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ABSTRACT

The Successor Measure (SM), a powerful method in reinforcement learning (RL),
describes discounted future state distributions under a policy, and it has recently
been studied using generative modeling techniques. Although SM is a powerful
predictive object, it lacks compact representations tailored for online RL. To ad-
dress this, we introduce Successor Flow Features (SF?), a representation learning
framework that bridges SM estimation with policy optimization. SF? leverages
flow-matching generative models to approximate successor measures, while en-
forcing a structured linear decomposition into a time-invariant embedding and a
time-dependent projection. This yields compact, policy-aware state-action features
that integrate readily into standard off-policy algorithms like TD3 and SAC. Experi-
ments on DeepMind Control Suite tasks show that SF? improves sample efficiency
and training stability compared to strong successor feature baselines. We attribute
these gains to the compact representation induced by flow matching, which reduces
compounding errors in long-horizon predictions.

1 INTRODUCTION

A key reason for the success of deep reinforcement learning (RL) in complex, sequential real-
world tasks is its ability to learn meaningful representations automatically. This is often achieved
through neural network architectures with specific inductive bias and efficient representation training
algorithms. Effective representations generalize well across different observations and environments,
give accurate value estimation, make efficient planning over long decision sequences, and achieve
robustness when encountering new observed states (Kulkarni et al.,|2016)). However, how to find a
general and efficient representation learning method that does not rely entirely on reward functions
but focuses on environment dynamics is a crucial problem, especially for complex tasks with a
continuous state space, sparse reward, and long decision sequences.

Successor Representation (SR) (Dayanl [1993) offers a promising approach by decoupling the reward
function from environment dynamics. It captures the expected future state occupancy under a given
policy, offering a dual interpretation: it can be viewed as a linear basis for state-action value functions,
or equivalently, as a compact representation of infinite-horizon discounted visitation distributions.
However, SR is inherently limited to discrete state spaces. To overcome this limitation, Successor
Feature (SF) (Barreto et al.,|2017) were introduced, incorporating a reward-relevant feature mapping
along with a Temporal Difference (TD)-style learning algorithm. A key challenge, however, remains
the design of an appropriate feature mapping, which is still an open problem (Ollivier, 2025).

More recently, Successor Measure (SM) emerged as a generalization of SR that directly models
the discounted future state occupancy. Unlike SF, which relies on predefined features, SM describes
distributions in principle in infinite-dimensional space and is typically estimated via generative
models. Recent advances such as the geometric horizon model (GHM) (Thakoor et al.,|[2022), the
~v-model (Janner et al., [2020), and TDFlow (Farebrother et al.,[2025) utilize generative modeling and
generalized TD learning to estimate SM, facilitating applications in policy evaluation and transfer
learning. In particular, TDFlow builds on recent progress in generative modeling, specifically flow
matching techniques (Lipman et al.,[2022)), enabling direct, simulation-free trajectory generation
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between distributions. This makes it highly efficient for continuous and high-dimensional settings.
Furthermore, the mixed nature of flow matching aligns naturally with TD-style training.

The stability and efficiency of flow matching make it exceptionally well-suited for modeling SM, as it
mitigates compounding errors over long horizons and enhances scalability in complex environments.
However, online RL imposes stricter demands, requiring representations that not only retain the
predictive power of SM but also adapt quickly to new experiences. These requirements motivate a
new framework that unifies the robust long-term forecasting of SM, the stable and efficient generative
learning of flow matching, and the rapid adaptability essential for online RL.

In this paper, we introduce Successor Flow Features (SF?), a new framework that leverages flow
matching to approximate SM. SF? enforces a structured decomposition into a time-invariant low-
dimensional embedding of state-action pairs and a time-dependent projection operator. This
design offers several key advantages: (i) the time-invariant embedding is tailored for online RL,
enabling joint training with value functions and seamless integration into existing algorithms like
TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al.| |2018)); (ii) the time-dependent projection
enables generative models to reconstruct SM while decoupling policy-dependent and environmental
structure. We evaluate SF? by integrating it into TD3 and SAC on continuous-control benchmarks
from Mujoco Playground (Zakka et al.,|2025)). Our results demonstrate improved average performance
over standard baselines. While preliminary, these findings indicate that combining flow-based
generative modeling with successor representations is a highly promising direction for scalable RL
representation learning. Our contributions are threefold:

* We propose a generative model with a linear projection structure for approximating SM
using flow matching.

¢ We introduce SF2, an informative representation for online RL that is trained jointly with
value functions.

* We provide empirical evaluation on challenging continuous-control tasks, together with
diagnostic studies of bootstrapped flow matching.

To the best of our knowledge, SF? is the first approach to explicitly integrate successor measures
with policy optimization for online RL representation learning. We emphasize that SF? is an initial
step in this direction rather than a complete solution: rigorous theoretical guarantees and broader
empirical validation remain open challenges.

2 PRELIMINARY

In this paper, we use uppercase serif fonts to denote a set S, &(S) to denote the space of probability
measures over a measurable set S, uppercase capital letters to denote random variables (e.g., S) and
R"™ to denote the n-dimensional real space.

Markov Decision Process We consider a discounted Markov decision process M = (S, A, P, r,7),
which includes the state space S, discrete or continuous action space A, transition kernel P :
S x A = Z(S), reward function r : S x A — R, and discount factor v € [0,1). Following
the setting of Blier et al.| (2021)), the state space is measurable (either continuous or discrete). In
an MDP, an agent interacts with the environment by observing the current state s; € S, selecting
an action a; € A according to policy 7, and then receiving a reward r(s;, a;) while transitioning
to a new state s;1 ~ P(:|st,a:). The objective of reinforcement learning algorithms is to find
apolicy 7 : S — Z(A) that maximizes the expected cumulative reward, or the value function
V™(s) = E™ [Y ;oo v'r(st,ar) | so = s] for any state s € S, where E™ denotes expectation under
the distribution induced by policy 7 interacting with the MDP. The value function satisfies the
Bellman equation: V™ (s) = Y, _a7(als) [r(s,a) + 7Y cs P(s'|s,a)VT(s)].

Flow Matching Flow Matching (FM) (Lipman et al., 2022) is a technique used in generative
modeling to learn mappings between distributions. Define a time-dependent diffeomorphic map ¢y =
¢(-,k) : R" x [0,1] — R" governed by an Ordinary Differential Equation (ODE) : 4 = v(xy, k)
with time k € [0, 1], where x, := ¢ (xo). We use the notation & rather than ¢ for the ODE’s time
parameter to distinguish it from the timestep ¢ used in MDPs. A Continuous Normalizing Flow, one
kind of Neural Ordinary Differential Equations (Chen et al.,2018]), is employed to parameterize the
vector field vy, = v(-, k) : R™ x [0,1] — R™ as ug(-, k) and determines the flow dynamics.
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To find the training target of the parameterized time-dependent vector field, FM introduces a mix-
ture representation approach to estimate the marginal vector field as a mixture of conditional vec-
tor fields that condition on each data point from pige. For example, given a prior distribution
po(xz) = N(0,1,) and a sampled data point z; from the target distribution p;(z) = Praree(),
FM constructs conditional probability paths px(x|z1) = N (; (1), 0% (21)1,,). The correspond-
ing conditional time-dependent diffeomorphic map and the conditional vector field are given by

ox(x,21) = ok (x1)x + pr(z1) and %, respectively. The training objective is
dei (e, 1) ||”
[’(9) = EGNN(OJ):IlNPmrgel(z)ak"’u(O’l) [ U0(¢k(€,$1), k) - % ‘ )

where U/ (0, 1) represents the uniform distribution over the interval [0, 1]. This objective minimizes
the squared difference between the parameterized vector field and the target vector field at randomly
sampled time points, states, and noise values. The time parameter & is uniformly sampled to ensure
the model learns the entire trajectory from the prior distribution to the target distribution.

Samples are generated by solving z; = z¢ + fol ug(zk, k)dk where xg ~ po with standard ODE
solvers (Gautschi, 2011). When additional conditions are imposed as c¢ for the vector fields ug(x, k, ¢)
and the sampled data conforms to the distribution & ~ ¢(-| ¢), the FM is also capable of constructing
conditional generative models.

Successor Measure The SM (Blier et al.|[2021]) is a probability distribution over states that captures
the expected discounted future state visitations under a given policy, a transition kernel, and a state-
action pair. Formally, for a policy 7, the SM p™ (X|s, a) represents the probability of visiting state
s’ € X C S when starting from state-action pair (s,a) and following policy 7, with geometric
discounting:

u”(X|s,a) = (]— - ’y)E(sl,SQ,...,st,...)NP” Z’)’tlstex | So = S,ap =a| ,
t

where the expectation is taken over all possible trajectories generated by starting at state s, taking
action a, and then following policy 7 for all subsequent steps. The indicator function 1,,¢x equals 1
when the state at time ¢ belongs to the set X and O otherwise.

Similar to the Bellman equation for the value function, the SM satisfies the Bellman equation (Blier
et al., 2021):

W (X|s,a) = (1 =7)P(X|s,a) +7 Y P(s']s,a) Y w(d|s)p"(X|s',a). M
s'eS a’eA

This recursive formulation reveals that the SM can be interpreted as a mixture distribution between the
immediate state distribution induced by the transition kernel (with weight 1 — ) and the bootstrapped
future state distribution (with weight ). The conditional generative models can be employed to
predict the SM utilizing the recursive form equation[I} In general, the learning objective is formulated
as a maximum likelihood estimation problem, which aims to find the optimal generative model by
solving:

MAX EX (1-9) P([5,0) 4980w 1,00,00 om0 107 (10| 108 17 (X] 5, @] @

While this objective provides a general framework, the specific loss function needs to be adapted
according to the choice of generative model. For instance, in the Geometric Horizon Model
(GHM) (Thakoor et al., [2022)) (also referred to as the y-model (Janner et al., [2020)), different
implementations employ distinct training losses, such as those based on VAE (Kingma et al., 2013)
or GAN (Goodfellow et al.,2014)). In this work, we focus on the best-performing variant, the flow
matching used in TDFlow (Farebrother et al., |2025), which utilizes a modified flow matching loss.
We will elaborate on its details in the next section. A further discussion about the benefits of using
flow matching for SM through an explicit mixture viewpoint can be found in Appendix
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3 SUCCESSOR FLOW FEATURE

3.1 FLOW MATCHING FOR SUCCESSOR MEASURE LEARNING

The SM’s mixture structure is particularly well-suited for flow matching approaches, allowing us
to directly model the interpolation between immediate transitions and future state distributions. For
learning 1™ (s’|s, a) with its corresponding parameterized time-dependent vector field ug(z, k, s, a),
we utilize its natural mixture representation:

pr(s'|s,a) = (L —=~)P(s'|s,a) + YEgrwp(|s,0),a7~m () 1" (8], a”),

which yields the corresponding FM training objective for the parameterized vector field ug(z, k, s, a)
on given tuple (s, a, s'):
|

EﬂOW (9) :(1 - P)/)EP(G) + P)/Lbootstrapping(a)
d¢k(€, Sc)

dk

d¢k(€, S/)

u9(¢k(€a S/),k,S,a) - dk

=(1- ’Y)Ee,k,swP(.\s,a) [

U9(¢k(€a 56)7 k’) 57 a) -

2
H, 3

where £p(8) is used to learn the transition distribution and Lyotstrapping (#) uses a temporal difference
form where bootstrapping distributions induced by wg(-, -, s’, a’) serve as u™(:|s’, a’). However, this
sampling procedure introduces substantial computational costs due to the need for multiple network
evaluations during the generation process.

T VB ki ~n( s sempo (s a) l

To enhance training efficiency, we leverage the fact that sampling from the SM can be achieved
through an ODE solver(Euler method as an example): s. ~ pug(-|s,a) is equivalent to s, =
Euler(e, ug(-, -, 5, a)) where € ~ N(0, I,,). Motivated by the TD?-CFM loss formulation from (Fare-
brother et al.| |[2025), we directly align the vector fields conditioned on different state-action pairs
at the same noise level instead of generating full successor states and then comparing them. This
approximation avoids expensive ODE integration while preserving the consistency between local
flow directions. Intuitively, if two vector fields agree on their evolution, their generated distributions
will also agree.

Eboolstrapping(g) ~E e,k,a’~m(-|s") [Hu@(xk,k,s,a) - ue(xk7k7$,7a’/)||2 . (4)
x,=ODE(e,k,uq(-,-,s",a"))

This approach aligns the vector fields conditioned on different state-action pairs at the same noise
level, eliminating the need to fully generate denoised states and then apply the ¢, transformation.
This form substantially reduces the need for small integration steps in the ODE solver, decreasing
computational overhead while maintaining performance. We provide a detailed analysis of the
trade-off between computational efficiency and model performance in our ablation studies presented
in Section It is noted that the final loss used for learning is based on expectation over transition
tuples from the current policy 7. We model conditional vector fields on the latent space induced by
the flow parameterization (Section[2)). This avoids explicit density ratios on S and ensures training
targets are defined even when the SM is provided implicitly via pushforwards.

3.2 SUCCESSOR FLOW FEATURE FROM ESTIMATED SUCCESSOR MEASURE

Following the estimation of the SM, we employ a linear projection formulation to derive a compact
feature representation.

Definition 3.1 (Successor Flow Feature) We define the Successor Flow Feature (SF?) on state-
action pair (s,a) as the output of the mapping 1 : RYms x Réma — R4, which generate the
time-dependent conditional vector field u(s', k, s, a) as a linear projection with a time-conditioned
matrix field ¢ : R™s x [0, 1] — Rxdims

U(S/’ k? S? a) = §(517 k)T’l/)(S7 a)7

where (s, a) is time-invariant and captures the sufficient dimension reduction property.
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In contrast to conventional conditional generative models that combine conditions, timestamps, and
noised inputs through complex non-linear transformations, our approach employs a time-invariant
feature (s, a) that interacts only at the final stage with the matrix field ¢. This architectural choice
promotes the encoding of temporal structures within ¢ that are essential for effective downstream
representation learning. This linear projection approach has been explored in prior work (Shribakl
et al., [2024), which extracts spectral features from environmental transition dynamics to enhance
reinforcement learning performance.

The representation function v (s, a) achieves the Sufficient Dimension Reduction (SDR) (Fukumizu
et al., [2009) by establishing conditional independence s, 1L (s,a) | ¥(s,a), i.e. p™(sc|s,a) =
1™ (se|1(s,a)), thereby ensuring that the extracted representations comprehensively capture all
relevant information about how state-action pairs relate to successor states. Additionally, this
formulation exhibits universal approximation properties (Sasaki & Hyvirinen, |2018)), enabling it
to theoretically approximate any target function to arbitrary accuracy, which makes it particularly
effective for modeling SM across diverse policies and environments.

3.3 CONNECTION TO SUCCESSOR REPRESENTATION AND DIFFUSION SPECTRAL
REPRESENTATION

Connection to Successor Representation Let’s consider the one step gradient updating on the
parameterized 1) neural network with parameters 6 using equation [3|with equationd]under a transition
tuple (s, a, s’) and sampled k ~ U(0,1),e ~ N(0,I,,). When k — 0, let ¢y (e, z) = kx + (1 —

doy (e,x)
k)e, =R

Liow(0)= (1= 7)||¢ (ks (1—F)e, k) (s, @) — (s — ) | || ¢ (@ns k) (5, @) — (e, B) T, )|

= x — ¢, we have:

As k approaches 0, we can make the approximation:
C(ks' + (1= ke, k) ~ C(e,0), and C(w, k) ~ C(e,0).

The intermediate point x, is approximately obtained through a single ODE transformation step:
zp ~ e+ kC(e,0) Tep(s',a)).

Substituting these approximations into the loss function yields the semi-gradient, where we stop the
gradient backpropagation on the bootstrapped target. We have

VoL~ 2 [(1-7) (C(e.0)Th(s.0) — (' —€)) +7 (C(e.0)T(5,0) — ((e,0) (s, a'))] Vari(s, a),
which can be rewritten more concisely as:
Vol ~ 2 [¢(s,a) ¢(e,0) — (1 —7)(s' — €) + vp(s',a’) '¢(e,0))] Vou(s,a).

This formulation reveals a temporal difference learning structure where the target combines: (1) A
direct supervision component 1 — T) s' — €) representing immediate information. (2) A discounted
bootstrapped component y1p(s’,a’) ' {(e, 0) that propagates future representations.

Rearranging into a Bellman-like equation, we have

¢(s7 CL) A (1 - 7)(4(67 O)T)+(s/ - 6) + 7¢(5l; Cl/),

where (-)T denotes the Moore-Penrose pseudoinverse. This formulation reveals that our ap-
proach learns a Successor Representation with Dayan’s definition (Dayan, [1993). In our case,
(1 —7)(¢(e,0)T)T(s" — €) serves as the basic feature that captures immediate transitions, while the
recursive structure ¢(s,a) = (1 — ~)(immediate feature) + v1)(s’, a’) serves as the bootstrapped
part. The process incorporates a novel element where the next state s’ — € undergoes Gaussian
noise perturbation before being projected onto the column space defined by (¢ (e, 0)7)*. This can
be interpreted as learning a basis for the state space that is robust to perturbations, enabling more
effective representation of the expected future state occupancy distribution. This yields an SR-like
recursion on 1 under fixed (. We emphasize this is an approximation to motivate design; we do
not claim exact equivalence to SR. The exploration of how the representation behaves and what
properties it captures when & takes values significantly away from O remains an open question for
future investigation.



Under review as a conference paper at ICLR 2026

Connection to Diffusion Spectral Representation (Shribak et al., 2024) As ~ approaches zero,
our approach bears resemblance to Diffusion Spectral Representation (Shribak et al.,|2024), which
employs diffusion models (Song et al.,2020)) rather than flow matching and targets transition probabil-
ities instead of SM. The incorporation of future state transitions enables features to encode transition
dynamics across extended time horizons. In Section[d} we conduct empirical comparisons between
SF? and its variant with v = 0 to demonstrate that SF? achieves better area-under-curve(AUC)
performance compared to approaches that focus solely on short-term transition prediction.

3.4 PRACTICAL POLICY OPTIMIZATION WITH FLOW SUCCESSOR REPRESENTATION

In this paper, we consider combining the proposed representation learning method with standard
online reinforcement learning algorithms on continuous action spaces. We choose SAC (Haarnoja
et al., 2018) and TD3 (Fujimoto et al., [2018) as base algorithms. The learned representation is
only used for building the state-action value function Q (s (s, a)). And the policy will be implicitly
influenced through the V,Q (g (s, a)).

To enhance learning stability and performance, we implement two complementary techniques:

Value Alignment: We augment the flow-matching objective with a value prediction
component: Lo = Laow + ALvae, Where A controls the relative weight of value prediction. The
value loss follows the standard temporal difference formulation:

Lot = Epearrn | Qo) = 0+ ymax Qi)

This approach is compatible with various RL algorithms and can incorporate techniques such as
double Q-learning (Van Hasselt et al.,|2016) for improved target estimation.

Generative Model Smoothing: We

employ exponential moving average  Algorithm 1 Training SF? within Off-Policy RL
(EMA) target networks that update pa- - -
rameters according to 6y = (1— 1: Input: (state, action, next state, next action) tuple

)0y + 70, and g = (1 — 7)0¢r + (s,a,.s’,a’), networks (¥, ¢, ', ¢") and target for value
76, during bootstrapping phases, con- learning y’, which depends on the based algorithm
sistent with established flow match- Sample ~ N, 1), k ~u(0,1) .

ing training practices (Lipman et al.| sp="k-s +e€ (1=k), Starget =5 — €

2022). We perform an ablation analy- Compute featuresT and next state loss: ,

sis of the effectiveness of this moving Laow = [[¥(s,a) Q(Skv k) — ?tav'get”z ) )
average coefficient in Section@ Fur- Generate state x using numerical integration, start with
thermore, the EMA-updated parame- r=e

ters 6/, also work in the target network 7 Kstart; kena = 0,k

£ Y stimati 8: kmida = 5 (Kstart + Kend)

or the estimation of the value func- me 2 \vstar en

tion, providing an additional layer of % de =/ (s',a' )T (w459 (s, )T (@, Kstart) s kmia)
stability to learning dynamics. The 10: ¢ =2 + (Kend *.kstarjdf

overall training objective Ly for 11: Compute generation loss:

learning SF2, when embedded in off- 12: Lpootstrapping = [l (s, a)TC(x, k)—4'(s', a/)TCI(xa k)”%
policy RL, is shown in Algorithm [T} 13: Lvawe = (Q(¢(s,a)) — y')?

For the TD3-based methods, y/ = 14: Return Lo = (1 - ’Y)‘CP + ’Y‘Cboolstrapping + Alyalue
r+~min(Q}, Q%), where Q) and Q)
are the target Q-networks evaluated at
the next state s’ and next action a’ sampled from the target policy. For the SAC-based method,
y =r+ymin(Q}, Q5) — alogm(a’|s’), where « is the temperature parameter that determines the
trade-off between maximizing expected reward and entropy, and is updated according to the original
SAC paper (Haarnoja et al.| [2018).

AN AN

4 EMPIRICAL EVALUATION

4.1 EXPERIMENTAL SETUP

We implemented all experiments using JAX (Bradbury et al.,|2018)) and Deepmind Haiku (Hennigan
et al., |2020) to leverage hardware acceleration. For the DeepMind Control Suite (Tassa et al., 2018),
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we utilized a GPU-accelerated version, the MuJoCo Playground (Zakka et al.| [2025). All algorithms
were edited from their respective implementations in the Brax library (Freeman et al., 2021). Each
experiment is conducted on a single NVIDIA GeForce RTX 4090 GPU. Detailed architectural
specifications, hyperparameter configurations, and environment-specific parameters are provided in
Appendix

Flow sampling uses Euler integration with 2 function evaluations (NFEs) unless otherwise noted;
we sample k ~ ¢/(0, 1) and base noise € ~ N (0, I'), and condition vector fields on (s, a) and (s', a’)
as specified in Section 3] We report wall-clock time for representative settings (Section 4.3)) and
keep baseline parameter counts comparable by reusing encoder widths and depths across methods

(Appendix [E).
4.2 EXPERIMENTS ON CONTINUOUS ACTION SPACES WITH OFF-POLICY LEARNING

We evaluate SF? on seven diverse tasks from the DeepMind Control Suite (Tassa et al.,2018)), selected
to represent a range of challenges in dynamics complexity, reward structure, and control difficulty.
We integrate our approach with two commonly used off-policy algorithms: SAC (Haarnoja et al.,
2018) and TD3 (Fujimoto et al.| 2018)). For comparison with the SF method, we also include |(Chua
et al.|(2024), a strong SF method designed for the online RL setting. This work reports substantial
improvements over prior SF approaches. To provide a fair and rigorous comparison, we implemented
four baseline methods: TD3Sim/SACSim, which closely follows the approach described in the |Chua
et al.[(2024) with the TD3/SAC algorithm, and TD3SimLap/SACSimLap , which removes the Q-
function alignment constraint and incorporates an orthogonality objective for feature learning via
the graph Laplacian. All methods use identical neural network architectures, the same number of
environment steps, and the same number of parallel environments as our proposed approach.

TD3-family Aggregate Performance (7 envs, normalized AUC)
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Figure 1: IQM performance across DeepMind Control tasks. Panels summarize the aggregate
AUC for TD3 (upper) and SAC (lower) variants, comparing vanilla baselines, SF-based baselines,
and our SF? with transition (v = 0.0) and successor (7 = 0.99) horizons.

Following the suggestions described in [Patterson et al.[(2024), we summarize learning dynamics and
aggregate performance across seven environments using 15 random seeds for each algorithm variant.
For each algorithm variant, we extract evaluation reward curves (mean of episodic returns over
evaluation steps using 1000 trajectories) and compute the area-under-curve (AUC). Then the AUC
is normalized per environment by linearly scaling to [0, 1] using that environment’s minimum and
maximum in order to compare across different environment. For each algorithm family (SAC or TD3),
the aggregate panels report the median, interquartile mean (IQM; the mean between the 25th and
75th percentiles), mean, and optimality gap (one minus the mean), with 95th percentiles confidence
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intervals computed using 5000 samples over normalized scores. The results in Figure [T|reveal that
incorporating SF? enhances the performance of TD3 and SAC across most environments over their
standard versions, with higher improvements when using the successor version (v = 0.99). Our
method consistently outperforms both baseline algorithms and uses the transition version (y = 0.0),
demonstrating the importance of incorporating a longer horizon in representation learning. Full
per-environment learning curves for both TD3 and SAC are deferred to Appendix [C.1] (Figure|[6) .

Interestingly, the performance gains(compared with baseline) are more pronounced for TD3 than
for SAC, suggesting that our method may be particularly beneficial for algorithms that struggle with
exploration or representation learning, and a deterministic policy may improve the training efficiency
for the online successor measure learning. Additionally, the reduced standard deviations in many
cases indicate that SF2 not only improves performance but also enhances stability. Approaches based
on SF tend to struggle on sparse reward tasks based on TD3 experiments, as the majority of transitions
yield a reward of 0.0, making it difficult to effectively learn the task weight w. In contrast, our method
does not depend on this mechanism and thus avoids the associated performance degradation in such
settings.

4.3 HYPERPARAMETER ANALYSIS

We examine the influence of three key hyperparameters in our method on the AcrobotSwingup task:
exponential moving average (EMA) coefficient, number of denoising steps, and feature size. We use
the mean episode return over the final 50k steps to show this.

Effect of EMA Rate on AcrobotSwingup Effect of Denoising Steps on AcrobotSwingup . . Effect of Feature Size on A
Run Time vs Denoising Steps on Ac

&~ sACwith SF? 10| & SACwithsF2 5 &~ sACwith SF?

TD3 with SF? TD3 with SF? SAC with SF TD3 with SF?

Tos it 50
"
i
200 1
o
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(a) Analysis of exponential (b) Performance evaluation (c) Training time evalua- (d) Influence of feature size
moving average coefficient with varying numbers of tion with varying numbers on 1) networks.
T on performance. denoising steps. of denoising steps.

Figure 2: Systematic analysis of hyperparameter effects on SF? performance. (a) Exponential moving
average coefficient 7 demonstrating stability-performance trade-offs, (b) performance sensitivity
to denoising step count in the sampling procedure, (c) computational cost scaling with respect to
denoising steps, and (d) feature size effects on algorithm performance.

EMA Parameter. Figure [2a]demonstrates that the EMA coefficient 7 inversely correlates with
performance. Peak results occur at 7 = 0.1 for TD3 and 7 = 0.01 for SAC, with performance
declining as 7 approaches 1.0. Despite considerable variance across configurations, these findings
suggest that more stable target network updates (smaller 7 values) enhance learning dynamics in our
framework. The results highlight the critical importance of proper 7 calibration, as large values can
substantially impair policy effectiveness.

Denoising Steps. Our analysis reveals that varying the number of denoising steps produces compa-
rable performance outcomes (Figure 2b), though computational costs increase proportionally with
more steps (Figure[2c). We observe that even with minimal denoising steps (1-2), both algorithms
maintain robust performance, suggesting that aligning the bootstrapping part can rely on a rough
sampling process without requiring extensive iterative refinement. The computational efficiency
analysis in Figure [2c|further confirms that a small number of denoising steps provides an optimal
balance between performance and computational overhead, as the default choice in experiments.

Feature Size. As shown in Figure[2d] the two algorithms respond differently to feature size changes.
SAC with SF? demonstrates similar final 50k steps returns across various feature sizes with low
variance, suggesting effective representation learning even in reduced dimensions. TD3 tends to
benefit from larger feature sizes, though variance increases, while SAC remains stable across sizes.
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This indicates that the deterministic policy gradient method particularly benefits from richer feature
representations.

4.4 COMPUTATION COMPLEXITY

The additional time overhead of our method is due to the additional representation learning and
the additional neural network. Here we use the comparison between TD3 and TD3 with SF? as an
illustration. Each standard TD3 update step consists of one step of critic updating and one step of
actor updating, which is consistent with TD3 with SF?. The main distinction is that an additional
feature representation update step: for each update step, TD3 with SF? performs seven forward
passes and one backward pass through the  network, and two forward passes and one backward pass
through the 1) network. Under identical experimental conditions, the original TD3 method’s running
time on AcrobotSwingup is 659 seconds, while, as reported in Figure SF? with 1 denoising step
takes approximately 1300 seconds, about twice as long. Our experiments demonstrate significant
improvements in downstream performance, justifying this trade-off. We will further optimize training
costs in future work.

5 RELATED WORK

Representation learning in RL. Reconstruction-based methods have been employed for feature
extraction from observations (Hafner et al., 2019; |Yarats et al.,|2020). Contrastive learning techniques
have emerged as a powerful paradigm for learning discriminative state representations (Laskin et al.|
2020; |Stooke et al.,[2021; Zheng et al.,|2023). bisimulation metrics offer a more formal approach
to learning state abstractions by grouping behaviorally equivalent states (Zhang et al.| 2021} |Castro
et al.}2021;2023). World models learn to capture the environment’s dynamics, allowing agents to
plan or learn in a learned latent space (Gelada et al.| [2019; [Seo et al., |2022; |Hafner et al., [2025)).
Spectral decomposition methods decompose state and actions into low-rank spectral features (Wang
et al.,2021b; Yang & Wang, 2020; Shribak et al., [2024). SF? uniquely bridges successor measures
and online RL: (1) Unlike world models (Gelada et al.,[2019; |Seo et al., 2022} [Hafner et al., 2025)
and spectral methods (e.g., (Shribak et al., [2024)) that ignore policy-dependent horizons, SF?
explicitly encodes discounted future distributions via flow-matched successor measures; (2) While
reconstruction methods focus on regenerating the observation, our method considers policy and
environment dynamics; (3) Bisimulation methods (Zhang et al., 2021} |Castro et al.| 2021} [2023)
emphasize state similarity with reward, but SF? also optimizes features (s, a) from environmental
dynamics not only from the value alignment.

Successor Measure. SM predicts future state distributions under a given policy, effectively cap-
turing the expected discounted future state occupancy. This concept is closely related to Successor
Representations (Dayanl [1993)) and Successor Features (Barreto et al.,[2017), decoupling environ-
ment dynamics from reward structures, facilitating efficient policy evaluation and transfer. [Blier et al.
(2021)) offers a formal mathematical definition of SM and introduces how to estimate it for value
function evaluation. [Wiltzer et al.| (2024} further enhances these approaches by modeling the full
distribution of future state occupancies, providing richer representations for downstream decision-
making. GHMs and y-models extend the notion of modeling discounted state visitation distributions,
creating a continuum between model-free and model-based RL (Thakoor et al., 2022; Janner et al.|
2020). |Agarwal et al.| (2025); [Touati & Ollivier| (2021) also employ SM to build a representation
in the zero-shot RL setting under a precollected offline dataset, always need an extra exploration
policy to collect, which allows for optimal policy inference under other given reward functions. SF?
fundamentally advances this paradigm by introducing the subsequent flow characteristics (s, a)
(Definition as a linear decomposition of the flow field, enabling representation learning, which
greatly expands the scope of application of previous methods.

6 CONCLUSION

In this work, we proposed the Successor Flow Feature (SF?) framework, which leverages flow
matching and linear-spectral decomposition to address the challenges of estimating and integrating
successor measures in online RL. By explicitly modeling the mixture structure of successor measures,
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our method provides useful state-action representations that facilitate efficient online policy learning
and planning. Through extensive empirical evaluations across discrete and continuous control tasks,
we demonstrated that using SF2 consistently improves performance over standard baselines. Our
results underscore the promise of flow-based generative modeling for successor features, paving the
way for future research on scalable, expressive, and efficient RL representations.

REPRODUCIBILITY STATEMENT

We facilitate reproducibility by providing an anonymized source-code repository in the supplementary
materials. For every experiment, we specify the random seed used, and we document all imple-
mentation and training details in Appendix [E| and [D] Together, these references are sufficient for
independent researchers to replicate our reported results.
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A THEORETICAL FOUNDATION

A.1 CHALLENGES OF MIXED DISTRIBUTION IN GHMS

The learning procedure for GHMs using generative models, particularly those without explicit density
estimation, follows a principled sampling-based strategy maximizing the objective in equation 2]
Transition tuples {s, a, s’} are sampled from given environment interactions or a pre-collected dataset.
For each tuple, an indicator variable is sampled from a Bernoulli distribution with parameter ~ to
determine which distribution to be learned by GHMs: 1) with probability 1 — ~, learn from the true
observed successor state s’; and 2) with probability -, learn from bootstrapped samples, where a state
is sampled from the generative model, u(-|s’, a’), conditioned on the observed next state and a next
action sampled according to the current policy. This procedure implements the recursive structure of
the normalized successor measure (NSM) by sampling.

While theoretically sound, mixture-based learning struggles when - is close to lﬂ the data distribu-
tion is dominated by the bootstrapped samples from the generative model, introducing significant bias
and inaccuracy—especially early in training—with minimal anchoring to real data. In the following
section, we demonstrate this via a Gaussian mixture example, where learning the mixed distribution
grows increasingly difficult as « approaches 1.
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Figure 3: Visualization shows flow-matching methods better capture the multimodal structure of
Gaussian mixtures compared to other generative models, such as GANs and VAEs, which is crucial
for SM learning with explicit mixture targets.

A.2 EMPIRICAL VALIDATION ON MIXTURE DISTRIBUTIONS (GAUSSIAN AS AN EXAMPLE)

We evaluate several generative models on a one-dimensional Gaussian mixture that is a simplified yet
insightful setting. The target distribution is shown in the left-most part of Figure[3] We train VAEs,
GANSs, and FM models, and observe that learning becomes difficult as the mixing parameter v ~ 1.
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Figure 4: Wasserstein distance between true distribution and generated samples.

Under v = 0.99, Figure [3] provides visualizations of the final generated samples, and Figure [
reports the Wasserstein distance (Vaserstein, [1969) between generated samples and the ground truth

'To obtain a longer horizon length and align with the discount factor used in the value function definition, the
discount factor + is expected to be very close to 1, e.g. v = 0.99.
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distribution over the training process. These results show how accurately each generative model
captures the underlying mixture distribution. Specifically, visualization results show that VAEs and
GAN:S struggle to capture the multimodal structure, while FM exhibits a stronger ability to model the
target distribution.

In the next section, we will introduce how to explicitly leverage the mixture structure and correspond-
ing weights to enhance the FM approach for more efficient learning of complex distributions.

A.3 EXPLICIT MIXTURE OBJECTIVE FOR FLOW MATCHING

To enhance learning of mixture distributions p(™*) (2) = yp) (x) + (1 — v)p® (z), we introduce an
explicit mixture objective within the flow matching framework. Unlike black-box density estimation,
our method directly encodes the known compositional structure of the target distribution into the
training objective. This improves computational efficiency and accelerates optimization convergence.

Let ug(x, k) denote the parameterized time-dependent vector field, the marginal distribution on
time & = 0 is a standard Gaussian distribution, and ¢ (€, x) is the conditional time-dependent

diffeomorphic map. Let 2 ~ p™*) & ~ 24(0,1), e ~ N(0, I,,) and vy (€, z) = %, the original
flow matching objective for mixture distributions is,

1
L =Epz c|luo(dr(e, x), k) — vi(e, z)||*=E. [A/p(mix) () ||ug(or(e, ), k) — vk(e,x)HZdasdk] .

Since pmiX is a mixture, we can decompose this into:

L=E, [ / / (0D @) + (=P @) lu (e, ), ) — vrle, ) | dxdk}

usdle, e ), 1) = (e )|+ E o fulnte, 22, 8) —unle, )|

2 @np®@

=7 E e,k
REDNEN

ﬁl £2
=L+ (1 —7)Lo.

This explicit decomposition enables training by sampling from each mixture component and reweight-
ing the loss according to its corresponding mixture weight. By leveraging the known structure of the
mixture, this approach aligns closely with the recursive formulation of the NSM, which also exhibits
a mixture form rooted in the Bellman equation, which is also noted in (Farebrother et al.,2025)). As
shown in Figure[3|and Figure[d} our proposed method, FlowMatching (Explicit Mixture), outperforms
standard baselines by effectively capturing the multimodal structure of the target distribution. It is
worth noting that not only can flow matching methods exploit this form of distribution mixing, but
also diffusion models (Song et al.,|2020) and bridge-based models (Wang et al.,[2021a), which all
rely on the diffusion mixture representation (Peluchetti, | 2023)).

15



Under review as a conference paper at ICLR 2026

Training dynamics sensitivity to noise_level

AcrobotSwingup

Figure 5: SPR augmentation sweep. Performance of SPR on AcrobotSwingup for different Gaussian
noise magnitudes used in the augmentation pipeline. The noise level of 0.05 is selected for the cross-
environment experiments.

B EXPERIMENTAL SETUP AND COMPARISONS

B.1 COMPARISON WITH OTHER REPRESENTATION LEARNING METHODS

To align with our method, we configure SPR (Schwarzer et all,[2020) with K =1, so it relies only
on the immediate successor transition, just like our approach. Since the SPR method was originally
designed for image input, while our environment uses state input, we use Gaussian noise to simulate
data augmentation. In order to select a suitable augmentation setting, we perform a hyperparameter
sweep over the Gaussian noise magnitude on AcrobotSwingup environment. Following the sensitivity
analysis in Figure 5} we adopt the best-performing noise standard deviation of 0.05 and reuse it
across all 7 DeepMind Control Suite environments without further tuning. This configuration is
used to generate the aggregate IQM statistics in Figure [I|and the full learning curves in Figure [f]
Ensuring that improvements stem from representational benefits rather than environment-specific
hyperparameter adjustments. In this configuration, our proposed method exhibits better performance.
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Figure 6: Learning curves across tasks. Each plot reports training curve with 95th percentile
confidence intervals(bootstrap using 5000 samples) for TD3 (upper) and SAC (lower) with vanilla
baselines, SF-based baselines, SPR(Schwarzer et al.,[2020), and our SF? with transition (y = 0.0)
and successor (7 = 0.99) horizons.

C EXPERIMENTAL RESULTS

C.1 MAIN RESULTS ON DEFAULT SETTINGS

Figure 6] presents the full learning curves for 7 DeepMind Control Suite tasks using TD3 and SAC
variants, complementing the aggregate IQM statistics shown in the main text.

C.2 ROBUSTNESS ANALYSIS

C.2.1 PERFORMANCE UNDER REDUCED TRAINING BUDGET

To rule out the possibility that our gains come only from a specific chosen training budget, we
reran every experiment with a IM-timestep budget and 15 random seeds. Figure[7]reports the IQM
aggregates for TD3 and SAC under this stricter setting, showing that SF2 still surpasses vanilla and
SF-based baselines by a clear margin. Figure[8]then provides the per-environment learning dynamics,
confirming that our method maintains its advantage even when learning is constrained to only 1M
timesteps. Finally, we study how our approach benefits from more training budgets and more training
times because we require additional training on both the generative and representation models. To
further illustrate this, we plot the IQM of the AUC as we vary the number of gradient steps. Figure[J]
shows that allocating more gradient steps to the feature updater steadily improves the IQM score,
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Figure 7: IQM performance at 1M timesteps. Aggregate AUC statistics for TD3 (upper) and SAC
(lower) at a 1M-step training budget using 15 seeds.

highlighting that SF? benefits from thorough feature optimization rather than relying on a particular
environment budget.

C.2.2 GENERALIZATION UNDER OBSERVATION NOISE

To assess whether SF2 has better generalization performance, we adopt the following setting. For
each algorithm, we train on the 1M-timestep on the AcrobotSwingup environment using six random
seeds (0-5), store the resulting checkpoints, and then evaluate the learned policies on perturbed
versions of the environments in which Gaussian noise is injected into the observation space. The
right panel of Figure Q]reports the AUC under different noise levels with 5 checkpoints with 1000
trajectories, evaluation with 95th percentile confidence interval using bootstrap with 5000 samples.
Because SF? achieves higher performance even before the perturbation, it also sustains better AUC
after the noise injection.
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Figure 8: Learning curves at 1M timesteps. Each plot shows the median and 95% ClIs (bootstrap,
5000 samples) over 15 seeds for TD3 (upper) and SAC (lower) with vanilla baselines, SF-based
baselines, SPR (Schwarzer et al [2020), and our SF? with transition (y = 0.0) and successor
(v = 0.99) horizons.

C.3 EXTENSION TO DISCRETE ACTION SPACES WITH IMAGE INPUT

We conducted additional experiments on the MinAtar benchmark from PGX (Koyamada et al.| [2023)
using PPO. Because our method constructs representations over state-action pairs (s, a), we replaced
the standard PPO state-value estimator V' with an action-value estimator Q(s, a) and trained it with
TD-\ target (A = 0.95). We also adopted separate actor and critic networks for baseline and our
methods. MinAtar provides image-like observations and a discrete action space; to make our approach
applicable in this setting, we evaluated two implementations: (i) linear interpolation along image
channels (shown as SF? w/o AE), and (ii) an autoencoder-based pipeline in which the generative
model is trained in the latent space (shown as SF> w AE). All experiments were run with discount
factor v = 0.9. Results are presented in Figure[I0] where we report both IQM (interquartile mean)
statistics and training curves. These results provide preliminary evidence that our method can operate
effectively in image-based environments with discrete actions.
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Figure 9: Left: Effect of training budget. IQM of the AUC as we vary the number of gradient steps
dedicated to representation learning, highlighting the gains from additional feature optimization.
Right: Generalization under Gaussian observation noise. Interquartile mean performance of policies
trained for 1M steps (six seeds) when evaluated on Gaussian-noise-perturbed observations. SF?
maintains the highest returns across both TD3 and SAC backbones.
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Figure 10: MinAtar results. Upper Learning curves for PPO variants on MinAtar environments
with 95th percentile confidence intervals (bootstrap using 5000 samples). Lower Aggregate IQM
performance. Interquartile mean AUC statistics across MinAtar environments comparing vanilla
PPO, SF? without autoencoder (w/o AE), and SF? with autoencoder (w AE).

D DETAILED ALGORITHMS

We demonstrate the detailed algorithm training process, combining SAC and TD3.
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Algorithm 2 TD3 with SF?

1: Initialize 0, ¢, v, ; target networks 0 < 0, ¢’ < ¢, v’ < b, ' « (; replay buffer B

2: for episode = 1 to M do

Initialize environment, get initial state so

4 for step=1to T do

5: a; = mo(st) + €, € ~ N (0, 0); execute a, observe ry, s¢y1; store (S¢, at, r¢, Se+1) in B
6: if B is large enough then
7.
8

for GG gradient steps do
Sample batch (s, a, r, s’) from B

9: y=r+ymini—1,2 Qg (¥'(s', 7o (s)))
10: bi < bi — @V, (Qg, (¥(s,a)) — y)*
11: P P — aypVy(Qy, (Y(s,a)) —y)*
12: (¥,¢) < (¥,¢) —asrVy,cLsr
13: if step mod d = 0 then
14: 0+ 0 —aVeQg, (Y(s,me(s)))

15: 0 10+(1—-7)0", ¢ + T+ (1—7)¢", ¢ + Tp+(1—7)9Y', ("  7e(+(1—7¢)¢
16: end if

17: end for

18: end if

19: end for

20: end for

Algorithm 3 SAC with SF?

1: Initialize 0, ¢, v; target networks 0’ < 0, ¢’ < ¢,v’ < ; replay buffer B
2: for episode = 1 to M do

3 Initialize environment, get initial state sg
4 for step=1to 7 do

5: ar = m(st) + €, € ~ N(0, 0); execute at, observe 7, S¢41; store (8¢, ar, e, S¢41) in B
6: if BB is large enough then
7.
8
9

for GG gradient steps do
Sample batch (s, a, r, s') from B
: y = 7’—|—fymini:172 Qd);(d/(s',ﬂ*g/(s')))
10: ¢i = di — aQVes, (Qs, (V(s,a)) — y)?

1: P — aypVy(Qg, (Y(s,a) —y)?

12: (¥,€) < (¥,¢) — asrVy,cLsr

13: if step mod d = 0 then

14: 00— a=VoQs, (¥(s,m9(s)))

15: 0 —70+(1-7)0, ¢ + 7o+(1—7)¢', " < 7o+ (1—7)Y', " + 7eC+(1—7¢)
16: end if

17: end for

18: end if

19: end for

20: end for
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E NETWORK ARCHITECTURE AND HYPERPARAMETERS

E.1 DEEPMIND CONTROL SUITE IN SECTION [4]

Parameter

Value

Network Architecture

Hidden Layer Sizes for Q and
policy

(512,512, 512)

Q-Network Layer Normaliza-  True

tion

Policy Network Layer Normal-  True
ization

Feature Size 512

Zeta Network Hidden Layer (512, 512)
Sizes

Embedding Size 64
Activation Function ReLU

Kernel Initializer

LeCun Uniform

Training Parameters

Number of Timesteps

Number of Evaluations

SM: CartpoleBalanceSparse, Cart-
poleSwingupSparse, FishSwim; 10M: Acrobot,
Hopper, CheetahRun, PendulumSwingup

100

Reward Scaling 1.0
Max Episode Length 1000
Normalize Observations True
Action Repeat 1 (4 for PendulumSwingUp)
Learning Rate le-3
Number of Environments 128
Batch Size 512
Gradient Updates per Step 8
Max Replay Size 4,194,304 (1048576 * 4)
Min Replay Size 8192
Discounting Factor 0.99
Policy Delay 1
Noise Clip 0.3
Smoothing Noise 0.2
Exploration Noise 0.2
Optimizer Parameters

Alpha Optimizer Learning Rate 3e-4
Policy Optimizer Learning Rate le-4
Q-Network Optimizer Learning le-4
Rate

Psi-Zeta Optimizer Learning le-4
Rate

Method-Specific Parameters

TD3/SAC Gamma for Succes-  0.99
sor

TD3/SAC Tau Zeta 0.005

TD3/SAC Denoising Steps

2 Function Evaluations

Table 1: Network and Training Parameters

22



Under review as a conference paper at ICLR 2026

E.2 Two GAUSSIAN EXAMPLE IN SECTION[A.2]

Parameter Value

Distribution Parameters

First Gaussian Mean (11) -2.0
Second Gaussian Mean (u2) 2.0
First Gaussian Std (o1) 0.3
Second Gaussian Std (o2) 0.7
Mixture Probability 0.01
Network Architecture

Hidden Dimension 256
Activation Function ReLU

Training Parameters

Number of Steps 1500
Batch Size 32
Learning Rate le-3
Evaluation Interval 200
Logging Interval 100
EMA Decay Rate 0.995
Evaluation Parameters

Sample Size for Evaluation 4000
Number of Integration Steps 100

Table 2: Two Gaussian Example Hyperparameters

F THE USE OF LLMSs

The authors used LLMs to polish the language and improve readability. All Al-generated content
was thoroughly reviewed and revised by the authors, who take full responsibility for the final content.

G SCHEMATIC VISUALIZATION OF SF?

P
(s,a) P(s,a) € Rd]—{u.g(s’,k,sﬁ a) = ¢(s', k) T(s, a)]—){ODE: dlikk = ug(w, k, s,a)HSamples from successor measure }LW("(S‘,{L)J
dk

(s’ k) € Réxdim(S)

Figure 11: Schematic visualization of how ¢, ¢, and u interact. (s, a) encodes the time-invariant
flow representation of the current state—action pair. (i (s’) provides a time-varying projection over
future states s’. Their inner product defines the vector field u(s’, k, s, a), which describes how
future-state probability mass evolves in the flow-matching objective.

H EXPERIMENTS WITH CRL AND FLOW-BASED POLICY
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Training Reward Curves
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Figure 12: Return curve on Ant environment with Figure 13: Return curve on CheetahRun envi-
CRL (Eysenbach et al.| 2022) and CRL with SF?> ronment with FPO (McAllister et al} [2025) with
based on JaxGCRL. (Bortkiewicz et al.l 2025)(5 Q(\) (Peng & Williams| |1994) and FPO with
seeds) Q(X) and SF=. (5 seeds)
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