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Abstract

State-of-the-art neural network models estimate large

displacement optical flow in multi-resolution and use warp-

ing to propagate the estimation between two resolutions.

Despite their impressive results, it is known that there are

two problems with the approach. First, the multi-resolution

estimation of optical flow fails in situations where small ob-

jects move fast. Second, warping creates artifacts when oc-

clusion or dis-occlusion happens. In this paper, we pro-

pose a new neural network module, Deformable Cost Vol-

ume, which alleviates the two problems. Based on this mod-

ule, we designed the Deformable Volume Network (Devon)

which can estimate multi-scale optical flow in a single high

resolution. Experiments show Devon is more suitable in

handling small objects moving fast and achieves compara-

ble results to the state-of-the-art methods in public bench-

marks.

1. Introduction

Optical flow estimation is the problem of finding dense

correspondences between two images. It is a classic prob-

lem in computer vision and has been studied for more

than 30 years. Since Horn and Schunck’s variational

method [14], a large number of optical flow algorithms [1,

8, 9] has been developed and lead to various applications

such as tracking [11] and video classification [41]. Nev-

ertheless, the problem of estimating optical flow is not yet

solved. One can claim that even today we still do not have

a practical algorithm which is fast, robust and accurate for

real-world images.

Recently, supervised learning of optical flow with neural

networks has shown great promises [7, 18, 31, 38, 39, 37,

15]. By making use of graphics engines, large scale datasets

with synthetic images and ground-truth optical flow can be

generated [4, 7, 28], which in return enable us to learn op-

tical flow in an end-to-end manner. We note that while the

training images are synthetic, neural networks seem to gen-

eralize reasonably well on real-world images [27]. Com-

pared to classical methods, the neural network approaches

have the advantage of offering robust features and fast in-

ference [7, 18, 37, 15].

One of the major difficulties in estimating optical flow is

large displacements. Learning optical flow with large dis-

placements may not be achieved by Convolutional Neural

Networks (CNNs) with only standard convolution opera-

tions. This is due to the fact that CNNs make use of small

filters It is prohibitive to increase filter sizes naı̈vely to cover

large displacements, as the number of parameters and the

computational cost both increase drastically.

To handle large displacements, multi-resolution estima-

tion of optical flow is employed in several neural network

models. SpyNet [31] downsamples the original images into

multiple resolution levels and each level is handled by a

CNN decoder to output optical flow of the corresponding

resolution. PWC-Net [37] and LiteFlowNet [15] follow the

same strategy except that they use strided convolutions in-

stead of downsampling to reduce the resolution and use cost

volumes as a more explicit representation of motion. As a

result, a decoder in lower resolution has effectively a larger

receptive size to cover large displacements.

However, as pointed out in [3, 36], the multi-resolution

estimation of optical flow faces the “small objects move

fast” problem as small objects disappear in lower resolution

and cannot be recovered in higher resolution due to their

large motion. Although the problem is not severe in terms

of performance on the current public benchmarks, it limits

the use of optical flow for high precision applications where

small objects might contain vital information. The key to

solve the problem is to handle multi-scale motion in a single

high resolution [44]. Another technique to handle large dis-

placements in neural network models such as [18, 31, 37] is

warping, which propagates optical flow between two stages

in a model. However, warping often creates distortions and

artifacts. This issue will be discussed in details in §2.

In this paper, we introduce the Deformable Volume

Network (Devon), which avoids the drawbacks of multi-

resolution estimation and warping.
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2. The Problem of Warping

Warping has been used in variational methods [3, 26] and

neural network models [18, 31, 37] for iteratively refining

optical flow estimations in a multi-stage framework. The

first stage covers large displacements and outputs a rough

estimation. Then the second image (or its feature maps) is

warped by the roughly estimated optical flow such that pix-

els of large displacements in the second image are moved

closer to their correspondences in the first image. As a re-

sult, the next stage, which receives the original first image

and the warped second image as inputs, only needs to han-

dle smaller displacements to refine the estimation.

Let I : R2 → R
3 denote the first image, J : R2 → R

3

denote the second image and F : R
2 → R

2 denote the

optical flow field of the first image. The warped second

image is defined as

J̃(p) = J(p+ F (p)) (1)

for image location p ∈ R
2 [18].

The warping operation creates a transformed image rea-

sonably well if the new pixel locations p + F (p) do not

occlude or collide with each other. For example, this is the

case with the affine transform F (p) = Ap + t where A

and t are the transformation parameters. However, for real-

world images, occlusions are common (e.g., when an object

moves and the background is still). If an image is warped

with the optical flow which induces occlusions, duplicates

will be created. The effect is demonstrated in Figure 1. The

artifacts cannot be cleaned simply by subtracting the first

or the second image from the warped image, as shown in

Figure 1 (e) and (f). The artifacts induced by warping have

been previously observed in [2, 42, 21]. Intuitively, if a

pixel which is moved by warping to a new location and no

other pixel are moved to fill in its old location, the pixel will

appear twice in the warped image.

Mathematically, consider the following example. As-

sume the value of J(p1) is unique in J , that is, J(p) 6=
J(p1) for all p 6= p1. Then for an optical flow field in

which

F (p1) = 0, F (p2) = p1 − p2, (2)

we have

J̃(p1) = J(p1 + F (p1)) (3)

= J(p1 + 0) = J(p1), (4)

J̃(p2) = J(p2 + F (p2)) (5)

= J(p2 + p1 − p2) = J(p1). (6)

Therefore J̃(p1) = J̃(p2) = J(p1). Since the value of

J(p1) is unique in image J but not unique in J̃ , a duplicate

is created on the warped second image J̃ .

(a) First image (b) Second image

(c) Ground truth optical flow (d) Warped second image

(e) Warped second image sub-

tracted by the first image

(f) Warped second image sub-

tracted by the second image

Figure 1: Artifacts of using image warping. From (d),

we can see the duplicates of the dragon head and wings.

The images and the ground truth optical flow are from

the Sintel dataset [4]. Warping is done with function

image.warp() in the Torch-image toolbox.

When the duplicates happen, it makes the optical flow

estimation erroneous since artificial candidate correspon-

dences are created. Although neural networks as univer-

sal approximators might be able to learn the self-corrected

correspondences if trained with ground-truth optical flow,

one should be aware of the issue which might cause prob-

lems in designing non-learning-based methods or more in-

terpretable neural network models.

3. Deformable Cost Volume

Let I denote the first image, J denote the second image

and fI : R2 → R
d and fJ : R2 → R

d denote their feature

maps of dimensionality d, respectively. The standard cost

volume is defined as

C(p,v) = ‖fI(p)− fJ(p+ v)‖, (7)

for image location p ∈ R
2, neighbor v ∈ [−k−1

2
, k−1

2
]2 of

neighborhood size k and a given vector norm ‖ · ‖.
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The cost volume gives an explicit representation of dis-

placements. The idea of using cost volume goes back to

stereo matching [35]. When using the feature maps learned

by neural networks, construction and processing of a fully

connected cost volume, in which the neighborhood is large

enough to cover the maximum displacement, leads to high

performance in stereo matching [46] and optical flow [43].

However, the displacements in stereo matching are one-

dimensional while in optical flow they are two-dimensional.

For two images (and their feature maps) of resolution m×n,

the construction of the cost volume in equation (7) has

time and space complexity O(mndk2). Naı̈vely increas-

ing neighborhood size k to cover large displacements in-

creases the computation quadratically. As a result, DCFlow

requires several seconds to compute optical flow for a pair

of images on a GPU and large memory usage [43].

To reduce the computational burden, in [37, 15], multi-

resolution feature maps of two images are created and a

cost volume of a small neighborhood is constructed at each

resolution. Warping is used to propagate the optical flow

between two resolutions. However, as discussed before,

the multi-resolution estimation of optical flow leads to the

“small objects move fast” problem and warping induces ar-

tifacts and distortion. To avoid the drawbacks, we propose

a new neural network module, the deformable cost volume.

The key idea is: instead of deforming images or their fea-

ture maps, we deform the cost volume and leave the images

and the feature maps unchanged.

The proposed deformable cost volume is defined as

C(p,v, r, F ) = ‖fI(p)− fJ(p+ r · v + F (p))‖ (8)

where r is the dilation rate and F (·) is an external flow field.

The dilation rate r is introduced to enlarge the size of the

neighborhood to handle large displacements without reduc-

ing the resolution. This is inspired by the dilated convolu-

tion [5, 45] which enlarges its receptive field in a similar

way. F (·) can be obtained from the optical flow estimated

from a previous stage or an external algorithm. If F (p) = 0
for all p and r = 1, then the deformable cost volume is re-

duced to the standard cost volume. For non-integer F (p),
bilinear interpolation is used. The deformable cost volume

is illustrated in Figure 2.

Since the deformable cost volume does not distort fI or

fJ , the artifacts associated with warping will not be created.

Optical flow can be inferred from the deformable cost vol-

ume solely without resorting to the feature maps of the first

image to counter the duplicates.

The deformable cost volume is differentiable with re-

spect to fI(p) and fJ(p + r · v + F (p)) for each image

location p. Due to bilinear interpolation, the deformable

cost volume is also differentiable with respect to F (p), us-

ing the same technique as in [18, 20]. Therefore, the de-

formable cost volume can be inserted in a neural network

fI fJ

(a) Standard cost volume. For each location on the

feature maps of the first image, the matching costs

of a neighborhood of the same location on the fea-

ture maps of the second image are computed.

fI fJ

(b) Deformable cost volume. For each location on

the feature maps of the first image, the matching

costs of a dilated neighborhood of the same loca-

tion, offset by a flow vector, on the feature maps

of the second image are computed.

Figure 2: Cost Volumes

for end-to-end learning optical flow.

To see how the deformable cost volume avoids the arti-

facts of warping, consider the following. Assume F (p1) =
0 and F (p2) = p1−p2. The standard cost volume (7) with

warping (1) gives

C(p1,0) = ‖fI(p1)− f̃J(p1 + 0)‖ (9)

= ‖fI(p1)− fJ(p1 + F (p1))‖ (10)

= ‖fI(p1)− fJ(p1)‖ (11)

C(p1,p2 − p1) = ‖fI(p1)− f̃J(p1 + p2 − p1)‖ (12)

= ‖fI(p1)− f̃J(p2)‖ (13)

= ‖fI(p1)− fJ(p2 + F (p2))‖ (14)

= ‖fI(p1)− fJ(p1)‖ (15)

That C(p1,0) = C(p1,p2 − p1) implies fI(p1) has the

same matching cost for fJ(p1) and fJ(p2), which does not

hold in general and makes the matching ambiguous. On the

other hand, with deformable cost volume (8) of dilation rate

one, we have

C(p1,0) = ‖fI(p1)− fJ(p1)‖ (16)

C(p1,p2 − p1) = ‖fI(p1)− fJ(p2 + F (p1))‖ (17)

= ‖fI(p1)− fJ(p2)‖ (18)

As C(p1,0) 6= C(p1,p2 − p1) in general, the artifact is

avoided.
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4. Deformable Volume Network

Our proposed model is the Deformable Volume Network

(Devon), as illustrated in Figure 3. Devon has multiple

stages. Each stage is a neural network with an identical

Siamese architecture, which consists of an encoding mod-

ule, a relation module and a decoding module. Each stage

outputs the optical flow field of 1/4 resolution and then the

flow from last stage is bilinearly upsampled to obtain the

final prediction. The optical flow estimated from a previ-

ous stage is propagated to the current one through the de-

formable cost volume and residual connections.

Compared to previous neural network models [7, 18, 31,

37, 15], Devon is different in the following major ways: (1)

All stages in Devon output optical flow of the same reso-

lution. While Devon handles multi-scale motion by the de-

formable cost volume, it does not use the multi-resolution

representation of motion. Extensive downsampling leads to

the loss of information and deficiency in handling the “small

objects move fast” problem. The advantage of estimating

motion direct on a single high resolution is also shown in

[44]. (2) Each stage acts on the undistorted images. No

warping is used. Therefore, the artifacts discussed in §2 can

be avoided. (3) The decoding module only receives inputs

from the relation module. Therefore, neural networks infer

the optical flow solely from the relations between two im-

ages, rather than memorize the optical flow pattern of a sin-

gle image as a short-cut. The short-cut issue has appeared

when applying neural networks to learn monocular stereo

[40]. On the contrary, in FlowNetC, PWC-Net and Lite-

FlowNet, the decoding module also receives inputs from the

encoding module of the first image. (4) The encoding mod-

ule is shared in all stages.

We describe the details of each module structure below.

All convolution layers have zero-padding size one. Besides,

all convolution layers, except the last one in the encoding

module and the last one in the decoding module, are fol-

lowed by a leaky ReLU function [12] with leakiness 0.1.

4.1. Encoding Module

The encoding module has a U-Net structure [33] with

residual connections [13], as shown in Figure 4. Since the

model output optical flow of 1/4 resolution, the encoding

module has 6 convolution layers of stride 2 but 4 upsam-

pling layers. We also experimented with a simpler module

and result is shown in the ablation analysis in supplmentary

materials.

4.2. Relation Module

The relation module is illustrated in Figure 5. It concate-

nates the outputs of five deformable cost volumes, which

have different neighborhood size k or dilation rate r, as

shown in Table 1. Such combination enables dense cor-

respondences nearby the center of an image location and

JI

ff

R1
g1

R2
g2

R3
g3

+

+

F2

F3

F1

Figure 3: Deformable Volume Network (Devon) with three

stages. I denotes the first image, J denotes the second

image, f denotes the encoding module (§4.1), Rt denotes

the relation module (§4.2), gt denotes the decoding module

(§4.3) and Ft denotes the estimated optical flow for stage t.

Conv 16 × 3 × 3 , stride 2

Conv 32 × 3 × 3, stride 2

Conv 64 × 3 × 3, stride 2

Conv 128 × 3 × 3, stride 2

Conv 256 × 3 × 3, stride 2

Conv 512 × 3 × 3, stride 2

Conv 512 × 3 × 3, stride 1

Conv 256 × 3 × 3, stride 1

Conv 128 × 3 × 3, stride 1

Conv 64 × 3 × 3, stride 1

Conv 32 × 3 × 3, stride 1

Image

Image Features

Upsample ×2

Upsample ×2

Upsample ×2

Upsample ×2

R
esid

u
al

C
o

n
n

ectio
n

Figure 4: Encoding module f . The residual connection de-

notes the output of a layer is added to the output of another

layer.

sparse correspondences in peripheral to capture multi-scale

motion. This is consistent with the fact that small displace-

ments are more frequent in natural videos [34] and resem-
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bles the structure of retina, as illustrated in Figure 6.

C1, k1, r1 C2, k2, r2 C3, k3, r3 C4, k4, r4 C5, k5, r5

Concat

Norm

Image Features 1 Flow Image Features 2

Relation Features

Figure 5: Relation module R. C1 ∼ C5 denote the de-

formable cost volumes. k1 ∼ k5 denote the neighborhood

sizes. r1 ∼ r5 denote the dilation rates. Concat denotes

concatenation. Norm denotes normalization.

fI fJ

Figure 6: Concatenation of deformable cost volumes cre-

ates a retinal structure of correspondences. In this example,

three cost volumes of neighborhood sizes (k1, k2, k3) =
(3, 5, 3) and dilation rates (r1, r2, r3) = (1, 2, 7) respec-

tively are concatenated.

(k1, k2, k3, k4, k5) (r1, r2, r3, r4, r5)

R1 (5, 5, 5, 5, 9) (1, 3, 8, 12, 20)
R2 (5, 5, 5, 5, 9) (1, 3, 8, 10, 12)
R3 (5, 5, 5, 5, 9) (1, 3, 4, 5, 7)

Table 1: Hyperparameters of deformable cost volumes in

Devon.

Since Devon is a multi-stage model which performs

coarse-to-fine estimation of optical flow, we gradually de-

crease the dilation rates as the optical flow is expected to

get finer in later stages. We also experimented with using

the cost volumes of the same neighbor sizes and dilation

rates for all three stages, the result of which is reported in

supplementary materials.

Next, for each location in the concatenated feature maps,

a normalization method is applied across the channels. We

apply f(C) = exp(−C) elements-wise, which encour-

ages the elements representing the minimum cost to pop-

up. Such normalization improves the estimation accuracy

as shown in §5.3.

The output of this module has size (k21 + k22 + k23 + k24 +
k25) × m × n, where m is the height and n is the width

of the feature maps. When the module does not receive an

optical flow as one of the inputs (in the first stage), it is set

to receive a zero-valued optical flow field.

Since the relation module captures multi-scale motion

without reducing the resolution, the presence and precise

location of small objects which move fast are retained. This

allows Devon to have better chance in solving the “small

objects move fast” problem.

4.3. Decoding Module

In the decoding module, we again use the U-Net struc-

ture with residual connections. The whole module struc-

ture is illustrated in Figure 7. Each stage has its own de-

coder. We also experimented with sharing decoder in all

three stages. The result is reported in supplementary mate-

rials.

Conv 128 × 3 × 3 , stride 1

Conv 192 × 3 × 3, stride 2

Conv 256 × 3 × 3, stride 2

Conv 320 × 3 × 3, stride 2

Conv 512 × 3 × 3, stride 2

Conv 512 × 3 × 3, stride 1

Conv 320 × 3 × 3, stride 1

Conv 256 × 3 × 3, stride 1

Conv 196 × 3 × 3, stride 1

Conv 128 × 3 × 3, stride 1

Conv 64 × 3 × 3, stride 1

Conv 2 × 3 × 3, stride 1

Relation Features

Flow

Upsample ×2

Upsample ×2

Upsample ×2

Upsample ×2

R
esid

u
al

C
o

n
n

ectio
n

Figure 7: Decoding module g. The residual connection de-

notes the output of a layer is added to the output of another

layer.
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5. Experiments

We evaluate Devon on two challenging benchmarks

which contain large motions: Sintel [4] and KITTI [10], as

in [7, 31, 18, 37]. We compare Devon with the state-of-the-

art neural network models: PWC-Net [37] and LiteFlowNet

[15]. We use Devon with three stages and l1 norm for the

deformable cost volumes.

5.1. Training

Our training procedure largely follows from [18, 37]. We

first train our network on FlyingChairs. We use the l2 loss

function

L =
∑

t

γt|FGT − F̂t|2 (19)

where FGT denotes the ground-truth optical flow and F̂t de-

notes the bilinear upsampled network output at stage t. For

Devon with three stages, we choose γ1 = 0.2, γ2 = 0.3
and γ3 = 0.5. All pixel values of the images are multi-

plied by 1/255. Empirically, such normalization is found

to accelerate the training. For optimization algorithm, we

use Adam [23] with β1 = 0.9, β2 = 0.999 and weight de-

cay factor 0.0004. We use the weight initialization method

in [12]. We use data augmentation which is consisted of

random cropping of size 448 × 384, translation, rotation,

color jittering and Gaussian noise. There are totally 500000

mini-batch updates with mini-batch size 8. After training on

FlyingChairs, we fine-tune our model on FlyingThings3D.

For the evaluation on Sintel, we fine-tuned the model,

which was previously trained on FlyingChairs and then fine-

tuned on FlyingThings3D, on the Sintel training set. For the

evaluation on KITTI, we fine-tuned the model, which was

previously trained on FlyingChairs and then fine-tuned on

FlyingThings3D, on the KITTI training set.

All the experiments are conducted with PyTorch. The

deformable cost volume is implemented in CUDA with Py-

Torch interface.

5.2. Main Results

Sintel Clean Sintel Final KITTI 2012 KITTI 2015

EPE EPE EPE F1-all

PWC-Net 4.39 5.04 1.7 9.16 %

LiteFlowNet 4.54 5.38 1.6 9.38%

Devon 4.34 6.35 2.6 14.31 %

Table 2: Results on the whole Sintel and KITTI datasets.

In Figure 8, 9 and 10 , we show visualization results of

situations where small objects move fast. All models were

trained on FlyingChairs and then fine-tuned on FlyingTh-

ings3D. No additional fine-tuning is applied. From Figure

8, 9 and 10, we can see Devon gives much more accurate

estimation of the small objects.

The results on whole Sintel and KITTI are in Table 2.

Note that our goal is not to outperform previous meth-

ods on the whole Sintel and KITTI datasets, which contain

mostly large objects. We aim to solve a long-lasting prob-

lem in optical flow estimation, “small objects moving fast”.

For future work, our model can be integrated with multi-

resolution models to handle objects with various sizes and

speed.

5.3. Ablation Analysis

We perform an ablation analysis of Devon by replacing

the deformable cost volume with warping and standard cost

volume. The models were trained on FlyingChairs. The

timing was recorded on a NVIDIA TITAN Xp graphics card

for processing a pair of RGB images of size 1024×448.

The results are listed in Table 3 and 4. From the results,

we can see deformable cost volume leads to higher speed

and comparable accuracy. This is because the deformation

and the cost volume construction are merged into one pro-

cess in deformable cost volume and therefore reduces the

runtime. Therefore, deformable cost volume serves as an

effective alternative to warping. The result suggests that the

deformable cost volume is a suitable replacement of warp-

ing and standard cost volume in Devon and potentially other

models.

FlyingChairs Sintel clean

Valid Train

Deformable cost volume 1.87 2.99

Warping 1.88 2.98

Table 3: End point error

Forward Backward

Deformable cost volume 50.51 177.17

Warping 57.75 182.75

Table 4: Runtime (ms).

6. Discussions

While Devon achieves better results in handling small

objects moving fast in the visualization results, it does not

outperform multi-resolution based methods such as PWC-

Net on Sintel final pass and KITTI. We conjecture that this

is due to the fact that Sintel and KITTI mostly contain

large objects (e.g. human bodies, cars and buildings), for

which the multi-resolution approach might be more suit-

able. An interesting extension of our work is to combine

multi-resolution approach and Devon to handle objects of

diverse sizes and speed.
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(a) First image (b) Second image (c) Ground truth

(d) LiteFlowNet (e) PWC-Net (f) Devon

Figure 8: Sintel (training set). Green arrows indicate the small object that moves fast.

(a) First image (b) Second image (c) Ground truth

(d) LiteFlowNet (e) PWC-Net (f) Devon

Figure 9: Sintel (training set). Green arrows indicate the small object that moves fast.

(a) First image (b) Second image (c) Ground truth

(d) LiteFlowNet (e) PWC-Net (f) Devon

Figure 10: KITTI 2015 (training set). Green arrows indicate the small object that moves fast.
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7. Related Work

The deformation in deformable cost volume is different

from the one in deformable convolutional networks [6]. In

deformable cost volume, the cost volume is offset by an ex-

ternal optical flow and dilation. There is no learnable pa-

rameter while in deformable convolutional networks, the

deformation is element-wise and the offset parameters are

learned during training. Another related work is the de-

formable spatial pyramid matching [22, 16] which uses de-

formation in the classic energy minimization framework for

hierarchical dense matching. Applying normalization on

hidden unit outputs is found advantageous in modeling gen-

eral image relations [25].

The use of dilation in standard cost volume has been pro-

posed in [7] and used in [15], though it has not been used

in a multi-scale fashion in each stage as ours to handle the

small objects moving fast problem.

Although in this paper we also explored supervised

learning of optical flow, the proposed model can be also

trained with unsupervised learning losses as in [32, 29, 42,

24].

8. Conclusions

In this paper, we proposed a new neural network mod-

ule, Deformable Cost Volume, which allows the represen-

tation of multi-scale motion in a single high resolution and

avoids the drawback of warping. Based on it, we designed

the Deformable Volume Network, which has three stages

estimation all in a single high resolution. The network is

demonstrated to be effective in estimating optical flow, es-

pecially in situations where small objects move fast. In the

future, we expect to combine the strength of our model and

multi-resolution models to handle objects of various size

and speed in complex scenes. Another key challenge in op-

tical flow estimation is occlusion handling [30, 19, 17]. At

the current stage, the cost volume by itself cannot reflect the

presence of occlusion. When the matching cost is high, it

is difficult to infer whether it is caused by mismatch or oc-

clusion. In the future, we look forward to exploring joint

occlusion handling and cost volume construction.
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