
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BRIDGING SUCCESSOR MEASURE AND ONLINE POLICY
LEARNING WITH FLOW MATCHING-BASED REPRESEN-
TATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Successor Measure (SM), a powerful method in reinforcement learning (RL),
describes discounted future state distributions under a policy, and it has recently
been studied using generative modeling techniques. Although SM is a powerful
predictive object, it lacks compact representations tailored for online RL. To ad-
dress this, we introduce Successor Flow Features (SF2), a representation learning
framework that bridges SM estimation with policy optimization. SF2 leverages
flow-matching generative models to approximate successor measures, while en-
forcing a structured linear decomposition into a time-invariant embedding and a
time-dependent projection. This yields compact, policy-aware state-action features
that integrate readily into standard off-policy algorithms like TD3 and SAC. Experi-
ments on DeepMind Control Suite tasks show that SF2 improves sample efficiency
and training stability compared to strong successor feature baselines. We attribute
these gains to the compact representation induced by flow matching, which reduces
compounding errors in long-horizon predictions.

1 INTRODUCTION

A key reason for the success of deep reinforcement learning (RL) in complex, sequential real-
world tasks is its ability to learn meaningful representations automatically. This is often achieved
through neural network architectures with specific inductive bias and efficient representation training
algorithms. Effective representations generalize well across different observations and environments,
give accurate value estimation, make efficient planning over long decision sequences, and achieve
robustness when encountering new observed states (Kulkarni et al., 2016). However, how to find a
general and efficient representation learning method that does not rely entirely on reward functions
but focuses on environment dynamics is a crucial problem, especially for complex tasks with a
continuous state space, sparse reward, and long decision sequences.

Successor Representation (SR) (Dayan, 1993) offers a promising approach by decoupling the reward
function from environment dynamics. It captures the expected future state occupancy under a given
policy, offering a dual interpretation: it can be viewed as a linear basis for state-action value functions,
or equivalently, as a compact representation of infinite-horizon discounted visitation distributions.
However, SR is inherently limited to discrete state spaces. To overcome this limitation, Successor
Feature (SF) (Barreto et al., 2017) were introduced, incorporating a reward-relevant feature mapping
along with a Temporal Difference (TD)-style learning algorithm. A key challenge, however, remains
the design of an appropriate feature mapping, which is still an open problem (Ollivier, 2025).

More recently, Successor Measure (SM) emerged as a generalization of SR that directly models
the discounted future state occupancy. Unlike SF, which relies on predefined features, SM describes
distributions in principle in infinite-dimensional space and is typically estimated via generative
models. Recent advances such as the geometric horizon model (GHM) (Thakoor et al., 2022), the
γ-model (Janner et al., 2020), and TDFlow (Farebrother et al., 2025) utilize generative modeling and
generalized TD learning to estimate SM, facilitating applications in policy evaluation and transfer
learning. In particular, TDFlow builds on recent progress in generative modeling, specifically flow
matching techniques (Lipman et al., 2022), enabling direct, simulation-free trajectory generation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

between distributions. This makes it highly efficient for continuous and high-dimensional settings.
Furthermore, the mixed nature of flow matching aligns naturally with TD-style training.

The stability and efficiency of flow matching make it exceptionally well-suited for modeling SM, as it
mitigates compounding errors over long horizons and enhances scalability in complex environments.
However, online RL imposes stricter demands, requiring representations that not only retain the
predictive power of SM but also adapt quickly to new experiences. These requirements motivate a
new framework that unifies the robust long-term forecasting of SM, the stable and efficient generative
learning of flow matching, and the rapid adaptability essential for online RL.

In this paper, we introduce Successor Flow Features (SF2), a new framework that leverages flow
matching to approximate SM. SF2 enforces a structured decomposition into a time-invariant low-
dimensional embedding of state-action pairs and a time-dependent projection operator. This
design offers several key advantages: (i) the time-invariant embedding is tailored for online RL,
enabling joint training with value functions and seamless integration into existing algorithms like
TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018); (ii) the time-dependent projection
enables generative models to reconstruct SM while decoupling policy-dependent and environmental
structure. We evaluate SF2 by integrating it into TD3 and SAC on continuous-control benchmarks
from Mujoco Playground (Zakka et al., 2025). Our results demonstrate improved average performance
over standard baselines. While preliminary, these findings indicate that combining flow-based
generative modeling with successor representations is a highly promising direction for scalable RL
representation learning. Our contributions are threefold:

• We propose a generative model with a linear projection structure for approximating SM
using flow matching.

• We introduce SF2, an informative representation for online RL that is trained jointly with
value functions.

• We provide empirical evaluation on challenging continuous-control tasks, together with
diagnostic studies of bootstrapped flow matching.

To the best of our knowledge, SF2 is the first approach to explicitly integrate successor measures
with policy optimization for online RL representation learning. We emphasize that SF2 is an initial
step in this direction rather than a complete solution: rigorous theoretical guarantees and broader
empirical validation remain open challenges.

2 PRELIMINARY

In this paper, we use uppercase serif fonts to denote a set S, P(S) to denote the space of probability
measures over a measurable set S, uppercase capital letters to denote random variables (e.g., S) and
Rn to denote the n-dimensional real space.

Markov Decision Process We consider a discounted Markov decision processM = (S,A, P, r, γ),
which includes the state space S, discrete or continuous action space A, transition kernel P :
S × A → P(S), reward function r : S × A → R, and discount factor γ ∈ [0, 1). Following
the setting of Blier et al. (2021), the state space is measurable (either continuous or discrete). In
an MDP, an agent interacts with the environment by observing the current state st ∈ S, selecting
an action at ∈ A according to policy π, and then receiving a reward r(st, at) while transitioning
to a new state st+1 ∼ P (·|st, at). The objective of reinforcement learning algorithms is to find
a policy π : S → P(A) that maximizes the expected cumulative reward, or the value function
V π(s) = Eπ [

∑∞
t=0 γ

tr(st, at) | s0 = s] for any state s ∈ S, where Eπ denotes expectation under
the distribution induced by policy π interacting with the MDP. The value function satisfies the
Bellman equation: V π(s) =

∑
a∈A π(a|s)

[
r(s, a) + γ

∑
s′∈S P (s

′|s, a)V π(s′)
]
.

Flow Matching Flow Matching (FM) (Lipman et al., 2022) is a technique used in generative
modeling to learn mappings between distributions. Define a time-dependent diffeomorphic map ϕk =
ϕ(·, k) : Rn × [0, 1]→ Rn governed by an Ordinary Differential Equation (ODE) : dxk

dk = v(xk, k)
with time k ∈ [0, 1], where xk := ϕk(x0). We use the notation k rather than t for the ODE’s time
parameter to distinguish it from the timestep t used in MDPs. A Continuous Normalizing Flow, one
kind of Neural Ordinary Differential Equations (Chen et al., 2018), is employed to parameterize the
vector field vk = v(·, k) : Rn × [0, 1]→ Rn as uθ(·, k) and determines the flow dynamics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

To find the training target of the parameterized time-dependent vector field, FM introduces a mix-
ture representation approach to estimate the marginal vector field as a mixture of conditional vec-
tor fields that condition on each data point from ptarget. For example, given a prior distribution
p0(x) = N (0, In) and a sampled data point x1 from the target distribution p1(x) := ptarget(x),
FM constructs conditional probability paths pk(x|x1) = N (x;µk(x1), σ

2
k(x1)In). The correspond-

ing conditional time-dependent diffeomorphic map and the conditional vector field are given by
ϕk(x, x1) = σk(x1)x+ µk(x1) and dϕk(x,x1)

dk , respectively. The training objective is

L(θ) = Eϵ∼N (0,I),x1∼ptarget(x),k∼U(0,1)

[∥∥∥∥uθ(ϕk(ϵ, x1), k)− dϕk(ϵ, x1)

dk

∥∥∥∥2
]
,

where U(0, 1) represents the uniform distribution over the interval [0, 1]. This objective minimizes
the squared difference between the parameterized vector field and the target vector field at randomly
sampled time points, states, and noise values. The time parameter k is uniformly sampled to ensure
the model learns the entire trajectory from the prior distribution to the target distribution.

Samples are generated by solving x1 = x0 +
∫ 1

0
uθ(xk, k)dk where x0 ∼ p0 with standard ODE

solvers (Gautschi, 2011). When additional conditions are imposed as c for the vector fields uθ(x, k, c)
and the sampled data conforms to the distribution x ∼ q(·|c), the FM is also capable of constructing
conditional generative models.

Successor Measure The SM (Blier et al., 2021) is a probability distribution over states that captures
the expected discounted future state visitations under a given policy, a transition kernel, and a state-
action pair. Formally, for a policy π, the SM µπ(X|s, a) represents the probability of visiting state
s′ ∈ X ⊆ S when starting from state-action pair (s, a) and following policy π, with geometric
discounting:

µπ(X|s, a) = (1− γ)E(s1,s2,...,st,...)∼Pπ

[∑
t

γt1st∈X | s0 = s, a0 = a

]
,

where the expectation is taken over all possible trajectories generated by starting at state s, taking
action a, and then following policy π for all subsequent steps. The indicator function 1st∈X equals 1
when the state at time t belongs to the set X and 0 otherwise.

Similar to the Bellman equation for the value function, the SM satisfies the Bellman equation (Blier
et al., 2021):

µπ(X|s, a) = (1− γ)P (X|s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a′∈A

π(a′|s′)µπ(X|s′, a′). (1)

This recursive formulation reveals that the SM can be interpreted as a mixture distribution between the
immediate state distribution induced by the transition kernel (with weight 1−γ) and the bootstrapped
future state distribution (with weight γ). The conditional generative models can be employed to
predict the SM utilizing the recursive form equation 1. In general, the learning objective is formulated
as a maximum likelihood estimation problem, which aims to find the optimal generative model by
solving:

max
µ

EX∼(1−γ)P (·|s,a)+γEs′∼Pπ(·|s,a),a′∼π(·|s′)[µ
π(·|s′,a′)][log µ

π(X|s, a)]. (2)

While this objective provides a general framework, the specific loss function needs to be adapted
according to the choice of generative model. For instance, in the Geometric Horizon Model
(GHM) (Thakoor et al., 2022) (also referred to as the γ-model (Janner et al., 2020)), different
implementations employ distinct training losses, such as those based on VAE (Kingma et al., 2013)
or GAN (Goodfellow et al., 2014). In this work, we focus on the best-performing variant, the flow
matching used in TDFlow (Farebrother et al., 2025), which utilizes a modified flow matching loss.
We will elaborate on its details in the next section. A further discussion about the benefits of using
flow matching for SM through an explicit mixture viewpoint can be found in Appendix A.2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 SUCCESSOR FLOW FEATURE

3.1 FLOW MATCHING FOR SUCCESSOR MEASURE LEARNING

The SM’s mixture structure is particularly well-suited for flow matching approaches, allowing us
to directly model the interpolation between immediate transitions and future state distributions. For
learning µπ(s′|s, a) with its corresponding parameterized time-dependent vector field uθ(x, k, s, a),
we utilize its natural mixture representation:

µπ(s′|s, a) = (1− γ)P (s′|s, a) + γEs′′∼P (·|s,a),a′′∼π(·|s′′)µ
π(s′|s′′, a′′),

which yields the corresponding FM training objective for the parameterized vector field uθ(x, k, s, a)
on given tuple (s, a, s′):

Lflow(θ) =(1− γ)LP (θ) + γLbootstrapping(θ)

=(1− γ)Eϵ,k,s′∼P (·|s,a)

[∥∥∥∥uθ(ϕk(ϵ, s′), k, s, a)− dϕk(ϵ, s
′)

dk

∥∥∥∥2
]

+ γEϵ,k,a′∼π(·|s′),se∼µθ(·|s′,a′)

[∥∥∥∥uθ(ϕk(ϵ, se), k, s, a)− dϕk(ϵ, se)

dk

∥∥∥∥2
]
, (3)

where LP (θ) is used to learn the transition distribution and Lbootstrapping(θ) uses a temporal difference
form where bootstrapping distributions induced by uθ(·, ·, s′, a′) serve as µπ(·|s′, a′). However, this
sampling procedure introduces substantial computational costs due to the need for multiple network
evaluations during the generation process.

To enhance training efficiency, we leverage the fact that sampling from the SM can be achieved
through an ODE solver(Euler method as an example): se ∼ µθ(·|s, a) is equivalent to se =
Euler(ϵ, uθ(·, ·, s, a)) where ϵ ∼ N (0, In). Motivated by the TD2-CFM loss formulation from (Fare-
brother et al., 2025), we directly align the vector fields conditioned on different state-action pairs
at the same noise level instead of generating full successor states and then comparing them. This
approximation avoids expensive ODE integration while preserving the consistency between local
flow directions. Intuitively, if two vector fields agree on their evolution, their generated distributions
will also agree.

Lbootstrapping(θ) ≈ E ϵ,k,a′∼π(·|s′)
xk=ODE(ϵ,k,uθ(·,·,s′,a′))

[
∥uθ(xk, k, s, a)− uθ(xk, k, s′, a′)∥

2
]
. (4)

This approach aligns the vector fields conditioned on different state-action pairs at the same noise
level, eliminating the need to fully generate denoised states and then apply the ϕk transformation.
This form substantially reduces the need for small integration steps in the ODE solver, decreasing
computational overhead while maintaining performance. We provide a detailed analysis of the
trade-off between computational efficiency and model performance in our ablation studies presented
in Section 4.3. It is noted that the final loss used for learning is based on expectation over transition
tuples from the current policy π. We model conditional vector fields on the latent space induced by
the flow parameterization (Section 2). This avoids explicit density ratios on S and ensures training
targets are defined even when the SM is provided implicitly via pushforwards.

3.2 SUCCESSOR FLOW FEATURE FROM ESTIMATED SUCCESSOR MEASURE

Following the estimation of the SM, we employ a linear projection formulation to derive a compact
feature representation.

Definition 3.1 (Successor Flow Feature) We define the Successor Flow Feature (SF2) on state-
action pair (s, a) as the output of the mapping ψ : RdimS × RdimA → Rd, which generate the
time-dependent conditional vector field u(s′, k, s, a) as a linear projection with a time-conditioned
matrix field ζ : RdimS × [0, 1]→ Rd×dimS :

u(s′, k, s, a) = ζ(s′, k)⊤ψ(s, a),

where ψ(s, a) is time-invariant and captures the sufficient dimension reduction property.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In contrast to conventional conditional generative models that combine conditions, timestamps, and
noised inputs through complex non-linear transformations, our approach employs a time-invariant
feature ψ(s, a) that interacts only at the final stage with the matrix field ζ. This architectural choice
promotes the encoding of temporal structures within ζ that are essential for effective downstream
representation learning. This linear projection approach has been explored in prior work (Shribak
et al., 2024), which extracts spectral features from environmental transition dynamics to enhance
reinforcement learning performance.

The representation function ψ(s, a) achieves the Sufficient Dimension Reduction (SDR) (Fukumizu
et al., 2009) by establishing conditional independence se ⊥⊥ (s, a) | ψ(s, a), i.e. µπ(se|s, a) =
µπ(se|ψ(s, a)), thereby ensuring that the extracted representations comprehensively capture all
relevant information about how state-action pairs relate to successor states. Additionally, this
formulation exhibits universal approximation properties (Sasaki & Hyvärinen, 2018), enabling it
to theoretically approximate any target function to arbitrary accuracy, which makes it particularly
effective for modeling SM across diverse policies and environments.

3.3 CONNECTION TO SUCCESSOR REPRESENTATION AND DIFFUSION SPECTRAL
REPRESENTATION

Connection to Successor Representation Let’s consider the one step gradient updating on the
parameterized ψ neural network with parameters θ using equation 3 with equation 4 under a transition
tuple (s, a, s′) and sampled k ∼ U(0, 1), ϵ ∼ N (0, In). When k → 0, let ϕk(ϵ, x) = kx + (1 −
k)ϵ, dϕk(ϵ,x)

dk = x− ϵ, we have:

Lflow(θ)=(1− γ)
∥∥ζ(ks′+(1−k)ϵ, k)⊤ψ(s, a)−(s′−ϵ)

∥∥2+γ ∥∥ζ(xk, k)⊤ψ(s, a)−ζ(xk, k)⊤ψ(s′, a′)∥∥2.
As k approaches 0, we can make the approximation:

ζ(ks′ + (1− k)ϵ, k) ≈ ζ(ϵ, 0), and ζ(xk, k) ≈ ζ(ϵ, 0).
The intermediate point xk is approximately obtained through a single ODE transformation step:

xk ≈ ϵ+ kζ(ϵ, 0)⊤ψ(s′, a′).

Substituting these approximations into the loss function yields the semi-gradient, where we stop the
gradient backpropagation on the bootstrapped target. We have

∇θL ≈ 2
[
(1− γ)

(
ζ(ϵ, 0)⊤ψ(s, a)− (s′ − ϵ)

)
+ γ

(
ζ(ϵ, 0)⊤ψ(s, a)− ζ(ϵ, 0)⊤ψ(s′, a′)

)]
∇θψ(s, a),

which can be rewritten more concisely as:

∇θL ≈ 2
[
ψ(s, a)⊤ζ(ϵ, 0)−

(
(1− γ)(s′ − ϵ) + γψ(s′, a′)⊤ζ(ϵ, 0)

)]
∇θψ(s, a).

This formulation reveals a temporal difference learning structure where the target combines: (1) A
direct supervision component (1− γ)(s′ − ϵ) representing immediate information. (2) A discounted
bootstrapped component γψ(s′, a′)⊤ζ(ϵ, 0) that propagates future representations.

Rearranging into a Bellman-like equation, we have

ψ(s, a)← (1− γ)(ζ(ϵ, 0)T)+(s′ − ϵ) + γψ(s′, a′),

where (·)+ denotes the Moore-Penrose pseudoinverse. This formulation reveals that our ap-
proach learns a Successor Representation with Dayan’s definition (Dayan, 1993). In our case,
(1− γ)(ζ(ϵ, 0)T)+(s′ − ϵ) serves as the basic feature that captures immediate transitions, while the
recursive structure ψ(s, a) = (1 − γ)(immediate feature) + γψ(s′, a′) serves as the bootstrapped
part. The process incorporates a novel element where the next state s′ − ϵ undergoes Gaussian
noise perturbation before being projected onto the column space defined by (ζ(ϵ, 0)T)+. This can
be interpreted as learning a basis for the state space that is robust to perturbations, enabling more
effective representation of the expected future state occupancy distribution. This yields an SR-like
recursion on ψ under fixed ζ. We emphasize this is an approximation to motivate design; we do
not claim exact equivalence to SR. The exploration of how the representation behaves and what
properties it captures when k takes values significantly away from 0 remains an open question for
future investigation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Connection to Diffusion Spectral Representation (Shribak et al., 2024) As γ approaches zero,
our approach bears resemblance to Diffusion Spectral Representation (Shribak et al., 2024), which
employs diffusion models (Song et al., 2020) rather than flow matching and targets transition probabil-
ities instead of SM. The incorporation of future state transitions enables features to encode transition
dynamics across extended time horizons. In Section 4, we conduct empirical comparisons between
SF2 and its variant with γ = 0 to demonstrate that SF2 achieves better area-under-curve(AUC)
performance compared to approaches that focus solely on short-term transition prediction.

3.4 PRACTICAL POLICY OPTIMIZATION WITH FLOW SUCCESSOR REPRESENTATION

In this paper, we consider combining the proposed representation learning method with standard
online reinforcement learning algorithms on continuous action spaces. We choose SAC (Haarnoja
et al., 2018) and TD3 (Fujimoto et al., 2018) as base algorithms. The learned representation is
only used for building the state-action value function Q(ψθ(s, a)). And the policy will be implicitly
influenced through the ∇aQ(ψθ(s, a)).

To enhance learning stability and performance, we implement two complementary techniques:

Value Alignment: We augment the flow-matching objective with a value prediction
component:Ltotal = Lflow + λLvalue, where λ controls the relative weight of value prediction. The
value loss follows the standard temporal difference formulation:

Lvalue = E(s,a,r,s′)∼D

[(
Q(ψθ(s, a))− (r + γmax

a′
Q(ψθ(s

′, a′)))
)2

]
.

This approach is compatible with various RL algorithms and can incorporate techniques such as
double Q-learning (Van Hasselt et al., 2016) for improved target estimation.

Algorithm 1 Training SF2 within Off-Policy RL

1: Input: (state, action, next state, next action) tuple
(s, a, s′, a′), networks (ψ, ζ, ψ′, ζ ′) and target for value
learning y′, which depends on the based algorithm

2: Sample ϵ ∼ N (0, I), k ∼ U(0, 1)
3: sk = k · s′ + ϵ · (1− k), starget = s′ − ϵ
4: Compute features and next state loss:
5: Lflow = ∥ψ(s, a)T ζ(sk, k)− starget∥22
6: Generate state x using numerical integration, start with
x = ϵ:

7: kstart, kend = 0, k
8: kmid =

1
2 (kstart + kend)

9: dx = ψ′(s′, a′)T ζ ′(x+ 1
2ψ

′(s′, a′)T ζ ′(x, kstart), kmid)
10: x = x+ (kend − kstart)dx
11: Compute generation loss:
12: Lbootstrapping = ∥ψ(s, a)T ζ(x, k)−ψ′(s′, a′)T ζ ′(x, k)∥22
13: Lvalue = (Q(ψ(s, a))− y′)2
14: Return Ltotal = (1− γ)LP + γLbootstrapping + λLvalue

Generative Model Smoothing: We
employ exponential moving average
(EMA) target networks that update pa-
rameters according to θψ′ = (1 −
τ)θψ′ + τθψ and θζ′ = (1 − τ)θζ′ +
τθζ during bootstrapping phases, con-
sistent with established flow match-
ing training practices (Lipman et al.,
2022). We perform an ablation analy-
sis of the effectiveness of this moving
average coefficient in Section 4.3. Fur-
thermore, the EMA-updated parame-
ters θ′ψ also work in the target network
for the estimation of the value func-
tion, providing an additional layer of
stability to learning dynamics. The
overall training objective Ltotal for
learning SF2, when embedded in off-
policy RL, is shown in Algorithm 1.
For the TD3-based methods, y′ =
r+γmin(Q′

1, Q
′
2), whereQ′

1 andQ′
2

are the target Q-networks evaluated at
the next state s′ and next action a′ sampled from the target policy. For the SAC-based method,
y′ = r + γmin(Q′

1, Q
′
2)− α log π(a′|s′), where α is the temperature parameter that determines the

trade-off between maximizing expected reward and entropy, and is updated according to the original
SAC paper (Haarnoja et al., 2018).

4 EMPIRICAL EVALUATION

4.1 EXPERIMENTAL SETUP

We implemented all experiments using JAX (Bradbury et al., 2018) and Deepmind Haiku (Hennigan
et al., 2020) to leverage hardware acceleration. For the DeepMind Control Suite (Tassa et al., 2018),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

we utilized a GPU-accelerated version, the MuJoCo Playground (Zakka et al., 2025). All algorithms
were edited from their respective implementations in the Brax library (Freeman et al., 2021). Each
experiment is conducted on a single NVIDIA GeForce RTX 4090 GPU. Detailed architectural
specifications, hyperparameter configurations, and environment-specific parameters are provided in
Appendix E.

Flow sampling uses Euler integration with 2 function evaluations (NFEs) unless otherwise noted;
we sample k ∼ U(0, 1) and base noise ϵ ∼ N (0, I), and condition vector fields on (s, a) and (s′, a′)
as specified in Section 3. We report wall-clock time for representative settings (Section 4.3) and
keep baseline parameter counts comparable by reusing encoder widths and depths across methods
(Appendix E).

4.2 EXPERIMENTS ON CONTINUOUS ACTION SPACES WITH OFF-POLICY LEARNING

We evaluate SF2 on seven diverse tasks from the DeepMind Control Suite (Tassa et al., 2018), selected
to represent a range of challenges in dynamics complexity, reward structure, and control difficulty.
We integrate our approach with two commonly used off-policy algorithms: SAC (Haarnoja et al.,
2018) and TD3 (Fujimoto et al., 2018). For comparison with the SF method, we also include Chua
et al. (2024), a strong SF method designed for the online RL setting. This work reports substantial
improvements over prior SF approaches. To provide a fair and rigorous comparison, we implemented
four baseline methods: TD3Sim/SACSim, which closely follows the approach described in the Chua
et al. (2024) with the TD3/SAC algorithm, and TD3SimLap/SACSimLap , which removes the Q-
function alignment constraint and incorporates an orthogonality objective for feature learning via
the graph Laplacian. All methods use identical neural network architectures, the same number of
environment steps, and the same number of parallel environments as our proposed approach.

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

TD3-SF2 = 0.99

TD3-SF2 = 0.0

TD3

TD3-SPR

TD3 Sim

TD3 Sim-Lap
Median

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

IQM

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

Mean

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

Optimality Gap

TD3-family Aggregate Performance (7 envs, normalized AUC)

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

SAC-SF2 = 0.99

SAC-Sim-Lap

SAC

SAC-Sim

SAC-SPR

SAC-SF2 = 0.0
Median

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

IQM

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

Mean

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

Optimality Gap

SAC-family Aggregate Performance (7 envs, normalized AUC)

Figure 1: IQM performance across DeepMind Control tasks. Panels summarize the aggregate
AUC for TD3 (upper) and SAC (lower) variants, comparing vanilla baselines, SF-based baselines,
and our SF2 with transition (γ = 0.0) and successor (γ = 0.99) horizons.

Following the suggestions described in Patterson et al. (2024), we summarize learning dynamics and
aggregate performance across seven environments using 15 random seeds for each algorithm variant.
For each algorithm variant, we extract evaluation reward curves (mean of episodic returns over
evaluation steps using 1000 trajectories) and compute the area-under-curve (AUC). Then the AUC
is normalized per environment by linearly scaling to [0, 1] using that environment’s minimum and
maximum in order to compare across different environment. For each algorithm family (SAC or TD3),
the aggregate panels report the median, interquartile mean (IQM; the mean between the 25th and
75th percentiles), mean, and optimality gap (one minus the mean), with 95th percentiles confidence

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

intervals computed using 5000 samples over normalized scores. The results in Figure 1 reveal that
incorporating SF2 enhances the performance of TD3 and SAC across most environments over their
standard versions, with higher improvements when using the successor version (γ = 0.99). Our
method consistently outperforms both baseline algorithms and uses the transition version (γ = 0.0),
demonstrating the importance of incorporating a longer horizon in representation learning. Full
per-environment learning curves for both TD3 and SAC are deferred to Appendix C.1 (Figure 6) .

Interestingly, the performance gains(compared with baseline) are more pronounced for TD3 than
for SAC, suggesting that our method may be particularly beneficial for algorithms that struggle with
exploration or representation learning, and a deterministic policy may improve the training efficiency
for the online successor measure learning. Additionally, the reduced standard deviations in many
cases indicate that SF2 not only improves performance but also enhances stability. Approaches based
on SF tend to struggle on sparse reward tasks based on TD3 experiments, as the majority of transitions
yield a reward of 0.0, making it difficult to effectively learn the task weight w. In contrast, our method
does not depend on this mechanism and thus avoids the associated performance degradation in such
settings.

4.3 HYPERPARAMETER ANALYSIS

We examine the influence of three key hyperparameters in our method on the AcrobotSwingup task:
exponential moving average (EMA) coefficient, number of denoising steps, and feature size. We use
the mean episode return over the final 50k steps to show this.

0.005 0.010 0.050 0.100 0.500 1.000
EMA Rate

0

100

200

300

400

500

Re
tu

rn

Effect of EMA Rate on AcrobotSwingup
SAC with SF2

TD3 with SF2

(a) Analysis of exponential
moving average coefficient
τ on performance.

1 2 3 4
Denoising Steps

320

340

360

380

400

420

440

460

Re
tu

rn

Effect of Denoising Steps on AcrobotSwingup
SAC with SF2

TD3 with SF2

(b) Performance evaluation
with varying numbers of
denoising steps.

1 2 3 4
Denoising Steps

1100

1200

1300

1400

1500

Ru
n

Ti
m

e
(s

ec
on

ds
)

Run Time vs Denoising Steps on AcrobotSwingup
SAC with SF2

TD3 with SF2

(c) Training time evalua-
tion with varying numbers
of denoising steps.

0 100 200 300 400 500
Feature Size

300

350

400

450

Re
tu

rn

Effect of Feature Size on AcrobotSwingup
SAC with SF2

TD3 with SF2

(d) Influence of feature size
on ψ networks.

Figure 2: Systematic analysis of hyperparameter effects on SF2 performance. (a) Exponential moving
average coefficient τ demonstrating stability-performance trade-offs, (b) performance sensitivity
to denoising step count in the sampling procedure, (c) computational cost scaling with respect to
denoising steps, and (d) feature size effects on algorithm performance.

EMA Parameter. Figure 2a demonstrates that the EMA coefficient τ inversely correlates with
performance. Peak results occur at τ = 0.1 for TD3 and τ = 0.01 for SAC, with performance
declining as τ approaches 1.0. Despite considerable variance across configurations, these findings
suggest that more stable target network updates (smaller τ values) enhance learning dynamics in our
framework. The results highlight the critical importance of proper τ calibration, as large values can
substantially impair policy effectiveness.

Denoising Steps. Our analysis reveals that varying the number of denoising steps produces compa-
rable performance outcomes (Figure 2b), though computational costs increase proportionally with
more steps (Figure 2c). We observe that even with minimal denoising steps (1-2), both algorithms
maintain robust performance, suggesting that aligning the bootstrapping part can rely on a rough
sampling process without requiring extensive iterative refinement. The computational efficiency
analysis in Figure 2c further confirms that a small number of denoising steps provides an optimal
balance between performance and computational overhead, as the default choice in experiments.

Feature Size. As shown in Figure 2d, the two algorithms respond differently to feature size changes.
SAC with SF2 demonstrates similar final 50k steps returns across various feature sizes with low
variance, suggesting effective representation learning even in reduced dimensions. TD3 tends to
benefit from larger feature sizes, though variance increases, while SAC remains stable across sizes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

This indicates that the deterministic policy gradient method particularly benefits from richer feature
representations.

4.4 COMPUTATION COMPLEXITY

The additional time overhead of our method is due to the additional representation learning and
the additional neural network. Here we use the comparison between TD3 and TD3 with SF2 as an
illustration. Each standard TD3 update step consists of one step of critic updating and one step of
actor updating, which is consistent with TD3 with SF2. The main distinction is that an additional
feature representation update step: for each update step, TD3 with SF2 performs seven forward
passes and one backward pass through the ζ network, and two forward passes and one backward pass
through the ψ network. Under identical experimental conditions, the original TD3 method’s running
time on AcrobotSwingup is 659 seconds, while, as reported in Figure 2c, SF2 with 1 denoising step
takes approximately 1300 seconds, about twice as long. Our experiments demonstrate significant
improvements in downstream performance, justifying this trade-off. We will further optimize training
costs in future work.

5 RELATED WORK

Representation learning in RL. Reconstruction-based methods have been employed for feature
extraction from observations (Hafner et al., 2019; Yarats et al., 2020). Contrastive learning techniques
have emerged as a powerful paradigm for learning discriminative state representations (Laskin et al.,
2020; Stooke et al., 2021; Zheng et al., 2023). bisimulation metrics offer a more formal approach
to learning state abstractions by grouping behaviorally equivalent states (Zhang et al., 2021; Castro
et al., 2021; 2023). World models learn to capture the environment’s dynamics, allowing agents to
plan or learn in a learned latent space (Gelada et al., 2019; Seo et al., 2022; Hafner et al., 2025).
Spectral decomposition methods decompose state and actions into low-rank spectral features (Wang
et al., 2021b; Yang & Wang, 2020; Shribak et al., 2024). SF2 uniquely bridges successor measures
and online RL: (1) Unlike world models (Gelada et al., 2019; Seo et al., 2022; Hafner et al., 2025)
and spectral methods (e.g., (Shribak et al., 2024)) that ignore policy-dependent horizons, SF2
explicitly encodes discounted future distributions via flow-matched successor measures; (2) While
reconstruction methods focus on regenerating the observation, our method considers policy and
environment dynamics; (3) Bisimulation methods (Zhang et al., 2021; Castro et al., 2021; 2023)
emphasize state similarity with reward, but SF2 also optimizes features ψ(s, a) from environmental
dynamics not only from the value alignment.

Successor Measure. SM predicts future state distributions under a given policy, effectively cap-
turing the expected discounted future state occupancy. This concept is closely related to Successor
Representations (Dayan, 1993) and Successor Features (Barreto et al., 2017), decoupling environ-
ment dynamics from reward structures, facilitating efficient policy evaluation and transfer. Blier et al.
(2021) offers a formal mathematical definition of SM and introduces how to estimate it for value
function evaluation. Wiltzer et al. (2024) further enhances these approaches by modeling the full
distribution of future state occupancies, providing richer representations for downstream decision-
making. GHMs and γ-models extend the notion of modeling discounted state visitation distributions,
creating a continuum between model-free and model-based RL (Thakoor et al., 2022; Janner et al.,
2020). Agarwal et al. (2025); Touati & Ollivier (2021) also employ SM to build a representation
in the zero-shot RL setting under a precollected offline dataset, always need an extra exploration
policy to collect, which allows for optimal policy inference under other given reward functions. SF2
fundamentally advances this paradigm by introducing the subsequent flow characteristics ψ(s, a)
(Definition 3.1) as a linear decomposition of the flow field, enabling representation learning, which
greatly expands the scope of application of previous methods.

6 CONCLUSION

In this work, we proposed the Successor Flow Feature (SF2) framework, which leverages flow
matching and linear-spectral decomposition to address the challenges of estimating and integrating
successor measures in online RL. By explicitly modeling the mixture structure of successor measures,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

our method provides useful state-action representations that facilitate efficient online policy learning
and planning. Through extensive empirical evaluations across discrete and continuous control tasks,
we demonstrated that using SF2 consistently improves performance over standard baselines. Our
results underscore the promise of flow-based generative modeling for successor features, paving the
way for future research on scalable, expressive, and efficient RL representations.

REPRODUCIBILITY STATEMENT

We facilitate reproducibility by providing an anonymized source-code repository in the supplementary
materials. For every experiment, we specify the random seed used, and we document all imple-
mentation and training details in Appendix E and D. Together, these references are sufficient for
independent researchers to replicate our reported results.

REFERENCES

Siddhant Agarwal, Harshit Sikchi, Peter Stone, and Amy Zhang. Proto successor measure: Represent-
ing the behavior space of an agent in a dynamical system. In International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=s9SVlWOcLt.

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30 (NIPS 2017), pp. 4055–4065.
Curran Associates, Inc., 2017.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.

Michał Bortkiewicz, Władek Pałucki, Vivek Myers, Tadeusz Dziarmaga, Tomasz Arczewski, Łukasz
Kuciński, and Benjamin Eysenbach. Accelerating Goal-Conditioned RL Algorithms and Research.
In International Conference on Learning Representations, 2025. URL https://arxiv.org/
pdf/2408.11052.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. MICo: Improved rep-
resentations via sampling-based state similarity for markov decision processes. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=wFp6kmQELgu.

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. A kernel perspective on
behavioural metrics for markov decision processes. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=nHfPXl1ly7.
Expert Certification.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Raymond Chua, Arna Ghosh, Christos Kaplanis, Blake A Richards, and Doina Precup. Learning
successor features the simple way. Advances in Neural Information Processing Systems, 37:
49957–50030, 2024.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural computation, 5(4):613–624, 1993.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning
as goal-conditioned reinforcement learning. Advances in Neural Information Processing Systems,
35:35603–35620, 2022.

10

https://openreview.net/forum?id=s9SVlWOcLt
https://arxiv.org/pdf/2408.11052
https://arxiv.org/pdf/2408.11052
http://github.com/jax-ml/jax
https://openreview.net/forum?id=wFp6kmQELgu
https://openreview.net/forum?id=nHfPXl1ly7

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, and Ahmed
Touati. Temporal difference flows. arXiv preprint arXiv:2503.09817, 2025.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Kenji Fukumizu, Francis R Bach, and Michael I Jordan. Kernel dimension reduction in regression.
The Annals of Statistics, pp. 1871–1905, 2009.

Walter Gautschi. Numerical analysis. Springer Science & Business Media, 2011.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. DeepMDP:
Learning continuous latent space models for representation learning. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2170–2179. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/gelada19a.html.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 2555–2565. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/v97/hafner19a.html.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, 640:647–653, 2025. doi: 10.1038/s41586-025-08744-2. URL
https://www.nature.com/articles/s41586-025-08744-2.

Tom Hennigan, Trevor Cai, Tamara Norman, Lena Martens, and Igor Babuschkin. Haiku: Sonnet for
JAX, 2020. URL http://github.com/deepmind/dm-haiku.

Michael Janner, Igor Mordatch, and Sergey Levine. Generative temporal difference learning for
infinite-horizon prediction. arXiv preprint arXiv:2010.14496, 2020.

Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara, Haruka Kita, and
Shin Ishii. Pgx: Hardware-accelerated parallel game simulators for reinforcement learning. In
Advances in Neural Information Processing Systems, volume 36, pp. 45716–45743, 2023.

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor
reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised repre-
sentations for reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceed-
ings of the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pp. 5639–5650. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/laskin20a.html.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

11

http://github.com/google/brax
http://github.com/google/brax
https://proceedings.mlr.press/v97/gelada19a.html
https://proceedings.mlr.press/v97/hafner19a.html
https://www.nature.com/articles/s41586-025-08744-2
http://github.com/deepmind/dm-haiku
https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.mlr.press/v119/laskin20a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

David McAllister, Songwei Ge, Brent Yi, Chung Min Kim, Ethan Weber, Hongsuk Choi, Haiwen
Feng, and Angjoo Kanazawa. Flow matching policy gradients. arXiv preprint arXiv:2507.21053,
2025.

Yann Ollivier. Which features are best for successor features? arXiv preprint arXiv:2502.10790,
2025.

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in reinforce-
ment learning. Journal of Machine Learning Research, 25(318):1–63, 2024.

Stefano Peluchetti. Non-denoising forward-time diffusions. arXiv preprint arXiv:2312.14589, 2023.

Jing Peng and Ronald J Williams. Incremental multi-step q-learning. In Machine Learning Proceed-
ings 1994, pp. 226–232. Elsevier, 1994.

Hiroaki Sasaki and Aapo Hyvärinen. Neural-kernelized conditional density estimation. arXiv preprint
arXiv:1806.01754, 2018.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In 6th Annual Conference on Robot Learning,
2022. URL https://openreview.net/forum?id=Bf6on28H0Jv.

Dmitry Shribak, Chen-Xiao Gao, Yitong Li, Chenjun Xiao, and Bo Dai. Diffusion spectral represen-
tation for reinforcement learning. arXiv preprint arXiv:2406.16121, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learn-
ing from reinforcement learning, 2021. URL https://openreview.net/forum?id=
_SKUm2AJpvN.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Shantanu Thakoor, Mark Rowland, Diana Borsa, Will Dabney, Rémi Munos, and André Barreto.
Generalised policy improvement with geometric policy composition. In International Conference
on Machine Learning, pp. 21272–21307. PMLR, 2022.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. Advances in
Neural Information Processing Systems, 34:13–23, 2021.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Leonid Nisonovich Vaserstein. Markov processes over denumerable products of spaces, describing
large systems of automata. Problemy Peredachi Informatsii, 5(3):64–72, 1969.

Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via
schrödinger bridge. In International conference on machine learning, pp. 10794–10804. PMLR,
2021a.

Tianhao Wang, Dongruo Zhou, and Quanquan Gu. Provably efficient reinforcement learn-
ing with linear function approximation under adaptivity constraints. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 13524–13536. Curran Associates, Inc.,
2021b. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/70a32110fff0f26d301e58ebbca9cb9f-Paper.pdf.

12

https://openreview.net/forum?id=Bf6on28H0Jv
https://openreview.net/forum?id=_SKUm2AJpvN
https://openreview.net/forum?id=_SKUm2AJpvN
https://proceedings.neurips.cc/paper_files/paper/2021/file/70a32110fff0f26d301e58ebbca9cb9f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/70a32110fff0f26d301e58ebbca9cb9f-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Harley Wiltzer, Jesse Farebrother, Arthur Gretton, Yunhao Tang, André Barreto, Will Dabney, Marc G
Bellemare, and Mark Rowland. A distributional analogue to the successor representation. In
Proceedings of the 41st International Conference on Machine Learning, pp. 52994–53016. PMLR,
2024. URL https://proceedings.mlr.press/v235/wiltzer24a.html.

Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and
regret bound. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
10746–10756. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
yang20h.html.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving
sample efficiency in model-free reinforcement learning from images, 2020. URL https://
openreview.net/forum?id=HklE01BYDB.

Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa Haiderbhai, Samuel Holt, Jing Yuan Luo,
Arthur Allshire, Erik Frey, Koushil Sreenath, Lueder A. Kahrs, Carlo Sferrazza, Yuval Tassa,
and Pieter Abbeel. Mujoco playground: An open-source framework for gpu-accelerated robot
learning and sim-to-real transfer., 2025. URL https://github.com/google-deepmind/
mujoco_playground.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=-2FCwDKRREu.

Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé III,
and Furong Huang. \texttt{TACO}: Temporal latent action-driven contrastive loss for visual
reinforcement learning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=ezCsMOy1w9.

13

https://proceedings.mlr.press/v235/wiltzer24a.html
https://proceedings.mlr.press/v119/yang20h.html
https://proceedings.mlr.press/v119/yang20h.html
https://openreview.net/forum?id=HklE01BYDB
https://openreview.net/forum?id=HklE01BYDB
https://github.com/google-deepmind/mujoco_playground
https://github.com/google-deepmind/mujoco_playground
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=ezCsMOy1w9

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THEORETICAL FOUNDATION

A.1 CHALLENGES OF MIXED DISTRIBUTION IN GHMS

The learning procedure for GHMs using generative models, particularly those without explicit density
estimation, follows a principled sampling-based strategy maximizing the objective in equation 2.
Transition tuples {s, a, s′} are sampled from given environment interactions or a pre-collected dataset.
For each tuple, an indicator variable is sampled from a Bernoulli distribution with parameter γ to
determine which distribution to be learned by GHMs: 1) with probability 1− γ, learn from the true
observed successor state s′; and 2) with probability γ, learn from bootstrapped samples, where a state
is sampled from the generative model, µ(·|s′, a′), conditioned on the observed next state and a next
action sampled according to the current policy. This procedure implements the recursive structure of
the normalized successor measure (NSM) by sampling.

While theoretically sound, mixture-based learning struggles when γ is close to 1 1: the data distribu-
tion is dominated by the bootstrapped samples from the generative model, introducing significant bias
and inaccuracy—especially early in training—with minimal anchoring to real data. In the following
section, we demonstrate this via a Gaussian mixture example, where learning the mixed distribution
grows increasingly difficult as γ approaches 1.

4 2 0 2 40.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Target Distribution

4 2 0 2 40.0

0.5

1.0

1.5

2.0

2.5

VAE Samples

4 2 0 2 40.0

0.1

0.2

0.3

0.4

0.5

0.6
GAN Samples

4 2 0 2 40.0

0.1

0.2

0.3

0.4

0.5

0.6
FM Samples

4 2 0 2 40.0

0.1

0.2

0.3

0.4

0.5

0.6
FM Samples(Explicit Mixture)

Figure 3: Visualization shows flow-matching methods better capture the multimodal structure of
Gaussian mixtures compared to other generative models, such as GANs and VAEs, which is crucial
for SM learning with explicit mixture targets.

A.2 EMPIRICAL VALIDATION ON MIXTURE DISTRIBUTIONS (GAUSSIAN AS AN EXAMPLE)

We evaluate several generative models on a one-dimensional Gaussian mixture that is a simplified yet
insightful setting. The target distribution is shown in the left-most part of Figure 3. We train VAEs,
GANs, and FM models, and observe that learning becomes difficult as the mixing parameter γ ≈ 1.

200 400 600 800 1000 1200 1400
Training Steps

10 2

10 1

100

101

102

W
as

se
rs

te
in

 D
is

ta
nc

e

Sample Quality over Training (Lower is Better)
VAE
GAN
FlowMatching
FlowMatching(Explicit Mixture)

Figure 4: Wasserstein distance between true distribution and generated samples.

Under γ = 0.99, Figure 3 provides visualizations of the final generated samples, and Figure 4
reports the Wasserstein distance (Vaserstein, 1969) between generated samples and the ground truth

1To obtain a longer horizon length and align with the discount factor used in the value function definition, the
discount factor γ is expected to be very close to 1, e.g. γ = 0.99.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

distribution over the training process. These results show how accurately each generative model
captures the underlying mixture distribution. Specifically, visualization results show that VAEs and
GANs struggle to capture the multimodal structure, while FM exhibits a stronger ability to model the
target distribution.

In the next section, we will introduce how to explicitly leverage the mixture structure and correspond-
ing weights to enhance the FM approach for more efficient learning of complex distributions.

A.3 EXPLICIT MIXTURE OBJECTIVE FOR FLOW MATCHING

To enhance learning of mixture distributions p(mix)(x) = γp(1)(x)+ (1− γ)p(2)(x), we introduce an
explicit mixture objective within the flow matching framework. Unlike black-box density estimation,
our method directly encodes the known compositional structure of the target distribution into the
training objective. This improves computational efficiency and accelerates optimization convergence.

Let uθ(x, k) denote the parameterized time-dependent vector field, the marginal distribution on
time k = 0 is a standard Gaussian distribution, and ϕk(ϵ, x) is the conditional time-dependent
diffeomorphic map. Let x ∼ p(mix), k ∼ U(0, 1), ϵ ∼ N (0, In) and vk(ϵ, x) =

dϕk(ϵ,x)
dk , the original

flow matching objective for mixture distributions is,

L = Ek,x,ϵ∥uθ(ϕk(ϵ, x), k)− vk(ϵ, x)∥2=Eϵ

[∫ 1

0

∫
p(mix)(x)∥uθ(ϕk(ϵ, x), k)− vk(ϵ, x)∥2dxdk

]
.

Since pmix is a mixture, we can decompose this into:

L=Eϵ

[∫ 1

0

∫ (
γp(1)(x) + (1− γ)p(2)(x)

)
∥uθ(ϕk(ϵ, x), k)− vk(ϵ, x)∥2 dxdk

]
=γ E ϵ,k

x(1)∼p(1)

∥∥∥uθ(ϕk(ϵ, x(1)), k)− vk(ϵ, x(1))∥∥∥2︸ ︷︷ ︸
L1

+(1−γ)E ϵ,k

x(2)∼p(2)

∥∥∥uθ(ϕk(ϵ, x(2)), k)−vk(ϵ, x(2))∥∥∥2︸ ︷︷ ︸
L2

=γL1 + (1− γ)L2.

This explicit decomposition enables training by sampling from each mixture component and reweight-
ing the loss according to its corresponding mixture weight. By leveraging the known structure of the
mixture, this approach aligns closely with the recursive formulation of the NSM, which also exhibits
a mixture form rooted in the Bellman equation, which is also noted in (Farebrother et al., 2025). As
shown in Figure 3 and Figure 4, our proposed method, FlowMatching (Explicit Mixture), outperforms
standard baselines by effectively capturing the multimodal structure of the target distribution. It is
worth noting that not only can flow matching methods exploit this form of distribution mixing, but
also diffusion models (Song et al., 2020) and bridge-based models (Wang et al., 2021a), which all
rely on the diffusion mixture representation (Peluchetti, 2023).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Evaluation index / training steps

0

25

50

75

100

125

150

175

200

Ep
iso

de
 re

wa
rd

AcrobotSwingup

Training dynamics sensitivity to noise_level

noise=0.001 noise=0.01 noise=0.05 noise=0.1

Figure 5: SPR augmentation sweep. Performance of SPR on AcrobotSwingup for different Gaussian
noise magnitudes used in the augmentation pipeline. The noise level of 0.05 is selected for the cross-
environment experiments.

B EXPERIMENTAL SETUP AND COMPARISONS

B.1 COMPARISON WITH OTHER REPRESENTATION LEARNING METHODS

To align with our method, we configure SPR (Schwarzer et al., 2020) with K=1, so it relies only
on the immediate successor transition, just like our approach. Since the SPR method was originally
designed for image input, while our environment uses state input, we use Gaussian noise to simulate
data augmentation. In order to select a suitable augmentation setting, we perform a hyperparameter
sweep over the Gaussian noise magnitude on AcrobotSwingup environment. Following the sensitivity
analysis in Figure 5, we adopt the best-performing noise standard deviation of 0.05 and reuse it
across all 7 DeepMind Control Suite environments without further tuning. This configuration is
used to generate the aggregate IQM statistics in Figure 1 and the full learning curves in Figure 6.
Ensuring that improvements stem from representational benefits rather than environment-specific
hyperparameter adjustments. In this configuration, our proposed method exhibits better performance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0

200

400

600

800

1000

Re
wa

rd

AcrobotSwingup CartpoleBalanceSparse CartpoleSwingupSparse CheetahRun

0 20 40 60 80 100
Training steps

0

200

400

600

800

1000

Re
wa

rd

FishSwim

0 20 40 60 80 100
Training steps

HopperHop

0 20 40 60 80 100
Training steps

PendulumSwingup

TD3
TD3-SF2 = 0.0
TD3-SF2 = 0.99
TD3 Sim
TD3 Sim-Lap
TD3-SPR

0

200

400

600

800

1000

Re
wa

rd

AcrobotSwingup CartpoleBalanceSparse CartpoleSwingupSparse CheetahRun

0 20 40 60 80 100
Training steps

0

200

400

600

800

1000

Re
wa

rd

FishSwim

0 20 40 60 80 100
Training steps

HopperHop

0 20 40 60 80 100
Training steps

PendulumSwingup

SAC
SAC-Sim
SAC-Sim-Lap
SAC-SPR
SAC-SF2 = 0.0
SAC-SF2 = 0.99

Figure 6: Learning curves across tasks. Each plot reports training curve with 95th percentile
confidence intervals(bootstrap using 5000 samples) for TD3 (upper) and SAC (lower) with vanilla
baselines, SF-based baselines, SPR(Schwarzer et al., 2020), and our SF2 with transition (γ = 0.0)
and successor (γ = 0.99) horizons.

C EXPERIMENTAL RESULTS

C.1 MAIN RESULTS ON DEFAULT SETTINGS

Figure 6 presents the full learning curves for 7 DeepMind Control Suite tasks using TD3 and SAC
variants, complementing the aggregate IQM statistics shown in the main text.

C.2 ROBUSTNESS ANALYSIS

C.2.1 PERFORMANCE UNDER REDUCED TRAINING BUDGET

To rule out the possibility that our gains come only from a specific chosen training budget, we
reran every experiment with a 1M-timestep budget and 15 random seeds. Figure 7 reports the IQM
aggregates for TD3 and SAC under this stricter setting, showing that SF2 still surpasses vanilla and
SF-based baselines by a clear margin. Figure 8 then provides the per-environment learning dynamics,
confirming that our method maintains its advantage even when learning is constrained to only 1M
timesteps. Finally, we study how our approach benefits from more training budgets and more training
times because we require additional training on both the generative and representation models. To
further illustrate this, we plot the IQM of the AUC as we vary the number of gradient steps. Figure 9
shows that allocating more gradient steps to the feature updater steadily improves the IQM score,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

TD3-SF2 = 0.99

TD3-SF2 = 0.0

TD3

TD3 Sim-Lap

TD3 Sim
Median

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

IQM

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

Mean

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

Optimality Gap

TD3-family Aggregate Performance (7 envs, normalized AUC)

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

SAC-SF2 = 0.99

SAC

SAC-Sim-Lap

SAC-Sim

SAC-SF2 = 0.0
Median

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

IQM

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

Mean

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

Optimality Gap

SAC-family Aggregate Performance (7 envs, normalized AUC)

Figure 7: IQM performance at 1M timesteps. Aggregate AUC statistics for TD3 (upper) and SAC
(lower) at a 1M-step training budget using 15 seeds.

highlighting that SF2 benefits from thorough feature optimization rather than relying on a particular
environment budget.

C.2.2 GENERALIZATION UNDER OBSERVATION NOISE

To assess whether SF2 has better generalization performance, we adopt the following setting. For
each algorithm, we train on the 1M-timestep on the AcrobotSwingup environment using six random
seeds (0–5), store the resulting checkpoints, and then evaluate the learned policies on perturbed
versions of the environments in which Gaussian noise is injected into the observation space. The
right panel of Figure 9 reports the AUC under different noise levels with 5 checkpoints with 1000
trajectories, evaluation with 95th percentile confidence interval using bootstrap with 5000 samples.
Because SF2 achieves higher performance even before the perturbation, it also sustains better AUC
after the noise injection.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0

200

400

600

800

1000

Re
wa

rd

AcrobotSwingup CartpoleBalanceSparse CartpoleSwingupSparse CheetahRun

0 20 40 60 80 100
Training steps

0

200

400

600

800

1000

Re
wa

rd

FishSwim

0 20 40 60 80 100
Training steps

HopperHop

0 20 40 60 80 100
Training steps

PendulumSwingup

TD3
TD3-SF2 = 0.0
TD3-SF2 = 0.99
TD3 Sim
TD3 Sim-Lap

0

200

400

600

800

1000

Re
wa

rd

AcrobotSwingup CartpoleBalanceSparse CartpoleSwingupSparse CheetahRun

0 20 40 60 80 100
Training steps

0

200

400

600

800

1000

Re
wa

rd

FishSwim

0 20 40 60 80 100
Training steps

HopperHop

0 20 40 60 80 100
Training steps

PendulumSwingup

SAC
SAC-Sim
SAC-Sim-Lap
SAC-SF2 = 0.0
SAC-SF2 = 0.99

Figure 8: Learning curves at 1M timesteps. Each plot shows the median and 95% CIs (bootstrap,
5000 samples) over 15 seeds for TD3 (upper) and SAC (lower) with vanilla baselines, SF-based
baselines, SPR (Schwarzer et al., 2020), and our SF2 with transition (γ = 0.0) and successor
(γ = 0.99) horizons.

C.3 EXTENSION TO DISCRETE ACTION SPACES WITH IMAGE INPUT

We conducted additional experiments on the MinAtar benchmark from PGX (Koyamada et al., 2023)
using PPO. Because our method constructs representations over state-action pairs (s, a), we replaced
the standard PPO state-value estimator V with an action-value estimator Q(s, a) and trained it with
TD-λ target (λ = 0.95). We also adopted separate actor and critic networks for baseline and our
methods. MinAtar provides image-like observations and a discrete action space; to make our approach
applicable in this setting, we evaluated two implementations: (i) linear interpolation along image
channels (shown as SF2 w/o AE), and (ii) an autoencoder-based pipeline in which the generative
model is trained in the latent space (shown as SF2 w AE). All experiments were run with discount
factor γ = 0.9. Results are presented in Figure 10, where we report both IQM (interquartile mean)
statistics and training curves. These results provide preliminary evidence that our method can operate
effectively in image-based environments with discrete actions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1 2 4 8 16
Gradient Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IQ
M

 S
co

re
 (

w
it

h
95

%
 C

I)

IQM Distribution by Gradient Steps
(Performance Gap Increases with More Gradient Steps)

Methods
TD3
TD3-SF2 = 0.0
TD3-SF2 = 0.99

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Noise Level (std of Gaussian)

0

100

200

300

400

500

No
rm

al
ize

d
Re

wa
rd

Performance vs. Observation Noise Level
TD3
TD3-SF2 = 0.0
TD3-SF2 = 0.99
TD3 Sim
TD3 Sim-Lap

Figure 9: Left: Effect of training budget. IQM of the AUC as we vary the number of gradient steps
dedicated to representation learning, highlighting the gains from additional feature optimization.
Right: Generalization under Gaussian observation noise. Interquartile mean performance of policies
trained for 1M steps (six seeds) when evaluated on Gaussian-noise-perturbed observations. SF2
maintains the highest returns across both TD3 and SAC backbones.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Training steps

0

5

10

15

20

25

30

Re
wa

rd

minatar-asterix

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Training steps

minatar-breakout

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Training steps

minatar-freeway

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Training steps

0

5

10

15

20

25

30

Re
wa

rd

minatar-seaquest

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Training steps

minatar-space_invaders

Baseline
SF2(= 0.9) w/o AE
SF2(= 0.9) w AE

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

SF2(= 0.9) w AE

Baseline

SF2(= 0.9) w/o AE
Median

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

IQM

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

Mean

0.0 0.2 0.4 0.6 0.8 1.0
normalized scores

Optimality Gap

AUC Aggregate Comparison

Figure 10: MinAtar results. Upper Learning curves for PPO variants on MinAtar environments
with 95th percentile confidence intervals (bootstrap using 5000 samples). Lower Aggregate IQM
performance. Interquartile mean AUC statistics across MinAtar environments comparing vanilla
PPO, SF2 without autoencoder (w/o AE), and SF2 with autoencoder (w AE).

D DETAILED ALGORITHMS

We demonstrate the detailed algorithm training process, combining SAC and TD3.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 2 TD3 with SF2

1: Initialize θ, ϕ, ψ, ζ; target networks θ′ ← θ, ϕ′ ← ϕ, ψ′ ← ψ, ζ′ ← ζ; replay buffer B
2: for episode = 1 to M do
3: Initialize environment, get initial state s0
4: for step = 1 to T do
5: at = πθ(st) + ϵ, ϵ ∼ N (0, σ); execute at, observe rt, st+1; store (st, at, rt, st+1) in B
6: if B is large enough then
7: for G gradient steps do
8: Sample batch (s, a, r, s′) from B
9: y = r + γmini=1,2Qϕ′

i
(ψ′(s′, πθ′(s

′)))

10: ϕi ← ϕi − αQ∇ϕi(Qϕi(ψ(s, a))− y)
2

11: ψ ← ψ − αψ∇ψ(Qϕi(ψ(s, a))− y)
2

12: (ψ, ζ)← (ψ, ζ)− αSR∇ψ,ζLSR
13: if step mod d = 0 then
14: θ ← θ − απ∇θQϕ1(ψ(s, πθ(s)))
15: θ′ ← τθ+(1−τ)θ′, ϕ′ ← τϕ+(1−τ)ϕ′, ψ′ ← τψ+(1−τ)ψ′, ζ′ ← τζζ+(1−τζ)ζ′
16: end if
17: end for
18: end if
19: end for
20: end for

Algorithm 3 SAC with SF2

1: Initialize θ, ϕ, ψ; target networks θ′ ← θ, ϕ′ ← ϕ, ψ′ ← ψ; replay buffer B
2: for episode = 1 to M do
3: Initialize environment, get initial state s0
4: for step = 1 to T do
5: at = πθ(st) + ϵ, ϵ ∼ N (0, σ); execute at, observe rt, st+1; store (st, at, rt, st+1) in B
6: if B is large enough then
7: for G gradient steps do
8: Sample batch (s, a, r, s′) from B
9: y = r + γmini=1,2Qϕ′

i
(ψ′(s′, πθ′(s

′)))

10: ϕi ← ϕi − αQ∇ϕi(Qϕi(ψ(s, a))− y)
2

11: ψ ← ψ − αψ∇ψ(Qϕi(ψ(s, a))− y)
2

12: (ψ, ζ)← (ψ, ζ)− αSR∇ψ,ζLSR
13: if step mod d = 0 then
14: θ ← θ − απ∇θQϕ1(ψ(s, πθ(s)))
15: θ′ ← τθ+(1−τ)θ′, ϕ′ ← τϕ+(1−τ)ϕ′, ψ′ ← τψ+(1−τ)ψ′, ζ′ ← τζζ+(1−τζ)ζ′
16: end if
17: end for
18: end if
19: end for
20: end for

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E NETWORK ARCHITECTURE AND HYPERPARAMETERS

E.1 DEEPMIND CONTROL SUITE IN SECTION 4

Parameter Value

Network Architecture

Hidden Layer Sizes for Q and
policy

(512, 512, 512)

Q-Network Layer Normaliza-
tion

True

Policy Network Layer Normal-
ization

True

Feature Size 512
Zeta Network Hidden Layer
Sizes

(512, 512)

Embedding Size 64
Activation Function ReLU
Kernel Initializer LeCun Uniform

Training Parameters

Number of Timesteps 5M: CartpoleBalanceSparse, Cart-
poleSwingupSparse, FishSwim; 10M: Acrobot,
Hopper, CheetahRun, PendulumSwingup

Number of Evaluations 100
Reward Scaling 1.0
Max Episode Length 1000
Normalize Observations True
Action Repeat 1 (4 for PendulumSwingUp)
Learning Rate 1e-3
Number of Environments 128
Batch Size 512
Gradient Updates per Step 8
Max Replay Size 4,194,304 (1048576 * 4)
Min Replay Size 8192
Discounting Factor 0.99
Policy Delay 1
Noise Clip 0.3
Smoothing Noise 0.2
Exploration Noise 0.2

Optimizer Parameters

Alpha Optimizer Learning Rate 3e-4
Policy Optimizer Learning Rate 1e-4
Q-Network Optimizer Learning
Rate

1e-4

Psi-Zeta Optimizer Learning
Rate

1e-4

Method-Specific Parameters

TD3/SAC Gamma for Succes-
sor

0.99

TD3/SAC Tau Zeta 0.005
TD3/SAC Denoising Steps 2 Function Evaluations

Table 1: Network and Training Parameters

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E.2 TWO GAUSSIAN EXAMPLE IN SECTION A.2

Parameter Value

Distribution Parameters

First Gaussian Mean (µ1) -2.0
Second Gaussian Mean (µ2) 2.0
First Gaussian Std (σ1) 0.3
Second Gaussian Std (σ2) 0.7
Mixture Probability 0.01

Network Architecture

Hidden Dimension 256
Activation Function ReLU

Training Parameters

Number of Steps 1500
Batch Size 32
Learning Rate 1e-3
Evaluation Interval 200
Logging Interval 100
EMA Decay Rate 0.995

Evaluation Parameters

Sample Size for Evaluation 4000
Number of Integration Steps 100

Table 2: Two Gaussian Example Hyperparameters

F THE USE OF LLMS

The authors used LLMs to polish the language and improve readability. All AI-generated content
was thoroughly reviewed and revised by the authors, who take full responsibility for the final content.

G SCHEMATIC VISUALIZATION OF SF2

(s, a) ψ(s, a) ∈ Rd

(s′, k) ζ(s′, k) ∈ Rd×dim(S)

uθ(s
′, k, s, a) = ζ(s′, k)⊤ψ(s, a) ODE:

dxk
dk

= uθ(xk, k, s, a) Samples from successor measure µπ(·|s, a)
ψ

ζ

Figure 11: Schematic visualization of how ψ, ζ, and u interact. ψ(s, a) encodes the time-invariant
flow representation of the current state–action pair. ζk(s′) provides a time-varying projection over
future states s′. Their inner product defines the vector field u(s′, k, s, a), which describes how
future-state probability mass evolves in the flow-matching objective.

H EXPERIMENTS WITH CRL AND FLOW-BASED POLICY

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10
Steps (millions)

0

25

50

75

100

125

150

175

200

Ev
al

 e
pi

so
de

 re
wa

rd

ant (10M steps)
CRL
CRL w SF2

Figure 12: Return curve on Ant environment with
CRL (Eysenbach et al., 2022) and CRL with SF2

based on JaxGCRL. (Bortkiewicz et al., 2025)(5
seeds)

0 2 4 6 8
Training Step Index

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Re
wa

rd
Training Reward Curves

fpo_q
fpo_q_SF2

Figure 13: Return curve on CheetahRun envi-
ronment with FPO (McAllister et al., 2025) with
Q(λ) (Peng & Williams, 1994) and FPO with
Q(λ) and SF2. (5 seeds)

24

	Introduction
	Preliminary
	Successor Flow Feature
	Flow Matching for Successor Measure Learning
	Successor Flow Feature from Estimated Successor Measure
	Connection to Successor Representation and Diffusion Spectral Representation
	Practical Policy Optimization with Flow Successor Representation

	Empirical Evaluation
	Experimental Setup
	Experiments on Continuous Action Spaces with Off-Policy Learning
	Hyperparameter Analysis
	Computation Complexity

	Related Work
	Conclusion
	Theoretical Foundation
	Challenges of Mixed Distribution in GHMs
	Empirical Validation on Mixture Distributions (Gaussian as an Example)
	Explicit Mixture Objective for Flow Matching

	Experimental Setup and Comparisons
	Comparison with Other Representation Learning Methods

	Experimental Results
	Main Results on Default Settings
	Robustness Analysis
	Performance Under Reduced Training Budget
	Generalization Under Observation Noise

	Extension to Discrete Action Spaces with Image Input

	Detailed Algorithms
	Network Architecture and Hyperparameters
	DeepMind Control Suite in Section 4
	Two Gaussian Example in Section A.2

	The use of LLMs
	Schematic Visualization of SF2
	Experiments with CRL and Flow-Based Policy

