
1

Optimal detection of the feature matching map in
presence of noise and outliers

Anonymous Author(s)
Affiliation
Address
email

Abstract

We consider the problem of finding the matching map between two sets of d-2

dimensional vectors from noisy observations, where the second set contains outliers.3

The matching map is then an injection, which can be consistently estimated only4

if the vectors of the second set are well separated. The main result shows that,5

in the high-dimensional setting, a detection region of unknown injection may be6

characterized by the sets of vectors for which the inlier-inlier distance is of order7

at least d1/4 and the inlier-outlier distance is of order at least d1/2. These rates8

are achieved using the estimated matching minimizing the sum of logarithms of9

distances between matched pairs of points. We also prove lower bounds establishing10

optimality of these rates. Finally, we report the results of numerical experiments on11

both synthetic and real world data that illustrate our theoretical results and provide12

further insight into the properties of the estimators studied in this work.13

1 Introduction14

Finding the best match between two clouds of points is a problem encountered in many real problems.15

In computer vision, one can look for correspondences between two sets of local descriptors extracted16

from two images. In text analysis, one can be interested in matching vector representations of the17

words of two similar texts, potentially in two different languages. The goal of the present work is to18

gain theoretical understanding of the statistical limits of the matching problem.19

In the sequel, we use the notation [n] = {1, . . . , n} for any integer n, and define ‖ · ‖ as the Euclidean20

norm in Rd. Assume that two independent sequences X = (Xi; i ∈ [n]) and Y = (Yi; i ∈ [n]) of21

independent vectors are generated such that Xi and Yi are drawn from the same distribution Pi on Rd,22

for every i ∈ [n]. The statistician observes the sequenceX and a shuffled versionX# of the sequence23

Y . More precisely,X# is such that X#
i = Yπ∗(i) for some unobserved permutation π∗. The goal of24

matching is to estimate the permutation π∗ from data (X,X#). In the case of Gaussian distributions25

Pi, this problem has been studied in (Collier and Dalalyan, 2013, 2016). Clearly, consistent estimation26

of the matching map π∗ is impossible if there are two data generating distributions Pi and Pj that are27

very close. In (Collier and Dalalyan, 2013, 2016), a precise quantification of the separation between28

these distributions is given that enables consistent estimation of π∗. Furthermore, it is shown that the29

permutation estimator minimizing the sum of logarithms of pairwise distances between the elements30

ofX and the elements of the shuffled versionX# is an optimal estimator of π∗.31

In this paper, we extend the model studied in (Collier and Dalalyan, 2016) to the case when the setX#
32

is contaminated by outliers. The number of outliers is supposed to be known and is equal to m− n,33

where n = |X| and m = |X#| are the sizes of considered two sequences, however the indices of the34
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Without outliers With outliers
(Collier and Dalalyan, 2016) this paper

known σ# or
all equal σ#s

LSNS is optimal
κ̄ & (d log n)1/4

LSNS is optimal [Thm. 1]
κ̄in-in ∧ κ̄in-out & (d log(nm))1/4

unknown σ#

σmax/σmin ≤ C
unknown σ#

arbitrary

LSL is optimal

κ̄ & (d log n)1/4

LSL is optimal [Thm. 4]
κ̄in-in & (d log(nm))1/4 & κ̄in-out & d1/2

LSL is optimal [Thm. 2, 3]
κ̄in-in ∧ κ̄in-out & d1/2

Table 1: A brief overview of the contributions in the high-dimensional regime d ≥ c log n. The table
provides the condition on the normalized inlier-inlier distance κ̄in-in and inlier-outlier distance κ̄in-out,
making it possible to consistently detect the matching map between two sets of d-dimensional vectors.
LSL and LSNS refer to least sum of logarithms and least sum of normalized squares, respectively.

outliers are unknown. All the distributions are assumed in this paper to be spherical Gaussian, although35

all the probabilistic tools used in the proofs have their sub-Gaussian counterparts. Thus, we consider36

that two spherical Gaussian distributions 1 P1 = Nd(µ1, σ
2
1Id) and P2 = Nd(µ2, σ

2
2Id) are well37

separated if the “distance to noise ratio” κ(P1, P2) = ‖µ1 − µ2‖/
√
σ2

1 + σ2
2 is large. Main findings38

of (Collier and Dalalyan, 2016), in terms of smallest separation distance κ̄ = mini 6=j κ(Pi, Pj) are39

summarized in the second columns of Table 1. Likewise, the last column of the table provides40

a summary of the contributions of the present paper in terms of κ̄in-in = mini6=j κ(Pi, Pj) and41

κ̄in-out = mini,j κ(Pi, Qj), where Q1, . . . , Qm−n are the distributions of the outliers.42

An unexpected finding of this work is that the “degree” of heteroscedasticity of the model has a strong43

impact on the separation distances and the detection regions (sets of values of (κ̄in-in, κ̄in-out) for which44

it is possible to detect the feature map π∗). This is in sharp contrast with the outlier-free case, where45

consistent estimation requires κ̄ to be at least of order (d log n)1/4 irrespective from the behaviour46

of variances of Pi. We prove in this work that in the high dimensional regime d ≥ c log n, which is47

arguably more appealing than the low dimensional regime d ≤ c log n, the following statements are48

true:49

• If there is no heteroscedasticity, i.e., when all the variances are equal, consistent estimation50

of π∗ is possible if and only if κ̄ = κ̄in-in ∧ κ̄in-out is at least of order (d log(nm))1/4. This is51

the same rate as in the outlier-free case.52

• If the heteroscedasticity is mild, i.e., all the variances are of the same order, the condition53

κ̄in-in & (d log(nm))1/4 is the same as in the previous item, but the stronger condition54

κ̄in-out & d1/2 is needed for the inlier-outlier separation distance.55

• Finally, in the general heteroscedastic setting both κ̄in-in and κ̄in-out should be at least of56

order d1/2. Furthermore, in all these cases consistent estimation is performed by the same57

estimator: the Least Sum of Logarithms (LSL).58

Note also that the empirical evaluation done in this paper shows that LSL is interesting not only from59

the theoretical but also from the practical point of view.60

Agenda Section 2 describes the framework of the vector matching problem and introduces the ter-61

minology used throughout this paper. Precise statements of the main theoretical results are gathered in62

Section 3. The prior work is briefly discussed in Section 4. Section 5 contains numerical experiments63

carried out both for synthetic and real data. A brief summary and some concluding remarks are64

presented in Section 6. Proofs of all theoretical claims are deferred to the supplemental material.65

2 Problem Formulation66

We begin with formalizing the problem of matching two sequences of feature vectors (X1, . . . , Xn)67

and (X#
1 , . . . , X

#
m) with different sizes n and m such that m ≥ n ≥ 2. In what follows, we assume68

1We use the notation Id for the d× d identity matrix
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that the observed feature vectors are randomly generated from the model69 {
Xi = θi + σiξi ,

X#
j = θ#j + σ#j ξ

#
j ,

i = 1, . . . , n and j = 1, . . . ,m. (1)

In this model, illustrated in Figure 1, it is assumed that70

• θ = (θ1, . . . , θn) and θ# = (θ#1 , . . . , θ
#
m) are two sequences of vectors from Rd, corre-71

sponding to the original features, which are unavailable,72

• σ = (σ1, . . . , σn)>,σ# = (σ#1 , . . . , σ
#
m)> are positive real numbers corresponding to the73

magnitudes of the noise contaminating each feature,74

• ξ1, . . . , ξn and ξ#1 , . . . , ξ
#
m are two independent sequences of i.i.d. random vectors drawn75

from the Gaussian distribution with zero mean and identity covariance matrix.76

The simplest special case of (1), considered in (Collier and Dalalyan, 2016), corresponds to the77

situation where a perfect matching exists between the two sequences θ and θ#. This means that78

m = n and, for some bijective mapping π∗ : [n]→ [n], θi = θ#π(i) for all i ∈ [n]. In the general case,79

both X = (X1, . . . , Xn) and X# = (X#
1 , . . . , X

#
m) may contain outliers, i.e. feature vectors that80

have no corresponding pair. In such a situation, it is merely assumed that there exists a set S ⊂ [n]81

and an injective mapping π∗ : S → [m] such that82

θi = θ#π∗(i) and σi = σ#π∗(i), ∀ i ∈ S. (2)

In this case we say that the vectors {Xi : i ∈ [n] \ S} and {X#
j : j ∈ [m] \ π∗(S)} are outliers. The83

ultimate goal is to estimate the feature matching map π∗.84

In this work we consider the case when S = [n] and m > n. This means that only the larger set of85

feature vectors, namelyX#, contains outliers. Let us also define the set Oπ∗ , [m] \ Im(π∗), which86

contains the indices of outliers and satisfies |Oπ∗ | = m− n. Naturally, the feature vectors contained87

inX , as well as those vectors fromX# that are not outliers, are called inliers.88

In this formulation, the data generating distribution is defined by the parameters θ#, σ# and π∗. We89

omit the set of parameters θ and σ, since they are automatically identified using π∗, θ# and σ# by90

the formula (θi, σi) = (θ#π∗(i), σ
#
π∗(i)) for i ∈ [n]. Since our goal is to match the feature vectors, we91

focus our attention on the problem of estimating the parameter π∗ only, considering θ# and σ# as92

nuisance parameters. In what follows, we denote by Pθ#,σ#,π∗ the probability distribution of the93

sequence (X1, . . . , Xn, X
#
1 , . . . , X

#
m) defined by (1) under condition (2) with S = [n].94

We are interested in designing estimators that have an expected error smaller than a prescribed level95

α under the weakest possible conditions on the nuisance parameter θ# and noise level σ#. Clearly,96

the problem of matching becomes more difficult with hardly distinguishable features. To quantify97

this phenomenon, we introduce the normalized separation distance κ̄in-in = κ̄in-in(θ#,σ#, π∗) and98

the normalized outlier separation distance κ̄in-out = κ̄in-out(θ
#,σ#, π∗), which measure the minimal99

distance-to-noise ratio between inliers and the minimal distance-to-noise ratio between inliers and100

outliers, respectively. The precise definitions read as101

κ̄in-in , min
i,j 6∈Oπ∗ ,
j 6=i

‖θ#i − θ#j ‖
(σ#i

2 + σ#j
2)1/2

, κ̄in-out , min
i 6∈Oπ∗ ,
j∈Oπ∗

‖θ#i − θ#j ‖
(σ#i

2 + σ#j
2)1/2

. (3)

Notice that κ̄in-in can be rewritten as102

κ̄in-in = min
i,j∈[n]
i 6=j

‖θi − θj‖
(σ2
i + σ2

j )1/2
.

Clearly, if κ̄in-in = 0 or, κ̄in-out = 0, there are two identical feature vectors in X#. In such a103

situation, assuming σi’s are all equal, the parameter π∗ is nonidentifiable, in the sense that there104

exist two different permutations π∗1 and π∗2 such that the distributions Pθ#,σ#,π∗
1

and Pθ#,σ#,π∗
2

105

coincide. Therefore, to ensure the existence of consistent estimators of π∗ it is necessary to impose106

the conditions κ̄in-in > 0 and κ̄in-out > 0. Moreover, good estimators are those consistently estimating107

π∗ even if either κ̄in-in or κ̄in-out are small. We are interested here in finding the detection boundary in108

terms of the order of magnitude of (κ̄in-in, κ̄in-out). More precisely, for any given α ∈ (0, 1) we wish109

to find a regionRαn,m,d in R2 such that:110
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Figure 1: Illustration of the considered framework described in (1). We wish to match a set of 7
patches extracted from the first image to the 9 patches from the second image. The picture on the left
shows the locations of patches as well as the true matching map π∗ (the yellow lines).

• There is an estimator π̂n,m of π∗ satisfying Pθ#,σ#,π∗(π̂ 6= π∗) ≤ α for every (θ#,σ#, π∗)111

lying in the detection region, i.e., for which (κ̄in-in, κ̄in-out) ∈ Rαn,m,d.112

• There is a constant C < 1 such that for any estimator π̄n,m of π∗, we can find a parameter value113

(θ#,σ#, π∗) in the region {(θ#,σ#, π∗) : (κ̄in-in, κ̄in-out) ∈ CRαn,m,d} such that π̄ fails to detect114

π∗ with a probability larger than α.115

Let us make two remarks. First, note that in the outlier-free case considered in (Collier and Dalalyan,116

2016), κ̄in-out is meaningless and, therefore, the detection region is one-dimensionalRαn,m,d. Thus,117

it is necessarily a half-line and is proven to be of the form κ̄in-in ≥ C(log n/α)1/2 ∨ (d log n/α)1/4
118

for some universal constant C. Second, the aforementioned definition of the detection region119

Rαn,m,d does not guarantee its uniqueness (even up to a scaling by a universal constant). This is120

in contrast with the outlier-free case. To overcome this difficulty, we look for Rαn,m,d of the form121

[tin-in,+∞)× [tin-out,+∞) with the smallest possible threshold tin-out for the normalized inlier-outlier122

distance κ̄in-out.123

3 Main theoretical results124

In this section, we have collected the main theoretical findings of the paper. When the noise is125

homoscedastic, i.e., when all σ’s are equal, the results obtained by Collier and Dalalyan (2016) in126

the outlier-free setting can be easily extended to the setting with outliers. Therefore, in the present127

paper, we focus on the heteroscedastic case. For the sake of clarity of exposition, we will present128

the results in the case of known variances σ,σ# prior to investigating the more interesting case of129

unknown variances.130

The detection regions we study below are based on the profile maximum likelihood estimator. The131

model presented in (1) has the parameter Ξ = (θ#,σ#, π), while the observations are the sequences132

of feature vectorsX andX#. The negative log-likelihood of this model is given by133

`n(Ξ; {X,X#}) =

n∑
i=1

(‖Xi − θ#π(i)‖
2
2

2σ#2
π(i)

+
1

2
log(σ#2

π(i))

)
+

m∑
j=1

(‖X#
j − θ#j ‖22
2σ#2

j

+
1

2
log(σ#2

j )

)
.

The profile negative log-likelihood is then defined as the minimum with respect to (θ#,σ#) of the134

log-likelihood `n(Ξ; {X,X#}).135

3.1 Warming up: known variances σ,σ#
136

One can check that the minimization with respect to θ# leads to the variance-dependent cost function137

`n(π,σ#; {X,X#}) =

n∑
i=1

‖Xi −X#
π(i)‖

2

σ2
i + σ#π(i)

2 +

n∑
i=1

1

2
log(σ#2

π(i)) +

m∑
j=1

1

2
log(σ#2

j ). (4)

When m = n and there is no outlier, the last two sums of the last display do not depend on π138

and, therefore, the maximum profile likelihood estimator of π∗ is obtained by the Least Sum of139
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Normalized Squares (LSNS) criterion140

π̂LSNS
n,m ∈ arg min

π

n∑
i=1

‖Xi −X#
π(i)‖

2

σ2
i + σ#π(i)

2 , (5)

where the minimum is over all injective mappings π : [n] → [m]. This, and the other estimators141

defined in this work, can be efficiently computed using suitable versions of the Hungarian algorithm142

(Kuhn, 1955, 2010; Munkres, 1957). As shows the next theorem, it turns out that even when m > n,143

the estimator π̂LSNS
n,m defined above leads to an optimal detection region.144

Theorem 1 (Upper bound for LSNS) Let α ∈ (0, 1) and condition (2) be fulfilled. If the separation145

distances κ̄in-in and κ̄in-out corresponding to (θ#,σ#, π∗) and defined in (3) satisfy the condition146

min{κ̄in-in, κ̄in-out} ≥ 4
{(
d log(4nm/α)

)1/4 ∨ (2 log(8nm/α)
)1/2}

(6)

then the LSNS estimator defined in (5) detects the true matching map π∗ with probability at least147

1− α, that is148

Pθ#,σ#,π∗(π̂LSNS
n,m = π∗) ≥ 1− α.

149

The similarity—both its statement and its proof— of this result is to its counterpart in the outlier-free150

setting might suggest that the presence of outliers does not make the problem any harder from a151

statistical point of view. However, this is not true in the more appealing setting of unknown variances.152

3.2 Detection of π∗ for unknown and arbitrary variances σ,σ#
153

The LSNS procedure analyzed in Theorem 1 exploits the values of known noise variances to normalize154

the squares of distances between vectors Xi and X#
π(i). Therefore, LSNS is inapplicable in the case155

of unknown noise variances. Instead, we consider the Least Sum of Logarithms (LSL) estimator156

π̂LSL
n,m , arg min

π:[n]→[m]

n∑
i=1

log ‖Xi −X#
π(i)‖

2, (7)

where the minimum is over all injective maps π : [n] → [m]. This estimator can be seen as the157

minimizer of a criterion defined as the minimum of the cost function from (4) with respect to σ#
158

under the constraint minj 6∈Im(π) σ
#
j ≥ σmin, for some fixed (but unknown) constant σmin > 0.159

To provide a quick overview of what follows, let us stick in the remaining of this paragraph to the160

case log(nm) = O(d) so that the right hand side of (6) is of order
(
d log(nm)

)
1/4. Recall that in the161

outlier-free case, the LSL estimator has been shown to perform as well as the LSNS while having the162

advantage of not requiring the knowledge of variances σ# (Collier and Dalalyan, 2016). Somewhat163

unexpectedly, the situation is significantly different in the presence of outliers. Indeed, the best we164

manage to prove in the presence of outliers is that the detection of the matching map by LSL is165

possible whenever min{κ̄in-in, κ̄in-out} ≥ C
√
d for some sufficiently large constant C. The precise166

statement being given in the next theorem, let us mention right away that the discrepancy between167

this rate
√
d and the rate

(
d log(nm)

)
1/4 in (6) is due to the inherent hardness of the setting and not168

merely an artefact of the proof. This will be made clear below.169

Theorem 2 (Upper bound for LSL) Let α ∈ (0, 1/2) and condition (2) be fulfilled. If the separa-170

tion distances κ̄in-in and κ̄in-out corresponding to (θ#,σ#, π∗) and defined by (3) satisfy171

min{κ̄in-in, κ̄in-out} ≥
√

2d+ 4
{(

2d log(4nm/α)
)1/4 ∨ (3 log(8nm/α

)1/2}
(8)

then the LSL estimator (7) detects the matching map π∗ with probability at least 1− α, that is172

Pθ#,σ#,π∗(π̂LSL
n,m = π∗) ≥ 1− α.

173

This result is disappointing since it requires the distance between different feature vectors to be larger174

than
√

2d in order to be able to consistently estimate the matching map π∗. As we show below,175

without any further condition (for instance, on the noise variances), this rate cannot be improved.176
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Furthermore, the rate
√
d is optimal not only for LSL but also for the larger class of so called distance177

based M -estimators.178

We will say that an estimator π̂n of π∗ is a distance based M -estimator, if for a sequence of non-179

decreasing functions ρi : R+ → R, i = 1, . . . , n, the following is correct180

π̂n ∈ arg min
π:[n]→[m]

n∑
i=1

ρi
(
‖Xi −X#

π(i)‖
)
,

where the minimum is over all injective mappings π : [n] → [m]. We denote byM the set of all181

distance based M -estimators. We show that there is indeed a setup where κ̄in-in ∧ κ̄in-out is as large as182

0.2
√
d but any estimator fromM fails to detect π∗ with probability at least 1/4. The next theorem183

formalizes the described result.184

Theorem 3 (Lower bound) Assume that m > n ≥ 4 and d ≥ 422 log(4n). There exists a triplet185

(σ#,θ#, π∗) such that κ̄in-in = κ̄in-out =
√
d/20 and186

inf
π̂∈M

Pθ#,σ#,π∗(π̂ 6= π∗) > 1/4. (9)

187 The proof of this theorem, postponed to the appendix, is constructive. This means that we exhibit188

a triplet (σ#,θ#, π∗) satisfying (9). Careful inspection shows that in the case d = O(log(nm))189

the same triplet satisfies κ̄in-in ∧ κ̄in-out �
√

log(nm) and (9) is still true. This implies that the190

order of magnitude of the right hand side of (8) is optimal both in the high-dimensional regime191

d ≥ 422 log(4n) and in the low-dimensional regime d < 422 log(4n). This shows the optimality of192

LSL among all estimators fromM. Note that the estimator π̂LSNS
n,m does not belong to the family of193

distance based M-estimators. Furthermore, in the low dimensional regime d = O(log(nm)), the194

separation rate of the LSL,
√

log(nm), is the same as that of the LSNS.195

In the next section we show that under some mild conditions on σ# it is indeed possible to obtain196

different rates for κ̄in-in and κ̄in-out, namely we show that if κ̄in-in & d1/4 and κ̄in-out & d1/2 then the197

LSL estimator detects correct matching with high probability.198

3.3 Detection of π∗ for unknown and mildly varying variances σ,σ#
199

The results of the last two theorems are disappointing, since they indicate that the features should200

be very different from one another for detection of the matching map to be possible. An interesting201

finding, presented below, is that strong constraint can be significantly alleviated in the context of mild202

heteroscedasticity. By mild heteroscedasticity we understand here the situation in which all variances203

σ#i are of the same order of magnitude.204

Theorem 4 (Upper bound under mild heteroscedasticity) Let rσ = maxi,j(σ
#
i /σ

#
j ) <∞. If the205

separation distances κ̄in-in and κ̄in-out defined in (3) satisfy206

κ̄in-in ≥ 2
(
4d log(4nm/α)

)1/4
+ 2
(
2 log(4nm/α)

)1/2
κ̄in-out ≥

√
2(rσ − 1)d+ 2

(
4r2
σd log(4nm/α)

)1/4
+ 2
(
2rσ log(4nm/α)

)1/2
,

then the LSL estimator (7) detects the matching map π∗ with probability at least 1− α, that is207

Pθ#,σ#,π∗(π̂LSL
n,m = π∗) ≥ 1− α.

208

Note that a lower bound similar to that of Theorem 3 can be proved in the case of mild heterescodestac-209

ity as well, showing that there is an example for which κ̄in-in is of order d1/4, κ̄in-out is of order d1/2
210

and any estimator fromM fails to detect π∗ with probability at least 1/4.211

We complete this section by summarizing the joint contribution of Theorems 1 to 4. To simplify this212

discussion, we consider two cases: high-dimensional case refers to d ≥ log(4nm/α) (presented in213

Table 1) and low-dimensional case refers to the condition d < log(4nm/α). In the high dimensional214

setting with arbitrary noise variances, the detection region for the LSL estimator is given by {κ̄in-in ∧215

κ̄in-out ≥ 15
√
d}, which is much worse than the detection region for LSNS, {κ̄in-in ∧ κ̄in-out ≥216

8(d log(4nm/α))1/4}, obtained in the known-variance scenario. Somewhat surprisingly, in such a217
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Figure 2: The performance of the methods (Greedy, LSS, LSL, LSNS) in the setup described in Exp.
1. Plots show the error rate (percentage of repetitions in which the estimated matching map differs
from the true one) as a function of separation distances. The left plot illustrates that LSS, LSL and
LSNS require much lower value of κ̄in-in in order to find the correct mapping. The left plot shows that
there is a clear improvement of the error when the inlier-inlier separation distance increases, while
the right plot shows that the error rate might not be made small by augmenting κ̄in-out only.
setting, even a strong assumption on the outliers, such as requiring them to be at least at a distance218

0.2
√
d of the inliers, is not enough for relaxing the assumption on the inlier-inlier separation distance.219

Finally, on a positive note, in the intermediate case of mildly varying variances, the detection region220

for the LSL estimator is of the form {κ̄in-in ≥ 7(d log(4nm/α))1/4; κ̄in-out ≥ 10
√
d}. This means221

that if the outliers are at a distance Ω(
√
d) of the inliers, then the LSL recovers the true matching222

under the same condition on κ̄in-in as in the outlier-free setting.223

4 Other related work224

Measuring the quality of the various statistical procedures of decision making by their minimal225

separation rates became the standard in hypotheses testing, see the seminal papers (Burnashev, 1979;226

Ingster, 1982) and the monographs (Ingster and Suslina, 2003; Juditsky and Nemirovski, 2020).227

Currently this approach is widely adopted in machine learning literature (Xing et al., 2020; Wolfer228

and Kontorovich, 2020; Blanchard et al., 2018; Ramdas et al., 2016; Wei et al., 2019; Collier, 2012).229

Beyond the classical setting of two hypotheses, it can also be applied to multiple hypotheses testing230

framework, for instance, variable selection (Ndaoud and Tsybakov, 2020; Azaïs and de Castro, 2020;231

Comminges and Dalalyan, 2012) or the matching problem considered here.232

On the other hand, feature matching is a well studied problem in computer vision. In recent years,233

a great deal of attention was devoted to the acceleration of greedy matching algorithms, based on234

approximate and fast methods of finding nearest neighbors (e.g. Jiang et al. (2016); Wang et al.235

(2018); Wang (2011); Harwood and Drummond (2016); Malkov and Yashunin (2020)). Another236

direction that helps to improve feature matching problem is using alternative local descriptors (Rublee237

et al., 2011; Chen et al., 2010; Calonder et al., 2010) for given keypoints. Naturally, the question of238

how to chose keypoints arises, which is addressed, for instance, in (Bai et al., 2020; Tian et al., 2020).239

For more complete overview of the field we refer to (Ma et al., 2021) and references therein.240

Finally, permutation estimation and related problems have been recently investigated in different241

contexts such as statistical seriation (Flammarion et al., 2019), noisy sorting (Mao et al., 2018),242

regression with shuffled data (Pananjady et al., 2017; Slawski and Ben-David, 2019), isotonic243

regression and matrices (Mao et al., 2020; Pananjady and Samworth, 2020; Ma et al., 2020), crowd244

labeling (Shah et al., 2021), and recovery of general discrete structure (Gao and Zhang, 2019).245

5 Numerical results246

In this section, we report the results of some numerical experiments carried out on simulated and real247

data. We applied aforementioned methods LSNS and LSL and computed different measures of their248

performance. To get a more complete picture, we included in this study the Least Sum of Squeres249

(LSS) estimator and the greedy estimator. LSS is an unnormalized version of LSNS, given by250

π̂LSS
n,m ∈ arg min

π

n∑
i=1

‖Xi −X#
π(i)‖

2. (10)
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It coincides with LSNS in the case of homoscedastaic noise. The greedy estimator is obtained251

by sequentially matching each vector from X to the nearest vector from X#. Experiments were252

implemented using python or matlab. For solving linear sum assignment problems such as (7) or (10),253

the generalized and improved versions of the Hungarian algorithm were used (Kuhn, 1955, 2010;254

Munkres, 1957; Duff and Koster, 2001), implemented in SciPy library (Virtanen et al., 2020).255

Experiment 1: Synthetic data with random features We first randomly generated π∗, θ# and256

σ# as follows. We randomly sampled from uniform distribution on [0, 2] independent variables τij ,257

i ∈ [m], j ∈ [d]. Then, (θ#i )j are independently sampled from the Gaussian distribution with 0 mean258

and variance τij . Additionally, for every θ#i ∈ θ
# such that i /∈ Jπ∗ (θ#i is an outlier), we incremented259

every coordinate of θ#i by i. Entries of σ# were sampled from the uniform distribution over [0.5, 2].260

SequencesX andX# were generated according to Section 2 with π∗(i) = i for i ∈ [n]. We applied261

to this data the following matching algorithms: Greedy, LSS, LSNS and LSL.262

We chose n = 100, m = 130 and d = 50, and generated N = 50 datasets according to the foregoing263

process. For each dataset, we computed the 0-1 error of the considered estimators and the values264

of (κ̄in-in, κ̄in-out). We plotted in the left (resp., the right) panel of Figure 2 the error averaged over265

all datasets with a given value of κ̄in-in (resp. κ̄in-out). In this specific example, we see that the error266

decreases fast with κ̄in-in, while there is no monotonicity of the error rate as a function of κ̄in-out.267

Experiment 2: Synthetic data with deterministic features The second experiment is conducted268

on data generated by features θ# and variances σ# inspired by the example constructed in the proof269

of Theorem 3. More precisely, for some real numbers a and b representing, respectively, the scale of270

inlier-inlier distance κ̄in-in and inlier-outlier distance κ̄in-out, we set θ#k = [ka, 0, . . . , 0]> for k ∈ [n]271

and θ#n+k = [na+ kb, 0, . . . , 0]>. We also used decreasing variances σ#k = 1/k3/2 for k ∈ [m] and272

true identity mapping π∗(k) = k for k ∈ [n]. We chose n = 100, m = 120 and dimension d varying273

in the set {10, 20, 40}. For each pair of values (a, b) in a suitably chosen grid, we repeated nrep = 400274

times the experiment that consisted in generating data according to (1) and computing estimators275

π̂LSS
n,m and π̂LSL

n,m defined respectively by (10) and (7). We then computed, for each pair (a, b) and for276

each estimator LSS and LSL, the percentage of successful detection among nrep repetitions.277

The obtained detection regions are depicted in Figure 3 in the form of heatmaps. This visualisation278

allows us to grasp the forms of the detection regions for the specific choice of parameters considered279

in this example. The first observation is that LSL is clearly superior to LSS for all the considered280

values of the dimension. Second, we clearly see the deterioration of the detection region when the281

dimension d becomes larger. Third, the values of κ̄in-out used in the plots are at least one order of282

magnitude larger than those of κ̄in-in. This is in line with the claim of Theorem 4. We also observe in283

these pictures that successful detection occurs when κ̄in-out is larger than some threshold even if κ̄in-in284

is small. This must be a nice feature of LSL and LSS in this specific example, which unfortunately285

does not generalize to other examples as shown by our theoretical results.286

Experiment 3: Real data example This experiment is conducted on the IMC-PT 2020 dataset287

from Jin et al. (2020) that consists of images of 16 different scenes with corresponding 3D point-288

clouds of landmarks, which are used to obtain (pseudo) ground-truth local keypoint matchings. For a289

given scene, we sampled 1000 pairs of distinct images of the same landmark with different camera290

locations, angles, weather conditions etc. For each image pair we generated 2D keypoints from291

original set of 3D points (note that the same 3D point appears in both of the images, so we have292

ground truth keypoint matching between 2 images). Subsequently, we computed SIFT descriptors293

(Lowe, 2004) for every keypoint in images using Python OpenCV interface (Itseez, 2015). Some294

pairs of images being more challenging than others, we split the dataset into two sets of image pairs in295

order to gain more understanding on the behaviour of the algorithms. The challenging pairs are those296

for which the OpenCV default matching algorithm has accuracy less than 0.5. Then, for every image297

pair, we fixed randomly chosen 100 keypoints in the first image (and corresponding keypoints in the298

second image) and added outliers to the second image from the remaining keypoints. The outlier299

rate is chosen to be between 0% to 70%. Finally, 3 descriptor matching algorithms were applied300

(OpenCV default matching algorithm, LSS and LSL). Note that σ and σ# from (1) are unknown,301

hence LSNS is not applicable. One can consider using the estimates σ̂ and σ̂# instead of σ and σ#
302

in (5), but this is beyond the scope of this paper.. Further details on this experiment along with some303

additional results are deferred to the supplemental material (Appendix D).304
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Figure 3: Heatmaps of the error rate of the LSL (top row) and the LSS (bottom row) estimators in
Experiment 2. We chose n = 100, m = 120 and d ∈ {10, 20, 40} from left to right. The parameter
a representing the scale of κ̄in-in and corresponding to y-axis varies from 0.02 to 0.08, whereas b
representing the scale of κ̄in-out and corresponding to x-axis varies from 0.3 to 10. Dark colour means
that probability of successful detection is close to 1 (error rate close to zero).

Figure 4: The estimation accuracy measured in the Hamming loss of the estimated matching in Exp. 3
for different values of the outlier rate, (m−n)/n, varying from 0% to 70%. The medians of estimation
accuracy both for challenging pairs (right plot) and simple pairs (left plot) of images from Temple
Nara scene was computed using OpenCV, LSS and LSL matchers. The green region represents the
interquartile range (lower and upper bounds being 25% and 75% percentiles, respectively).

The median estimation accuracy measured in the Hamming loss—for the image pairs from Temple305

Nara Japan scene—is plotted in Figure 4. Similar results for other scenes are presented in the306

supplemental material. The error bars with borderlines corresponding to 75% and 25% percentiles307

are also displayed. The first observation is that LSS and LSL outperform the OpenCV matcher in308

terms of Hamming distance. Second, the task of feature matching becomes harder with the growth309

of outlier rate, with a deterioration that seems to be linear in the rate of outliers. Notice that in this310

experiment the outliers can be very similar to the inliers and the separation condition imposed on311

κ̄in-out, of Theorems 2 and 4, is violated. This implies that the larger the outlier rate the harder it is to312

find the correct match, causing a larger number of mistakes.313

6 Conclusion314

We have investigated the detection regions in the problem of estimation of the matching map between315

two sequences of noisy vectors. We have shown that the presence of outliers in one of the two316

sequences has a strong negative impact on the detection region. Interestingly, this negative impact is317

mitigated in the regime of mild heteroscedasticity, i.e., when noise variances are of the same order318

of magnitude. In the extremely favorable case of homoscedastic noise (all variances are equal), the319

presence of outliers does not make the problem any harder, provided that the outliers are at least as320

different from inliers as two distinct inliers are different one another. Precise forms of the detection321

region in these different cases can be found in Table 1. The results of the numerical experiments322

conducted on both synthetic and real data confirm our findings and, furthermore, show the good323

behaviour of the LSL estimator in terms of its robustness to noise and to outliers, not only in the324

problem of detection but also in the problem of estimation. In the future, we plan to investigate the325

case when both sequences contain outliers and to obtain theoretical guarantees on the estimation error326

measured by the Hamming distance.327
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