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ABSTRACT

Contrastive Language–Image Pre-training (CLIP) achieves striking cross-modal
generalization by aligning images and texts in a shared embedding space, yet
it persistently fails at compositional reasoning over objects, attributes, and rela-
tions—often behaving as a bag-of-words matcher. Existing causal accounts of
CLIP largely model text as a single vector, obscuring token-level structure and
leaving core phenomena—such as prompt sensitivity and failures on hard neg-
atives—unexplained. We address this gap by developing a token-aware causal
representation learning (CRL) framework grounded in a sequential, language-token
SCM. Our theory extends block identifiability results to tokenized text, proving
that CLIP’s contrastive objective can recover the modal-invariant latent variable
under both sentence-level and token-level SCMs. Crucially, the token granular-
ity enables the first principled explanation of CLIP’s compositional brittleness:
composition nonidentifiability. We show that there exist pseudo-optimal text en-
coders that achieve perfect modal-invariant alignment yet are provably insensitive
to SWAP, REPLACE, and ADD operations over the atomic concepts on objects,
attributes, and relations, thereby failing to distinguish correct captions from hard
negatives—despite optimizing the same training objective as true-optimal encoders.
The analysis further connects language-side nonidentifiability with visual-side
failures via the observed modality gap, and demonstrates how iterated composition
operators compound hardness, suggesting improved negative mining strategies.

1 INTRODUCTION

Throughout the phylogeny of multimodal intelligence, Contrastive Language-Image Pre-training
(CLIP, Radford et al. (2021)) emerged as a milestone for its exceptional ability to bridge vision
and language. Trained on billions of image-text pairs, CLIP demonstrates remarkable robustness,
evident in its out-of-distribution (OOD) generalization and zero-shot inference capabilities using
textual prompts. From the lens of causal representation (Scholkopf et al. (2021); Yao et al. (2023)),
the performance leap is largely attributed to learning a shared embedding space that achieves modal-
invariant alignment between visual and textual features.

Despite these strengths, CLIP struggles with compositional reasoning across images and text, which
arises from its weakness to isolate the hard negative structures composed of atomic concepts, i.e.,
object, attribute, and relation (Yuksekgonul et al. (2023); Ma et al. (2023); Hsieh et al. (2023)). It
often acts like a bag-of-words matcher, identifying concepts individually but failing to bind them to
their specified order, attributes, or relationships derived from the images’ correct descriptions, in other
words, CLIP may confuse "a bulb in the grass" with "grass in a bulb," misinterpret attribute-noun
pairings, or default to common co-occurrences instead of the specific composition described. These
failures reveal that its embedding space unreliably encodes the compositional structure required for
precise, human-like understanding in vision-language tasks.

This phenomenon has spurred a wave of empirical research to evaluate and remedy CLIP’s compo-
sitional weaknesses. Although massive benchmarks and solutions (Hsieh et al. (2023); Patel et al.
(2024)) were proposed, a rigorous theoretical explanation for why CLIP models falter remains elusive.
Much of the existing theoretical work on CLIP simplifies the problem by modeling entire images
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and text prompts as monolithic, fixed-length vectors. This abstraction, by its very nature, overlooks
the compositional structure of atomic concepts, which presents as tokens at the heart of the issue
analysis, leaving a critical gap in our ability to formally diagnose and understand these failures.

Motivated by this gap, our research aims for the first principled explanation to the difficulty behind
vision-language compositionality. The breakthrough roots in a more granular causal representation
theory to locate each token contribution to achieve the modal-invariant alignment. Specifically, our
framework generalizes the existing SCMs of most multimodal CRL studies with our underlying
text generation process defined by language-token sequence, enlighten by the memory-argumented
Bayesian prior in the recent theoretic understanding of language generation (Wei et al. (2021)). The
nuance refers to the causal representation with the consistent result in modal-invariant alignment in
CLIP (Theorem.5, Corollary.6). While thanks to the token awareness in our practical premise, our
framework provided new theoretical findings from a causal lens of understanding the image-text
embedding space.

Our very first principled explanation for CLIP’s compositional reasoning failures, which we termed
"composition nonidentifiability" in the textual description. We formally prove (Theorems 7-9) with
the existence of "pseudo-optimal" text encoders that achieve the same modal-invariant alignment as a
"true" encoder during pre-training, however, the former fail to distinguish correct textual descriptions
from hard negatives constructed through SWAP, REPLACE, and ADD operations considered as
representative forms of hard negatives (Ma et al. (2023),Hsieh et al. (2023)). Since CLIP’s training
objective cannot differentiate between these "true-optimal" and "pseudo-optimal" solutions, the
model is not guaranteed to learn the underlying compositional structure, which rigorously explains its
vulnerability to confusing concepts and their relationships. This theoretical framework also extends to
explain visual compositionality issues by combining the constant modality gap phenomenons (Zhang
et al.; Chen et al. (2023)), and shows that iteratively applying these operations can generate more
complex hard negatives, suggesting a path toward improving models via advanced negative mining.

2 PRELIMINARIES

In this section, we briefly introduce Contrastive Language-Image Pre-training (CLIP), then go through
its explainable theory derived from causal representation learning (CRL). A foundational introduction
of CLIP-based research and structural causal models (SCMs) is helpful for understanding, and we
recommend the readers access the background and related work in our Appendix.A.

2.1 CONTRASTIVE LANGUAGE-IMAGE PRE-TRAINING (CLIP)

The CLIP family Radford et al. (2021); Jia et al. (2021); Cherti et al. (2023) receives data coupled by
image and text in mutual semantic through contrastive pre-training Oord et al. (2018); He et al. (2020).
Suppose ⟨x(img), x(tex)⟩ ∼ pmm

(
x(img), x(tex)

)
denotes an image-text pair drawn from a multimodal

joint distribution pmm (i.e. pmm), the measure to indicate the mutual semantic across modalities.
CLIP’s image encoder f(·) and text encoder g(·) extract their normalized features f(x(img)), g(x(tex))
to construct InfoNCE objectives

min
f,g

ED(K) ∼pmm

[
L(img→tex)

InfoNCE

(
D(K)

)
+ L(tex→img)

InfoNCE

(
D(K)

)]
s.t. L(img→tex)

InfoNCE

(
D(K)

)
=

K∑
i=1

− log
e

(
f(x

(img)
i )⊤g(x

(tex)
i )/γ

)
∑K

j=1 e

(
f(x

(img)
i )⊤g(x

(tex)
j )/γ

) ,
L(tex→img)

InfoNCE

(
D(K)

)
=

K∑
i=1

− log
e

(
f(x

(img)
i )⊤g(x

(tex)
i )/γ

)
∑K

j=1 e

(
f(x

(img)
j )⊤g(x

(tex)
i )/γ

)
(1)

where D(K) = {⟨x(img)
i , x

(tex)
i ⟩}Ki=1 indicates the training batch composed of K image-text pairs,

{x(img)
i , x

(tex)
i }Ki=1 indicates each training batch constructed by K image-text pairs drawn from the

joint distribution pmm, by which InfoNCE distinguishes the positive pairs sampled from pmm against
negative pairs sampled from the image and the text marginals derived from pmm.
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Figure 1: Latent-variable SCMs that represents the multimodal image-text data generation processes
from the sentence-level aspect (Assumption 1 (a)) and the token-level aspect (Assumption 4 (b)). The
goal of causal representation learning seeks for the unsupervised recovery of the modal-shared latent
variable zinv by CLIP, which were rigorously justified in Theorem.2, 5.

2.2 CONVENTIONAL CAUSAL REPRESENTATION FOR MULTIMODAL CONTRASTIVE TRAINING

Under pmm interpreted as the generative process defined by a SCM with some latent variable
zinv shared across modalities, CRL demonstrates multimodal contrastive training (Eq.1) implicitly
achieving the unsupervised recovery of the latent variable zinv from z(inv). To analyze CLIP, CRL
demands the SCM assumption of multimodal data distribution to generate image-text training pairs:
Assumption 1. (Token-agnostic SCM of image-text data generation, Fig.1.a) The mutual seman-
tics between image-text pairs are derived from the modal-invariant feature drawn from modal invariant
density, i.e., zinv∼pzinv ; given zinv, we obtain image-dependent partition z

(img)
dp ∼p

z
(img)
dp

(·|zinv) and

text-dependent partition z
(tex)
dp ∼p

z
(tex)
dp

(·|zinv) specific to the image domain and text domain, respec-

tively; and we also have the image-private partition z
(img)
pr and text-private partition z

(tex)
pr drawn

from independent priors, i.e., z(img)
pr ∼p

z
(img)
pr

, z(tex)pr ∼p
z
(tex)
pr

; then each image-text pair ⟨x(img), x(tex)⟩
is generated through the nonlinear mixing functions f ,g to specify pmm:

x(img) := f(z(img)) = f
(
zinv, z

(img)
dp , z(img)

pr

)
;

x(tex) := g(z(tex)) = g
(
zinv, z

(tex)
dp , z(tex)pr

)
,

(2)

where zinv, z
(img)
dp , z(img)

pr , z(tex)dp , z(tex)pr denote real-value vectors drawn from the distributions with

respect to zinv, z(img)
dp , z(img)

pr , z(tex)
dp , z(tex)

pr over the SCM generative process.

The assumption above is extended from the SCM defined in (Daunhawer et al. (2022)) to interpret
the underlying causation in multimodal contrastive model, where their differences lie in the relation
between zinv and z

(tex)
dp . Derived from the relaxed premise, CLIP still holds the alignment to identify

the modal-invariant part of each image-text pair:
Theorem 2. (Block-Identified Modal-invariant Alignment (Token-agnostic)) Consider the image-
text pair generated by Assumption.1. If their densities and mappings satisfy: 1). f , g1 are diffeo-
morphisms; 2). z(img), z(tex) are smooth, with continuous distributions pz(img)>0, pz(tex)>0 almost
everywhere. Consider the image encoder f : Ximg→(0, 1)ninv and the text encoder g : Xtex→(0, 1)ninv

as smooth functions that are trained to jointly minimize the functionals,

L(img,tex)
MMAlign := E

⟨x(img),x(tex)⟩
∼pmm

[
||f(x(img))−g(x(tex))||

]
−H(f(x(img)))−H(g(x(tex)))

(3)

where H(·) denotes the differential entropy of the random variables f(x(img)) and g(x(tex)) taking
value in (0, 1)ninv . Then given the optimal image encoder f∗ and the text encoder g∗, there exist
invertible functions hf and hg satisfying the following decompositions, respectively:

f∗=hf ◦ f−1
1:ninv

, g∗=hg ◦ g−1
1:ninv

(4)
1Ought to be regarded that we consider the output of g lies on a continuous space rather than discrete words

and phrases. It allows for more feasible cases e.g., soft prompts Zhou et al. (2022) for both Assumption.1 and 4 .
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Figure 2: The comparison be-
tween (a) existing multimodal
CRL theory (Daunhawer et al.
(2022)) and (b) our CRL theory
(Theorem.5 and Corollary.6).
Our framework allows the anal-
ysis to CLIP with the word-
and-phrase granularity, leading
to our contributions to theoreti-
cally explain the CLIP weak-
ness in compositional under-
standing (Section.4).

Corollary 3. (Informal) The optimal encoders f∗, g∗ in Theorem.2 are obtained if and only if (f∗,
g∗)=argminf,g L(img→tex)

InfoNCE +L(tex→img)
InfoNCE with infinite training pairs.

Grounded in the principles of block identifiability (Von Kügelgen et al. (2021)), Theorem.2 demon-
strates how optimal encoders can achieve modal invariance. It proves that under a mild assumption on
the underlying data distribution of multimodal pairs, the optimal encoders (f∗, g∗) learn features that
isolate a shared latent variable, zinv. This variable encapsulates all semantic information common to
both the language and image modalities while simultaneously filtering out unshared, modality-specific
information. This result provides a formal explanation for how CLIP’s training objective leads to the
cross-modal feature matching for the image and language representation.

3 LANGUAGE-TOKEN-AWARE CAUSAL REPRESENTATION: CORNERSTONE TO
INTERPRET COMPOSITIONAL REASONING HARDNESS

In this section, we generalize the statements of Theorem.2 as the inevitable path for interpreting the
hardness of vision-language compositionality. In the pursuit of practical setup, we reconsider the
assumption with the nonparametric functions that extend the text from a vector x(tex) ∼ px(tex) to a
k-column matrix X(tex,k) ∼ pX(tex,k) , where ∀k ∈ {1, · · · , kmax} indicates the sentence length and
the ith column X

(tex,k)
:,i indicates the ith token embedding:

Assumption 4. (Token-aware SCM of image-text data generation, Fig.1.b) The mutual semantics
between image-text pairs are derived via zinv∼pzinv ; given zinv, the image-private partition z

(img)
pr

and text-private partition z
(tex)
pr are drawn by z

(img)
pr ∼p

z
(img)
pr

, z(tex)pr ∼p
z
(tex)
pr

; and the image-dependent

partition is obtained by z
(img)
dp ∼p

z
(img)
dp

(·|zinv). Suppose z
(tex)
i as the token-dependent partition of the

ith token, and each of them is recursively sampled via z
(tex)
i ∼p

z
(tex)
i

(·|zinv, {z(tex)j }i−1
j=1); then each

image-text pair ⟨x(img), X(tex)⟩ is generated through the nonlinear mixing functions f ,{gi}kmax
i=1 to

specify pmm

x(img) := f
(
zinv, z

(img)
dp , z(img)

pr

)
;

X
(tex)
:,i := gi

(
zinv, {z(tex)j }ij=1, z

(tex)
pr

)
.

(5)

where the sampling stops at kth step if k= kmax or X(tex)
:,k reaches the embedding of [EOF].

Assumption.4 extends the image-language SCM definition in Assumption.1 by drawing the inspiration
from the recent memory-argumented Bayesian LLM prior Wei et al. (2021). Derived from the token-
level understanding to pmm, we renew the block identifiability result to extend Them.2 from the
sentence level to the token level:
Theorem 5. (Block-Identified Modal-invariant Alignment (Token-aware)) Consider the image-
text pairs generated by Assumption.4 . If their densities and mappings meet: 1). f and gi (∀i∈
{1, · · · , kmax}) are diffeomorphisms; 2). z(img), z(tex)

i (∀i∈{1, · · · , kmax}) are smooth and with
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continuous distributions pz(img)>0, p
z
(tex)
i

>0 almost everywhere. Consider f : Ximg→(0, 1)ninv and g

: ∪kmax
i X (i)

tex→(0, 1)ninv as smooth functions that are trained to jointly minimize the functionals,

L(img,tex)
MMAlign := E

⟨x(img),X(tex)⟩
∼pmm

[
||f(x(img))−g(X(tex))||

]
−H(f(x(img)))−H(g(X(tex))),

(6)

where H(·) denotes the differential entropy of the random variables f(x(img)) and g(X(tex)) taking
value in (0, 1)ninv . Then given the optimal image encoder f∗ and the text encoder g∗, there exist
invertible functions hf and hg satisfying the following decompositions, respectively:

f∗=hf ◦ f−1
1:ninv

, g∗=hg ◦ g−1
1:ninv

(7)

Corollary 6. (Informal) The optimal encoders f∗, g∗ in Theorem.5 are obtained if and only if (f∗,
g∗)=argminf,g L(img→tex)

InfoNCE +L(tex→img)
InfoNCE with infinite training pairs.

Theorem.5 and Corollary.6 mirror the insights of Theorem.2 and Corollary.3 that both recover the
modal-invariant latent variable, zinv, while the former do so under a token-aware SCM that assumes a
textual description as a sequential composition process instead of a generated vector. This granular
view provides the necessary foundation for our analysis. We will now use this framework to offer a
principled explanation for CLIP’s observed failures in compositional reasoning.

4 COMPOSITION NONIDENTIFIBILITY IN CLIP

As observed in existing research, CLIP is born vulnerably to identify the language compositional
difference in an image-text pair. While such concrete definition could be shifted across specific litera-
ture. Our study focuses on the definition used to build CREPE (Ma et al. (2023)) and SUGARCREPE
(Hsieh et al. (2023)): for an image-text pair ⟨x(img), X(tex)⟩, they considered the tokenized word or
phrase (i.e., X(tex)

i,: , a column of token-embedding matrix X(tex)) as the atomic concept that represent
a type of object (i.e., OBJ), attribute (i.e., ATT), or relation (i.e., REL), then a hard negative textual
description constructed from X(tex) can be categorized into three formats.

SWAP form. The hard negative SWAP(X(tex)) is generated by exchanging two existing atomic
concepts of the same type (object or attribute) within the text (i.e., switching the column location
between X

(tex)
i,: , X(tex)

j,: , ∀i ̸= j), without introducing anything new. Relationship swapping is omitted
as it often produces nonsensical results, leaving the subcategories SWAP-OBJ and SWAP-ATT.

REPLACE form. The hard negative REPLACE(X(tex)) is created by substituting a column X
(tex)
i,:

with regards to a single atomic concept (object, attribute, or relation) in the text X(tex) with a new-
concept column (i.e., RF(X(tex)

:,j ) that denotes the “rephrased embedding” to this new atomic concept),
which causes a mismatch with the visual scene. It literally can be subcategorized into REPLACE-OBJ,
REPLACE-ATT, and REPLACE-REL according to the atomic concept type.

ADD form. The hard negative ADD(X(tex)) is created by inserting a new atomic concept into the
text (i.e., adding a new-concept column ADD(X

(tex)
:,j ) into the position j) to create a mismatch with

the scene. This is categorized as ADD-OBJ (adding an object) and ADD-ATT (adding an attribute);
adding new relationships is avoided as it results in implausible text.

The aforementioned taxonomy of vision-language compositionality can summarize the cases in most
other research using different definitions of vision-language compositionality.

Derived from the modal-invariant alignment in Theorem.5, we establish the theorems to question
whether the vision-language compositionality can be achieved by identifying the difference between
an image’s textual description and its hard negative in the recovered causal representation,
which are extracted from the pre-trained image and text encoders in CLIP (Eq.1). Specifically,
Theorem 7. (SWAP-form Composition Nonidentifibility) Suppose image-text pairs generated by
Assumption.4 with densities and mappings under the conditions in Theorem.5. If the optimal image
encoder f∗ and the optimal text encoder g∗ satisfy Theorem.5 , thus

L(img,tex)
MMAlign (f

∗, g∗) → 0 (8)

5
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with invertible functions hf∗ and hg∗ that fulfill f∗=hf∗ ◦ f−1
1:ninv

and g∗=hg∗ ◦ g−1
1:ninv

, there exists a
pseudo-optimal text encoder g∗∗ derived from g∗ that satisfy

L(img,tex)
MMAlign (f

∗, g∗∗) → 0 (9)

while if g∗∗(X(tex)) equals to one of its column permutations, i.e., ∃π(X(tex)) ∈ Πk({1, · · · , k}):

g∗∗([X
(tex)
:,1 ,X

(tex)
:,2 , · · · , X(tex)

:,k ]) = g∗∗([X
(tex)
:,π(1), X

(tex)
:,π(2), · · · , X

(tex)
:,π(k)]), (10)

it holds the SWAO-form hard negative SWAP(X(tex)) = π̂(X(tex)) as the composition permuted by
π̂, so that ∀π̂(X(tex)) ∈ Πk({1, · · · , k}) ∩

{
{X(tex)

:,1 , X
(tex)
:,π(1)} × · · · × {X(tex)

:,k , X
(tex)
:,π(k)}

}
,

g∗∗([X
(tex)
:,1 ,X

(tex)
:,2 , · · · , X(tex)

:,k ]) = g∗∗([X
(tex)
:,π̂(1), X

(tex)
:,π̂(2), · · · , X

(tex)
:,π̂(k)]), (11)

where Πk({1, · · · , k}) indicates the set of arbitrary permutation orders of {1, · · · , k}.
Theorem 8. (REPLACE-form Composition Nonidentifibility) Given g∗∗ defined by Theorem.7, if
there is a token embedding X

(tex)
:,j with its rephrase embedding RF(X

(tex)
:,j ) that satisfies

g∗∗([X
(tex)
:,1 , · · · , X(tex)

:,j , · · · , X(tex)
:,k ]) = g∗∗([X

(tex)
:,π(1), · · · ,RF(X

(tex)
:,j ), · · · , X(tex)

:,π(k)]), (12)

with a column permutation π(X(tex))∈Πk−1({1, · · · , j−1, j+1, · · · , k})(j), it holds the REPLACE-
form hard negative REPLACE(X(tex)) = π̂(X(tex)) as the permutation with RF(X

(tex)
:,j ) that satisfy

∀π̂(X(tex)
:,−j ) ∈ Πk−1({1, · · · , j − 1, j + 1, · · · , k})

⋂{
{X(tex)

:,1 , X
(tex)
:,π(1)} × · · · {X(tex)

:,j−1, X
(tex)
:,π(j−1)}

×{X(tex)
:,j+1, X

(tex)
:,π(j+1)} · · · × {X(tex)

:,k , X
(tex)
:,π(k)}

}
and ∀X̂(1)

j , X̂
(2)
j ∈ {X(tex)

:,j ,RF(X
(tex)
:,j )},

g∗∗([X
(tex)
:,1 , · · · , X̂(1)

j , · · · , X(tex)
:,k ]) = g∗∗([X

(tex)
:,π̂(1), · · · , X̂

(2)
j , · · · , X(tex)

:,π̂(k)]). (13)

where X
(tex)
:,−j indicates X(tex) without the jth column.

Theorem 9. (ADD-form Composition Nonidentifibility) Suppose image-text pairs generated by
Assumption.4 with densities and mappings under the conditions in Theorem.5. If the optimal image
encoder f∗ and the optimal text encoder g∗ satisfy Theorem.5 , thus

L(img,tex)
MMAlign (f

∗, g∗) → 0 (14)

with invertible functions hf∗ and hg∗ that fulfill f∗=hf∗ ◦ f−1
1:ninv

and g∗=hg∗ ◦ g−1
1:ninv

, there exists a
pseudo-optimal text encoder g∗∗ derived from g∗ that satisfy

L(img,tex)
MMAlign (f

∗, g∗∗) → 0 (15)

with the ADD-form hard negative ADD(X(tex)) = π̂(X(tex)) as the permutation where X(tex) ∈
Xbase and π̂(X(tex)) = ([X

(tex)
:,1 , · · · , Xj ,ADD(X

(tex)
:,j ), · · · , X(tex)

:,k ])∈XADD, such that ∃z∗inv ∈ Cinv

z∗inv ∈ ((g∗)(j))−1
1:ninv

(Xbase) ∩ ((g∗)(j+1))−1
1:ninv

(XADD),

then it holds

g∗∗([X
(tex)
:,1 , · · · , X(tex)

:,k ]) =g∗∗([X
(tex)
:,1 , · · · , X(tex)

:,j ,ADD(X
(tex)
:,j ), · · · , X(tex)

:,k ]). (16)

Interpretation. The statements and proof sketches in Theorems.7, 8, and 9 resemble the spirit of
using Theorem. and Corollary.6 to construct a “pseudo-optimal” text encoder g∗∗ that occur when
the “true-optimal” text encoder g∗ could be practically obtained by the causal representation of
CLIP. In this situation, g∗ and g∗∗ can simultaneously achieve the modal-invariant alignment

(
i.e.,

L(img,tex)
MMAlign(f

∗, g∗) ≃ 0 and L(img,tex)
MMAlign(f

∗, g∗∗) ≃ 0
)

with the optimal image encoder f∗ during pre-
training. Nevertheless, distinct from g∗ that could perfectly distinguish arbitrary permutations
from a text X(tex), g∗∗ fails to identify some token sequences re-permuted from the columns
of X(tex), according to the compositional rules in Theorem.7-9. Since the encoders g∗ and g∗∗

share the same architecture and their parameters both achieve modal-invariant alignment during

6
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Table 1: The correspondence between our theorems and the taxonomy of vision-language composition
reasoning types. NEG and QUA denote negations and quantifiers.

Atomic concepts X(tex) Pre-condition Hard negative

Thm.7 (SWAP-form
OBJ,ATT

“a white cat and “a black dog and “a white dog and
Composition Nonidentifibility) a black dog play” a white cat play” a black cat play”
Thm.8 (REPLACE-form

OBJ,ATT,REL,QUA
“a horse

“the grass under a horse” “the grass on a horse”
Composition Nonidentifibility) on the grass”
Thm.9 (ADD-form

OBJ,ATT,NEG,QUA “ flowers” g∗(X(tex))=g∗(ADD(X(tex)))
“
no flowers”

Composition Nonidentifibility)

pre-training, there are no evidences and solutions to identify which one in g∗, g∗∗ would be
learned in practice.

It is noteworthy that Theorems.7-9 are grammar-agnostic so can flexibly transfer across a broad range
of language as long as they can convey the consistent semantic. Besides, they are motivated by the
“SWAP-REPLACE-ADD” taxonomy that covers the most cases of vision-language compositionality
in other research with different definitions. To better understand the non-identified textual-token
compositions in Theorem.7-9, we illustrated some instances with regards to embedding their language
tokens by g∗∗ in Table.1.

Extension to the hardness of vision compositionality. Theorems.7-9 are derived from the composi-
tion operators to describe the hardness in the language level, whereas the existing study argue that the
hardness also happen to misunderstanding the visual concepts presented in images. Since the natural
image generation process significantly differs from language in Assumption.4, it is impossible to
derive the same causal analysis to explain the vision compositionality.

Instead, we resort to the constant modality gap phenomenon. Specifically, (Zhang et al.) observed that
relevant image-text pairs extracted by CLIP’s image and text encoders, show the consistent distance
between their features. (Chen et al. (2023)) extend their results to justify that CLIP may not isolate
two images when they share some mutually exclusive atomic concepts. It is obvious that when an
image with its counterpart regenerated by modifying some atomic concepts via SWAP, REPLACE,
or ADD forms, it definitely leads to the appearance of mutually exclusive atomic concepts between
them. It explains the hardness of vision compositionality using CLIP.

The nonidentifiability with multiple atomic concepts. The hard negative in Theorem.7-9 focus on
the text instances X(tex) derived from after the modification with a single atomic concept. We now
demonstrate that their can be combined and extend to the nonidentified image-text matching involved
with multi-concept modification. In specific, given an image x(img) and its hard negative description of
F (X(tex)) (F1(·) = SWAP(·),REPLACE(·), or ADD(·)) using Theorem.7-9, we know the existence
of <f∗, g∗∗> to generate the nonidentified image-text matching. For the image and its modified hard
negative, <f∗, g∗∗> has no difference with <f∗, g∗>. To this, we may consider the second hard
negative description F2(F1(X

(tex))) generated from F1(X
(tex)) (F2(·) = SWAP(·),REPLACE(·),

or ADD(·)) using Theorem.7-9 on another atomic concept, and there must be some pseudo encoder
pairs <f∗, g∗∗∗> with regards to <f∗, g∗∗> (i.e., <f∗, g∗∗> was treated as the true encoder pairs since
<f∗(x(img)), g∗(X(tex))> and <f∗(x(img)), g∗∗(X(tex))> in terms of our theorems).

In other words, it is possible to generate more complex hard-negative textual instances by stacking
the compound nonidentified matching effects through iteratively using SWAP(·),REPLACE(·), or
ADD(·). While the process can not be endless because each calling of SWAP(·), REPLACE(·), or
ADD(·) will reduce the solution space of the hard negative derived from X(tex). In practice, we found
that the second calling is sufficient to generate more confusing hard negative cases of X(tex).

5 EXPERIMENTS

In this section, we provide some empirical studies to verify our theoretical results from three aspects.
First, we attempt to verify whether Theorem.7-9 could be used to generate the practical hard negative
instances covered by the existing vision-language compositional reasoning benchmarks, so that it
literally suits the reality; Second, we aim to justify the existence of “pseudo-optimal” text encoders
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Figure 3: CLIP’s accuracy (ACC) on the negative samples generated by ARO and our Algorithm1. The
overlap percentage indicates how many negative samples in ARO belong to the cases in Theorem.7-9.

Figure 4: CLIP’s accuracy (ACC) on the negative samples generated by VALSE and our Algorithm1.
The percentage indicates how many negative samples in VALSE belong to the cases in Theorem.7-9.

induced by Theorem.7-9. Finally, we provide the experiments of CLIP-based models trained and
evaluated with regular hard negative pairs and hard negative pairs generated by the second calling
to SWAP(·),REPLACE(·), or ADD(·), which generate the more complex non-identified cases in
the textual descriptions. The implementation of composition operators SWAP(·), REPLACE(·),
and ADD(·) with respect to Theorems.7-9 are summarized by Algorithm.1 in Appendix. We apply
Gemini 2.5 Pro as the proxy for their executions.

5.1 BRIDGING THEORETICAL-EMPIRICAL GAPS ON BENCHMARK DATA

To justify whether the theoretical results suit the practice, we conduct our compositional understanding
experiment in ARO (Yuksekgonul et al. (2023)) that consists of four splits for evaluation: VG-
Relation, VG-Attribution, COCO-Order, and Flickr30k-Order. We access their test splits then select
the instances which belongs to the compositional reasoning cases described by Theorem 7-9. Besides,
we also consider VALSE benchmark Parcalabescu et al. (2021) where the composition reasoning
instances derived from five sources including MSCOCO, Visual7W, SWiG VisDial v1.0, SituNet are
categorized into six cases, i.e., existence, plurality, counting, relations, actions, coreference. Given
this, we conduct the CLIP evaluation on the four test splits in ARO and six test splits in VALSE,
where LLM-as-a-Judge strategy is employed to justify whether test instances can be categorized into
the hard negative cases generated by our theorems, then report their percentages.

Fig.3,4 substantiate our core motivation: the proposed token-aware algorithms, instantiated from
the SWAP/REPLACE/ADD theorems, can replicate a large fraction of the hard negative instances
used by existing benchmarks. On ARO (Fig. 3) and VALSE (Fig. 4), the “overlap percentage” bars
are high across splits, indicating that many benchmark negatives fall within the transformations our
procedures generate. This alignment is not superficial: CLIP’s accuracies on these subsets mirror
the original benchmark trends, showing that our synthesized negatives preserve difficulty while
being produced by a transparent, theoretically grounded process. Moreover, cases where accuracy
on overlapped subsets matches the benchmark values reveal that pseudo-optimal text encoders
remain insensitive to token permutations or rephrasings precisely as predicted. Together, these results
demonstrate that our framework not only explains why CLIP fails on compositional variants, but also
operationalizes this insight into practical data generation that faithfully reproduces real benchmark
hard negatives—closing the theory-to-benchmark gap.

5.2 EVIDENCES OF g∗∗’S EXISTENCE

Theorems.7-9 demonstrate that we can not directly judge the existence of the pseudo-optimal
text encoder g∗∗. Whereas some evidences are possibly observed if g∗∗ is created. Specif-
ically, we would like to observe the discrepancies between the features of X(text) and its
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Table 2: Results on CC3M and CC12M across Replace, Swap, and Add categories. Bold indicates the
best in each column.

Methods
Replace Swap Add Overall

Object Attribute Relation Object Attribute Object Attribute Avg.

CC3M
NegCLIP 62.71 58.12 54.48 56.33 51.20 56.21 56.13 57.18
NegCLIP (+MC) 63.11 63.24 60.79 57.18 53.65 58.31 59.45 59.02
TripletCLIP 69.92 69.03 64.72 56.33 57.96 62.61 63.87 63.49
TripletCLIP (+MC) 71.00 70.31 63.22 55.93 58.67 63.21 64.90 64.79

CC12M
NegCLIP 77.84 69.29 63.23 66.53 62.31 68.17 69.65 68.00
NegCLIP (+MC) 78.18 70.91 62.93 68.73 63.38 69.70 69.75 68.87
TripletCLIP 83.66 81.22 79.02 64.49 63.66 73.67 75.43 74.45
TripletCLIP (+MC) 84.86 80.02 79.82 67.52 64.55 72.67 76.43 76.51

hard negative counterparts as SWAP(X(text)),REPLACE(X(text)), or ADD(X(text)), respec-
tively. We employ A-distances between the features of test instances drawn from SugarCREPE
<X(text),SWAP(X(text))>;<X(text),REPLACE(X(text))>; <X(text),ADD(X(text))>. We particu-
larly consider the change before training with / without the hard negative generated by SWAP,
REPLACE, and ADD. The results are presented as

• <X(text),SWAP(X(text))>. with-1.91 , without-1.06.

• <X(text),REPLACE(X(text))>. with-1.86 , without-0.98.

• <X(text),ADD(X(text))>. with-1.84 , without-1.01.

With regards to the characteristic of A distance, we found that the generated hard negatives almost
hold the same statistical evidences without post-training with hard negative, whereas hard negative
can effectively isolate them. It implies the existence of g∗∗.

5.3 MULTI-CALLING OF COMPOSITION OPERATORS

In the last experiment, we are interested to observe whether iterative calling of composition operators
SWAP(·),REPLACE(·), or ADD(·) to modify the text from the original description to hard negative,
can lead to more challenging hard negative pairs. Specifically, we conduct the experiments on the
benchmark with two train-test splits, i.e., CC3M and CC12M. The evaluated baselines NegCLIP
(Yuksekgonul et al. (2023)) and TripleCLIP (Patel et al. (2024)) both employed hard negative mining
to augment their training paradigms. We accordingly use Algorithm.1 to generate hard negative to
further augment the training instances, leading to our baselines NegCLIP (+MC) and TripleCLIP
(+MC) to justify whether iterative-generated hard negative can further improve their performances.

Table 2 shows that iteratively applying SWAP/REPLACE/ADD during training yields consistent
gains over their hard-negative baselines. On CC3M, NegCLIP(+MC) improves the Overall Avg. from
57.18 to 59.02 (+1.84), and TripletCLIP(+MC) from 63.49 to 64.79 (+1.30). The strongest per-type
gains appear in Replace (e.g., CC3M Attribute: 69.03 → 70.31; CC12M Object: 83.66 → 84.86),
aligning with our claim that stacking operators expands the difficult negative space beyond single
edits. On CC12M, where base performance is higher, MC still adds +0.87 for NegCLIP and +2.06
for TripletCLIP, with notable boosts on Swap-Object (64.49 → 67.52) and Add-Attribute (75.43 →
76.43). Not all cells increase (e.g., CC3M Replace-Relation slightly drops for TripletCLIP), suggesting
diminishing returns or coverage imbalance for certain relations. Overall, MC systematically enhances
robustness across datasets and edit types, validating our hypothesis that compound compositional
perturbations generate harder, complementary negatives that translate into better compositional
generalization.
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