
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAGICORE: MULTI-AGENT, ITERATIVE, COARSE-TO-
FINE REFINEMENT FOR REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models’ (LLM) reasoning can be improved using test-time ag-
gregation strategies, i.e., generating multiple samples for each problem and ag-
gregating over them to find a better answer. While these improve performance,
they often reach a saturation point beyond which additional samples provide no
return. Refinement offers an alternative by using model-generated feedback to
improve answer quality. However, refinement introduces three key challenges: (1)
Excessive refinement: Uniformly refining all instances can cause over-correction
and reduce overall performance. (2) Inability to localize and address errors:
LLMs have a limited ability to self-correct and struggle to identify and correct their
own mistakes in a targeted way. (3) Insufficient refinement: Deciding how many
iterations of refinement are needed is non-trivial, and stopping too soon could leave
errors unaddressed. To tackle these issues, we propose MAGICORE, a framework
for Multi Agent Iteration for Coarse-to-fine Refinement. MAGICORE aims to
avoid excessive refinement by categorizing problems as easy or hard, solving easy
problems with coarse-grained aggregation, and solving hard ones with fine-grained
and iterative multi-agent refinement. To enable more granular error localization, we
incorporate external step-wise reward model (RM) scores. To ensure effective re-
finement, we employ a multi-agent loop with three agents: the Solver, the Reviewer
(which generates targeted feedback based on step-wise RM scores) and the Refiner
(which incorporates feedback and generates new solutions). To ensure sufficient
refinement, we re-evaluate updated solutions, iteratively initiating further rounds of
multi-agent refinement. We evaluate MAGICORE on Llama-3-8B and GPT-3.5 and
show its effectiveness across five math reasoning datasets, with consistent gains for
all datasets and models. Even one iteration of MAGICORE beats Self-Consistency
by 3.4%, Best-of-k by 3.2%, and Self-Refine by 4.0% while using less than 50%
of the samples. Unlike iterative refinement with baseline methods, MAGICORE
continues to improve with more iterations. Finally, our ablations highlight the
importance of MAGICORE’s use of RMs and multi-agent communication. 1

1 INTRODUCTION

Imagine a person taking a math exam with problems of varying difficulty; even before answering
any question, an effective exam-taker might first distinguish between easier and more challenging
problems, deciding how much effort to budget for each one (Son & Metcalfe, 2000; Dodeen, 2015).
To maximize their score, the student would likely spend minimal time on the easy problems and
focus more on the harder ones, refining their answers where needed. Misallocating effort could
not only waste time but even lower their score, as overthinking simple problems might lead to
mistakes; similarly failing to dedicate enough thought to hard problems will lead to poor results. For
Large Language Models (LLMs) performing reasoning tasks, several test-time approaches dedicate
more computation through aggregation to improve performance. These approaches sample multiple
solutions to the same question and aggregate over the resulting answers (e.g. Self-Consistency (SC;
Wang et al., 2022), Best-of-k sampling (Lightman et al., 2023; Sun et al., 2024; Wang et al., 2023)).
However, applying aggregation strategies uniformly on all samples may waste computation on easier
problems, where additional samples might not change the answer (Aggarwal et al., 2023). Refinement

1Code is provided with the supplementary materials.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Issue 1: Excessive Refinement

Better/Worse

Our Unified Solution: Adaptive Multi-Agent Coarse-to-Fine Refinement

Question

Hard

Easy Fine-grained
Refinement

Coarse-grained
Aggregation

Questions

Resource

Less

More

Is the majority answer of low quality?

Is the PRM’s answer confidence low?

Is the majority answer of high quality?

Is the RM’s answer confidence high?

If the problem is hard

AND

Coarse

Fine

Granularity

Reviewer

Refiner

Solver

Issue 3: Insufficient Refinement Issue 3: Conflating Roles

Solver

Generate Solution

Generate Feedback

Refine Solution

Uniform refinement on all instances can hurt performance Only refining once may not suffice

…

Iter = 1

Iter = 3

Lack of specialization hurts refinement

Feedback
Proposed
Solution

Refined
Solution

+

(a) Difficulty-Aware Coarse-to-Fine Categorization

Hard

Easy HardDifficulty:

Granularity:

Strategy:

Coarse Fine

Aggregation Refinement

(c) Iterative Refinement

Initial Solution

Targeted Feedback

Refined Solution

Text is not needed

Resource: Low High

Swap

xN

Highlight ORM/PRM
more

Highlight two agents
(different icon not

just color)

Reviewer has a glass

Refiner has a tool

Issue 2: Inability to Localize & Address Errors

Step 1: He sprints
3*3=9 times a week
Step 2: So he runs
9*60=710 meters

Refined solution:
He runs 3 sprints
a week, so he
runs 3*60 = 180
meters

Q: James decides to run 3 sprints 3 times
a week. He runs 60 meters each sprint.
How many total meters does he run a week?

(b) Targeted Multi-Agent Feedback

Step 2 is making a
calculation error,
9*60 should be 540
instead of 710.

Refined solution:
9 times a week, so
in total he runs
9*60 = 540 meters

ADD …

Bigger/Names

PRM

Step 1: ...
3*3=9 per week
(Score: 10/10)
Step 2: ...
9*60=710
(Score: 1/10)

Step-wise
Scores

Reviewer

Error Localization

Refiner

If the problem is still considered hard

2
1

21 or

Easy

Hard
ORM

Keep?

True

False

Solver

Figure 1: Three main issues in refinement: (1) Excessive refinement: refinement risks over-correcting,
turning correct solutions into incorrect ones. (2) Inability to localize and address errors: LLMs
struggle with finding and correcting errors in a targeted way. (3) Insufficient refinement: an effective
refinement should gradually make the output better, but stopping too soon could leave errors uncor-
rected. To address these issues, MAGICORE adapts resource allocation based on problem difficulty
and refines only when encountering hard problems, adopting a coarse-grained aggregation approach
for easy ones. For hard cases requiring refinement, we employ a multi-agent setup that iteratively
reviews and refines the solutions based on targeted feedback generated with step-wise PRM scores.

– where solutions are instead critiqued and improved upon during resampling – offers a possible
avenue for breaking out of the aggregation rut. This mirrors human reasoning, where feedback can be
used to improve answers (rather than simply retrying the same problem), often in an iterative fashion.
For example, a teacher might improve a student’s understanding by providing multiple rounds of
feedback on a test (Pan & Sana, 2021; Roediger & Karpicke, 2006; Wojcikowski & Kirk, 2013).

While refinement seems promising, it faces three key challenges that current work has yet to fully
address (outlined in Fig. 1)2: (1) Excessive refinement: the LLM must know when to refine and
when not to. While refinement can help on hard problems, uniformly refining all instances can cause
over-refinement, where solutions that were already correct before refinement are “overthought” and
flipped to incorrect, reducing the overall performance (Huang et al., 2024; Shridhar et al., 2024;
Stechly et al., 2024). (2) Inability to localize and address errors: LLMs struggle to identify their
own mistakes (i.e., steps needing refinement) and struggle to correct them without explicit instructions.
(3) Insufficient Refinement: deciding how many iterations of refinement are needed is non-trivial
– some cases may require only one round, while others need more, and stopping early could leave
errors unaddressed, i.e., hard problems might be “underthought” by a single refinement iteration.

To address these issues and unlock performance gains via refinement, we propose a unified solution,
MAGICORE, a framework for Multi Agent Iteration for Coarse-to-fine Refinement. As shown in
Fig. 1, our approach leverages external global and local Reward Models (RMs) that enhance both
aggregation and refinement processes. To tackle the first issue (excessive refinement), we perform
selective refinement (see Fig. 1(a)): we start by generating multiple reasoning chains from the LLM
and scoring them with off-the-shelf RMs, using the entropy of the final answer distribution to classify
examples as easy or hard. This classification allocates resources more efficiently and avoids over-
correction by refining only hard samples. Given LLMs’ general inability to localize errors (Tyen et al.,
2024), we leverage step-by-step RM scores to help the LLM pinpoint low-scoring steps (which are
likely to be incorrect); this process is shown in Fig. 1(b). Moreover, to help LLMs refine effectively
once the errors have been localized, we propose a multi-agent system consisting of three agents: the
Solver, the Reviewer, and the Refiner. For each problem, the Solver generates a reasoning chain,
the Reviewer gives targeted feedback based on step-by-step RM scores, and the Refiner improves
the solutions using this feedback. Finally, to address the issue of insufficient refinement, we iterate
the review-refine process, checking the quality and the entropy of the final answer at each iteration
as a stopping criterion (cf. Fig. 1(c)). This makes the communication between the Reviewer and

2These issues have varying degree of impact on the refinement ability, which we explore later in Table 5.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Refiner agents bidirectional, as the refinement process is conditioned on feedback from the review,
and subsequent reviews are conditioned on the refined outputs from prior iterations.

We evaluate MAGICORE on five math reasoning datasets (GSM8K (Cobbe et al., 2021), SVAMP (Pa-
tel et al., 2021), MATH (Hendrycks et al., 2021b), MMLU (Hendrycks et al., 2021a) and SAT (Zhong
et al., 2023)) with two LLMs: Llama-3-8B and GPT-3.5. Notably, our results show that across datasets
and models, we obtain consistent improvements over all aggregation and refinement baselines. Specif-
ically, even just one iteration of MAGICORE on Llama-3-8B already outperforms Best-of-k sampling
(Lightman et al., 2023) by 3.2% and Self-Consistency (Wang et al., 2022) by 3.4%, while using
roughly half the samples. MAGICORE also outperforms a combination of Self-Refine (Madaan et al.,
2023) and Self-Consistency by 4.0% and these trends also hold true for GPT-3.5. We demonstrate
that MAGICORE effectively decides when to use refinement and when not to, leading to up to a 6.4%
improvement over the strongest Best-of-k baseline on MATH (Hendrycks et al., 2021b), whereas
uniformly applying refinement to all samples can result in a drop of 5.2%, highlighting the key
role played by selective refinement. Notably, MAGICORE further improves with more iterations
of refinement, while the baselines stagnate. Our ablations also underscore the benefits of external
scoring models (as opposed to LLM self-verification) and the importance of a multi-agent framing.
In summary, our contributions and findings are:

• We propose MAGICORE, a multi-agent coarse-to-fine framework that adaptively uses targeted
feedback to outperform refinement methods such as Self-Refine, as well as aggregation methods
such as Best-of-k and Self-Consistency, at all sample budgets across five datasets and two LLMs.

• Our difficulty-aware coarse-to-fine resource allocation surpasses k-way SC while using 8× fewer
samples, and our difficulty classifications correlate with human judgments.

• We show the necessity of incorporating RMs for refinement: using LLM alone is less effective in
determining when refinement is needed compared to trained off-the-shelf RMs. Also, using step-
wise scores to guide feedback throughout the refinement process results in superior performance.

• Lastly, we validate the importance of iterative refinement: while our refinement baselines do not
show improvement over iterations, MAGICORE consistently improves with additional iterations.

2 MAGICORE: AN ADAPTIVE COARSE-TO-FINE REFINEMENT FRAMEWORK

MAGICORE is an adaptive framework that aims to improve both the performance and efficiency
of multi-step reasoning with LLMs by intelligently applying test-time aggregation and refinement.
MAGICORE consists of three intertwined components, resulting in a unified solution to the three
issues discussed in Section 1: Excessive refinement, the inability of LLMs to localize and address
their own errors, and insufficient refinement: (1) MAGICORE avoids excessive refinement by
categorizing problem difficulty as easy or hard, using coarse-grained aggregation for easy problems
and fine-grained, iterative multi-agent refinement for hard ones. (2) To improve error localization, we
incorporate step-wise scores from an external reward model, providing targeted feedback and thereby
helping the LLM to identify problematic steps. To enable effective refinement where the feedback is
properly incorporated, we employ a multi-agent setup with three agents: the Solver, the Reviewer,
which generates targeted feedback based on step-wise RM scores, and the Refiner, which incorporates
feedback to generate new solutions. (3) To ensure sufficient refinement, the refined solutions are
re-evaluated, iteratively initiating further rounds of multi-agent refinement if needed, and making the
communication between agents bidirectional. Below we introduce MAGICORE in detail.

2.1 OVERALL MAGICORE FRAMEWORK

Background. We incorporate three models: (1) an LLM with three roles: the Solver, the Reviewer,
and the Refiner for generating initial solutions, targeted feedback, and refinement, respectively (more
details in Section 2.3), (2) an Outcome Reward Model (ORM; Cai et al., 2024) for generating global,
solution-level correctness score, and (3) a Process Reward Model (PRM; Wang et al., 2023) for
generating local step-by-step correctness scores. The ORM and PRM perform both independent
and joint tasks. The ORM’s global correctness score is crucial for deciding which refined samples
to retain during iterative refinement, and the PRM’s local correctness score is used for generating
targeted feedback. Both the ORM and PRM contribute to (1) assessing problem difficulty and (2)
Weighted Self-Consistency (Li et al., 2023) for final answer selection (see Appendix B for details).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Condition : Is the Majority Answer of High Quality?

Process
Reward Model

k Solutions with score Solver

Majority Cluster

≥ 0
< 0

High
Low

Question

D 0.11
A 0.62
B 0.55
A 0.76

Ans Score A

D
B

Answer Cluster

≥ 0.5
< 0.5

High
Low

Condition : Is the RM’s Answer Confidence High?Score each chain

PRM

Generate k Solutions w/ RM scores

Average Normalized Score

Outcome
Reward Model

ORM

Let's review the
steps with lower
scores and
identify the
errors.
...
Step 3: The low
score of 1
suggests an error
in this step...

Multi-Agent Iteration for Fine-Grained Refinement (Hard Samples Only)

Here’s the solution:
Step 1: (Score: 9/10)
Step 2: (Score: 8/10)
Step 3: (Score: 1/10)
...
Step T: (Score: 6/10)

k Reasoning Chains

Reviewer Refiner

Let's review the
solution and the
feedback, and then
refine the current
solution.
{previous_chain}
{targeted_feedback}

Refined solution:
...

k Targeted Feedback k Refined Chains Top-k Chains
Next Iteration (check and again)

Solver

2k Chains

ORM

PRM

Local scores from PRM

Previous

Refined

Global scores
from ORM

7

If both conditions fail → hard

2

1

Question

1 2

PRM ORM

Bidirectional
Communication

Figure 2: MAGICORE first generates k reasoning chains for each problem and obtains solution-
level scores from both the ORM and PRM. The problem’s difficulty is then classified based on
two conditions: (1) the quality of the majority answer and (2) the RM’s answer confidence. A
problem is considered hard when the majority answer receives a low average RM score and the
answer distribution is flat, indicating that no single answer is substantially better than others (i.e.,
low confidence). For these hard problems, we employ a multi-agent setup with three agents: Solver,
Reviewer and Refiner. The Solver generates k reasoning chains, passing them to the PRM for
step-wise scoring to pinpoint errors . The Reviewer turns scores into targeted feedback, and the
Refiner improves the k solutions using the Reviewer’s feedback. This review-refine communication
cycle is repeated until either of the two conditions passes, or a maximum iteration is reached.

Overview. A high-level overview of MAGICORE is presented in Fig. 2. The process begins with the
Solver generating k reasoning chains for each problem, followed by the ORM and PRM providing
solution-level scores (as illustrated in the top-left of Fig. 2). Next, the input problem’s difficulty is
classified based on two criteria (top-right of Fig. 2): (1) the quality of the majority answer and (2) the
RMs’ answer confidence. Refinement is initiated only when the problem is deemed difficult, which
occurs when the majority answer receives a low average RM score and the answer distribution is flat
– indicating no single answer is significantly better than the others (i.e., low confidence). For these
hard samples requiring refinement, we employ a multi-agent setup with three agents: the Solver, the
Reviewer, and the Refiner (bottom of Fig. 2). The Reviewer uses the k reasoning chains generated by
the Solver, along with the step-wise scores from the PRM, to provide targeted feedback. The Refiner
then enhances the k solutions based on this feedback. This bidirectional communication between the
Reviewer and Refiner can continue for multiple iterations. At the end of each iteration, the ORM
assigns a global correctness score to each chain, determining which top k solutions to retain, with the
final answer being aggregated from these top k solutions.

2.2 CLASSIFYING PROBLEM DIFFICULTY AND ASSIGNING TO COARSE OR FINE METHODS

We categorize each problem’s difficulty as easy or hard using the following conditions (cf. Fig. 2).
Condition 1: Is the Majority Answer of High Quality? The Solver generates k solutions for the
input question and we group them by their final answers. From the largest cluster of solutions, we
calculate the average RM score and normalize it by the average score across all solutions, denoted as
Savg . After normalization, if Savg ≥ 0, Condition 1 is true, meaning the majority answer is already
high-quality, and hence no refinement is needed. Otherwise, Condition 1 is false, suggesting even
the most frequent answer is poor, and refinement may help. We evaluate the quality of the majority
answer using both ORM and PRM separately but with the same procedure, i.e., if any of the RMs
gives the majority answer a low score, Condition 1 will be false (see Appendix C for more details).
Condition 2: Is Reward Models’ Answer Confidence High? We check if the RMs are confident in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

any single answer. Confidence is determined by how concentrated the answer distribution is (i.e., if
one cluster stands out). A concentrated distribution indicates high confidence, while a spread-out
distribution shows low confidence. The answer distribution is formed by (1) the frequency of each
unique answer and (2) the total RM score of each answer cluster. That is, we weigh each answer
cluster by its aggregated RM score, similar to the approach used in Weighted Self-Consistency (Li
et al., 2023). We calculate confidence (denoted as C) using the entropy of the answer clusters. If
C ≥ 0.5, Condition 2 is true, meaning RMs are confident in one answer. Otherwise, Condition 2 is
false, indicating uncertainty and the need for further refinement. Note that 0.5 is a natural threshold
requiring no tuning since we pass the entropy to a sigmoid function; further details can be found in
Appendix C. Again, we evaluate both ORM and PRM’s answer confidence separately, each following
the same procedure (i.e., if any of the RMs has low confidence, Condition 2 is false).
Coarse-to-Fine Decision. If either of the conditions is met (the quality of the answer is high or the
RMs are confident on an answer), an instance is delegated to the easy – or coarse-grained – method.
Conversely, if both conditions are not satisfied, the instance is delegated to the hard – or fine-grained
– method (as described in Section 2.3). For easy instances, we apply the coarse-grained method:
Weighted Self-Consistency (Li et al., 2023), using the sum of the solution-level scores generated by
both ORM and PRM3. Therefore, the coarse-grained method does not involve refinement.

2.3 FINE-GRAINED MULTI-AGENT ITERATIVE REFINEMENT

Our multi-agent setup has three agents: (1) the Solver, which generates the initial solution (2) the
Reviewer, which takes PRM scores and a reasoning chain as input, and generates targeted feedback
that pinpoints the errors within the chain, and (3) the Refiner, which takes the feedback generated by
the Reviewer to refine the previous chain.

Solver generates k solutions. Recall that in Section 2.2, we assess problem difficulty using k
generated solutions. Even for easy instances where refinement is not needed, generating k solutions
and aggregating them improves the performance (Wang et al., 2022). For hard instances, refinement
is applied on top of the k solutions simultaneously. Thus, whether refinement is needed or not,
generating k solutions is necessary. Consequently, MAGICORE begins by generating k solutions to
a given problem. Implementationally, this is done when assessing problem difficulty (see top-left
of Fig. 2, where the solutions are generated and scored). When a problem is classified as easy , we
aggregate the k solution without refinement. When a problem is classified as hard (i.e., would benefit
from refinement and does not fall in the purview of “Issue 1”), we can directly re-use the k solutions
already generated by the Solver.

Reviewer generates targeted feedback. As we pointed to in Fig. 1, even when we know refinement
is warranted, LLMs (like the Reviewer agent) may struggle to isolate and localize errors in their
own responses (Huang et al., 2024), which we highlight as “Issue 2” of refinement (Inability to
Localize and Address Errors). Therefore, to assist the Reviewer in effectively localizing errors and
generating useful feedback, we supply the Reviewer with external step-wise PRM scores for each step
of the solution. We append these scores to the end of each step (see the bottom-left of Fig. 2, where
scores are assigned), and pass the result to the Reviewer. The goal of the Reviewer is to incorporate
step-wise correctness scores from the PRM to generate actionable feedback. That is, it takes a chain
with the PRM scores as input, and is prompted to identify problematic steps that need refinement and
possible ways to fix them. We use a 1-shot prompt to guide the Reviewer how to generate targeted
feedback, and the prompt is shown in Appendix G.

Refiner improves solutions based on targeted Reviewer feedback. The Refiner then uses the
targeted feedback generated by the Reviewer to refine the reasoning chain that was generated by the
Solver. Inspired by the finding that LLM can resolve errors when explicitly pointed out (Tyen et al.,
2024), and given that the Reviewer already indicates which steps of the reasoning chain should be
refined, the Refiner agent can focus exclusively on how the step should be modified so as to resolve
or fix the error based on feedback from the Reviewer. Here we again use a 1-shot prompt to teach
the Refiner how to fix the error and improve a reasoning chain based on targeted feedback, and the
prompt for the Refiner is shown in Appendix G.

Iterating the refinement process for bidirectional communication. For some hard instances,
one round of refinement may be insufficient, as the Reviewer may have generated some irrelevant

3In Table 10 we show that this combination outperforms using the ORM or PRM only.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

feedback or the Refiner may not have fixed the highlighted step adequately (“Issue 3” in Fig. 1).
Thus, the Reviewer and the Refiner need to collaborate with each other over the course of multiple
refinement iterations. This creates a bidirectional communication cycle between the Reviewer and
the Refiner, with outputs from the Refiner going back to the Reviewer in the next round. To prevent
excessive refinement, we re-evaluate the two conditions described in Section 2.2 in each iteration.
The refinement continues until (a) one of the conditions is met, or (b) a predefined maximum number
of iterations is reached. This process is illustrated in Fig. 2 (bottom panel) by the arrow going from
the Refiner output back to the Reviewer, which shows both conditions being re-assessed.

Final answer selection. The refinement process described above operates on all k chains simultane-
ously, producing k refined chains in each iteration. At the end of each iteration, we use the ORM
to assess whether the refined solution has improved based on its global correctness score. In other
words, by the end of each iteration, we have 2k reasoning chains – k initial and k refined – but
retain only the top k based on their global ORM scores. Here we choose to base the decision on the
ORM score because the targeted feedback is generated with PRM’s step-wise scores, so selecting the
solution via another scoring model avoids overfitting. Finally, the answer is selected using Weighted
Self-Consistency over these retained top k chains, at the end of each iteration.

Key Improvements. By leveraging external RMs and an iterative multi-agent setup, our method
(1) avoids excessive refinements by only refining hard samples. (2) Enhances error localization
and resolution by using PRM’s step-wise scoring to offer targeted feedback, enabling effective
communication between the Reviewer and the Refiner. (3) Ensures thorough refinement by re-
evaluating refined solutions, and initiating additional rounds of refinement when necessary.

3 EXPERIMENTAL SETUP

Implementation Details. We develop MAGICORE with Llama3-8B-Instruct (AI@Meta,
2024) and GPT-3.5-Turbo (OpenAI, 2022) as the base LLMs. Based on their strong performance
on standard reward modeling evaluations (Lambert et al., 2024), we choose InternLM-7B (Cai et al.,
2024) as the ORM, and Math-Shepherd-7B (Wang et al., 2023) as the PRM for computing the RM
scores. By default, we sample k = 40 reasoning chains in each iteration for MAGICORE, and the
decoding temperature is set to 0.8. The maximum number of iterations is set to 3, with additional
analysis in Fig. 3 and Table 12. We compare against different categories of baselines, as follows.

• Vanilla Prompting. The first baseline as a reference is zero-shot Chain-of-Thought (Wei et al.,
2022); note that this only generates one reasoning chain per question without aggregation.

• Iterative Prompting. Next, we compare MAGICORE to an iterative prompting method, Self-
Refine (SR) (Madaan et al., 2023), which refines the initial CoT answer via iteratively prompting
the LLM to generate feedback and refine the previous output accordingly.

• Aggregation-based Methods. The third category generates multiple samples for each question.
Here, we sample k solutions from the same LLM and select the final answer either via k-way
Self-Consistency (SC) (Wang et al., 2022) or according to the highest ORM score (Best-of-k)
(Lightman et al., 2023; Sun et al., 2024; Wang et al., 2023). Note that we compare with k = 120
for these aggregation baselines, but in MAGICORE, only the hard instances require more than 40
samples (with up to 3× 40 = 120 samples used in cases needing three iterations of refinement).

• Iterative Baseline with Aggregation. To enable a fair comparison, we also report a stronger
version of self-refine by combining Self-Refine and Self-Consistency (SR+SC), i.e., a baseline
that is iterative, refines, and aggregates. Specifically, this baseline applies Self-Refine for k samples
in parallel, and the final answer is derived by aggregating the k refined solutions.

Datasets. We evaluate MAGICORE extensively on five math reasoning datasets. The first class of
datasets are math word problems: GSM8K (Cobbe et al., 2021), SVAMP (Patel et al., 2021), and
MATH (Hendrycks et al., 2021b). GSM8K and SVAMP consist of grade school-level math problems,
with 1312 and 1000 test samples. MATH comprises high-school math competitions spanning diverse
topics and a total of 5000 problems. Following previous works (Lightman et al., 2023; Wang et al.,
2023), we evaluate MATH performance on a representative subset of 500 samples. We also evaluate
on mathematics splits of general benchmarks that test language models’ world knowledge and
problem-solving abilities over various subjects such as MMLU-Math (Hendrycks et al., 2021a; Yue
et al., 2024) and SAT (Zhong et al., 2023) with 974 and 220 test instances respectively.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison of different methods and models. The (+x%) is compared with the
strongest baseline (Best-of-k) highlighted in blue. Across both models and datasets, MAGICORE
provides consistent improvements. Notably, MAGICORE already surpasses all baselines after the
first iteration of refinement, even when the baselines use a larger sample size (k = 120).

MMLU MATH SVAMP GSM8K SAT Avg.
Llama3-8B-Instruct

Zero-shot CoT 50.4 24.2 72.4 80.1 58.2 57.1
Self-Refine (Best Iter) 49.8 24.0 72.6 79.6 59.6 57.1
Best-of-k (k = 120) 62.6 41.4 88.7 90.1 72.4 71.0
k-way SC (k = 120) 63.0 40.6 89.8 90.3 70.5 70.8
Self-Refine + k-way SC (Best Iter) 62.3 41.0 89.2 90.3 68.0 70.2

MAGICORE (Iter=1) 67.3 46.0 91.4 91.1 75.0 74.2
MAGICORE (Iter=2) 68.4 47.2 91.1 92.3 76.4 75.1
MAGICORE (Iter=3) 68.9 (+5.6%) 47.8 (+5.2%) 91.3 (+1.7%) 91.6 (+1.3%) 78.2 (+5.8%) 75.6 (+4.3%)

GPT-3.5-Turbo

Zero-shot CoT 62.5 37.2 78.1 78.5 76.8 66.6
Self-Refine (Best Iter) 61.1 37.4 77.9 78.4 77.1 66.4
Best-of-k (k = 120) 70.1 50.6 87.7 90.5 87.8 77.3
k-way SC (k = 120) 70.4 51.2 86.9 89.8 87.6 77.1
Self-Refine + k-way SC (Best Iter) 70.1 49.4 88.1 88.1 84.5 76.0

MAGICORE (Iter=1) 73.7 57.2 89.4 91.1 90.1 80.3
MAGICORE (Iter=2) 73.3 57.8 90.1 91.1 90.9 80.6
MAGICORE (Iter=3) 73.6 (+3.5%) 58.6 (+8.0%) 90.1 (+2.4%) 91.4 (+0.9%) 90.9 (+3.1%) 80.9 (+3.6%)

4 RESULTS AND ANALYSIS

4.1 MAIN RESULTS

MAGICORE outperforms all baselines at the first iteration. We present our main results in Table 1.
First, one iteration of MAGICORE already outperforms all baselines. Compared to aggregation-based
methods, which generate multiple responses for each problem without refinement, we observe that
MAGICORE improves over Best-of-120 by 3.2% (absolute) averaged across the five datasets on
Llama-3-8B, despite using 2× fewer samples. Note that our method’s first iteration only involves 40
samples for easy problems and 40 refined chains for the subset of hard problems, making our k = 55
on average. When compared to 120-way SC, our method shows an even greater average improvement
of 3.3% on Llama-3-8B and 3.2% on GPT-3.5. Turning to refinement-based methods, we compare
against Self-Refine (SR; Madaan et al., 2023) without aggregation, where each iteration operates on a
single instance. Note that we run refinement-based baselines with up to 5 iterations and only report
the best in Table 1 (denoted as “Best Iter”), leaving a more detailed comparison in Fig. 3 and Table 12.
On average, MAGICORE shows 17.1% and 13.5% improvements over SR for Llama-3-8B and
GPT-3.5. As SR alone is a weaker baseline without aggregating multiple samples, we also compare
to SR + SC. Even when compared to SR + SC’s best iteration, MAGICORE outperforms it by 5.4%
(Llama-3-8B) and 4.9% (GPT-3.5) on average. This can be attributed to the fact that MAGICORE
can adaptively address challenging instances with targeted refinement.

0 1 2 3 4 5
Iteration

68

70

72

74

76

Ac
cu

ra
cy

Ours Best-of-k SR + SC

Figure 3: Comparison of our method
with baselines across iterations, aver-
aged across five datasets. See Table 12
for full results.

MAGICORE continues to improve with more iterations.
While MAGICORE already beats all baselines after the very
first iteration, in Table 1, we also observe a clear upward
trend in performance as the number of iterations increases.
We illustrate this further in Fig. 3, which presents the accu-
racy across successive iterations. Our comparison includes
Best-of-k and SR + SC with k = 40, with accuracy averaged
across five datasets. We find that while SR + SC fluctuates
around the same range of 70%, MAGICORE continues to
improve and stabilize at the third iteration with 75.6% ac-
curacy (with a noticeable 1.4% improvement compared to
the first iteration). This highlights the importance of our
iterative refinement and the ability to overcome insufficient
refinement for hard instances.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

10 20 40 100 120
Effective Sample Size (k)

35.0
37.5
40.0
42.5
45.0
47.5
50.0

Ac
cu

ra
cy

Ours
Ours (k=15)

Best-of-k
k-way SC

Figure 4: Comparison of MAGI-
CORE, k-way SC, and Best-of-k with
different k on MATH.

MAGICORE outperforms aggregation-based methods de-
spite using less computation. In Fig. 4, we further compare
the cost and performance of MAGICORE with Best-of-k and
SC on MATH and MMLU using Llama-3-8B, studying how
performance changes as we increase the number of reasoning
chains generated per question k. Note that the k for baselines
are the actual sample size, whereas, in our method, we add
k more samples in each iteration, resulting in slightly more
sample size on average. However, the trend in Fig. 4 shows
that MAGICORE consistently outperforms k-way SC and
Best-of-k at any given k. Moreover, while SC saturates and
stops improving at around k = 40, MAGICORE continues
to improve with increasing k. Notably, MAGICORE with
k = 15 already performs better than Best-of-120 and 120-
way SC, highlighting the cost-effectiveness of our method. These findings also align with previous
research (Chen et al., 2024b) that SC exhibits saturation: there is no meaningful improvement when
the number of reasoning chains exceeds 40, and we even see a performance drop on MATH. In con-
trast, MAGICORE shows noticeable performance gains with higher k, suggesting that MAGICORE
possesses a higher ceiling in comparison to SC.

4.2 ADDITIONAL ANALYSES OF MAGICORE

Table 2: Comparison when uniformly
adopting aggregation (i.e., Weighted SC)
or refinement to all instances.

Method MMLU MATH
Aggregation-Only 64.7 44.0
Refinement-Only 60.9 38.8
MAGICORE 67.3 46.0

Selective refinement avoids over-correcting and im-
proves overall performance. In Section 1, we noted
that excessive refinement could potentially hurt perfor-
mance by flipping correct answers to incorrect ones. Here,
we provide a quantitative analysis of this claim. Recall
that we have two methods: coarse aggregation (Weighted
SC) and fine refinement (multi-agent iteration) which we
apply selectively depending on predicted problem dif-
ficulty (c.f. Section 2.2). In Table 2, we measure the
performance of each method when applied uniformly to
all instances, regardless of the problem difficulty. We find that uniformly applying refinement actually
degrades performance; comparing Weighted SC (the “Aggregation-Only” in row 1) to refinement-only
(row 2), we see that refining all samples leads to 3.8% and 5.2% drops on MMLU and MATH, respec-
tively, pointing to the over-correction issue. Conversely, one iteration of our selective refinement (row
3) targets only the challenging instances where the weighted majority vote is unlikely to succeed,
resulting in up to 2.6% improvement compared to uniformly applying aggregation (row 1). This
demonstrates that our selective refinement not only avoids over-correction but also enhances overall
performance by effectively allocating more resources to harder problems.

Table 3: Comparison of different refine-
ment variants in MAGICORE. Using PRM
scores for refinement performs the best.

Refinement Variants MMLU MATH
LLM Self-Refinement 65.9 44.4
Random Step Score 66.4 43.8
ORM Score (No Step Score) 66.8 45.2
MAGICORE (PRM Step Score) 67.3 46.0

PRM-based targeted feedback enables better refine-
ment. Having demonstrated that selectively applying
refinement in MAGICORE is crucial for achieving im-
provements, we now compare the refinement process
with and without using a PRM. To this end, without
using a PRM, we ask the LLM to generate an updated
solution based on its own previous reasoning, referring
to this as LLM Self-Refinement. This is similar to SR
+ SC in Table 1, except we use MAGICORE’s ability
to identify hard instances and only apply refinement to
those, resorting to Weighted SC for the easier problems. Compared to the full MAGICORE in row 4
of Table 3, using LLM’s self-refinement (row 1) results in an average drop of 1.5%, indicating that
using the LLM for refinement is less effective than using a PRM. To further examine how sensitive
the refinement process is to the score quality, in row 2, we replace the actual PRM scores with random
scores. The result is worse than row 4, indicating that PRM scores help in localizing errors. Finally,
we test whether the global ORM score can offer a similar advantage as using the local PRM score. In
row 3, instead of appending the step-wise score in each step, we place the global ORM score at the
end of the response to generate the feedback. Result shows that it performs slightly worse than using

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the PRM score, suggesting that while global correctness is a strong signal as well, local correctness
scores help the LLM to identify and correct errors more effectively. Overall, MAGICORE’s use of
the step-wise feedback from the PRM is most effective for refinement.

Table 4: Comparison of different ways
of detecting hard problems.

Criterion for Refinement MMLU MATH

Prompt (classification) 65.2 45.0
Prompt (confidence) 64.7 44.4
Condition 1 only 66.4 43.6
Condition 2 only 66.1 44.2
Cond. 1 & Cond. 2 67.3 46.0

MAGICORE’s two conditions for classifying problem
difficulty is more effective than prompting LLMs or
any condition alone. In MAGICORE, we use reward
models to classify each instance as easy or hard. Given
that the RMs are also fine-tuned LLMs, we investigate
whether prompting the LLM to perform this classification
directly could replace the external RMs. We compare two
settings in the first two rows, where we prompt Llama-3-
8B to evaluate the difficulty of an instance. In the first
setting (classification), the LLM generates a binary label.
In the second setting (confidence), it produces a confidence score ranging from 0 to 1, indicating
whether refinement is required – that is, whether the example is easy or hard. Results in Table 4
show that the LLM is less effective at determining instance difficulty compared to a reward model, as
evidenced by a performance drop of 1.6%−2.6%. In rows 3 and 4, we also examine the performance
when only one of the conditions of MAGICORE (c.f. Section 2.2) is used to decide difficulty.
Specifically, when only condition 1 is applied, an instance is classified as hard if the majority answer’s
quality is low. Conversely, when only condition 2 is applied, an instance is classified as hard if the
RM’s answer confidence is low, regardless of the majority answer’s quality. Results indicate that
while each condition individually outperforms LLM self-verification, combining both yields the best
performance. Indeed, in Appendix E, we find that MAGICORE’s assessment of problem difficulty
shows the highest agreement with human-annotated labels.

Table 5: Ablation study on addressing each
refinement (c.f. Fig. 1) issue one at a time.

Method MMLU MATH
Only Address Issue 1 64.7 44.0
Only Address Issue 2 65.9 45.4
Only Address Issue 3 60.3 36.4
MAgICoRE (Iter = 3) 68.9 47.8

All three issues must be addressed jointly. To investi-
gate the importance of each refinement issue, we conduct
an ablation study to address each issue individually in
Table 5 under the following settings: (1) Only Address
Issue 1 (Excessive Refinement): Here, we apply selective
refinement only, without PRM step-wise scores for feed-
back generation and without iterations. (2) Only Address
Issue 2 (Inability to Localize and Address Errors): Here,
we use PRM scores for feedback generation and refine
all instances uniformly (i.e. no selective refinement) for
one iteration (i.e. the ablation does not address insufficient refinement). (3) Only Address Issue 3
(Insufficient Refinement): Here, we iteratively refine all samples without incorporating PRM scores
(i.e. no error localization) and without performing selective refinement. The results show that only
addressing one single refinement issue at a time leads to performance drop, thereby highlighting the
need for a joint solution (as we proposed in MAGICORE). We find that only addressing insufficient
refinement (Issue 3) causes the highest degradation in performance across tasks, as it fails to efficiently
localize errors (without the help of PRM) and also performs excessive refinement. This indicates that
Issue 1 and Issue 2 may contribute more to performance than Issue 3, since only addressing Issue 3
has the worst performance.

Table 6: MAGICORE also generalizes
to commonsense reasoning and logical
reasoning tasks.

Method ARC Date
Zero-shot 66.5 52.5
40-way SC 85.5 72.5
120-way SC 86.0 72.5
MAgICoRE (Iter = 1) 87.5 79.5
MAgICoRE (Iter = 2) 88.0 79.5
MAgICoRE (Iter = 3) 88.5 80.5

MAGICORE generalizes to other domains. Table 1 shows
the benefits of MAGICORE on math reasoning; however,
LLMs have been applied to a wide variety of tasks beyond
math. Here, we explore expanding MAGICORE to other do-
mains, specifically to a commonsense reasoning task: ARC-
Challenge (Clark et al., 2018), and a logical reasoning task:
Date Understanding (Srivastava et al., 2022). We sample
200 instances from each dataset and use GPT4o-mini as a
PRM for the experiments, as existing standalone PRMs gen-
erally only exist for math reasoning. Specifically, we prompt
GPT4o-mini to provide step-wise correctness scores without
any textual explanations or reasoning, acting the same as a
PRM. The prompt is provided in Appendix G. This approach ensures that our agents do not have
access to explanations from a stronger model, and we manually verify that explanations are not

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

included with the scores. Table 6 shows that MAGICORE transfers to commonsense and logical
reasoning, outperforming 120-say SC by 2.5% on commonsense reasoning and 8.0% on logic.

Table 7: MAGICORE can also
improve GPT4o-mini on MATH.

Method Accuracy
Zero-shot 72.0
40-way SC 79.2
40-way SC + PRM 79.4
MAgICoRE (Iter = 1) 80.2
MAgICoRE (Iter = 2) 80.4
MAgICoRE (Iter = 3) 80.4

MAGICORE also improves stronger models like GPT4o-mini.
Table 1 shows results with GPT-3.5-Turbo; here, we show that
MAGICORE scales to larger and stronger models as well. Specif-
ically, we run MAGICORE using GPT4o-mini on a subset of
MATH data. Due to the high cost of running GPT4o-mini with
k = 120 and the fact that Fig. 4 shows decreasing performance at
k = 120 for MATH, we only compare to the 40-way SC with the
weighted variation that incorporates PRM scores for vote weight-
ing (40-way SC + PRM). Table 7 demonstrates that MAGICORE
can also enhance stronger model’s performance, albeit with a
smaller margin of improvement compared to Llama3-8B and GPT-3.5 shown in Table 1.

Table 8: MAGICORE’s separation of the
Reviewer and Refiner roles is more effec-
tive than combining them into a single role.

MMLU MATH
Joint Roles 66.7 44.8
Distinct Agents (Ours) 67.3 46.0

Separating Reviewer and Refiner roles outperforms
combining these roles. In Table 8, we examine the ef-
fects of combining the roles of Reviewer and Refiner by
merging their prompts, instructing the model to simul-
taneously generate both feedback and a refined solution.
This method is referred to as “Joint Roles”. In MAGI-
CORE, the Reviewer and Refiner have distinct, clearly
defined roles, which we refer to as the “Distinct Agents”
approach. As before, the performance comparison is based on the first iteration, with all other
variables held constant. Our findings show that maintaining separate roles (as in our multi-agent
setup) leads to better performance, with the “Joint Roles” configuration resulting in a 0.6% drop in
MMLU and a 1.2% decrease in MATH. The larger drop in MATH suggests that its problems are more
complex and often require extended reasoning, making the combined roles less effective, whereas
maintaining separate roles proves to be more beneficial.

Discussion of external reward models. External reward models play an important role MAGICORE
and are used in the solutions to all three problems (excessive refinement, inability to localize and
address errors, and insufficient refinement). While MAGICORE does utilize external reward models,
our framework is modular and can readily incorporate new reward models as they emerge. As the
community is actively advancing the performance of reward models evidenced by a benchmark
for reward models (Lambert et al., 2024), MAGICORE is thus complementary to and enhanced by
progress in reward modeling, rather than constrained by it. While it is possible to train a custom
error-identification model, this approach is often data-dependent and prone to obsolescence. In
contrast, MAGICORE’s modular design overcomes this limitation by enabling the integration of new
state-of-the-art models as they become available. Moreover, our experiments in Table 6 indicate that
when trained reward models are unavailable, we can use sufficiently strong LLMs in place of trained
RMs. For example, we use GPT4o-mini as a reward model for commonsense and logical reasoning.

5 CONCLUSION

Building on the observation that different problems require varying amounts of computation, we
introduced MAGICORE, a method that adaptively allocates more computational resources to more
challenging problems and selectively applies refinement where appropriate, i.e., on harder problems.
MAGICORE addresses three key issues in refinement: excessive refinement on easy examples, the
inability of LLMs to detect and correct errors in their reasoning, and insufficient refinement on hard
instances. Our approach tackles these issues by employing both global and local external reward
models to decide which samples to refine. We then incorporate local correctness scores to generate
targeted feedback and an iterative multi-agent communication framework to refine solutions for
hard problems. Our results across five math datasets and two models show that our coarse-to-fine
method consistently outperforms both coarse-grained aggregation and fine-grained refinement alone
at any given budget and even outperforms baselines using substantially more computation. In our
ablations, we demonstrate the importance of selective refinement, showing that performance generally
drops when refining all samples uniformly. We also highlight the role of iteration in our framework,
showing increased performance across iterations even as baselines stagnate.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

In this work, we propose an inference-time method, MAGICORE, which operates without the need for
additional training or fine-tuning. Consequently, the LLMs utilized by MAGICORE (e.g., Llama-3,
GPT-3.5) may still exhibit stereotypes, biases, and other negative traits inherent in their pre-training
data (Weidinger et al., 2021), over which we have no control. Therefore, the outputs produced by
MAGICORE carry the same potential for misuse as those from other test-time methods. Further
research is necessary to assess and mitigate these biases in LLMs.

REPRODUCIBILITY STATEMENT

We are making our code available in the supplementary materials to enable replication of our findings.
We also provide implementation details of MAGICORE in Section 3 and prompt in Appendix G. The
datasets we use are all publicly available (MMLU, MATH, SVAMP, GSM8K, SAT, ARC, Date).

REFERENCES

Pranjal Aggarwal, Aman Madaan, Yiming Yang, and Mausam. Let’s sample step by step: Adaptive-
consistency for efficient reasoning and coding with LLMs. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 12375–12396, 2023.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm2 technical report, 2024.

Justin Chen, Swarnadeep Saha, and Mohit Bansal. ReConcile: Round-table conference improves
reasoning via consensus among diverse LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 7066–7085, Bangkok, Thailand, August 2024a. Association for
Computational Linguistics. URL https://aclanthology.org/2024.acl-long.381.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are more llm calls all you need? towards scaling laws of compound inference systems. arXiv
preprint arXiv:2403.02419, 2024b. URL https://arxiv.org/abs/2403.02419.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Hamzeh Dodeen. Teaching test-taking strategies: Importance and techniques. Psychology Research,
5(2):108–113, 2015.

11

https://github.com/TIGER-AI-Lab/MAmmoTH/blob/main/math_eval/dataset/mmlu/mathematics.json
https://github.com/hendrycks/math
https://github.com/arkilpatel/SVAMP
https://huggingface.co/datasets/gsm8k
https://github.com/TIGER-AI-Lab/MAmmoTH/blob/main/math_eval/dataset/sat/sat.json
https://huggingface.co/datasets/allenai/ai2_arc
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/date_understanding
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://aclanthology.org/2024.acl-long.381
https://arxiv.org/abs/2403.02419

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving factual-
ity and reasoning in language models through multiagent debate. arXiv preprint arXiv:2305.14325,
2023. URL https://arxiv.org/abs/2305.14325.

Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding, Vidhisha Balachandran, and Yulia Tsvetkov.
Don’t hallucinate, abstain: Identifying LLM knowledge gaps via multi-LLM collaboration. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 14664–14690,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.acl-long.786.

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi,
Eric Hambro, and Roberta Railneau. Glore: When, where, and how to improve llm reasoning via
global and local refinements. arXiv preprint arXiv:2402.10963, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021b.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=IkmD3fKBPQ.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms actually correct
their own mistakes? a critical survey of self-correction of llms. Transactions of the Association for
Computational Linguistics, 12:1417–1440, 2024.

Muhammad Khalifa, Lajanugen Logeswaran, Moontae Lee, Honglak Lee, and Lu Wang. Grace:
Discriminator-guided chain-of-thought reasoning. In ACL Findings, 2023.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need. arXiv
preprint arXiv:2402.05120, 2024a. URL https://arxiv.org/abs/2402.05120.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315–5333,
2023.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan, Xinglin Wang, Bin Sun, Heda Wang, and Kan
Li. Escape sky-high cost: Early-stopping self-consistency for multi-step reasoning. arXiv preprint
arXiv:2401.10480, 2024b.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu,
and Shuming Shi. Encouraging divergent thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

12

https://arxiv.org/abs/2305.14325
https://aclanthology.org/2024.acl-long.786
https://aclanthology.org/2024.acl-long.786
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://arxiv.org/abs/2402.05120

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dancheng Liu, Amir Nassereldine, Ziming Yang, Chenhui Xu, Yuting Hu, Jiajie Li, Utkarsh Kumar,
Changjae Lee, and Jinjun Xiong. Large language models have intrinsic self-correction ability.
arXiv preprint arXiv:2406.15673, 2024.

Li-Chun Lu, Shou-Jen Chen, Tsung-Min Pai, Chan-Hung Yu, Hung yi Lee, and Shao-Hua Sun.
LLM discussion: Enhancing the creativity of large language models via discussion framework and
role-play. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=ybaK4asBT2.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2023.

OpenAI. Chatgpt: Optimizing language models for dialogue, 2022. URL https://openai.
com/blog/chatgpt/.

Steven C Pan and Faria Sana. Pretesting versus posttesting: Comparing the pedagogical benefits of
errorful generation and retrieval practice. Journal of Experimental Psychology: Applied, 27(2):
237–257, 2021. doi: 10.1037/xap0000345.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094, 2021.

Henry L Roediger and Jeffrey D Karpicke. Test-enhanced learning: Taking memory tests improves
long-term retention. Psychological Science, 17(3):249–255, 2006. doi: 10.1111/j.1467-9280.2006.
01693.x.

Kumar Shridhar, Koustuv Sinha, Andrew Cohen, Tianlu Wang, Ping Yu, Ramakanth Pasunuru,
Mrinmaya Sachan, Jason Weston, and Asli Celikyilmaz. The art of llm refinement: Ask, refine,
and trust. In Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2024.

Lisa K Son and Janet Metcalfe. Metacognitive and control strategies in study-time allocation. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 26(1):204, 2000.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning problems. arXiv preprint arXiv:2310.12397, 2023.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limitations
of large language models on reasoning and planning tasks. arXiv preprint arXiv:2402.08115, 2024.
URL https://arxiv.org/abs/2402.08115.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024. URL https://arxiv.org/abs/2403.09472.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Peter Chen, and Tony Mak. Llms cannot find
reasoning errors, but can correct them given the error location. arXiv preprint arXiv:2311.08516,
2024. URL https://arxiv.org/abs/2311.08516.

Manya Wadhwa, Xinyu Zhao, Junyi Jessy Li, and Greg Durrett. Learning to refine with fine-
grained natural language feedback. arXiv preprint arXiv:2407.02397, 2024. URL https:
//arxiv.org/abs/2407.02397.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. CoRR,
abs/2312.08935, 2023.

13

https://openreview.net/forum?id=ybaK4asBT2
https://openreview.net/forum?id=ybaK4asBT2
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://arxiv.org/abs/2402.08115
https://arxiv.org/abs/2403.09472
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2407.02397
https://arxiv.org/abs/2407.02397

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 257–279, Mexico City, Mexico,
June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.15. URL
https://aclanthology.org/2024.naacl-long.15.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359, 2021. URL https://arxiv.org/abs/
2112.04359.

Ken Wojcikowski and Leslie Kirk. Immediate detailed feedback to test-enhanced learning: an effective
online educational tool. Medical Teacher, 35(11):915–919, 2013. doi: 10.3109/0142159X.2013.
826793.

Zhangyue Yin, Qiushi Sun, Cheng Chang, Qipeng Guo, Junqi Dai, Xuanjing Huang, and Xipeng
Qiu. Exchange-of-thought: Enhancing large language model capabilities through cross-model
communication. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 15135–15153, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
936. URL https://aclanthology.org/2023.emnlp-main.936.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Zhiyuan Zeng, Xiaonan Li, Tianxiang Sun, Cheng Chang,
Qinyuan Cheng, Ding Wang, Xiaofeng Mou, Xipeng Qiu, and XuanJing Huang. Aggregation of
reasoning: A hierarchical framework for enhancing answer selection in large language models.
arXiv preprint arXiv:2405.12939, 2024. URL https://arxiv.org/abs/2405.12939.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
MAmmoTH: Building math generalist models through hybrid instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=yLClGs770I.

Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing
gpt-4 level mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv
preprint arXiv:2406.07394, 2024.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation models.
arXiv preprint arXiv:2304.06364, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. The Eleventh International Conference on Learning Representations,
2023.

14

https://aclanthology.org/2024.naacl-long.15
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2112.04359
https://aclanthology.org/2023.emnlp-main.936
https://arxiv.org/abs/2405.12939
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

Improving Reasoning by Aggregation. Self-Consistency (SC; Wang et al., 2022) generates k
reasoning chains and marginalizes over the chains to obtain answer clusters; the most frequent answer
is selected as the final prediction. While simple and effective, it generates k solutions for every sample,
as both past work and our work show that SC saturates when k increases (Chen et al., 2024b; Li et al.,
2024a). Several studies adaptively determine the number of samples (k) required for each instance to
address this (Aggarwal et al., 2023; Li et al., 2024b). However, the performance of such approaches
is upper-bounded by SC – they address the cost issue but do not enhance overall performance. To
surpass SC, Yin et al. (2024) propose using the LLM to evaluate answer clusters, taking into account
both frequency and the LLM-evaluated quality of the answers. Instead, we propose using external
RMs to decide between coarse-grained aggregation and fine-grained refinement, identify errors, and
aid refinement; this allows us to improve over aggregation or refinement alone.

LLM-based Verification and Refinement. Past work mostly uses RMs for verification purposes (Li
et al., 2023; Khalifa et al., 2023; Cobbe et al., 2021; Lightman et al., 2023). Havrilla et al. (2024)
considers local correctness for refinement in a non-adaptive way and requires specific data curation
with fine-tuning, while our work is adaptive and uses off-the-shelf global and local models. Another
line of work has proposed using the LLM itself as a verifier, in place of an RM (Liu et al., 2024;
Zhang et al., 2024; Aggarwal et al., 2023; Madaan et al., 2023). However, recent work shows the
inability of LLMs to “self-verify” their own reasoning (Huang et al., 2024; Stechly et al., 2023;
Kamoi et al., 2024; Tyen et al., 2024; Kamoi et al., 2024). Hence, MAGICORE uses external global
and local reward models (Wang et al., 2023; Cai et al., 2024) for selective coarse-to-fine refinement.
Shridhar et al. (2024) trained specific models to decide when to refine and when to trust refined
solutions. This contrasts with our method, where the decision to refine is based on a coarse-to-fine
resource allocation method that differentiates easy from hard problems (for which we use global
and local reward models), and where refinement is done based on off-the-shelf models. We also
iteratively refine guided by global correctness to ensure sufficient refinement, whereas Shridhar et al.
(2024) refine only once. Wadhwa et al. (2024) propose a multi-agent detect-critique-refine pipeline
for generation tasks. MAGICORE instead focuses on reasoning tasks and uses external RMs for
selective coarse-to-fine refinement (whereas Wadhwa et al. (2024)’s detection uses the same metric
as their evaluation, which is infeasible in reasoning where the metric – accuracy – requires access to
the gold answer).

Multi-Agent Systems with LLMs. LLMs can be used in multi-agent systems, where the agents
interact, collaborate, and compete (Wang et al., 2024; Lu et al., 2024; Feng et al., 2024). Related to
our work, one line of multi-agent research focuses on structured debates or discussions between LLM
agents, where the interaction helps refine and improve previously generated solutions (Du et al., 2023;
Liang et al., 2023; Yin et al., 2023; Chen et al., 2024a). These studies show improvements over single-
agent systems, but a major challenge in multi-agent systems is achieving a correct consensus among
LLMs; external feedback can help prevent this consensus from aligning with the agents’ internal and
possibly erroneous outputs. Therefore, MAGICORE’s multi-agent refinement incorporates external
RMs for more objective scoring, enabling the generation of targeted feedback for better refinement.

B SELF-CONSISTENCY AND WEIGHTED SELF-CONSISTENCY.

Self-Consistency (Wang et al., 2022) is a popular decoding method that uses majority voting to
aggregate predictions from different reasoning chains, thus marginalizing over chains. It generates k
solutions per question and selects the most frequent final answer from these samples. While simple
and effective, this method assigns uniform weight to each reasoning chain, which fails to account
for the quality of each solution. To address this limitation, Li et al. (2023) propose Weighted Self-
Consistency, accounting for each solution’s quality. Formally, both Self-Consistency and Weighted
Self-Consistency choose a final answer via:

ŷ = argmax
y

k∑
i=1

1yi=yV(q; ri)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where V(·) is a constant 1 in Self-Consistency and the quality measurement (e.g., RM score) in
Weighted Self-Consistency. In MAGICORE’s final answer selection, we use the sum of the solution-
level scores generated by both ORM and PRM as V(·). Throughout MAGICORE, in cases where we
need solution-level PRM scores (compatible with ORM scores), we accumulate the PRM step scores
by taking their product (Sun et al., 2024), so that the aggregated PRM score corresponds to a solution.

C DETAILS OF THE CONDITIONS

Condition 1: Is the Majority Answer of High Quality? Given a problem q, to determine the
difficulty of the problem at hand, the Solver generates k solutions R = {r1, . . . , rk} and final
answers A = {a1, . . . , ak} per question and cluster the solutions by their final answer. This produces
a partition A with elements Ai, where Ai = {rj ∈ R | aj = ai}. The majority cluster Ag has the
most “votes”, i.e., Ag = argmaxi∈|A||Ai|. We evaluate the majority answer quality by both ORM
and PRM separately but with the same procedure, as described below. First, we score every reasoning
chain ri within the majority cluster Ag. Both ORM and PRM are able to produce a solution-level
score, which we denoted as SRM

i . Note that we perform this check using ORM and PRM separately,
but for simplicity, we use the same notation for solution-level score, which either comes from the
ORM or the PRM. We calculate the average of the solution-level scores from the majority group:

SRM
avg =

1

|Ag|

|Ag|∑
i=1

SRM
i

This average score informs us of the majority answer’s quality. To set a threshold, we normalize SRM
avg

by using the sample average RM scores (by computing SRM
i for each sample and then take the average

of these scores). Importantly, this process does not require any labeled data. After normalization, if
the average reward of the majority group SRM

avg ≥ 0, indicating that the quality of the majority answer
is high, Condition 1 will be true. Otherwise, if SRM

avg < 0, Condition 1 will be false, suggesting that
even the most frequent answer is of poor quality and that the instance might benefit from refinement.

Condition 2: Are Reward Models’ Answer Confidence High? Besides the quality of the majority
answer, we also consider whether the RMs are confident enough in any single answer among the
answer clusters. Again we evaluate both ORM and PRM’s answer confidence separately but with the
same procedure, as described below. First, the answer distribution is formed by (1) the frequency
of each unique answer and (2) the total RM score of each answer cluster. We estimate the RM’s
confidence according to this distribution. If the distribution is concentrated, meaning that only
one answer cluster stands out, the RM’s answer confidence is treated as high. Conversely, if the
distribution is diffused and the clusters’ scores are more uniform, then there is no single answer
for which the RM has high confidence, i.e., the RM’s confidence is low. This motivates a targeted
step-wise refinement process to select a more definite answer. Again we use both ORM and PRM
to generate the solution-level score SRM

i . Given the k reasoning chains generated along with the
solution-level score, we compute the RM’s answer confidence (denoted as C) using the entropy of the
answer cluster weighed by the RM scores, passing the result through a sigmoid function to normalize
it onto [0, 1]. Formally, the calculation of the entropy can be expressed as:

H = −
n∑

i=1

p(Ai) log p(Ai); p(Ai) =

∑|Ai|
i=1 SRM

i∑
Aj∈A

∑|Aj |
k=1 SRM

k

where n is the number of unique answers among the k chains, Ai is the i-th answer cluster (a set of
reasoning chains leading to the same answer) and A is the set of all clusters. Each answer in a cluster
is weighed by its unnormalized solution-level score SRM

i . To normalize entropy onto a confidence
scale, we invert it so that high entropy corresponds to low confidence. We then apply a sigmoid
function σ(.), mapping the values to the range [0, 1]: C = σ(α ∗ (1−H)). We set α to 2 to let the
distribution stretch more evenly between 0 and 1. This transformation establishes 0.5 as a natural
threshold for differentiating low and high confidence, thereby eliminating the need for any threshold
tuning. That is, if an instance has C ≥ 0.5, Condition 2 is true, meaning that the RMs are confident
on a single answer cluster. Otherwise, if C < 0.5, Condition 2 is false, suggesting that the RMs’
uncertainty among the k chains is high, necessitating a finer refinement.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Method MMLU MATH SVAMP GSM8K SAT Avg.
120-way SC 63.0 40.6 89.8 90.3 70.5 70.8
120-way SC + PRM Li et al. (2023) 65.4 44.6 90.8 90.7 72.5 72.8
Self-correct + 120-way SC (Kim et al., 2024) 62.1 38.6 86.2 88.1 65.6 68.1
Least-to-Most + 120-way SC (Zhou et al., 2023) 62.6 40.6 89.0 90.3 68.9 70.3
Multi-Agent Debate + SC (Du et al., 2023) 64.6 41.0 89.6 90.8 72.5 71.7

MAgICoRE (Iter=1) 67.3 46.0 91.4 91.1 75.0 74.2
MAgICoRE (Iter=2) 68.4 47.2 91.1 92.3 76.4 75.1
MAgICoRE (Iter=3) 68.9 47.8 91.3 91.6 78.2 75.6

Table 9: Performance comparison with additional baselines using Llama3-8B-Instruct. No-
tably, MAGICORE with only one iteration outperforms all baselines despite using fewer samples.

D ADDITIONAL EXPERIMENTAL RESULTS

Comparison with additional baselines. In addition to Table 1, we also compare with the following
baselines: (1) 120-way SC + PRM: The product of step-wise PRM scores is used as the solution-level
score. This score is then employed for weighted Self-Consistency, following Li et al. (2023). (2) Self-
correct + 120-way SC: We use the “Self-Correct RCI” prompt from Kim et al. (2024) to generate 120
solutions per question, which are subsequently aggregated using Self-Consistency. (3) Least-to-Most
+ 120-way SC: We use the zero-shot Least-to-Most prompt from Zhou et al. (2023) to generate 120
solutions per question, followed by aggregation via Self-Consistency. (4) Multi-Agent Debate + SC:
Following Du et al. (2023), we conduct a three-agent debate over four rounds, repeating this process
ten times. The final answers from these ten debates are aggregated using Self-Consistency, yielding
120 generations per question.

We use Llama3-8B-Instruct as the base model. Results show that a single iteration of MAGI-
CORE already outperforms methods that rely on PRM for aggregation (120-way SC + PRM), as
well as approaches like Self-Correction, advanced prompting, and multi-agent debate. On average,
MAGICORE outperforms 120-way SC + PRM by 2.8% despite using fewer samples, highlighting the
limitations of using PRM solely for aggregation. Additionally, MAGICORE exceeds Least-to-Most
by 5.3%, showcasing superior adaptability to problem difficulty. Finally, MAGICORE surpasses
Multi-agent Debate by 3.9%, indicating that our aggregation and refinement mechanisms scale more
effectively at test time.

Table 10: Ablation study on the final
answer selection, using ORM-only,
PRM-only or both.

Aggregation MMLU MATH
ORM-Only 66.9 45.4
PRM-Only 66.1 45.0
Both 67.3 46.0

Ablations on reward models for final answer selection. We
report MAGICORE up to three iterations in Table 1 and only
report the best-performing iteration of Self-Refine + k-way SC.
Here, we provide extended results in table Table 12. We also
conducted another ablation study to evaluate the performance
when using ORM, PRM, or a the summation of both scores for
final answer selection. As shown in Table 10, utilizing ORM’s
global correctness score yields better results than aggregating
PRM’s local correctness score. However, the best performance
is achieved when both scores are combined for the final answer
aggregation.

Table 11: Comparison of different refine-
ment variants in MAGICORE.

Refinement Variants Accuracy
No feedback (LLM self-refine) 48.30
Random PRM score 49.60
PRM predicted score 51.20
Oracle PRM score 52.40

Reliable step-wise scores enables LLM refinement. To
compare with an oracle PRM, we sample 500 instances
from the Math-Shepherd dataset (Wang et al., 2023),
which includes gold label correctness for each step. Be-
sides the three settings we evaluated in Table 3, we also
evaluate the oracle PRM score, where feedback uses the
gold correctness labels. Table 11 shows that the oracle
PRM score performs the best, followed by the predicted
PRM score, suggesting that given reliable stepwise scores,
LLMs can effectively refine their solutions and improve.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

MMLU MATH SVAMP GSM8K SAT Avg.
Llama3-8B-Instruct

Zero-shot CoT 50.4 24.2 72.4 80.1 58.2 57.1

Self-Refine (Iter=1) 49.6 24.6 72.0 79.0 57.7 56.3
Self-Refine (Iter=2) 50.2 23.8 72.8 79.6 59.3 57.1
Self-Refine (Iter=3) 49.8 24.0 72.6 79.6 59.6 57.1

Best-of-k (k = 120) 62.6 41.4 88.7 90.1 72.4 71.0
k-way SC (k = 120) 63.0 40.6 89.8 90.3 70.5 70.8

Self-Refine + k-way SC (Iter=0) 62.1 40.4 88.6 90.1 68.2 69.9
Self-Refine + k-way SC (Iter=1) 61.3 40.6 88.9 89.7 67.7 69.6
Self-Refine + k-way SC (Iter=2) 62.7 40.0 88.9 90.1 68.6 70.1
Self-Refine + k-way SC (Iter=3) 62.3 41.0 89.2 90.3 68.0 70.2
Self-Refine + k-way SC (Iter=4) 62.1 41.4 89.2 90.1 67.7 70.1
Self-Refine + k-way SC (Iter=5) 62.7 40.4 88.6 89.7 67.7 69.8

MAGICORE (Iter=1) 67.3 46.0 91.4 91.1 75.0 74.2
MAGICORE (Iter=2) 68.4 47.2 91.1 92.3 76.4 75.1
MAGICORE (Iter=3) 68.9 47.8 91.3 91.6 78.2 75.6
MAGICORE (Iter=4) 68.9 48.0 91.3 91.1 78.2 75.5
MAGICORE (Iter=5) 68.4 48.0 91.1 91.6 78.2 75.5

GPT-3.5-Turbo

Zero-shot CoT 62.5 37.2 78.1 78.5 76.8 66.6

Self-Refine (Iter=1) 62.4 37.4 77.7 77.4 77.3 66.4
Self-Refine (Iter=2) 61.6 37.6 78.6 77.9 76.9 66.5
Self-Refine (Iter=3) 61.1 37.4 77.9 78.4 77.1 66.4

Best-of-k (k = 120) 70.1 50.6 87.7 90.5 87.8 77.3
k-way SC (k = 120) 70.4 51.2 86.9 89.8 87.6 77.1

Self-Refine + k-way SC (Iter=0) 69.4 49.8 86.9 88.1 85.6 76.0
Self-Refine + k-way SC (Iter=1) 69.8 49.0 87.1 88.3 85.0 75.8
Self-Refine + k-way SC (Iter=2) 70.1 49.4 88.1 88.1 84.5 76.0
Self-Refine + k-way SC (Iter=3) 69.6 48.8 87.3 87.8 85.2 75.7
Self-Refine + k-way SC (Iter=4) 69.8 48.4 87.1 87.1 85.0 75.5
Self-Refine + k-way SC (Iter=5) 69.6 48.6 87.3 87.4 84.5 75.5

MAGICORE (Iter=1) 73.7 57.2 89.4 91.1 90.1 80.3
MAGICORE (Iter=2) 73.3 57.8 90.1 91.1 90.9 80.6
MAGICORE (Iter=3) 73.6 58.6 90.1 91.4 90.9 80.9
MAGICORE (Iter=4) 73.6 58.0 89.9 91.4 90.9 80.8
MAGICORE (Iter=5) 73.4 57.6 89.4 91.1 90.9 80.5

Table 12: Extended version of Table 1. Here we show all more iterations for Self-Refine + k-way
SC and MAGICORE. While SR + SC does not show a clear improvement with more iterations,
MAGICORE continues to improve, peaking at the third iteration.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E MODEL-PREDICTED VS. HUMAN-ANNOTATED PROBLEM DIFFICULTY

P R F1

Random 68.4 49.6 57.5
Prompt-based (classification) 65.9 10.3 17.8
Prompt-based (confidence) 0.0 0.0 0.0
MAGICORE 86.3 67.6 75.8

Table 13: The Precision (P), Recall (R) and
F1 of the model predicted problem difficulty.

We analyze the model’s prediction of problem dif-
ficulty. Specifically, we utilize the MATH dataset,
which includes human-annotated difficulty levels
ranging from 1 to 5, with higher levels indicating
increased problem complexity. For our analysis, we
split the problems as follows: (1) Easy: Levels 1 and
2 and (2) Hard: Levels 4 and 5. We exclude Level
3 problems to create a clearer distinction between
easy and hard categories. We compare the overlap
between our model’s predictions and these human-
annotated levels. We treat hard as the positive label. The results are presented in Table 13. To
provide a comparative analysis, we include: (1) a random baseline that assigns easy and hard labels at
random, (2) a prompt-based baseline that directly prompts the LLM to classify the problem difficulty,
and (3) another prompt-based baseline that prompts the LLM to generate a confidence score when
answering, where a confidence score of ≥ 0.5 is classified as “easy”. Results show that our conditions
substantially outperform all baselines. Interestingly, the prompt-based methods perform worse than
the random baseline, particularly the one relying on confidence scores, which classifies all problems
as easy; this method scores 0 for both precision and recall since we treat “hard” as the positive label,
so it has 0 true positives. This suggests that our framework is highly effective at distinguishing true
problem difficulty based on the conditions outlined in our methodology.

F TOKEN COUNT ANALYSIS

In Fig. 4, we are mainly comparing the number of generations (k) per question with the baselines. To
provide a more granular analysis, we break down the generations at the token level and compare costs
in terms of token counts. The results are detailed in Fig. 5. For Self-Consistency, the input tokens are
counted only once per question, as it uses the same input to generate k responses. In contrast, the
input token count for MAGICORE includes all prompts across all agents – Solver, Reviewer, and
Refiner. We also include the token count for the ORM and PRM in MAGICORE. Since the cost of
input tokens is typically 0.25× that of output tokens4, we present the normalized total token cost as
0.25× input + 1× output. Results in Fig. 5 show that (1) scaling Self-Consistency from k = 40 to
k = 120 largely increases token overhead while yielding marginal improvements. (2) MAGICORE
exhibits superior scalability, achieving substantially higher performance gains with increased token
usage. On MMLU, MATH and SAT, we observe a clear upward trend with an increased token count;
MAGICORE consistently improves with additional tokens (unlike SC which tends to stagnate). (3)
The first iteration of MAGICORE outperforms 120-way SC fewer tokens.

1 2 3
Total Token (10k)

64

66

68

Ac
cu

ra
cy

 (%
)

MMLU

2 4 6
Total Token (10k)

42

44

46

48
MATH

0.50 0.75 1.00
Total Token (10k)

89.0

89.5

90.0

90.5

91.0

91.5
SVAMP

1.0 1.5
Total Token (10k)

90.0

90.5

91.0

91.5

92.0

GSM8K

1.0 1.5 2.0 2.5
Total Token (10k)

70

72

74

76

78
SAT

40-way SC 120-way SC MAgICoRE Iter=1 MAgICoRE Iter=2 MAgICoRE Iter=3

Figure 5: Token count comparison with Self-Consistency across different datasets. Scaling Self-
Consistency from k = 40 to k = 120 introduces substantial token overhead while providing
marginal improvements. In contrast, MAGICORE demonstrates superior scalability, delivering much
higher performance gains with an increased token count. Notably, the first iteration of MAGICORE
consistently outperforms 120-way SC while using fewer tokens.

4See https://openai.com/api/pricing, https://www.anthropic.com/pricing#
anthropic-api, and https://ai.google.dev/pricing#1_5pro

19

https://openai.com/api/pricing
https://www.anthropic.com/pricing#anthropic-api
https://www.anthropic.com/pricing#anthropic-api
https://ai.google.dev/pricing#1_5pro

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

G PROMPT FOR THE REVIEWER AND THE REFINER

Reviewer’s Prompt

Your task is to provide step-by-step feedback to the current solution.

You will be given a math problem and a current solution, along with the scores for each step
based on its correctness.

- You will find (Score: n/10) at the end of each step.

- The maximum (best) score is 10, which means that this step is 100% correct (and 0% incorrect).

- The minimum (worst) score is 0, which means that this step is 100% incorrect (and 0% correct).

- Pay attention to the steps having scores lower than 6, and carefully identify the errors in those
steps.

- Provide your explanation of the error and how it can be fixed. DO NOT propose a new solution,
just the explanation.

Question:

{question}

Current Solution:

{solution}

Let’s review the steps with lower scores and identify the errors.

{feedback}

Refiner’s Prompt

Your task is to fix the error in the given solution, based on the teacher’s feedback.

- After reviewing the solution and feedback, provide a better solution to fix the mistakes you
found.

Question:

{question}

Current Solution:

{solution}

Teacher Feedback:

{reviewer_feedback}

Revised Solution:

Let’s review the solution and the feedback, and then refine the current solution.

After reviewing the solution and feedback, let’s solve this math problem again.

{refined_solution}

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H PROMPT FOR GPT4O-MINI AS PRM

GPT4o-mini as PRM Prompt

You will be given a question and its corresponding step-by-step solution.

Your task is to evaluate the correctness of each step in the solution by assigning a score between
1 and 10.

Your response should be formatted as follows:

score: <comma separated scores>

where the length of the list corresponds to the number of steps in the solution.

Each step is clearly separated in the solution by <Step 1:>, <Step 2:> ... <Step k:>, your output
score list should be the exact same length as k.

Question: {question}

Solution: {solution}

score:

I QUALITATIVE EXAMPLES OF REFINEMENT

QUESTION: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in
$50,000 in repairs. This increased the value of the house by 150%. How much profit did he make?
(Gold answer: 70000)

SOLVER’S OUTPUT (BEFORE REFINEMENT):
Step 1: Calculate the value of the house after repairs. The house is worth 80,000 after repairs. It is
150% higher than before. So the value is (1 + 150/100) * 80,000. 80,000 * (3/2) is 120,000. So
the house is worth 120,000 after repairs. (Score: 2/10)
Step 2: Calculate the cost of repairs. The cost of repairs is 50,000. (Score: 2/10)
Step 3: Calculate the profit. The profit is the difference between the value after repairs and the
cost before repairs. 120,000 - 80,000 - 50,000 is 30,000 (incorrect).

REVIEWER’S OUTPUT:
Step 1: The low score of 2 suggests an error in this step. The problem states that the value of the
house increased by 150%, not that the value is 150% higher than before.
Step 2: The cost of repairs is indeed $50,000.
Step 3: The low score of 3 suggests an error in this step. The profit would be: 200,000 (value after
repairs) - 80,000 (cost before repairs) - 50,000 (cost of repairs) = 70,000

REFINER’S OUTPUT:
Step 1: Calculate the value of the house after repairs. The house is worth 80,000 after repairs. It is
increased by 150%. So the value is 80,000 x (1 + 150/100) = 80,000 x 2.5 = 200,000.
Step 2: Calculate the cost of repairs. The cost of repairs is 50,000.
Step 3: Calculate the profit. The profit is the difference between the value after repairs and the
cost before repairs. 200,000 - 80,000 - 50,000 is 70,000 (correct).

Table 14: A qualitative example of our multi-agent refinement on GSM8K using
Llama3-8B-Instruct . The score at the end of each step is provided by the PRM.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

QUESTION: The Greek army contained two types of soldiers: the upper class and the lower class
soldiers. If there were a total of 5 upper class soldiers, and 10 lower class soldiers in a certain part
of Athens, and the battle of Thermopylae demands a force of 4 upper class soldiers and 8 lower
class soldiers, how many different battalions can be sent? (Gold answer: 225)

SOLVER’S OUTPUT (BEFORE REFINEMENT):
Step 1: Find out the number of upper class soldiers left. We have 5 upper class soldiers and we
need 4. So we have 5 - 4 = 1 upper class soldiers left. (Score: 9/10)
Step 2: Find out the number of lower class soldiers left. We have 10 lower class soldiers and we
need 8. So we have 10 - 8 = 2 lower class soldiers left. (Score: 9/10)
Step 3: Find out the number of different battalions. We have 1 upper class soldier and 2 lower
class soldiers. The number of different battalions is the number of ways we can arrange 1 upper
class soldier and 2 lower class soldiers. This is 3. (Score: 5/10) (incorrect).

REVIEWER’S OUTPUT:
Step 1 and Step 2: The scores of 9/10 suggest that these steps are mostly correct. However, we
should be careful when calculating the number of upper and lower class soldiers left.
Step 3: The low score of 5 suggests an error in this step. The problem asks for the number of
different battalions, not the number of ways to arrange the soldiers. The correct solution is to find
the number of ways to choose 4 upper class soldiers from the available 5 and 8 lower class soldiers
from the available 10.

REFINER’S OUTPUT:
Step 1: Find out the number of upper class soldiers needed. We need 4 upper class soldiers.
Step 2: Find out the number of lower class soldiers needed. We need 8 lower class soldiers.
Step 3: Find out the number of different battalions. We can choose 4 upper class soldiers from
the 5 available in 5C4 = 5 ways. We can choose 8 lower class soldiers from the 10 available in
10C8 = 45 ways. The number of different battalions is the number of ways to choose 4 upper class
soldiers and 8 lower class soldiers, which is 5 × 45 = 225. (correct).

Table 15: A qualitative example of our multi-agent refinement on MATH using
Llama3-8B-Instruct . The score at the end of each step is provided by the PRM.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

J QUALITATIVE EXAMPLES OF OVER-CORRECTION

QUESTION: A new program had 60 downloads in the first month. The number of downloads in the
second month was three times as many as the downloads in the first month, but then reduced by
30% in the third month. How many downloads did the program have total over the three months?
(Gold answer: 366)

SOLVER’S OUTPUT (BEFORE REFINEMENT):
Step 1: Determine the number of downloads for the second month. The number of downloads
for the second month was three times as many as the first month, so it was 60 * 3 = 180. (Score:
10/10)
Step 2: Determine the number of downloads for the third month. There was a reduction of 30%,
so we calculate 180 * (1 - 0.30) = 180 * 0.7 = 126. (Score: 10/10)
Step 3: Determine the total number of downloads for the three months. There were 60 downloads
in the first month, and 180 downloads in the second month. So the total number of downloads for
the first two months is 60 + 180 = 240. Then, there were 126 downloads in the third month. So the
total number of downloads over the three months is 240 + 126 = 366. (Score: 6/10) (correct).

REVIEWER’S OUTPUT:
Step 1-2: The high scores of 10 suggest that these steps are correct.
Step 3: The score of 6 suggests that this step is mostly correct. However, the improvement you
could make is to explicitly state the calculation for the total number of downloads, rather than just
stating the result.

REFINER’S OUTPUT:
Step 1: Determine the downloads in the second month. Three times 60 is 3 x 60 = 180. Then 30%
of 180 is 180 x 0.3 = 54. 180 - 54 is 126. So 126 downloads in the second month.
Step 2: Determine the total downloads over the three months. 60 downloads in the first month,
and 126 downloads in the second month, and 126 - 54 = 72 downloads in the third month. 60 +
126 + 72 is 258. The answer is 258. (incorrect).

Table 16: A qualitative example of over-correction on GSM8K using Llama3-8B-Instruct.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

QUESTION: If f(x) = 3x−2
x−2 , what is the value of f(−2) + f(−1) + f(0)? Express your answer

as a common fraction. (Gold answer: 14
3

)

SOLVER’S OUTPUT (BEFORE REFINEMENT):
Step 1: Determine the values of f(−2), f(−1), and f(0) by plugging the values into the expression
for f(x).
f(−2) = 3(−2)−2

−2−2 = −6−2
−4 = −8

−4 = 2,

f(−1) = 3(−1)−2
−1−2 = −3−2

−3 = −5
−3 = 5

3 ,

f(0) = 3(0)−2
0−2 = 0−2

−2 = −2
−2 = 1. (Score: 10/10)

Step 2: Add the values of f(−2), f(−1), and f(0) to obtain f(−2)+ f(−1)+ f(0) = 2+ 5
3 +1

6
3 + 5

3 + 3
3 = 14

3 .

Final Answer: The final answer is
14

3
. I hope it is correct. (Score: 7/10) (correct).

REVIEWER’S OUTPUT:
Step 1: The scores of 10/10 suggest that this step is correct.
Step 2: The high score of 7 suggests that this step is mostly correct. However, it might be beneficial
to include intermediate steps for clarity.

REFINER’S OUTPUT:
Step 1: We can calculate f(−2), f(−1), and f(0) using the given expression for f(x): f(−2) =
3(−2)−2
−2−2 = −4

−4 = 1,

f(−1) = 3(−1)−2
−1−2 = −3

−3 = 1,

f(0) = 3(0)−2
0−2 = −2

−2 = 1.
Step 2: Now we can add these values together: f(−2) + f(−1) + f(0) = 1 + 1 + 1 = 3

1

Final Answer: The final answer is
3

1
. I hope it is correct. (incorrect).

Table 17: A qualitative example of over-correction on MATH using Llama3-8B-Instruct .

24

	Introduction
	MAgICoRe: An Adaptive Coarse-to-Fine Refinement Framework
	Overall MAgICoRe Framework
	Classifying Problem Difficulty and Assigning to Coarse or Fine Methods
	Fine-Grained Multi-Agent Iterative Refinement

	Experimental Setup
	Results and Analysis
	Main Results
	Additional Analyses of MAgICoRe

	Conclusion
	Related Work
	Self-Consistency and Weighted Self-Consistency.
	Details of the Conditions
	Additional Experimental Results
	Model-Predicted vs. Human-Annotated Problem Difficulty
	Token Count Analysis
	Prompt for the Reviewer and the Refiner
	Prompt for GPT4o-mini as PRM
	Qualitative Examples of Refinement
	Qualitative Examples of Over-correction

