motion trajectory of the arm 
is inconsistent 

1  2  3  4  5

Keyword: Move  Example: "Move the robot arm on top of the blue box"

LLM: "Move the robot arm on top of the white plastic cup"

"Move the robot arm on top of the red button white black bottom"

"Move the robot arm on top of the black handset of the telephone"
...

...
Keyword: Press  Example: "Press the  red desk lamp button"

"Move the robot arm under the floating red cup."

"Slide the robot arm through the solid metal block."

Trajectory

Key Elements ...

Video
Crafter

Open
Sora

...

Other 
Models

"Move the robot arm on top of pink cloth."

"Rotate counterclockwise by 150 degree"

"Press the green  button with grey white 
bottom" ...

Velocity

Interaction

Perspectivity

Figure 2. Overview of Explicit Perceptual Evaluation. (Top) Instruction Prompt Generation. We use a large collection of video
captions from the internet and our predefined embodied evaluation dimensions. These are expanded using GPT and manually verified to
create a corresponding Task Instruction Prompt List for data generation and evaluation. (Bottom) HF-Embodied Dataset Generation.
Massive internet-sourced embodied videos with captions are used to train data generation models. Fine-grained Human Feedback
Annotation is then applied to the embodied videos according to the corresponding Task Instruction Prompt List, covering multiple
embodied dimensions.

The evaluation of World Simulators encompasses three crit-
ical embodied scenarios: Open-Ended Embodied Environ-
ment (OE), Autonomous Driving (AD), and Robot Manipu-
lation (RM). Minecraft serves as a popular testbed for OE,
providing a challenging platform for agents to handle com-
plex, unstructured tasks. In the context of AD, especially
in outdoor settings, ensuring the stability and robustness of
the agent’s actions is crucial, making it an essential domain
for assessing a World Simulator’s capability in dynamic
and uncertain environments. RM, a core task in embodied
intelligence, demands precise and adaptive control, testing
the world simulator’s ability to generate actionable predic-
tions that align with physical interactions. Together, these
scenarios provide a comprehensive benchmark for evaluat-
ing the effectiveness of World Simulators across a range of
real-world tasks.

3.1. Explicit Perceptual Evaluation

In Explicit Perceptual Evaluation, we propose Hierarchical
Evaluation Dimensions, based on which we build a video
assessment dataset annotated through fine-grained human
feedback, named HF-Embodied Dataset. The dataset is
constructed based on three key resources, each correspond-
ing to a specific embodied scenario: a curated dataset of
Minecraft videos from the internet for OE (Baker et al.,
2022), real-world driving data for AD (Caesar et al., 2020),
and real-world robot manipulation videos annotated with

text instructions for RM (Chen et al., 2024). Using HF-
Embodied Dataset, we train a Human Preference Evaluator
to perform perceptual evaluations of World Simulators.

3.1.1. HIERARCHICAL EVALUATION DIMENSION

We develop a hierarchical evaluation dimension checklist for
the three embodied scenarios, as illustrated in Tab. 2, which
can be categorized into three main aspects: Visual Qual-
ity, Condition Consistency, and Embodiment. (1) Visual
Quality primarily assesses the overall quality of video gen-
eration, including Aesthetics, Background and Foreground
Consistency. (2) Condition Consistency focuses on the
alignment with the input instruction. For tasks in OE that
involve distinct scenarios, we additionally define Scenario
Alignment to assess the alignment to the specific scenarios
outlined in the instruction. (3) Embodiment has different
definitions depending on the scenario. As all tasks require
movement along a certain trajectory, we uniformly define
Trajectory to evaluate the rationality of object movement
in the video (e.g., whether a robotic arm avoids obstacles
during motion). In AD and RM, we define Perspectivity to
assess whether the video exhibits a clear sense of depth. In
OE and RM, we define Embodied Interaction to evaluate
the plausibility of interactions with objects. We also define
Velocity in OE to determine whether speed varies appropri-
ately across different environments (e.g., slower movement
in water). In AD, we define Key Element to evaluate the
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Table 2. Hierarchical Evaluation Dimension. The dimensions are categorized into three main aspects: Visual Quality for evaluating the
overall quality, Condition Consistency for evaluating the alignment to the input instruction, and Embodiment for evaluating embodied
related factors like physical rules.

Embodied Scenarios Visual Quality Condition Consistency Embodiment

Open-Ended Embodied Environment (OE) Background Consistency (BC)
Foreground Consistency (FC)

Instruction Alignment (IA)
Scenario Alignment (SA)

Velocity (VC)
Trajectory (TJ)

Embodied Interaction (EI)

Autonomous Driving (AD) Aesthetics (AE) Instruction Alignment (IA)

Perspectivity (PV)
Trajectory (TJ)

Key Element (KE)
Safety (SF)

Robot Manipulation (RM)
Aesthetics (AE)

Background Consistency (BC)
Foreground Consistency (FC)

Instruction Alignment (IA)
Perspectivity (PV)

Trajectory (TJ)
Embodied Interaction (EI)

rendering quality and consistency of crucial embodied el-
ements, e.g., pedestrians. We also introduce Safety in AD
to assess whether the embodied actions comply with traffic
rules. More details in Sup. B.

3.1.2. INSTRUCTION PROMPT GENERATION

Using the Hierarchical Evaluation Dimension and massive
video captions from the key resources, we create a founda-
tional but comprehensive prompt list. We utilize the knowl-
edge of LLMs, i.e. ChatGPT, to extend the meta-prompts
across a wide range. After manual screening for relevance,
diversity, and data distribution, we compile the Task In-
struction Prompt List, which separates prompts for each
content-embodied scenario and each evaluation dimension,
as shown in Fig. 2.

3.1.3. HF-EMBODIED DATASET GENERATION

Data Preparation. We select multiple video generation
models and train them using a large corpus of videos and
corresponding captions from the key resources. Due to the
capabilities of the open-source video generation model, we
conduct targeted training for each of the three distinct em-
bodied scenarios individually, thereby developing several
data generation models for different embodied scenarios.
These models are then used to produce a substantial amount
of instruction-following embodied videos, based on the cor-
responding captions, and the initial image condition where
applicable (first frame conditioned text-to-video to generate
situation-aware videos).

Human Annotation. We use human annotation to label
the generated videos. Based on the Hierarchical Evalua-
tion Dimension, we establish specific annotation guidelines
and numerous in-conttext examples for the annotators. For
each dimension, annotators are instructed to score the video
solely based on its performance within that particular di-
mension and provide corresponding reasoning. For instance
in RM, as illustrated in Fig. 2, under the dimension of Tra-
jectory, annotators are required to evaluate the video ex-

clusively on the generation quality of the motion trajectory.
They are instructed not to consider other elements (e.g., the
rendering quality of the robot arm) or other dimensions
(e.g., consistency with instructions). Additionally, anno-
tators are asked to provide fine-grained feedback on any
deficiencies, e.g., “inconsistent trajectory”. As a result, we
construct the HF-Embodied Dataset, which consists of a
total of 35,701 tuples, each comprising a video, text instruc-
tion, multi-dimensional scores, and the potential reasons.
More details in Sup. C.1.

3.1.4. HUMAN PREFERENCE EVALUATOR

The objective is to develop a video scoring model that as-
sesses videos across multiple dimensions aligning with hu-
man perception. The model takes a generated video and
a prompt as input and outputs a score ranging from 1 to
n (n is defined specifically for each embodied scenario).
The prompt includes both the video generation instructions
and an explanation of the evaluation criteria. Leveraging
the strong video understanding capabilities of multimodal
large language models, we fine-tune Flash-VStream (Zhang
et al., 2024a), a VideoLLM, aligning it with human per-
ception on HF-Embodied Dataset. Only LoRA (Hu et al.,
2021) parameters are trained. This enables the model to
effectively grasp the evaluation metrics for embodied tasks
and produce accurate scores, while maintaining its video
perception and reasoning ability. We prove the effectiveness
and generalizability of our Human Preference Evaluator in
Sec. 4.2.

3.1.5. EVALUATION METRICS.

The evaluation of a video generation model is based on
the scores assigned by the evaluator across various dimen-
sions. For each dimension, the video generation model
generates videos guided by several carefully selected in-
structions sourced from Task Instruction Prompt List that
are strongly aligned with the specific evaluation criteria, e.g.,
“explore on the beach” for Embodied Scenario in OE. The
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Figure 3. Overview of Implicit Manipulative Evaluation. Embodied tasks in different scenarios are decomposed into executable sub-
tasks. The video generation model generates corresponding predicted videos based on the current instructions and real-time observations.
Using a pre-trained IDM or a goal-based policy, the agent executes the generated sequence of actions. After a fixed timestep, the predicted
video is refreshed by sampling again from the video generation model, and this process repeats. Finally, the success rates of various
embodied tasks are obtained through monitors in the simulation environment.

final metric for each model is computed as the average score
across all dimensions. The evaluated dimensions for each
embodied scenario are listed in Tab. 2.

3.2. Implicit Manipulative Evaluation

The Implicit Manipulative Evaluation assesses the capabili-
ties of World Simulators across various embodied scenarios
by treating the simulator as a low-level decision maker for
situational contexts. Using pre-trained video-to-action mod-
els, we implicitly evaluate the performance of the World
Simulators by observing their effectiveness in closed-loop
embodied task tests.

3.2.1. SIMULATION CONSTRUCTION

The Implicit Manipulative Evaluation is conducted using the
following three simulation platforms, for specific settings,
please refer to the Supplementary Material.

OE We employ MineRL as the Minecraft simulator, with
the observation space limited to RGB images and the action
space confined to keyboard and mouse controls. We adopt
the Steve-1 benchmarks (Lifshitz et al., 2024), with task
descriptions e.g., ”chop a tree.”

AD We conduct standard closed-loop evaluations using the
CARLA (Dosovitskiy et al., 2017) simulator on the Lan-
gAuto Benchmark (Shao et al., 2024). Task descriptions
include instructions like ”do not deviate from this route.”

RM We employ CALVIN (Mees et al., 2022) as the robot
manipulation simulator, using only RGB images for the
observation space and limiting the action space to the 7-DOF
(degrees of freedom) of the robot arm. Task descriptions

include commands e.g., ”pull the handle to open the drawer.”

3.2.2. EMBODIED TASK EVALUATION

Evaluation Pipeline. As illustrated in Fig. 3, we first lever-
age existing or custom-trained video-to-action models as
intermediaries between the World Simulator and the agent
performing closed-loop tasks, for the selected benchmarks
across three simulation environments. This approach en-
ables the transformation of the predicted future videos from
the World Simulator into executable control signals in real-
time, thereby indirectly evaluating the World Simulator’s
capability through the successful completion of embodied
tasks. The evaluation process is tailored to the specific na-
ture of the models under consideration, establishing distinct
protocols for closed-loop task evaluation. We fine-tune the
models on simulation datasets tailored to each task. These
datasets, derived from the three aforementioned benchmarks,
include task instructions and corresponding videos, ensur-
ing the models are well-adapted to the specific embodied
scenarios. Finally, the evaluated World Simulator is inte-
grated with the video-to-action model to jointly form an
embodied agent that performs the given tasks. The agent’s
performance across various tasks serves as a direct measure
of the World Simulator’s effectiveness.

Evaluation Metrics. In OE, we track the MineRL (Guss
et al., 2019) environment state to calculate metrics e.g.,
travel distance and early-game item collection. Travel dis-
tance is the agent’s maximum horizontal displacement (X-Z
plane) from the spawn point, while dig depth is its maximum
vertical displacement (Y axis). We record the maximum
number of logs, seeds, and dirt items in the agent’s inventory
during the episode. In AD, we employ eight widely used
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Table 3. The overall performance comparison between Human Preference Evaluator and GPT-4o. HPE indicates Human Preference
Evaluator. HPE@Lavie means that HPE is trained on videos except those generated by Lavie. The validation is conducted on videos
generated by Laive under zero-shot setting.

Embodied Scenario GPT-4o HPE GPT-4o@OpenSora HPE@OpenSora GPT-4o@Lavie HPE@Lavie

OE@Acc(↑) 72.8 89.4 66.5 71.6 78.5 87.9
AD@PLCC(↑) 0.28 0.60 0.03 0.34 -0.04 0.49
RM@PLCC(↑) 0.07 0.43 -0.06 0.47 0.17 0.44

evaluation metrics in Carla (Dosovitskiy et al., 2017), includ-
ing Route Completion (RC), Infraction Score (IS), Driving
Score (DS), Vehicle Collisions (VC), Pedestrian Collisions
(PC), Layout Collisions (LC), Red Light Violations (RV),
and Offroad Infractions (OI). In RM, we evaluate the video
generation model in the CALVIN (Mees et al., 2022) setting
(train on A, B, C → test on D) by running 20 trials and
calculating the average success rate.

4. Experiments
4.1. Experimental Setup

We evaluate 8 popular video generation models, including
Open-Sora-Plan(T2V) (Lab & etc., 2024), Lavie (Wang
et al., 2023c), ModelScope (Wang et al., 2023b), Open-
Sora (Zheng et al., 2024), AnimateDiff (Guo et al.,
2023), Open-Sora-Plan(TI2V) (Lab & etc., 2024), Dynami-
crafter (Xing et al., 2023), EasyAnimate (Xu et al., 2024)
through both Explicit Perceptual Evaluation and Implicit
Manipulative Evaluation, across three distinct scenarios:
Open-Ended Embodied Environment (OE), Autonomous
Driving (AD), and Robot Manipulation (RM). All models
finetuned on specific datasets corresponding to three em-
bodied scenarios in Explicit Perceptual Evaluation and Im-
plicit Manipulative Evaluation. Detailed information on the
datasets, training, and testing configurations can be found
in the Supplementary Material.

For Explicit Perceptual Evaluation, we extract five instruc-
tions from the Task Instruction Prompt List for each di-
mension across the three embodied scenarios, ensuring they
strongly align with the specific evaluation criteria, as dis-
cussed in Sec. 3.1.5. The selected instruction prompts each
model to generate five videos, which are then scored by the
Human Preference Evaluator to obtain an average score for
the model’s performance. For the scoring range 1-n, n is set
2 for OE, and set 5 for both AD and RM. We indicate that
the generation quality in OE is perceived as binary from a
human perspective, while the other two scenarios exhibit a
more diverse range of video quality.

For Implicit Manipulative Evaluation, we constructed three
video-to-action models for embodied simulation environ-
ments, following the designs of Steve-1 (Lifshitz et al.,
2024), Susie (Black et al., 2023), and LMdrive (Shao et al.,

2024). For the evaluated models, we used the following
datasets for fine-tuning: (1) VPT (Baker et al., 2022) and
our own collected videos along with corresponding task
descriptions as the training set for the OE; (2) the full
Calvin(ABC D) (Mees et al., 2022) video dataset and cor-
responding robot arm control instructions as the training
set for RM; and (3) the full Carla (Dosovitskiy et al., 2017)
video dataset and corresponding autonomous driving nav-
igation commands as the training set for AD. Since the
video-to-action model in our OE setup utilizes a goal-based
policy, which interprets the goal from the input video and
generates actions based on the current observations and
the goal, it allows us to additionally evaluate text-to-video
models.

4.2. Experiments on Human Preference Evaluator

We demonstrate the strong capabilities and generalization
of Human Preference Evaluator by comparing it with GPT-
4o (OpenAI, 2024), showcasing its applicability for Explicit
Perceptual Evaluation, as shown in Tab. 3. We use accuracy
(Acc) in OE to assess the alignment of the model with hu-
man preferences, given the scoring range of 1-2. In contrast,
we employ Pearson linear correlation coefficient (PLCC)
for AD and RM as their scores range from 1-5.

After fine-tuning on HF-Embodied Dataset, our evaluator
consistently surpasses the performance of GPT-4o in terms
of alignment with human preferences across all scenarios.
Additionally, we conducted zero-shot experiments with two
challenging models, i.e. OpenSora and Lavie. GPT-4o
exhibits a negative correlation with human preferences in
evaluating OpenSora in AD under zero-shot setting, as well
as evaluating Lavie in RM under zero-shot setting. Our eval-
uator’s zero-shot performance shows a high correlation with
human preferences, further demonstrating its robust general-
ization capabilities. Human Preference Evaluator is suitable
for Explicit Perceptual Evaluation, and the HF-Embodied
Dataset can be leveraged to train even more aligned models
for assessing video generation models towards World Sim-
ulators. For additional details and validation experiments
on the HF-Embodied Dataset, please refer Sup. C.1 and
Sup. C.3.
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OE AD RM

Figure 4. Result of Explicit Perceptual Evaluation aross three embodied scenarios. Scores in each embodied scenario are normalized
to 0-1. The abbreviations are listed in Tab. 2.

4.3. Design Features and Discussions

In this section, we discuss the Design features and corre-
sponding observations we draw from our comprehensive
evaluation experiments. More details can be found in the
Supplementary Material.

Human Prefrence with Feedback. Given the complex-
ity and diversity in the representation of physical rules in
videos, even a specific dimension may manifest in various
ways (for example, both illogical and discontinuous object
motion fall under trajectory-related issues). This makes
it challenging to evaluate using score-based models or a
single fixed set of evaluation criteria. WorldSimBench ad-
dresses this challenge effectively by employing a human
preference scoring mechanism and a fine-grained feedback
system. Fig. 4 illustrates the evaluation results of Explicit
Perceptual Evaluation, more detail analyze could be found
in Sup. D. In OE, most models struggle with Embodied
Interaction, particularly in generating plausible object de-
formations, e.g., block shattering, due to the complexity
of physical rules. In AD, the variation between models is
minimal, with high-performing models excelling across all
dimensions. The simpler instructions, like moving forward
or turning, lead to high Instruction Alignment, but many gen-
erated videos suffer from poor 3D depth (Perspectivity) and
fail to depict realistic embodied elements like pedestrians
and vehicles, affecting the overall Aesthetic. In RM, models
perform uniformly well in static scene depiction, excelling
in Perspectivity and Foreground/Background Consistency.
However, they struggle with Instruction Alignment, often
generating aimless actions. Despite this, the lack of un-
reasonable trajectories results in relatively high Trajectory
scores, though robotic manipulation remains a significant
challenge for current models.

Close-loop Interactive Evaluation. Given the dynamic
nature and real-time requirements of interactive environ-
ments, evaluating World Simulators through static bench-
marks often fails to capture the full spectrum of their capa-

bilities. Close-loop Interactive Evaluation addresses this by
enabling continuous feedback and adaptation, ensuring that
the model’s predictions and actions evolve in response to the
changing environment, thus providing a more accurate and
realistic assessment of its performance. Fig. 5 presents the
Implicit Manipulative Evaluationevaluation results, showing
significant variation in the performance of video generation
models across different tasks. In the OE, video generation
models conditioned on the first frame have a significantly
lower success rate compared to those without image condi-
tioning. This suggests that models with image conditioning
struggle to generate physical laws and 3D scene representa-
tions accurately. Tasks like travel, requiring high-quality tra-
jectories and 3D representation, show the greatest variation
in model performance, while simpler tasks like collecting
wood see similar performance across models, indicating
effective handling of minimal background variation. In the
AD, models with better trajectory(Open-Sora-Plan) genera-
tion perform better. In the RM, where background variation
is minimal, models perform similarly on simple tasks, but
as complexity increases, more robust models achieve higher
success rates. Despite some success across scenarios, video
generation models still need significant improvements in
generating physically consistent content to be reliable for
training agents or guiding actions.

Alignment of Physical Rules and Actions. Ensuring that
World Simulators adhere to physical laws while generat-
ing predictions is crucial for practical application. The
alignment of physical rules and actions is essential as it
guarantees that the model’s outputs are not only visually
plausible but also executable in real-world scenarios. This
approach allows for the seamless integration of predicted
actions with their physical environment, ensuring reliability
and effectiveness in real-world tasks. Based on our exper-
imental findings, we observe that most conclusions from
the Explicit Perceptual Evaluationand Implicit Manipulative
Evaluationevaluations are consistent. Specifically, the visual
quality across most dimensions aligns with the results from
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(a)

(b) (c)

Figure 5. Result of Implicit Manipulative Evaluation aross three embodied scenarios.The abbreviations are listed in Sec. 3.2.2.

the closed-loop experiments. e.g., Dynamicrafter, which
performs well in trajectory generation in Explicit Percep-
tual Evaluation, also excels in trajectory-focused scenarios
like AD and RM. However, in other cases—such as the
OE, which requires more frequent interactions, and long-
sequence tasks (4, 5) in RM—Dynamicrafter underperforms
compared to Open-Sora-Plan. This differs from the Explicit
Perceptual Evaluation results, likely because these tasks
demand stable, high-quality video generation for guidance,
where Open-Sora-Plan shows higher robustness. Therefore,
a comprehensive evaluation of video generation models re-
quires a combination of Explicit Perceptual Evaluation and
Implicit Manipulative Evaluation assessments to provide
the most fair and accurate judgment. Finally, based on the
overall Explicit Perceptual Evaluationand Implicit Manip-
ulative Evaluationresults, we conclude that current video
generation models still fail to effectively capture many phys-
ical rules, indicating significant improvements are needed
before they can function as true World Simulators.

5. Conclusion
In this work, we classify the functionalities of predictive
models into a hierarchy and take the first step in evaluating
World Simulators by proposing a dual evaluation framework
called WorldSimBench. We conducted a comprehensive
evaluation and analysis of multiple video generation models
as World Simulators through both Explicit Perceptual Eval-
uation and Implicit Manipulative Evaluation processes. We
summarize key findings from the evaluation and hope these
insights will inspire and guide future research on World
Simulators.

Limitations. Although we evaluate physical rules and 3D

content from the perspective of embodied intelligence, the
World Simulator can be applied to more scenarios than just
robots, and different scenarios have more physical represen-
tations, so how to effectively evaluate the World Simulator
in other scenarios requires more exploration.

Impact Statement
Our work establishes a structured evaluation framework for
predictive models, addressing key limitations in their cate-
gorization and assessment. By introducing WorldSimBench,
we provide a dual evaluation strategy that bridges the gap
between visual perception and embodied decision-making,
enabling a more comprehensive understanding of World
Simulators. The introduction of HF-Embodied Dataset
enhances model evaluation by aligning assessments with
human perception, while our downstream evaluation mea-
sures the functional effectiveness of generated videos in
real-world-inspired control tasks. These contributions lay
the foundation for future advancements in video genera-
tion and predictive modeling, driving progress toward more
reliable and capable embodied AI systems.
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A. Related Work
Predictive Models. Predictive models are capable of generating process representations that map the current state to
future states by incorporating current state representations and control over future trends. Predictive Text Model, built on
LLMs (Radford et al., 2019; Touvron et al., 2023; Chiang et al., 2023) and MLLMs (Achiam et al., 2023; Team et al., 2023;
Liu et al., 2023a; Yin et al., 2023), generate future predictions in the text modality by accepting current state representations
and text instructions. These models have demonstrated impressive performance in high-level planning tasks for embodied
agents (Driess et al., 2023; Li et al., 2024; Qin et al., 2024; Chen et al., 2024; Zhang et al., 2024b; Lu et al., 2024). Similarly,
image generation models (Brooks et al., 2023; Fu et al., 2023) as Predictive Image Model (Lai et al., 2023; Black et al.,
2023; Zhou et al., 2024) can produce future goal images, showcasing strong capabilities during the decision-making phase
of embodied agents. Predictive Video Model (Du et al., 2024; 2023), based on video generation models (Janner et al., 2022),
have made some progress in embodied control. However, due to limitations in data or models, the generated videos often
lack essential physical representations and logical consistency, restricting their applicability to fixed scenarios and single
tasks.

With the advancement of diffusion transformer (Peebles & Xie, 2023) and the extensive utilization of large-scale internet
video datasets (Bain et al., 2021; Ebert et al., 2021; Goyal et al., 2017; Grauman et al., 2022), certain Predictive Actionable
Video Model (Yang et al., 2023) models, also known as World Simulators, have achieved more precise representations of
physical laws and 3D environments.

Evaluation of Predictive Models. With the advancement of predictive models, research has also expanded to evaluate the
capabilities of models at different stages. (Liu et al., 2023b; Chen et al., 2023; Shi et al., 2024; Liu et al., 2024a) conducted
text-level and task completion evaluations for Predictive Text Model at the S0 stage. (Lai et al., 2023) performed score-based
evaluations from an aesthetic perspective for Predictive Image Model at the S1 stage. (Huang et al., 2024; Liu et al., 2024b)
also assessed the aesthetic quality of videos generated by Predictive Video Model at the S2 stage. We take the first step in
evaluating World Simulators through an embodied perspective.

B. Taxonomy in Explicit Perceptual Evaluation
We outline the evaluation dimensions for each embodied scenario below, along with their corresponding explanations. These
explanations are used for detailed human annotation documentation and also serve as the explanation of the evaluation
criteria in instructions for the Human Preference Evaluator.

B.1. Open-Ended Embodied Environment

Visual Quality. Background Consistency ensures the background remains consistent throughout the video. Foreground
Consistency verifies the consistency of the foreground elements.

Condition Consistency. Instruction Alignment assesses whether the video aligns with the provided input instruction.
Scenario Alignment checks if the input instruction defines an embodied scenario and whether the video accurately reflects
this scenario.

Embodiment. Velocity evaluates if the velocity of the observed object is appropriate. Embodied Interaction evaluates the
embodied interaction’s appropriateness based on the interaction process and target. Trajectory evaluates whether the motion
trajectory in the video is logical.

B.2. Autonomous Driving

Visual Quality. Aesthetics evaluates whether the composition, color, lighting, and scene in the video align with human
aesthetics.

Condition Consistency. Instruction Alignment assesses whether the video aligns with the provided input instruction.

Embodiment. Perspectivity evaluates the video’s perspective, specifically assessing the 3D scene relationships. This
includes evaluating whether the video has a strong sense of depth and realism (i.e., whether it feels three-dimensional).
Additionally, assess the logic of lighting and shadows, including whether the shadow positions are consistent with the light
sources. Trajectory evaluates whether the movement and the trajectory of elements in the video is logical. Key Element
assesses the generated quality of embodied elements e.g., roads, vehicles, pedestrians, bicycles, lane markings, sidewalks,
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Table 4. Analysis of HF-Embodied Dataset. Samples scored higher than 3 in AD and RM are considered positive.

Embodied Scenario #instructions #videos #dims #actions #positive #negative
Open-Ended Embodied Environment 270 8401 7 11 121249 79965
Autonomous Driving 5 15870 6 5 56768 35044
Robot Manipulation 2556 11430 7 26 70672 9338

traffic signs, and traffic lights. Safety evaluates whether the behavior of the vehicles comply with traffic rules. Are there any
instances of running red lights, speeding, or driving outside of permissible areas.

B.3. Robot Manipulation

Visual Quality. Aesthetics evaluates whether the composition, color, lighting, and scene in the video align with human
aesthetics. Background Consistency ensures the background remains consistent throughout the video, include the manipula-
tion table and the environment. Foreground Consistency verifies the consistency of the foreground elements, including the
robotic arm and the object on the manipulation table.

Condition Consistency. Instruction Alignment assesses whether the action of the robot arm in the generated video aligns
with the provided input instruction.

Embodiment. Perspectivity evaluates the video’s perspective, specifically assessing the 3D scene relationships. This
includes evaluating whether the video has a strong sense of depth and realism (i.e.., whether it feels three-dimensional).
Additionally, assess the logic of lighting and shadows, including whether the shadow positions are consistent with the light
sources. Embodied Interaction judges whether the object’s shape and posture conform to the rules during the collision of
objects and the interaction between the robotic arm and the object. Trajectory evaluates whether the trajectory of the robotic
arm is reasonable and in line with human cognition.

C. Detaild Implementation of Explicit Perceptual Evaluation
C.1. HF-Embodied Dataset

Tab. 4 provides an analysis of the HF-Embodied Dataset. In Autonomous Driving scenario, there are only five instructions:
move forward, move backward, turn left, turn right, and stop. The other two scenarios include a variety of instructions that
combine actions with target objects. Given the diverse instructions, different video generation models generate multiple
videos after finetuning on specific datasets. To enhance the Human Preference Evaluator understanding of the autonomous
driving context, we also supplement the AD scenario with videos from real-world scenes. Additionally, we list the quantities
of positive and negative samples across all dimensions. Samples with human annotated scores of 3 or higher in AD and RM
are considered positive. Leveraging HF-Embodied Dataset with comprehensive embodied dimensions, we train the Human
Preference Evaluator to enable efficient assessment in Explicit Perceptual Evaluation.

To validate the potential value of the dataset, we leverage it to align video generation models with human preferences,
thereby enhancing various embodied evaluation attributes. Specifically, we use Open-SORA-Plan as the base model and
construct preference data pairs from the dataset’s annotated robotic manipulation data for training. Following the DPO
training paradigm, which directly utilizes winning and losing preference pairs, the results presented in Tab. 5 demonstrate
that the re-weighted model achieves improvements across multiple attributes.

Table 5. HF-Embodied Dataset alignment performance The abbreviations are listed in Tab. 2.

Model AE BC FC IA PV TJ EI Overall

Open-Sora-Plan 4.0 4.0 4.0 1.0 4.9 5.0 4.0 3.84
Open-Sora-Plan(DPO) 4.0 3.9 4.0 1.6 5.0 5.0 4.3 3.97

Discussion of Future Work. Human Preference Evaluator (HPE) and HF-Embodied Dataset have been effective in aligning
generated content with human preferences and evaluating video generation models, and we could explore more about its
potential applications. Here are some future work directions to leverage the capabilities of HPE and HF-Embodied Dataset:
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Interactive Training for Generative Models Utilize HPE as a real-time feedback mechanism during the training of
generative models. By integrating HPE and HF-Embodied Dataset into a reinforcement learning framework, it could
dynamically guide the model to improve alignment with human preferences across various scenarios, and can even make the
world simulator perform better in downstream tasks.

C.2. Video Generation Model Finetuning

Table 6. Training Frames of Generation Models.
Model Open-Sora-Plan Lavie ModelScope OpenSora AnimateDiff DynamicCrafter EasyAnimate
Short Videos(frames) 16 16 16 16 16 16 16
Long Videos(frames) 64 48 60 48 64 60 64

We evaluate 8 popular video generation model, including Open-Sora-Plan(T2V) (Lab & etc., 2024), Lavie (Wang et al.,
2023c), ModelScope (Wang et al., 2023b), OpenSora (Zheng et al., 2024), AnimateDiff (Guo et al., 2023), Open-Sora-
Plan(TI2V) (Lab & etc., 2024), DynamicCrafter (Xing et al., 2023), EasyAnimate (Xu et al., 2024) through both Explicit
Perceptual Evaluation and Implicit Manipulative Evaluation, across three distinct scenarios: Open-Ended Embodied
Environment (OE), Autonomous Driving (AD), and Robot Manipulation (RM).

In Open-Ended Embodied Environment, we use OpenAI Contractor Gameplay Dataset (Baker et al., 2022) which is
created by hiring human contractors to play Minecraft and complete tasks like house building. Keypresses and mouse
movements are recorded during gameplay. We apply the same preprocessing steps as VPT, including filtering out null
actions. Additionally, we create a supplementary dataset for the task ”Explore” by generating trajectories using various
pre-trained Steve-1 agents. The distribution of this dataset is enhanced by randomly switching between models during
trajectories, resetting the agent’s memory, and adjusting the agent’s orientation to face new directions at random intervals.
For specific in-game events, e.g., “mine block”, the type of block broken is logged alongside precise timestamps. These
timestamps allow for accurate progress tracking and are aligned with the completion of event-related instructions.

In Autonomous Driving, we fine-tune using the nuScenes training set (Caesar et al., 2020), and following the approach in
Vista (Gao et al., 2024), we sample video clips consisting of 25 frames at a frequency of 10 Hz. To classify actions into
textual commands, we adhere to established conventions in planning and define ego-vehicle commands as “turn right”, “turn
left”, “go straight”, and “stop”, consistent with the definitions in Vista.

In Robot Manipulation, we use RH20T-P (Chen et al., 2024), a dataset based on RH20T (Fang et al., 2023) and designed for
primitive-level robotic manipulation that features meticulously defined primitive skills and diverse primitive-level spatial
knowledge of multiple forms. We use each primitive-level robotic manipulation instruction along with the corresponding
video as input for training. Additionally, since this dataset is designed for downstream tasks in specific scenarios, some
textual instructions include explicit coordinate information. To enhance the generalization ability of the video model, we
excluded these coordinate-specific instructions during training.

At the model architecture level, we followed Dynamicrafter (Xing et al., 2023) to modify the text-to-video model of
Open-Sora-Plan(T2V) (Lab & etc., 2024) by replacing the first frame and expanding the channel dimensions, enabling the
model to take the first frame as a condition. This resulted in the Open-Sora-Plan (TI2V) model. No structural adjustments
were made to other models. During training, we preprocessed the data according to each model’s default input format and
performed fine-tuning following the official implementation without changing the training settings. We fine-tuned each
model using two different video lengths to enhance the diversity of the video evaluation set: short videos with approximately
20 frames and long videos with around 60 frames, depending on the model’s default training video length. The specific
lengths are detailed in the Tab. 6.

C.3. Human Preference Evaluator Traing

The Human Preference Evaluator is trained based on Flash-VStream (Zhang et al., 2024a), where only LoRA (Hu et al.,
2021) parameters are trained. The model’s input consists of a sampled video, represented as multiple frames, along with a
prompt. The prompt includes the current scenario, the instruction input for video generation, the dimension being evaluated,
and the definition of that dimension. An example of such a prompt is illustrated in Fig. 6, while the details of the explanation
are discussed in Section 2. We don’t use the annotated reason during training for CoT of the evaluator, as the reason labeled
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OE@Acc(↑) BC FC IA SA VC TJ EI Overall

GPT-4o 60.5 70.4 70.9 67.3 79.6 83.7 85.9 72.8
HPE 81.2 87.5 87.5 96.4 94.5 93.8 88.8 89.4

GPT-4o@OpenSora 60 80 80 50 0.0 100 88.8 66.5
HPE@OpenSora 70 90 60 100 100 22.2 80 71.6

GPT-4o@Lavie 50 66.7 75 88.8 87.5 100 87.5 78.5
HPE@Lavie 80 80 80 100 100 75 100 87.9

AD@PLCC(↑) AE IA PV TJ KE SF Overall

GPT-4o 0.37 0.22 0.23 0.28 0.37 0.18 0.28
HPE 0.71 0.57 0.50 0.58 0.65 0.58 0.60

GPT-4o@OpenSora 0.22 -0.39 0.32 0.15 -0.03 -0.12 0.03
HPE@OpenSora 0.37 0.55 0.34 0.06 0.28 0.41 0.34

GPT-4o@Lavie 0.17 0.13 -0.34 0.06 -0.09 -0.15 -0.04
HPE@Lavie 0.28 1.0 0.49 0.37 0.12 0.69 0.49

RM@PLCC(↑) AE BC FC IA PV TJ EI Overall

GPT-4o 0.07 0.18 0.20 0.32 -0.14 -0.01 -0.14 0.07
HPE 0.52 0.43 0.43 0.43 0.20 0.56 0.44 0.43

GPT-4o@OpenSora -0.45 -0.03 0.08 0.0 0.04 -0.23 0.14 -0.06
HPE@OpenSora 0.25 0.35 0.05 0.42 0.89 0.89 0.44 0.47

GPT-4o@Lavie 0.11 -0.07 0.42 0.42 0.21 0.31 -0.21 0.17
HPE@Lavie 0.33 0.04 0.69 0.40 0.89 0.67 0.06 0.44

Table 7. Performance comparison between Human Preference Evaluatorand GPT-4o. HPE indicates Human Preference Evaluator.
The other abbreviations are listed in Tab. 2.

<Video>\nThe given autonomous driving video is generated by a generative model based on 
the input instruction: {instruction}. Please rate the video based on the following criteria:
{Dimension}: {Dimension Explanation}

Figure 6. Prompt template for Autonomous Driving. The {item} is replaced with specific content.

by different human varies a lot, hard for model to learn.

We maintain consistent training settings in all three scenarios, with a video sampling frequency of 4. The LoRA settings
aligned with those in Flash-VStream. We use AdamW as the optimizer, employ cosine decay for the learning rate scheduler.
We train for 4 epochs with a learning rate of 2e-5 and a warmup ratio of 0.03. The training is conducted on 4 A100 80 GPUs.
To avoid over-fitting to specific prompts or videos generated by particular models, we carefully filter the HF-Embodied
Dataset to ensure balanced distribution across various generation models and evaluation dimensions.

We prove the effectiveness and generalizability of through comparison with GPT-4o arcoss the three embodied scenarios,
under both finetuned and zero-shot setting, as shown in Tab. 7. After fine-tuning, the Human Preference Evaluator surpasses
GPT4-o in aligning with human preferences across all dimensions in every scenario. This is particularly evident in
challenging dimensions, e.g., Embodied Interaction and Trajectory in RM, where GPT4-o shows a negative correlation,
while the Human Preference Evaluator exhibits a strong positive correlation. These results demonstrate the its robust
performance, making it suitable for Explicit Perceptual Evaluation. In zero-shot settings, the Human Preference Evaluator
also outperforms GPT4-o in nearly all dimensions, further proving our model’s aility to understand videos generated by
different models.
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Table 8. Evaluation results in OE. The abbreviations are listed in Tab. 2.
Model BC FC IA SA VC TJ EI Overall

Open-Sora-Plan 1.4 1.9 1.7 1.7 2.0 1.5 1.6 1.69
Lavie 1.3 2.0 1.7 1.7 2.0 2.0 1.8 1.79
ModelScope 1.9 2.0 2.0 1.7 2.0 2.0 1.75 1.91
OpenSora 1.6 1.9 1.6 1.8 2.0 2.0 1.6 1.79
AnimateDiff 1.3 1.3 1.2 1.7 1.4 1.38 1.55 1.40
DynamicCrafter 1.9 2.0 1.5 2.0 2.0 2.0 1.45 1.84
EasyAnimate 1.4 1.8 1.5 2.0 2.0 1.22 1.45 1.62

Table 9. Evaluation results in AD. The abbreviations are listed in Tab. 2.
Model AE IA PV TJ KE SF Overall

Open-Sora-Plan 1.6 5.0 1.55 1.4 1.45 3.2 2.37
Lavie 2.15 5.0 2.2 2.8 2.1 5.0 3.21
ModelScope 2.8 5.0 3.35 4.0 3.0 5.0 3.86
OpenSora 3.55 5.0 4.4 4.8 3.65 5.0 4.40
AnimateDiff 1.55 5.0 1.55 1.0 1.3 3.8 2.37
DynamicCrafter 2.6 4.0 3.4 3.8 2.65 5.0 3.57
EasyAnimate 1.5 3.4 1.4 1.4 1.3 2.6 1.93

D. Detailed Result of Explicit Perceptual Evaluation
D.1. Quantitative Results

Tabs. 8-10 present the comprehensive evaluation results for 7 video generation models across three scenarios, including the
scores for each dimension and the mean scores representing the overall performance of the models. In OE, although our
scoring is binary, we display scores on a scale of 1-2 for consistent comparison. In addition to the conclusions mentioned in
the main text, we can observe the following findings.

In OE, most models achieve high scores in Velocity, largely due to the limited occurrences of object movement in the
generated videos. Generating dynamic embodied environments with moving objects presents a significant challenge for
current models. Additionally, the consistency between the generated videos and the scenarios specified in the instructions is
higher than the alignment with the task-oriented instructions. This indicates that while the models can generate corresponding
scenes, they struggle to reason about the temporal actions necessary for task completion.

In AD, the quality of the generated videos significantly declines due to the complexity of outdoor driving scenarios. The
models must understand and generate various traffic elements, e.g., roads, background buildings, pedestrians, and vehicles,
while also producing dynamic content, with each element requiring reasonable speed. This presents substantial challenges.
However, top-performing models, e.g., OpenSora, manage to achieve the highest scores across all metrics.

In RM, the primary issue lies in Instruction Alignment. The video generation models struggle to comprehend the input
instructions and generate appropriate actions to complete the tasks, instead moving aimlessly without clear objectives. This
lack of targeted movement reduces potential errors related to object interaction or penetration, resulting in artificially inflated
scores in Embodied Interaction and Trajectory. Current video generation models struggle in effectively addressing robotic
manipulation tasks.

D.2. Qualitative Results

We include a qualitative analysis of generated videos under the three embodied scenarios. Each video is represented by three
evenly sampled frames, with the corresponding generation instructions listed above the video. To the left of the videos, we
provide the scores of the key embodied attributes labeled by the human preference evaluator.
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Table 10. Evaluation results in RM. The abbreviations are listed in Tab. 2.
Model AE BC FC IA PV TJ EI Overall

Open-Sora-Plan 4.0 4.0 4.0 1.0 4.9 5.0 4.0 3.84
Lavie 3.8 3.9 4.0 1.8 4.95 5.0 4.1 3.94
ModelScope 3.63 4.1 4.0 1.18 4.9 5.0 4.0 3.83
OpenSora 3.85 4.0 3.95 1.3 4.75 5.0 4.1 3.85
AnimateDiff 3.8 3.9 4.0 1.0 4.95 5.0 4.1 3.82
DynamicCrafter 3.97 4.08 4.0 2.6 5.0 5.0 4.31 4.14
EasyAnimate 3.55 3.45 3.65 1.2 4.8 4.3 3.45 3.49

Place the brown square.

PV: 5
TJ: 5
EI: 4
IA: 1

Place the sponge.

PV: 5
TJ: 3
EI: 3
IA: 1

EI: 5
IA: 5

EI: 3
IA: 5

Place torch on the stone. Place torch on the stone.

KE: 1
SF: 1
PV: 1

KE: 4
SF: 5
PV: 5

Go straight. Go straight.

Figure 7. Qualitative Results in Explicit Perceptual Evaluation.

Open-Ended Embodiment Scenario. For the open-ended embodiment scenario, the left video demonstrates successful
completion of the instructed task, with proper interaction with the stone. In contrast, the right video encounters issues during
interaction, specifically crushing the stone when placing the torch, indicating a problematic interaction.

Autonomous Driving Scenario. In the autonomous driving context, the left video suffers from significant distortion and
light pollution. Additionally, it exhibits unsafe behavior, such as maintaining excessive speed despite the presence of a car
ahead. On the other hand, the right video maintains high-quality generation and demonstrates proper adherence to traffic
rules, including slowing down at a red light.

Robotic Manipulation Scenario. For robotic manipulation, the left video displays that the robotic arm interacts with a
rigid object (wooden block), which appropriately does not deform during the grasping process. However, minor, physically
implausible rotations occur during the grasp, resulting in a score of 4 for EI. Additionally, the generated wooden block does
not match the specified color in the instruction, leading to an instruction alignment score of 1. In contrast, the flexible object
(sponge) in the right video, unrealistically stretched, violating physical rules. Furthermore, the video depicts the robotic arm
moving away from the table, which contradicts the ”place” instruction. This mismatch leads to low scores in both trajectory
and instruction alignment. Despite these issues, both videos effectively display light reflections and shadows, with a clear
sense of depth, earning a PV score of 5.

These qualitative results provide an illustration of ”what is a good embodied video”, and reveal the limitations of the video
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generation models. More qualitative results could be found in: https://sites.google.com/view/worldsimbench.

E. Implicit Manipulative Evaluation-OE
In this section, we provide additional details about Implicit Manipulative Evaluation-Open-Ended Embodied Environ-
ment that are not covered in the main paper due to space limitations. Minecraft has emerged as a popular open-world
environment for developing generalist embodied agents (Lifshitz et al., 2024; Qin et al., 2024; Zhou et al., 2024) due to its
diverse tasks (e.g., survival, harvesting, crafting, combat, and creative tasks), varied environments, and interactive mobs,
all of which require generalized agent capabilities. Previous works (Qin et al., 2024; Wang et al., 2023d;a) have primarily
focused on exploring the capabilities of LLMs or MLLMs as Predictive Text Modelat the S1 stage. However, no prior
research has conducted closed-loop evaluations of World Simulators at the S3 stage within Minecraft. To address this gap,
we leverage the Steve-1 pipeline to assess the performance of Video Generation Models as World Simulators in Open-Ended
Embodied Environment.

E.1. Detailed Description

In Implicit Manipulative Evaluation-Open-Ended Embodied Environment, we adapt the action space of Steve-1 (Lifshitz
et al., 2024) to develop a pipeline for the Video Generation Model, enabling it to function as a low-level embodied controller.
Additionally, we employ Programmatic Evaluation to benchmark the low-level embodied control capabilities of the Video
Generation Model as World Simulators. These tasks are comprehensive, requiring the combination of multiple atomic
actions and smooth scene transitions. Each aspect rigorously tests the coherence of the generated content, the consistency
with given instructions, and the model’s ability to interact effectively with the environment.

Testing. We evaluated performance in OE using five tasks: collecting wood, collecting dirt, collecting seeds, exploring the
area, and vertical digging. To reduce evaluation randomness, we selected the most suitable initialization environments for
each task (e.g., the agent is initialized in a forest for the wood collection task). During testing, for each task, we randomly
select one description from various task instructions and input it into the World Simulator to generate the corresponding
video. The video is then continuously translated into actions by a pre-trained goal-based video-to-action model, which
executes until the test time expires. Each task runs for 10 trials with distinct environment seeds, with a limit of 3,000 frames
(i.e., 2.5 minutes of gameplay).

Training. Due to the low video quality produced by the open-source video generation model based on the provided
instructions, we applied additional fine-tuning using data from the OE simulation environment. For Video Generation
Model fine-tuning, we use OpenAI Contractor Gameplay Dataset (Baker et al., 2022) which is the same as OE in Explicit
Perceptual Evaluation. The training setting could be found in Sup. C.2. For pre-trained goal-based video-to-action model,
we use pre-trained Steve-1(visual) model without extra fine-tuning.

Metrics. We calculate programmatic evaluation metrics by tracking the MineRL environment state throughout each
evaluation episode. Several metrics are measured, including travel distance and early-game item collection. Travel distance
is defined as the agent’s maximum displacement on the horizontal (X-Z) plane from its initial spawn point. Dig depth
is defined as the agent’s maximum displacement on the vertical (Y) axis from its initial spawn point. For an early-game
inventory, we record the maximum count of logs, seeds, and dirt items observed in the agent’s inventory during the episode.

E.2. Actions

We use the part of the action space of (Baker et al., 2022) which encompasses nearly all actions available to human players,
including keypresses, mouse movements, and clicks. The specific binary actions used in our setup are listed in Tab 11.

E.3. Full Result

Tab. 12 presents the evaluation results of several models across five specific tasks (collect wood, collect dirt, collect seeds,
travel distance, and dig depth), along with the average (AVG) score for each model. The models are evaluated under two
different conditions: Text and Text & Image. Notably, to ensure that each task falls within a similar score range, we divided
the score for the travel distance task by 10 to calculate the AVG score.

Performance of Models Under Text Condition. Open-Sora-Plan and Lavie demonstrate strong performance under the text-
only condition, especially in the collect dirt and travel distance tasks. Their average scores (26.38 and 26.06, respectively)
are very close, indicating consistent and robust performance across tasks. ModelScope shows an excellent score in the
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Table 11. Action Space of OE.

Behavior Action
forward W key
back S key
left A key
right D key
jump space key
inventory E key
sneak shift key
sprint ctrl key
attack left mouse button

collect dirt task (52.20), but it performs poorly in tasks like collect wood (14.00) and travel distance (240.72), resulting
in an overall lower average score (21.050) compared to other text-based models. OpenSora stands out with the highest
overall average score (27.80), excelling particularly in collect dirt (70.20) and travel distance (339.87). This suggests that it
is well-adapted to a variety of tasks and exhibits strong task performance. AnimateDiff shows the weakest performance
across all tasks, especially in collect wood (7.40) and collect seeds (3.30), indicating challenges in handling such tasks.

Performance of Models Under Text & Image Condition. Open-Sora-Plan shows a significant drop in average score under
the ”Text & Image” condition, demonstrating that adding image input reduces its performance compared to the text-only
condition. In particular, its travel distance score drops from 342.91 to 195.14, suggesting that incorporating image data
might interfere with certain tasks. DynamICrafter and EasyAnimate exhibit poor performance across all tasks, especially in
collect wood and collect seeds, where they barely complete the tasks (with scores of 0.40 and 0.20, respectively). This may
indicate a lack of generalization ability in these models when combining image input with text. Comparing the ”Text” and
”Text & Image” conditions, we observe that adding image input does not consistently improve task performance and, in
some cases, even degrades it. We also observed that the success rates of various tasks significantly decrease when an image
is added as an additional condition. This indicates that the current video generation models need improvement in handling
multiple conditional inputs.

Table 12. Detail Result of Open-Ended Embodied Environment in Implicit Manipulative Evaluation.

Model Condition AVG Specific Tasks

Collect Wood Collect Dirt Collect Seed Travel Dis. Dig Depth

Open-Sora-Plan

Text

26.38 19.90 50.20 7.30 342.91 20.20
Lavie 26.06 23.50 56.00 11.60 270.20 12.20
ModelScope 21.050 14.00 52.20 6.30 240.72 8.70
OpenSora 27.80 21.20 70.20 10.40 339.87 3.20
AnimateDiff 13.10 7.40 22.90 3.30 274.19 4.50

Open-Sora-Plan
Text & Image

10.28 11.10 12.50 2.60 195.14 5.70
DynamiCrafter 4.06 0.40 0.30 1.30 130.04 5.30
EasyAnimate 4.84 0.20 0.70 1.70 157.12 5.90

E.4. Roll Out

Fig. 8 illustrates the downstream execution process in the Open-Ended Embodied Environment, along with the corresponding
textual instructions.

F. Implicit Manipulative Evaluation-AD
In this section, we provide additional details about Implicit Manipulative Evaluation-Autonomous Driving that are not
covered in the main paper due to space limitations.
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Insturction: Collect wood in the forest.

Figure 8. Rollout of Open-Ended Embodied Environment in Implicit Manipulative Evaluation.

F.1. Detailed Description

In Implicit Manipulative Evaluation-Autonomous Driving, we adapt the action space of LMDrive (Shao et al., 2024) to
develop a pipeline for the Video Generation Model, enabling it to function as a low-level embodied controller. Additionally,
we employ LangAuto (Language-guided Autonomous Driving) CARLA benchmark, to evaluate the low-level embodied
control capabilities of the Video Generation Model as World Simulators. These tasks are designed to be comprehensive,
spanning all 8 publicly available towns in CARLA, covering a diverse range of scenarios e.g., highways, intersections, and
roundabouts. Additionally, they account for 16 different environmental conditions, combining 7 distinct weather settings
(Clear, Cloudy, Wet, MidRain, WetCloudy, HardRain, SoftRain) with 3 daylight conditions (Night, Noon, Sunset). Each
aspect rigorously tests the coherence of the generated content, the consistency with given instructions, and the model’s
ability to interact effectively with the environment.

Testing. We evaluated performance in Autonomous Driving using the LangAuto-Tiny benchmark setting where the route
length is shorter than 150 meters. We posit that shorter driving distances provide a more effective test of the low-level
control capabilities of World Simulators. Longer routes typically involve more instructions, which are prone to misalignment
with the real-time simulation environment. Therefore, we opt to evaluate performance on shorter routes to minimize these
discrepancies. During testing, we randomly select one description from various task instructions and input it into the World
Simulator to generate the corresponding video. The video is then continuously translated into actions by a pre-trained
goal-based video-to-action model, which executes until the test time expires. We use the corresponding LangAuto-Tiny
instructions and the first-person view rendered by the real-time CARLA simulation environment as input to the video
generation model. The generated video is then continuously transformed into downstream control signals using a pre-trained
video-to-action model until the agent reaches a predefined success zone or the task is terminated due to factors e.g., timeouts
or collisions.

Training. Due to the low video quality produced by the open-source video generation model based on the provided
instructions, we applied additional fine-tuning using data from the AD simulation environment. For Video Generation Model
training, we use LMDrive Training Dataset (Shao et al., 2024). We preprocessed the training data according to each model’s
default input format and performed fine-tuning following the official implementation without changing the training settings.
We fine-tuned each model using a short video generation setting with approximately 20 frames. For the video-to-action
model, we use pre-trained LMdrive model. Additional fine-tuning was conducted based on the test requirements. We
provided the model with arbitrary text instructions and replaced the visual input with the future frame while keeping all
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other training settings consistent with LMDrive.

Metrics. We consider eight key metrics introduced by the CARLA Leaderboard (Dosovitskiy et al., 2017): Route Completion
(RC), Infraction Score (IS), Driving Score (DS), Vehicle Collisions (VC), Pedestrian Collisions (PC), Layout Collisions
(LC), Red Light Violations (RV), and Offroad Infractions (OI). Route Completion refers to the percentage of the total route
length that the agent has completed. This metric only accounts for the distance traveled along the predetermined route,
where each segment corresponds to a navigation instruction. If the agent strays too far from the route, it is considered
to have violated the instruction, resulting in the episode being marked as a failure and terminated. The Infraction Score
tracks any infractions caused by the agent, with penalties applied for collisions or traffic violations through a corresponding
discount factor. The Driving Score is the product of the route completion ratio and the infraction score, reflecting both
driving progress and safety, and is widely regarded as the primary ranking metric. The precise definitions of the residual
metrics can be found in the CARLA documentation (Dosovitskiy et al., 2017).

F.2. Actions

The video generated by the World Simulator is continuously fed into the video-to-action model to obtain the corresponding
waypoints. The agent then generates control signals based on the generated waypoints and the conversion strategy used in
CARLA.

F.3. Full Result

Tab. 13 presents the evaluation results of several models across eight metrics. The evaluation results highlight significant
differences in how video generation models perform in autonomous driving tasks. Open-Sora-Plan stands out in trajectory
generation, instruction following, and environment perception, producing high-quality videos that effectively support task
execution. In contrast, DynamiCrafter and EasyAnimate struggle with generating detailed and consistent video content,
particularly when handling complex or dynamic scenes. These models require improvements in video generation quality,
scene understanding, and task alignment to enhance their performance.

From a video generation perspective, several key areas for future development are identified: Improved Trajectory Generation:
High-quality trajectory generation is essential for accurate control signals. Models must focus on generating more coherent
and precise trajectories, especially in dynamic environments, to ensure vehicles follow instructions and avoid collisions.
Enhanced Instruction Following: Generated videos should closely align with task instructions, particularly in changing
environments, enabling vehicles to adapt quickly while maintaining task accuracy. Better Environment Perception: Future
models need to generate videos that accurately represent complex scenes, e.g., interactions with pedestrians, other vehicles,
and varied terrains. More detailed and realistic video generation will provide stronger input for real-time decision-making in
the control system.

In summary, advancing trajectory accuracy, instruction alignment, and environment representation will be crucial for
improving the overall performance of these video generation models in autonomous driving tasks.

Table 13. Detail Result of Autonomous Driving in Implicit Manipulative Evaluation.

Model DS(↑) RC(↑) IS(↑) VC(↓) PC(↓) LC(↓) RV(↓) OI(↓)

Open-Sora-Plan 31.054 38.249 0.767 2.400 0.000 4.401 1.133 3.514
DynamiCrafter 24.491 37.189 0.599 5.030 0.000 4.896 0.937 3.221
EasyAnimate 17.414 28.475 0.607 0.000 0.000 29.344 0.000 1.690

F.4. Roll Out

Fig. 9 illustrates the downstream execution process in the Autonomous Driving, the corresponding text instructions can be
found in the lower left corner of each frame.

G. Implicit Manipulative Evaluation-RM
In this section, we provide additional details about Implicit Manipulative Evaluation-Robot Manipulation that are not
covered in the main paper due to space limitations.
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Figure 9. Rollout of Autonomous Driving in Implicit Manipulative Evaluation.

G.1. Detailed Description

We primarily conduct our experiments on the CALVIN benchmark (Mees et al., 2022), which is specifically designed for
long-horizon, language-conditioned manipulation tasks. CALVIN includes four simulated environments (labeled A, B, C,
and D) that differ in textures and object placements. Each environment features a Franka Emika Panda robot positioned next
to a desk with various manipulable objects. The evaluation protocol tests model performance across 1,000 unique instruction
chains, each consisting of five distinct tasks. By providing an extensive dataset paired with natural language annotations, the
CALVIN benchmark can provide a close-loop evaluation platform for evaluating World Simulator to test its generation and
generalization capabilities.

Testing. We evaluated performance in Robot Manipulation using the CALVIN benchmark benchmark, policy models are
trained on demonstrations from environments A, B, and C, and evaluated in a zero-shot manner in environment D. During
the testing phase, we leverage World Simulators and a pre-trained video-to-action model to tackle novel manipulation tasks
guided by user-specified natural language commands. Given a current observation, we generate future video predictions
using the World Simulator for the manipulation task with text instruction. Once the video is sampled, we then execute the
video-to-action policy conditioned on for k timesteps, where k is a testing hyperparameter. After k timesteps, the video
prediction is refreshed by sampling from the World Simulator again, and the process is repeated.

Training. Due to the low video quality produced by the open-source video generation model based on the provided
instructions, we applied additional fine-tuning using data from the RM simulation environment. For Video Generation Model
training, we use Calvin(ABC D) datset (Mees et al., 2022). We preprocessed the training data according to each model’s
default input format and performed fine-tuning following the official implementation without changing the training settings.
We fine-tuned each model using a short video generation setting with approximately 20 frames. For the video-to-action
model, we use a pre-trained Susie policy without extra fine-tuning.

Metrics. We report the success rates and the average task length completed (out of five tasks) for each evaluation sequence.
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G.2. Actions

For low-level control, we utilize the same action space as Calvin (Mees et al., 2022).

G.3. Full Result

Based on the results shown in Tab. 14, Open-Sora-Plan demonstrates consistent performance, with an average task length
of 2.95, indicating its ability to reliably complete task sequences. While DynamiCrafter achieves a higher success rate of
0.95 on the initial task, its performance declines as task complexity increases, suggesting limitations in handling longer
manipulation sequences. EasyAnimate, although moderately successful in completing early tasks, experiences a sharp
decline in performance as task difficulty rises, reflected in its lower average task length of 2.05.

Overall, the models’ ability to consistently complete multiple tasks in succession showcases their potential in downstream
applications, with Open-Sora-Plan emerging as the most capable. However, the observed decrease in success rates as task
complexity increases highlights the need for further improvements in video-to-action translation, particularly in addressing
the challenges posed by longer and more complex manipulation sequences.

Table 14. Detail Result of Robot Manipulation in Implicit Manipulative Evaluation.

Method Task completed in a row (%) ↑ Avg. Len. ↑1 2 3 4 5
Open-Sora-Plan 0.85 0.70 0.60 0.40 0.40 2.95
DynamiCrafter 0.95 0.75 0.55 0.25 0.25 2.75
EasyAnimate 0.90 0.60 0.35 0.10 0.10 2.05

To minimize the impact of randomness caused by the number of experiments, we conducted an additional 100 trajectories
evaluation. The results are presented in Tab 15. Compared to the 20-trajectories setup, the results from the 100-trajectories
setup show slight variations but maintain a consistent overall trend. We also compared the performance with Unipi based on
the 25-trajectory setup described in SuSIE, and it can be observed that the tested video generation models(Open-Sora-Plan,
DynamiCrafter, EasyAnimate) demonstrate superior capabilities compared to the PVDM (?) latent video diffusion model
utilized by Unipi.

Table 15. Detail Result of Robot Manipulation in Implicit Manipulative Evaluation, by running 100 trajectories. ∗ Results reported by
Susie (Black et al., 2023).

Method Task completed in a row (%) ↑ Avg. Len. ↑1 2 3 4 5
UniPi∗(HiP) 0.08 0.04 0.00 0.00 0.00 -
UniPi∗ (Susie) 0.56 0.16 0.08 0.08 0.04 -
Open-Sora-Plan 0.89 0.72 0.63 0.34 0.32 3.12
DynamiCrafter 0.93 0.69 0.51 0.27 0.18 2.64
EasyAnimate 0.92 0.55 0.32 0.16 0.13 2.08

G.4. Roll Out

Fig. 10 illustrates the downstream execution process in the Robot Manipulation, along with the corresponding textual
instructions.

H. Discussion of Vision-Language-Action Models
The generated videos have the potential to significantly enhance the performance of Vision-Language-Action (VLA) models
by addressing two key challenges in training such models: the availability of diverse, high-quality training data and the need
for effective reward functions in real-world scenarios.

Data Augmentation and Hindsight Relabeling for Imitation Learning. Generated videos can serve as a valuable source
of synthetic data for training VLA models. By leveraging the diversity and scalability of generative models, we can create
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Instruction: Press the button to turn on the led light

Instruction: Go push the blue block right

Figure 10. Rollout of Robot Manipulation in Implicit Manipulative Evaluation.

a wide array of training scenarios, covering edge cases and rare events that are difficult to capture in real-world datasets.
Additionally, these videos enable hindsight relabeling, a process where we retrospectively adjust the labels of generated
data to align with desired outcomes. This approach is particularly effective for imitation learning, allowing VLA models to
learn optimal behavior by mimicking successful trajectories represented in the generated videos. By expanding the data
distribution and improving its quality, generative videos can lead to more robust and generalizable VLA models.

Reward Generation for Online Reinforcement Learning. Beyond data augmentation, generated videos can act as a
Reward Generator in reinforcement learning (RL) contexts. Unlike traditional RL setups that rely on pre-defined reward
functions within a simulator, generative videos enable the creation of dense and context-aware reward signals tailored to
real-world tasks. For example, they can simulate desirable outcomes or intermediate goals, providing detailed feedback to
the agent. This capability is particularly crucial for transferring RL models to real-world environments, where designing
explicit reward functions is often impractical. By aligning the generated rewards with real-world objectives, we can bridge
the gap between simulation and reality, allowing VLA models to achieve higher performance in real-world tasks.
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