
Faster In-Context Learning for LLMs via N-Gram Trie Speculative
Decoding

Anonymous ACL submission

Abstract

As a crucial method in prompt engineering,001
In-Context Learning (ICL) enhances the gen-002
eralization and knowledge utilization capabili-003
ties of Large Language Models (LLMs) (Dong004
et al., 2024). However, the lengthy retrieved005
contexts and limited token throughput in au-006
toregressive models significantly constrain rea-007
soning speed. To address this challenge, we008
propose N-Gram Trie Speculative Decoding, a009
novel approach that leverages the overlap be-010
tween context and model output. This method011
constructs an n-gram trie from the context012
to generate drafts, accelerating token genera-013
tion for LLMs. We evaluate our approach on014
summarization, Retrieval-Augmented Genera-015
tion (RAG), and context-based Question An-016
swering (QA) tasks. Experimental results on017
Vicuna-7B, Llama2-7B-Chat, and Llama3-8B-018
Instruct demonstrate substantial speed improve-019
ments without compromising accuracy. Com-020
pared with various strong baselines, our method021
achieves the highest mean speedup, showcasing022
its effectiveness and efficiency.023

1 Introduction024

In-Context Learning (ICL) has emerged as a trans-025

formative paradigm in the field of prompt engineer-026

ing, fundamentally reshaping how Large Language027

Models (LLMs) adapt to and perform on diverse028

tasks. By leveraging context information provided029

within the input prompt, ICL enables LLMs to gen-030

eralize across tasks and domains without requiring031

task-specific fine-tuning. This capability has pro-032

found implications for the scalability and versatility033

of LLMs, allowing them to excel in various appli-034

cations, such as context question answering, sum-035

marization and Retrieval-Augmented Generation036

(RAG). The ability to dynamically incorporate con-037

textual knowledge has made ICL a cornerstone of038

modern LLM deployment, driving advancements in039

both academic research and industrial applications.040

Despite its remarkable success, ICL faces a sig- 041

nificant challenge: the extensive length of retrieved 042

contexts and the inherent limitations of autoregres- 043

sive token generation will result in slow reasoning 044

speeds. As the complexity and length of context 045

information increase, the computational overhead 046

grows substantially, leading to delays in token gen- 047

eration and reduced efficiency. This bottleneck is 048

particularly problematic in real-time applications, 049

such as interactive systems or large-scale retrieval- 050

augmented tasks, where speed is critical. Address- 051

ing this issue is essential to unlocking the full po- 052

tential of ICL and enabling its broader adoption in 053

time-sensitive scenarios. 054

Speculative decoding (Leviathan et al., 2023; 055

Cai et al., 2024; Li et al., 2024; He et al., 2023; 056

Luo et al., 2024) can effectively accelerate model 057

inference. This approach employs a smaller, faster 058

draft model to predict potential token sequences, 059

which are then verified by the larger target model 060

in parallel. By reducing the number of sequen- 061

tial decoding steps required by the target model, 062

speculative decoding achieves significant speedups 063

while maintaining output quality. However, this 064

method often requires additional computational re- 065

sources and careful tuning to balance the trade-off 066

between speed and accuracy. REST (He et al., 067

2023) employs an external corpus to generate draft 068

tokens, where the output tokens serve as prefixes 069

to search for matching suffixes within the corpus. 070

However, the excessive reuse of nodes and the 071

global corpus tire reduce the acceptance rate of 072

draft tokens. Lookahead Decoding (Fu et al., 2024) 073

utilizes n-gram token histories as drafts for ver- 074

ification. While this method shows promise, its 075

utility is primarily confined to scenarios where out- 076

put tokens exhibit repetitive patterns, restricting its 077

applicability in more diverse or dynamic contexts. 078

We propose N-Gram-Trie, a novel approach de- 079

signed to accelerate token generation by exploiting 080

the overlap between the context and the model’s 081

1

output. Then a trie is constructed by using the set082

of prefixes and suffixes. Build a trie from the pre-083

fix and suffix sets. In the model prediction stage,084

the draft is constructed through the nodes in the085

trie, which significantly improves reasoning speed086

without compromising output quality.087

We evaluate our approach on summariza-088

tion (Nallapati et al., 2016), Retrieval-Augmented089

Generation (Xia et al., 2024; Joshi et al., 2017)090

and context Question Answering (context QA) (Ka-091

malloo et al., 2023) tasks. Multiple base models092

including Vicuna-7B (Zheng et al., 2023), Llama2-093

7B-Chat (Touvron et al., 2023) and Llama3-8B-094

Instruct (AI@Meta, 2024) are selected to be tested.095

Experiment results show that our method exhibits096

remarkable speedups on multiple models (mean097

2.27x on Vicuna-7B, 2.10x on Llama2-7B-Chat098

and 1.56x on Llama3-8B-Instruct). Through the ex-099

periment comparison of the inference effect of the100

model, we prove that our method can accelerate the101

model in the process of context prompt inference102

without affecting the inference ability of the base103

model. We also conduct many further experiments104

around the speedup effect. This work not only ad-105

dresses a critical limitation of ICL but also provide106

a effective method for more efficient and scalable107

deployment of LLMs in real-world applications.108

The contribution of this paper can be summa-109

rized as follows:110

• We propose an n-gram trie speculative decod-111

ing method. It can effectively use the potential112

overlap of the context and output tokens to ac-113

celerate model inference speed.114

• We design a novel n-gram trie construction115

method. The trie constructed by n-gram sam-116

pling can effectively improve the acceptance117

rate of the draft.118

• We conduct extensive experiments on several119

models. It shows our excellent acceleration120

effect on summarization, RAG and context121

QA tasks.122

2 Related work123

2.1 In-Context Learning124

In-Context Learning (ICL) is an approach which125

makes LLMs perform better on specific-domain126

task. By giving only a few examples or hints, LLMs127

can find the underlying patterns of the context and128

answer the question correctly. (Dong et al., 2024).129

There are many approaches that can be applied to 130

ICL. (Gu et al., 2023) extract the context by pre- 131

training in a large corpus that contains long context. 132

(Wei et al., 2023) propose symbol tuning, which 133

uses tagged symbols as fine-tuned data for LLMs 134

to study. (Wei et al., 2022) leverages instruction 135

tuning in LLMs to enhance the zero-shot learning 136

in LLMs. 137

Also, there are also large variety of downstream 138

applications in the In Context learning. Prompt 139

engineering is one of them. We can write an ac- 140

curate prompt to make LLMs easier to understand 141

the downstream tasks and give a satisfying answer. 142

Prompt engineering are widely used in downstream 143

tasks, such as Context QA, RAG, Few-shot Learn- 144

ing and Summary. Context QA (Kamalloo et al., 145

2023) tasks need LLMs to read the context and find 146

the potential answers. Concatenating the context 147

and question as prompts, LLMs can read them and 148

give an answer in a efficient way. Like Context QA, 149

RAG (Li et al., 2023) also needs retrieved context 150

to carry out user’s query. In Few-shot Learning, 151

some examples about downstream tasks are usu- 152

ally given. LLMs can study the potential patterns 153

between them and complete the task based on the 154

given pattern. Summarization also needs the ability 155

of context-reading. 156

2.2 Speculative Decoding 157

Speculative decoding (Leviathan et al., 2023) has 158

been first proposed to ease the problem of through- 159

put in LLM generation. Using a small draft model 160

to explore the token way, target LLM just need to 161

verify in one step without calculating repeatedly 162

for getting these tokens. 163

Now, many speculative methods are based on 164

the guess and verify approach. For example, 165

Medusa (Cai et al., 2024) uses some trained 166

Medusa head to predict the next n-tokens, but the 167

prediction is not continuous and it degrades ac- 168

cept rate. Based on Medusa (Cai et al., 2024), 169

Hydra (Ankner et al., 2024) take the continuation 170

of the draft into consideration. The draft head can 171

predict tokens with However, both Medusa and 172

Hydra need extra training cost for draft models. 173

Also, some works focus on the reusing of the for- 174

mer tokens or the external corpus. For instance, 175

REST (He et al., 2023) uses an external corpus as 176

draft. The output tokens is used as prefix to search 177

for the suffix in the corpus. Nonetheless REST 178

simply store all the corpus into suffix arrays offline. 179

When inference starts, REST will search for the 180

2

suffix in the array corpus. Directly search from the181

corpus has disadvantage because LLMs can’t see182

the given arrays during output stage. The genera-183

tion is independent from the external corpus. Also,184

the smaller corpus decreases accept rate while the185

bigger corpus makes REST harder to find the right186

suffix. Lookahead decoding (Fu et al., 2024) uses187

n-gram token history as draft to verify. But it is188

useful only when the output token is repeatedly189

generated. PLD/LLMA (Yang et al., 2023) (Sax-190

ena, 2023) also try to use the overlap between the191

input and output, but they simply copy certain num-192

bers of suffixes without matching all the potential193

suffixes in the prompt. Both of them don’t fully194

make use of the given prompt.195

2.3 Tree Attention196

Tree attention (Miao et al., 2023) is proposed to197

solve the problem how a tree-structured token se-198

quences can be decoding in parallel. By using an199

attention mask, the drafts can be easily integrated200

in one mask in inference. In the attention mask,201

Now tree attention is widely used in multi-draft202

verification.203

SpecInfer (Miao et al., 2024) uses some small204

draft models to independently predict the potential205

tokens sequences, the tokens will then be clipped206

and put in the attention masks. Medusa (Cai et al.,207

2024) uses some positional draft heads to predict208

the top-k tokens in the next i place. It uses atten-209

tion mask to integrate the top-k tokens into token210

sequences for prediction. REST (He et al., 2023)211

retrieved many tokens in a big suffix-array datas-212

tore. After clipping the tokens, He et al. also use213

tree attention mask to make a trie tree for faster214

decoding.215

3 Proposed Method216

The structure of N-Gram-Trie is shown in Figure217

1. In the in-context prompt tasks, we first build an218

n-gram trie based on the context. The tree records219

the dependencies between preceding and following220

tokens of context. Subsequently, in the process of221

model inference, the draft of model inference is222

constructed by speculative decoding through the223

dependencies of n-gram trie, which can accelerate224

model inference speed.225

3.1 N-Gram Trie Construction226

Trie is a tree structure used to store and retrieve227

strings efficiently by organizing tokens in a prefix-228

based hierarchy. Its key advantage is faster suffix229

Algorithm 1 Trie Generation
Input: T : Token list

D: Collected n-gram sample results
Lp: Maximum prefix length

Output: τ
1: Init root as τ ▷ an empty root node
2: for < Pi, Si, f >∈ D do
3: for j ∈ (0, Lp) do
4: subprefix← Pi[j : Lp]
5: key ← subprefix+ Si

6: node← root
7: for t ∈ key do
8: for childinnode.children do
9: if t = child.token then

10: node← child
11: node.frequency.update(f)
12: end if
13: end for
14: if t /∈ node.children then
15: new ← Node(t, f)
16: node.children.insert(new)
17: node← new
18: end if
19: end for
20: end for
21: end for
22: return τ

finding, which makes it suitable for speculative de- 230

coding (He et al., 2023). However, traditional Trie 231

relies on massive documents to build for higher ac- 232

ceptance rate. It is difficult to construct an effective 233

retrieval scheme in the case of a small amount of 234

corpus. To this end, we design n-gram trie, sam- 235

pled by n-gram sliding window, and then used the 236

sampling results to build the trie. This method can 237

effectively improve the efficiency and accuracy of 238

suffix retrieval by constructing additional depen- 239

dency chains. 240

N-Gram Sampling Specifically, for the context 241

token list T = {t1, t2, ..., tl}, we set a sliding win- 242

dow of n-grams for sampling. The sampling length 243

is n. The sliding window moves token by token 244

from the beginning to the end over T . In the slid- 245

ing window workspace, we set a maximum prefix 246

length Lp to split tokens in the window. The split 247

part will be the prefix part and the suffix part of the 248

segment tokens. The prefix Pi and suffix Si can be 249

3

of

What is the capital
of Germany?

Context

The capital of Gemany is the city state of Berlin. It is
the seat of the President of Germany ...

Query with Context Prompt

Gemany is thecapital of

The capital of

Sliding Window
Anwer the following question based on the
context:
Context:
The capital of Gemany is the city state of
Berlin. It is the seat of the President of
Germany ...
Question:
What is the capital of Germany?

prefix

suffix

root

The

capi-
tal

of

Gem
-any

capi-
tal

of

Gem-
any

is

of

Gem-
any

is

the

Berl-
in the

.

...

It

Pres-
ident

of

...

N-Gram Trie

LLM: The

Trie: The capital of Germany is the city

LLM: The capital of Germany is Berlin.

The capital of
Germany is Berlin.

Figure 1: The structure of N-Gram-Trie. We sample through a sliding window of n-grams and get the prefixes and
suffixes from the documents in that window. A trie can be constructed based on the set of prefixes obtained by
window sliding sampling. In the process of model inference, the trie is used for speculative decoding to quickly
predict the model output. The n in the n-gram sampling in the example of the figure is 6 and the maximum prefix
length Lp is 3.

expressed as follows:250

Pi = {ti, ti+1, ..., ti+Lp−1}
Si = {ti+Lp , ti+Lp+1, ..., ti+n−1}

}
i ∈ [1, l],

(1)251

where i denotes the start index of the window. We252

establish the dependency between the prefix and253

suffix for each tokens group, and obtain the depen-254

dency set D by sliding window sampling. D can255

be defined in the following form:256

D = {< Pi, Si, f > |i ∈ [1, l]}, (2)257

where f is the frequency of dependency < Pi, Si >258

during the sampling process.259

Trie Construction We build trie τ based on the260

sample results D and the construction process is as261

shown in Algorithm 1.262

Specifically, for the prefix Pi in the sample set D,263

we traverse and split it according to the maximum264

prefix length to obtain its sub-prefixes SPi. The265

process can be defined as:266

SPi = {SPi,j |j ∈ (0, Lp)}
= {Pi[j : Lp]|j ∈ (0, Lp)}, i ∈ [1, l],

(3)267

where j ∈ (0, Lp) denotes the cut length of the268

sub-prefix. By constructing additional prefix nodes,269

the corresponding prefix can be effectively found270

according to the model output in the retrieval pro-271

cess.272

We take the dependency of each subprefix and273

its suffix as the basic unit for trie insertion. During274

insertion, the token t is used as the basic units275

of the tree nodes. We iterate from the root node, 276

sharing a node for the same token. If there is no 277

corresponding token in the current nodes, insert an 278

additional token. The insertion logic is as follows: 279

node =

{
child, if t ∈ node.children
nodet, if t /∈ node.children

,

(4) 280

where child is the child of node and child.token = 281

t, nodet is a new node built by t and inserted into 282

the children of the original node. In this way, we 283

let suffix nodes with the same prefix share the same 284

prefix. 285

Note that we also record the frequency f of each 286

node as it is inserted, in order to provide a prior- 287

ity reference for subsequent retrieval. Finally, by 288

exploiting the samples in D, we can construct an 289

efficient and accurate n-gram trie τ . 290

3.2 Draft Collecting and Matching 291

As shown in the gray area in Figure 1, in-context 292

learning combines context with user query through 293

templates in the prompt engineering. The query 294

with context will serve as the reasoning basis for 295

the target model. We define the tokens that have 296

been generated by the s time step target model as 297

Ts = {t1, t2, ..., tk}. We will build the draft after s 298

time step through the n-gram trie τ constructed in 299

the former subsection that stores prefix and suffix 300

dependency of context. Then, the target model will 301

verify and revise the draft. 302

Draft Construction When searching for the 303

draft, we firstly extract the suffix of new tokens 304

4

He

He

likes

flow-
ers

play-
ing

gam-
es

hates

writ-
ing

pap-
ers

hates

writing

papers
likes

flowers

playing

games

He ha
tes

wr
itin
g

pa
pe
rs

lik
es

flo
we
rs

pla
yin
g

ga
me
s

Position ids: 0 1 2 3 1 2 2 3

Prie Attention Mask

Figure 2: An Example of Tree Attention. The tokens
in the orange part of the attention mask are visible to
each other, and the tokens in the gray part are invisible
to each other

Ts for prefix matching. At first, the length of the305

prefix token will be set to Lp. If Ts matches the306

prefix chain in τ , we can extract the suffix of this307

prefix and break matching. If not found, we sub-308

stract one token from prefix tokens until match the309

or prefix tokens length is 0. Then, we can obtain310

a suffix tree τs that matches the gernerated tokens311

Ts of the target model. To improve the acceptance312

rate of the draft, we prune the suffix tree according313

to the frequency f of nodes and extract nodes with314

lower f . The draft tree is not always very big, so315

sometimes the pruning is not used.316

Specifically, refering to (He et al., 2023) and317

(Cai et al., 2024), we set a min-heap for storage of318

suffix chains. For each node vk in τs, we build a319

draft dk based on its path chain with the root node320

of τs. The priority of the draft is determined by the321

frequency of vk. This process can be expressed as:322

dk =< Path(vr, vk), fk >

=< {vr, v1, ..., vi, ..., vk}, fk >,

i ∈ [1, k], vi ∈ τs,

(5)323

where Path(vr, vk) means the nodes from node vr324

to node vk. vr is the root node of τs and fk is the325

frequency of vk.326

Then, vk will be placed in the min-heap in order327

of priority. Finally, alternative drafts are retained328

according to the length of min-heap. In this way,329

redundant nodes can be effectively removed and330

the pruning of suffix tree τs can be realized.331

Model Verification Figure 2 shows an example332

of tree attention verifying the draft trie. For the333

draft trie τs, deep traverse it to obtain a linear list334

of tokens. In order to realize the tree attention, we335

set the same position id for the nodes of the same336

level. The specific form can be expressed as: 337

pi = Level(vi) + h, vi ∈ τs, (6) 338

where pi is the position id of ti. Level(vi) is the 339

level of vi. h is the length of the preceding model 340

tokens. This makes the tokens in each chain of the 341

trie continuous. 342

Then, following tree attention meathod, we use 343

attention mask to convert the draft tree into a 2- 344

dimention mask m. For any tokens ti and tj , mi,j 345

is 0 if there is a relationship between vi and vj in 346

τs, otherwise it is 1. By matching the mask and 347

position ids. The taget model can verify multiple 348

branches of trie simultaneously. 349

4 Experiments 350

4.1 Experiment Setting 351

We implement all the experiments on one NVIDIA 352

RTX 4090 with python version 3.9. All the exper- 353

iments are run on greedy decoding. The pytorch 354

version is 2.5.1 with CUDA version is 12.2. 355

4.1.1 Baselines 356

We choose the baselines provided on the Specu- 357

late Bench (Xia et al., 2024): vanilla inference 358

without any speculative methods, speculative Sam- 359

pling (Chen et al., 2023), Medusa (Cai et al., 2024), 360

SPACE (Yi et al., 2024), Hydra (Ankner et al., 361

2024), Lookahead (Fu et al., 2023) and REST (He 362

et al., 2023). For Speculative Sampling, we used 363

Llama-68m (Miao et al., 2024) as draft model to 364

match Llama2-7b and use Vicuna-68m to match 365

Vicuna-7b-v1.3. For Lookahead and REST, we 366

simply use the same experiment setup in Spec- 367

Bench(Xia et al., 2024). 368

4.1.2 Datasets 369

For datasets, we choose RAG, summary in Spec- 370

bench (Xia et al., 2024). The RAG dataset contains 371

80 data from Natural Questions. Five retrieved doc- 372

uments from Wikipedia (Li et al., 2023) are con- 373

catenated. (Kwiatkowski et al., 2019) and the sum- 374

mary dataset is randomly chosen by CNN/Daily 375

Mail (Nallapati et al., 2016). In addition, we make 376

TriviaQA (Joshi et al., 2017) dataset for additional 377

RAG task and make Hagrid (Kamalloo et al., 2023) 378

dataset for context QA task. For TriviaQA task, we 379

use bge-m3 (Chen et al., 2024a) and bge-reranker- 380

v2-m3 (Chen et al., 2024b) to search for 5 relevant 381

documents in Wikipedia corpus. For Hagrid task, 382

we simply concatenate the given context and the 383

question. 384

5

Model Method
Spec-Bench

TriviaQA Hagrid Mean Speedup
Summary RAG

Vicuna-7B

Vanilla 1.00× (1.00) 1.00×(1.00) 1.00×(1.00) 1.00×(1.00) 1.00x
SpS 1.69×(2.44) 1.59×(2.30) 1.74×(2.49) 1.40×(2.46) 1.61x
Medusa 1.48×(2.01) 1.45×(2.08) 1.45×(2.03) 1.56× (2.17) 1.49x
SPACE 1.69×(2.26) 1.47×(1.91) 1.57×(2.26) 1.26×(2.05) 1.50x
Hydra 1.86× (2.70) 1.88× (2.90) 1.86× (2.84) 1.52×(2.98) 1.78×
Lookahead 1.29×(1.54) 1.19×(1.48) 1.27×(1.46) 0.95×(1.47) 1.18x
REST 1.13×(1.65) 1.32×(1.89) 1.31×(1.71) 1.33×(1.82) 1.27x
Ours 1.75× (2.39) 3.48× (5.19) 1.92× (2.36) 1.94× (3.07) 2.27×

Llama2-7B-Chat

Vanilla 1.00×(1.00) 1.00×(1.00) 1.00×(1.00) 1.00×(1.00) 1.00x
SpS 1.25×(1.54) 1.47× (1.91) 1.35×(1.86) 1.38×(1.62) 1.36x
Lookahead 1.44× (1.59) 1.40×(1.63) 1.53× (1.71) 1.38×(1.97) 1.44×
REST 1.03×(1.54) 1.14×(1.91) 1.22×(1.68) 1.42× (1.47) 1.20x
Ours 1.28× (1.76) 3.62× (5.00) 1.89× (2.88) 1.61× (2.34) 2.10×

Llama3-8B-Instruct

Vanilla 1.00×(1.00) 1.00×(1.00) 1.00×(1.00) 1.00×(1.00) 1.00x
Lookahead 1.25× (1.60) 1.18× (1.51) 1.58× (1.54) 1.38× (1.73) 1.50×
REST 0.93×(1.54) 1.14×(1.91) 1.13×(1.61) 1.02×(1.69) 1.05x
Ours 1.06× (1.42) 1.77× (2.11) 1.75× (1.86) 1.68× (2.34) 1.56×

Table 1: Speedup Ratio and Accept Length Comparison. The data on the left means speedup and the data on the
right means average accept length. The best performance for each metric is highlighted in bold font, while the
second-best performance is indicated with an underline.

4.1.3 Base models385

To conduct the experiments, we use three mod-386

els for validation. One is Vicuna-7B-v1.3 (Zheng387

et al., 2023), One is Llama-2-7B-chat (Tou-388

vron et al., 2023) and the other is Llama-3-8B-389

Instruct (AI@Meta, 2024).390

4.1.4 Hyperparameters391

In the experiment, there are two hypermeter that392

need to be tuned: matched prefix Lp and gram-393

length n. So we conduct the experiment to test394

the efficiency. The details can be seen in table2.395

Also, we use FAISS (Douze et al., 2025) to store396

the embedding of the corpus using IVF-PQ method.397

The parameter of the number of clusters is 4096398

and the parameter that the vector will be separated399

is 64. The clusters that will be searched is set to 16.400

We firstly encode all the corpus text using bge-m3401

(Chen et al., 2024a), and search top-100 relevant402

texts for questions in triviaQA (Joshi et al., 2017).403

Then we rerank the texts using bge-reranker-v2-404

m3 (Chen et al., 2024b) to get the top-5 relevant405

contexts.406

4.1.5 Metrics407

Like other speculative decoding, we use average408

accept length, mean speedup in our evaluation.409

Average accept length shows the length that the410

drafts are accepted in every decoding step. Usu- 411

ally the accept length is higher, the speedup can be 412

higher. Mean speedup indicates the speedup of to- 413

kens throughput compared with decoding without 414

any speculative method (baseline). 415

4.2 Main Results 416

The experiment results can be seen in Table 1. We 417

can see that our method achieves optimal accelera- 418

tion results compared to the baseline for all tasks 419

except the summarization task. On average, the 420

mean speedup of our method has achieved a mean- 421

ingful improvement over the baselines (2.27× on 422

Vicuna-7B, 2.10× on Llama2-7B-Chat and 1.56× 423

on Llama3-8B-Instruct). It is worth noting that our 424

method performs better than REST (He et al., 2023) 425

on each model and task in the same speculative de- 426

coding with trie, demonstrating the superiority of 427

our n-gram trie. 428

RAG Task. The experiment result on Spec- 429

Bench RAG dataset show that the accept length 430

of the drafts achieves 5.19 on Vicuna-7B, 5.00 on 431

Llama2-7B-Chat and 2.11 on Llama3-8B-Instruct, 432

making the speedup rate achieve 3.48×, 3.62× and 433

1.77×. Its acceleration performance is much better 434

than that of the basic method REST. Experiment 435

results in multiple models show that our method 436

has the strongest speedup effect. It is far ahead of 437

6

Figure 3: A Case on Summary Dataset. The inference exploration in one step. In the figure, the words are separated
in tokens. Yellow text is generated by n-gram trie.

second place on all models.438

On TriviaQA dataset, the speedup rate of our439

method achieves 1.92× on Vicuna-7B, 1.89×440

on Llama2-7B-Chat and 1.75× on Llama3-8B-441

Instruct. The speed-up performance is also the best.442

Even though the accept length of our approach is443

smaller than Hydra (Ankner et al., 2024) on Vicuna-444

7B, we still have a better throughput performance445

in this task.446

Context QA Task. Our approach achieves the447

best results on all models (1.94× on Vicuna-7B,448

1.61× on Llama2-7B-Chat and 1.68× on Llama3-449

8B-Instruct) on Hagrid datset, which outperforms450

other approaches by 0.19x-0.99×. Compared to451

the basic method REST, we have more speedup on452

all models. This fully demonstrates the advantages453

brought by n-gram trie.454

Summary Task. The performance of our455

method on Spec-Bench Summary dataset is not456

the best. Global draft-getting method will re-457

sult in wrongly draft clipping and unnecessarily458

draft-searching. In summarization tasks, input arti-459

cles can be segmented into discrete text blocks,460

with most generated outputs demonstrating pri-461

mary dependency on individual text units. The462

proposed methodology employs a global draft se-463

lection mechanism that may inadvertently incor-464

porate non-essential drafts, potentially introducing465

redundant verification overhead. However, in RAG466

and multi-document QA scenarios, generated con-467

tent exhibits stronger reliance on comprehensive468

document analysis, necessitating preservation and469

rigorous evaluation of multiple drafts. The exper-470

imental validation confirms that our method opti-471

mizes context utilization while maintaining compu-472

tational efficiency through adaptive draft manage-473

ment. But our method still ranks second (1.75× on474

Vicuna-7B, 1.28× on Llama2-7B-Chat and 1.06×475

on Llama3-8B-Instruct) in terms of speedup and476

outperform REST.477

n/Lp 2 3 4 5

8 75.75 71.48 63.49 54.06
9 70.22 68.96 72.02 68.34
10 83.05 80.05 75.65 74.56
11 70.69 82.68 76.46 74.86
12 74.21 82.49 72.55 74.64
13 87.45 92.46 88.02 85.52
14 91.52 78.64 84.80 74.06
15 80.25 75.09 77.41 73.99
16 73.72 87.51 83.77 89.34

Table 2: Token Output Speed. The value in the table is
token output number per second with different n and
Lp

4.3 Case Study 478

To fully demonstrate the speedup effect of our 479

method, we conduct a case study on the Summary 480

dataset. The example is shown in Figure 3. As can 481

be seen from the figure, our speculative decoding 482

method based on n-gram trie correctly predict the 483

large model output many times. A large number of 484

useful drafts provide an effective speedup scheme 485

for in-context based model inference. 486

4.4 Hyperparameter Analysis 487

In this section, we will will conduct experiments 488

on the hyperparameters n and Lp in our method 489

to get the best hyperparameter configuration. We 490

use the RAG task of the Spec-bench (Xia et al., 491

2024) on Llama2-7B-Chat to test the performance 492

of N-Gram-Trie. We try the value between 8-16 493

for n-gram length n and 2-5 for maximum prefix 494

length Lp. The performance of the N-Gram-Trie 495

with different hyperparameter is shown in the Table 496

2. We can find that when n is small, the speedup ef- 497

fect will gradually deteriorate with the increase of 498

Lp. We think this is because the excessively long 499

Lp limits the length of the suffix, which in turn 500

reduces the acceleration ability. When n is large, 501

the token generation speed first speeds up and then 502

slows down as Lp increases. This is mainly be- 503

7

Figure 4: The accept length percentage in summary task and RAG tasks between models. The frequency of smaller
accept length is usually larger except in the longest accept length

Figure 5: Time distribution in searching operation. The
red opponent indicates time for searching in tree, the
blue opponent means suffix processing and the cyan
opponent means the attention tree making.

cause when the suffix is not short, the longer prefix504

can better match the token of the model inference.505

Furthermore, it can be proved that when n value is506

large, appropriate redundant nodes can effectively507

improve the acceleration effect of speculative de-508

coding. Statistically, we can see that the best choice509

of n is 13 and the maximum prefix length Lp is set510

to 3.511

4.5 Time Analysis512

The time expended on Trie search versus Tree con-513

struction during each step of draft retrieval from the514

Trie is illustrated in the figure 5. It can be seen that515

draft processing and draft tree making cost much516

more time than Trie searching.517

4.6 Further Study 518

In order to explore the distribution of accep- 519

tance length of different models. We test Vicuna- 520

7B (Zheng et al., 2023), Llama2-7B-Chat (Touvron 521

et al., 2023), and Llama3-8B-Instruct (AI@Meta, 522

2024) on the Spec-Bench (Xia et al., 2024) dataset. 523

The experimental results are shown in Figure 4. In 524

this figure, it can be seen that the accept length 525

concentrates in 1 (which means that no tokens are 526

accepted). Besides, most of accept length is smaller 527

than 4. And the percentage of the accept length de- 528

creases except in accept length = 11. 529

5 Conclusion 530

In this paper, we propose N-Gram Trie Spec- 531

ulative Decoding, a novel approach to acceler- 532

ate in-context inference for large language mod- 533

els. By constructing an n-gram trie from the con- 534

text through prefix and suffix dependencies, our 535

method efficiently generates speculative decoding 536

drafts, leveraging the overlap between context and 537

model output. Extensive experiments on sum- 538

marization, RAG, and context QA tasks demon- 539

strate significant speedups—2.27x on Vicuna-7B, 540

2.10x on Llama2-7B-Chat, and 1.56x on Llama3- 541

8B-Instruct—without compromising output quality. 542

This work addresses a critical limitation of ICL, 543

providing an effective and scalable solution for 544

real-world LLM deployment. 545

8

6 Limitations546

This approach presents several limitations. First,547

while the trie-based generation and search mech-548

anism offers efficiency advantages, its current im-549

plementation has suboptimal aspects. A key is-550

sue arises when multiple suffix candidates share551

identical frequency scores, which may lead to the552

premature elimination of potentially useful draft553

outputs due to the fixed threshold imposed by the554

num_draft parameter. Second, the method exhibits555

strong dependency on the quality of external re-556

trieved corpora - performance degradation becomes557

inevitable when processing noisy or irrelevant re-558

trieval results. To address these challenges, our559

future work will focus on developing enhanced560

trie construction algorithms that incorporate more561

sophisticated frequency weighting schemes and562

context-aware candidate selection strategies.563

References564

AI@Meta. 2024. Llama 3 model card.565

Zachary Ankner, Rishab Parthasarathy, Aniruddha566
Nrusimha, Christopher Rinard, Jonathan Ragan-567
Kelley, and William Brandon. 2024. Hydra:568
Sequentially-dependent draft heads for medusa de-569
coding. Preprint, arXiv:2402.05109.570

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,571
Jason D Lee, Deming Chen, and Tri Dao. 2024.572
Medusa: Simple llm inference acceleration frame-573
work with multiple decoding heads. arXiv preprint574
arXiv:2401.10774.575

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,576
Jean-Baptiste Lespiau, Laurent Sifre, and John577
Jumper. 2023. Accelerating large language model578
decoding with speculative sampling. Preprint,579
arXiv:2302.01318.580

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu581
Lian, and Zheng Liu. 2024a. Bge m3-embedding:582
Multi-lingual, multi-functionality, multi-granularity583
text embeddings through self-knowledge distillation.584
Preprint, arXiv:2402.03216.585

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu586
Lian, and Zheng Liu. 2024b. Bge m3-embedding:587
Multi-lingual, multi-functionality, multi-granularity588
text embeddings through self-knowledge distillation.589
Preprint, arXiv:2402.03216.590

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan591
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,592
Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and593
Zhifang Sui. 2024. A survey on in-context learning.594
Preprint, arXiv:2301.00234.595

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff 596
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré, 597
Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 598
2025. The faiss library. Preprint, arXiv:2401.08281. 599

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 600
2023. Breaking the sequential dependency of llm 601
inference using lookahead decoding. 602

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 603
2024. Break the sequential dependency of llm in- 604
ference using lookahead decoding. arXiv preprint 605
arXiv:2402.02057. 606

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 607
2023. Pre-training to learn in context. Preprint, 608
arXiv:2305.09137. 609

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, 610
and Di He. 2023. Rest: Retrieval-based speculative 611
decoding. Preprint, arXiv:2311.08252. 612

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke 613
Zettlemoyer. 2017. triviaqa: A Large Scale Distantly 614
Supervised Challenge Dataset for Reading Compre- 615
hension. arXiv e-prints, arXiv:1705.03551. 616

Ehsan Kamalloo, Aref Jafari, Xinyu Zhang, Nandan 617
Thakur, and Jimmy Lin. 2023. HAGRID: A human- 618
llm collaborative dataset for generative information- 619
seeking with attribution. arXiv:2307.16883. 620

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- 621
field, Michael Collins, Ankur Parikh, Chris Alberti, 622
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken- 623
ton Lee, Kristina Toutanova, Llion Jones, Matthew 624
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob 625
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu- 626
ral questions: A benchmark for question answering 627
research. Transactions of the Association for Compu- 628
tational Linguistics, 7:452–466. 629

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 630
2023. Fast inference from transformers via spec- 631
ulative decoding. In International Conference on 632
Machine Learning, pages 19274–19286. PMLR. 633

Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia Shao. 634
2023. Making large language models a better founda- 635
tion for dense retrieval. Preprint, arXiv:2312.15503. 636

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang 637
Zhang. 2024. EAGLE: Speculative sampling requires 638
rethinking feature uncertainty. In International Con- 639
ference on Machine Learning. 640

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming 641
Zhang, Xuanyu Zhang, Qing Yang, Dongliang Xu, 642
and Wanxiang Che. 2024. Turning trash into treasure: 643
Accelerating inference of large language models with 644
token recycling. Preprint, arXiv:2408.08696. 645

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao 646
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee 647
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chu- 648
nan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna 649

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2401.08281
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://arxiv.org/abs/2305.09137
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2408.08696

Abhyankar, and Zhihao Jia. 2024. Specinfer: Accel-650
erating large language model serving with tree-based651
speculative inference and verification. In Proceed-652
ings of the 29th ACM International Conference on Ar-653
chitectural Support for Programming Languages and654
Operating Systems, Volume 3, ASPLOS ’24, page655
932–949. ACM.656

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xin-657
hao Cheng, Zeyu Wang, Zhengxin Zhang, Rae658
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang659
Shi, et al. 2023. Specinfer: Accelerating genera-660
tive large language model serving with tree-based661
speculative inference and verification. arXiv preprint662
arXiv:2305.09781.663

Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos664
Santos, Çaglar Gülçehre, and Bing Xiang. 2016.665
Abstractive text summarization using sequence-to-666
sequence rnns and beyond. In Proceedings of the667
20th SIGNLL Conference on Computational Natural668
Language Learning, CoNLL 2016, Berlin, Germany,669
August 11-12, 2016, pages 280–290. ACL.670

Apoorv Saxena. 2023. Prompt lookup decoding.671

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-672
bert, Amjad Almahairi, Yasmine Babaei, Nikolay673
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti674
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton675
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,676
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,677
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-678
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan679
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,680
Isabel Kloumann, Artem Korenev, Punit Singh Koura,681
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-682
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-683
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-684
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-685
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,686
Ruan Silva, Eric Michael Smith, Ranjan Subrama-687
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-688
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,689
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,690
Melanie Kambadur, Sharan Narang, Aurelien Ro-691
driguez, Robert Stojnic, Sergey Edunov, and Thomas692
Scialom. 2023. Llama 2: Open foundation and fine-693
tuned chat models. Preprint, arXiv:2307.09288.694

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin695
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-696
drew M. Dai, and Quoc V. Le. 2022. Finetuned697
language models are zero-shot learners. Preprint,698
arXiv:2109.01652.699

Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen,700
Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny701
Zhou, Tengyu Ma, and Quoc V. Le. 2023. Symbol702
tuning improves in-context learning in language mod-703
els. Preprint, arXiv:2305.08298.704

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,705
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-706
fang Sui. 2024. Unlocking efficiency in large lan-707
guage model inference: A comprehensive survey of708

speculative decoding. In Findings of the Associa- 709
tion for Computational Linguistics ACL 2024, pages 710
7655–7671, Bangkok, Thailand and virtual meeting. 711
Association for Computational Linguistics. 712

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin 713
Jiang, Linjun Yang, Rangan Majumder, and Furu 714
Wei. 2023. Inference with reference: Lossless 715
acceleration of large language models. Preprint, 716
arXiv:2304.04487. 717

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xi- 718
aotian Yu, and Rong Xiao. 2024. Generation meets 719
verification: Accelerating large language model infer- 720
ence with smart parallel auto-correct decoding. arXiv 721
preprint arXiv:2402.11809. 722

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 723
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 724
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, 725
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg- 726
ing llm-as-a-judge with mt-bench and chatbot arena. 727
Preprint, arXiv:2306.05685. 728

A More experiments about parameters 729

We conduct more experiments in summary and 730

RAG tasks. The experiment results can be seen in 731

table??: 732

There is a downgrade of the experiment result 733

because the experiments are running with other 734

processes using GPU. These results show that if 735

the model and the dataset change, n and Lp also 736

need to adjust for better speculative performance. 737

What’s more, the strategy of choosing the parame- 738

ters may vary in GPU conditions. Also, we found 739

that in Llama3, there is no significant degrade in 740

the performance as the data changes. The choice of 741

the n and Lp may need further discussion because 742

now we haven’t found the best way of selecting 743

n and LP . The best choices may be different due 744

to many factors, which needs more experiments to 745

check. 746

10

https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.18653/V1/K16-1028
https://doi.org/10.18653/V1/K16-1028
https://doi.org/10.18653/V1/K16-1028
https://github.com/apoorvumang/prompt-lookup-decoding/
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2305.08298
https://arxiv.org/abs/2305.08298
https://arxiv.org/abs/2305.08298
https://arxiv.org/abs/2305.08298
https://arxiv.org/abs/2305.08298
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

Llama2 Summarization
n/Lp 2 3 4 5

8 17.4 14.7 17.7 17.5
9 13.7 18.1 16.6 18.0

10 18.3 15.5 17.9 14.7
11 17.8 18.2 16.0 16.8
12 17.7 17.9 18.6 18.4
13 14.5 17.8 18.2 18.0
14 15.1 18.1 17.8 17.8
15 18.0 17.7 13.5 18.1

Llama2 RAG
n/Lp 2 3 4 5

8 27.5 41.1 37.6 24.5
9 45.2 42.6 31.2 35.1
10 45.1 43.7 36.6 39.5
11 50.9 43.8 44.0 36.9
12 52.3 49.7 45.5 40.9
13 38.7 38.7 50.1 34.1
14 54.3 48.2 51.0 49.7
15 55.3 38.9 48.3 39.3

Table 3: Llama2 Performance

Vicuna Summarization
n/Lp 2 3 4 5

8 18.7 23.1 22.5 18.8
9 25.7 22.1 23.1 17.7

10 25.5 25.9 25.6 23.1
11 24.3 25.6 25.8 23.8
12 25.1 25.1 26.0 25.9
13 24.7 24.5 24.5 25.5
14 18.5 24.5 25.1 24.9
15 25.1 25.1 23.9 24.2

Vicuna RAG
n/Lp 2 3 4 5

8 35.7 42.8 29.5 25.2
9 50.3 47.6 33.2 29.9
10 38.2 50.5 36.1 44.0
11 53.2 48.9 37.9 35.9
12 54.8 52.1 50.8 50.8
13 55.1 54.0 52.8 50.9
14 55.3 41.8 54.5 53.8
15 59.6 54.1 41.2 54.6

Table 4: Vicuna Performance

Llama3 Summarization
n/Lp 2 3 4 5

8 13.6 13.6 13.9 13.7
9 13.7 13.8 13.6 13.6

10 13.6 13.5 13.5 13.5
11 13.7 13.5 13.4 13.5
12 13.5 13.5 13.5 13.5
13 13.3 13.5 13.4 13.7
14 13.3 13.2 13.5 13.5
15 13.6 13.3 13.4 13.4

Llama3 RAG
n/Lp 2 3 4 5

8 20.9 21.0 19.6 19.2
9 20.6 20.7 19.8 19.8
10 20.0 20.2 20.6 19.9
11 20.0 20.1 20.3 20.5
12 19.9 20.0 20.5 20.3
13 20.4 20.5 20.0 19.1
14 20.1 20.1 20.3 20.2
15 20.2 20.0 20.0 20.6

Table 5: Llama3 Performance

11

	Introduction
	Related work
	In-Context Learning
	Speculative Decoding
	Tree Attention

	Proposed Method
	N-Gram Trie Construction
	Draft Collecting and Matching

	Experiments
	Experiment Setting
	Baselines
	Datasets
	Base models
	Hyperparameters
	Metrics

	Main Results
	Case Study
	Hyperparameter Analysis
	Time Analysis
	Further Study

	Conclusion
	Limitations
	More experiments about parameters

