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ABSTRACT

Efficient reinforcement learning (RL) involves a trade-off between “exploitative"
actions that maximise expected reward and “explorative" ones that lead to the
visitation of “novel" states. To encourage exploration, existing methods proposed
methods such as injecting stochasticity into action selection, implicit regularisation,
and additive synthetic reward. However, these techniques do not necessarily
offer entirely systematic approaches making this trade-off. Here we introduce
SElective Reinforcement EXploration (SEREX), a plug-and-play framework that
casts the exploration-exploitation trade-off as a game between an RL agent—
Exploiter, which purely exploits task-dependent rewards, and another RL agent—
Switcher, which chooses at which states to activate a pure exploration policy that
is trained to minimise system uncertainty and override Exploiter. Using a form
of policies known as impulse control, Switcher is able to determine the best set
of states to switch to the exploration policy while Exploiter is free to execute its
actions everywhere else. We prove that SEREX converges quickly and induces a
natural schedule towards pure exploitation. Through extensive empirical studies
in both discrete and continuous control benchmarks, we show that with minimal
modification, SEREX can be readily combined with existing RL algorithms and
yields significant improvement in performance.

1 INTRODUCTION

Reinforcement learning (RL) is a framework that enables autonomous agents to learn complex
behaviours through trial and error (Sutton & Barto, 2018). With the combination of neural-network
based function approximations, RL has had notable successes in a number of practical domains such
as robotics and games (Silver et al., 2016; Reed et al., 2022). During the training phase, instead of
acting greedily all the time, the agent need to sacrifice known rewards for uncertain transitions in
order to obtain a sufficient coverage of the state space for finding the globally optimal policy (Sutton
& Barto, 2018). However, randomly perturbing actions is sample inefficient since it does not take
into account information acquired from previous experiences. In practice, this procedure exacerbates
the sample complexity of the agent’s learning of the optimal policy, despite theoretically grounded
asymptotic convergence (Dabney et al., 2020).

In this paper, we tackle the challenge of performing systematic and efficient exploration in RL. We
propose a novel two-agent framework that disentangles exploration and exploitation for more efficient
independent learning. We propose SElective Reinforcement EXploration (SEREX), which entails an
interdependent interaction between an RL agent, Exploiter, whose goal is to maximise the current
estimate of future task-dependent rewards (either model-free or model-based), and an additional RL
agent, the Switcher, whose goal is to explore so as to reduce the system uncertainty across the state
space. Furthermore, at any given state, Switcher has the power to override the Exploiter and assume
control of the system (at that state) to apply exploratory actions. Therefore, the Switcher acts to
reduce system uncertainty in subregions of the state space in which (high) system uncertainty exists.
A key ingredient of the SEREX framework is the use of a form of policy known as impulse control
(Øksendal & Sulem, 2007; Mguni et al., 2022) used by Switcher. This enables the Switcher to quickly
determine the appropriate points to activate its exploration policy to minimise system uncertainty.

By using a two-agent framework for independent learning of the exploitation and exploration policies,
the competing individual goals of completing the task set by the environment versus exploration
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over the state space are decoupled and each delegated to an independent agent. This means that
the Exploiter pursues its task of maximising its objective by purely exploiting without trading-off
rewards from the environment for exploration. Moreover, as the Switcher itself is an RL agent, it
learns to perform systematic and targeted arbitration between exploitative and exploratory actions,
switching to exploration only where such actions produce a reduction in system uncertainty. This
leads to stronger asymptotic behaviour moreover, as we formally prove in Sec 4, a schedule of
exploration naturally emerges from SEREX without the need for heuristic exploration scheduling
(see Prop. 2). SEREX, which is an independent dual system for exploitation and exploration has
a nice correspondence with the neural evidence of orthogonal encoding of reward and information
values in the orbitfrontal cortex (OFC, (Zhou et al., 2021) see further discussion in Sec. 7). SEREX
is a flexible plug-and-play framework that can be easily integrated with existing RL algorithms. We
instantiate SEREX on both value-based and actor-critic RL agents and empirically evaluate on both
discrete and continuous control benchmarks. Experimental evidence indicates that SEREX lead to
improved empirical performance.

2 PRELIMINARIES

In RL problems, an agent interacts with the environment such that it gradually learns to sequentially
selects actions to maximise its expected returns. The underlying problem is typically formalised
as an MDP 〈S,A, P,R, γ〉 where S ⊂ Rp is the set of states, A ⊂ Rk is the set of actions,
P : S × A × S → [0, 1] is a transition probability function describing the system’s dynamics,
R : S ×A → R is the reward function measuring the agent’s performance and the factor γ ∈ [0, 1)
specifies the degree to which the agent’s rewards are discounted over time (Sutton & Barto, 2018).
At time t ∈ 0, 1, . . . , the system is in state st ∈ S and the agent must choose an action at ∈ A
which transitions the system to a new state st+1 ∼ P (·|st, at) and produces a reward R(st, at).
A policy π : S × A → [0, 1] is a probability distribution over state-action pairs where π(a|s)
represents the probability of selecting action a ∈ A in state s ∈ S. The goal of an RL agent is
to find the optimal policy π̂ ∈ Π that maximises its expected returns given by the value function:
vπ(s) = E[

∑∞
t=0 γ

tR(st, at)|at ∼ π(·|st)] where Π is the agent’s policy space.

3 SEREX: A DUAL SYSTEM FOR EXPLORATION AND EXPLOITATION
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Figure 1: Schematic illustration of SEREX com-
ponents and how SEREX interacts with the envi-
ronment for action selection.

Our framework, SEREX consists of an RL
agent, Exploiter and an impulse control agent
Switcher (Mguni et al., 2022). Switcher has the
ability to transfer control of the system to the
exploration policy and does so at a set of states
it chooses. The agent Switcher is trained to min-
imise the system uncertainty across the state
space, hence determining the best set of states to
transfer control to the exploration policy, whilst
the Exploiter is free to exploit everywhere else.
Unlike standard RL in which the goals of explo-
ration and exploitation are housed within one
objective / heuristic, the goal of minimising un-
certainty about unexplored states and exploiting
known rewards are now decoupled.

Formally, our framework is defined by a tu-
ple G = 〈N ,S,A,Are, P,Rit, Rre〉1 where
the new elements are the set of agents N =
{Exploiter, Switcher}, A and Are ⊆ A are the exploitation (for Exploiter) and exploration (for
Switcher) action sets, respectively, and the functions Rit, Rre : S ×A×Are → R are the one-step
rewards . The transition probability P : S ×A×Are × S → [0, 1] takes the state and action of both
agents as inputs. The Exploiter agent has a Markov policy πit : S → A, which is contained in the set
Πit ⊆ Π. The Switcher agent has two components a Markov policy πre : S → Are from Πre ⊆ Π,
which determines the exploration action based on a measure of uncertainty, and a (categorical) policy

1Note that we use ·it and ·re to refer to the quantities associated with the exploiter and explorer, respectively.
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g : S → {0, 1}, which determines when to activate exploration. At each state the Switcher makes
a binary decision to decide whether to transfer control of the system to the exploration policy πre.
We denote by {τk}k≥0 the timepoints at which the Switcher decides to activate the exploration
policy or the intervention times. For example, if the Switcher chooses to switch to exploration at
state s6 and again at state s8, then τ1 = 6 and τ2 = 8. The intervention times obey the expression
τk = inf{t > τk−1|st ∈ S, g(st) = 1} and are therefore rules that depend on the state. Hence, by
learning an optimal g, Switcher learns the best states to activate exploration. As we later explain,
these intervention times are determined by a condition on the state which is easy to evaluate (see Prop.
2). Here, we assume all policies πit, πre, g are implemented with actor-critic based frameworks.

The Exploiter Objective

The goal of Exploiter is to (greedily) maximise its expected cumulative reward set by the environment.
The objective that Exploiter seeks to maximise is:

v
πit,(πre,g)
1 (s) = E

∑
t≥0

γt1R
it
(
st, a

it
t , a

re
t , gt

) ∣∣∣s0 ≡ s

 , (1)

where ait
t ∼ πit(·|st) is Exploiter’s action and are

t ∼ πre is an action chosen according to the
exploration policy, the reward function is defined by Rit(st, a

it
t , a

re
t , gt) = R(st, a

it
t )(1− 1(gt)) +

R(s, are
t )1(gt) and 1(g) is the indicator function which is 1 whenever g = 1 and 0 otherwise.

Therefore, the reward received by Exploiter is R(st, a
re
t ) when t = τk, k = 1, 2, . . . i.e. whenever

the Switcher activates the exploration policy and R(st, a
it
t ) otherwise.

Whenever Switcher decides to transfer control to the exploration policy, the exploration policy
overrides the Exploiter and the transition dynamics are affected by only the exploration policy (while
Exploiter influences the dynamics at all other times). The transition dynamics are therefore given
by P (st+1, a

re
t , a

it
t , gt, st) := P (st+1, a

it
t , st) (1− 1(gt)) + P (st+1, a

re
t , st)1(gt). Therefore, the

transition function is P (st+1, a
re
t , st) when t = τk, k = 1, 2, . . . i.e. whenever the Switch activates

the exploration policy and P (st+1, a
it
t , st) otherwise.

The Exploration Policy

The actions selected by the exploration policy πre are chosen so as to maximise the following:

v̂
πit,(πre,g)
2 (s) = E

∑
t≥0

γt2R
re
(
st, a

it
t , a

re
t

) ∣∣∣s0 ≡ s

 , (2)

whereRre(st, a
it
t , a

re
t ) := L(s, are

t )1(gt)+L(st, a
it
t )(1−1(gt)), and L is the measure of uncertainty

which we specify in detail shortly and is chosen to satisfy the property that L → 0 as the system
uncertainty decreases. Analogous to the reward function for the Exploiter, the function Rre is defined
so that the received reward is L(st, a

re
t ) when t = τk, k = 0, 1, . . . i.e. whenever the Switcher

activates the exploration policy and L(st, a
it
t ) otherwise.

We note that both Rit
(
st, a

it
t , a

re
t , gt

)
and Rre

(
st, a

it
t , a

re
t , gt

)
are evaluated at all timesteps, instead

of independently when exploitation and exploration actions are chosen, respectively. Hence the
joint agent can maximally utilise the supervisory signals available and learn to choose the optimal
combination of exploitative and exploratory actions to maximise both across all timepoints.

In general, SEREX accommodates various measures of uncertainty, possible choices include
the model-based ensemble epistemic uncertainty in state prediction (Chua et al., 2018) and
action-prediction errors (Pathak et al., 2017). In the current setting, we focus on the model-free
instantiation of the proposed framework, hence employing a model-free estimate of the uncertainty
across state space. In this case, we assume that the Exploiter uses an ensemble of neural networks
as its critic / value function. We quantify the uncertainty over the state space using a non-parametric
estimate based on ensemble modelling of the value function of the Exploiter (Osband et al., 2016).
In particular, for an ensemble of E critic estimates of {Q1, . . . ,QE}, we have the following measure
of uncertainty for any a ∈ A and for any s ∈ S:

L(s, a) =
1

E − 1

∑
e

(Qe(s, a)− µ(s, a))2, (3)
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where µ(s, a) := 1
E

∑
eQe(s, a) is the empirical mean of the ensemble predictions.

The Switcher Mechanism

The goal of the Switcher is to minimise uncertainty over the entire state (-action) space. To induce
the Switcher to selectively choose when to switch to exploration, each switch activation incurs a
fixed cost for Switcher. These costs are quantified by the indicator function which is β whenever an
exploratory action is performed and 0 otherwise where β is a fixed positive constant. The presence of
this cost ensures that the gain for Exploration for performing an exploratory action to arrive at a given
set of states is sufficiently high to merit forgoing rewards from exploitative actions. Therefore to
maximise its objective, the Switcher must determine the sequence of points {τk} at which the benefit
of performing an exploratory action overcomes the cost of doing so. Accordingly at time t ∈ 0, 1, . . .,
the Switcher seeks to maximise the following quantity:

v
πit,(πre,g)
2 (s) = E

∑
t≥0

γt3

(
Rre

(
st, a

it
t , a

re
t

)
− β · 1Are(are

t )
) . (4)

Therefore to maximise its objective, the Switcher must determine the best set of states to reduce
system uncertainty. Note that since Rre depends on the uncertainty measure L, it has the non-
stationary property that Rre → 0 as system uncertainty decreases. With low level of uncertainty
L, the cost of switching dominates so the Switcher does not intervene leaving Exploiter to take
actions that deliver high rewards. This effectively pushes the Switcher out of the game as systemic
uncertainty is reduced. This is precisely the behaviour that we seek as more about the environment
becomes known. We formally prove this property in Sec. 4 (see Prop. 2). Note that both agents use
deterministic policies so that the system naturally evolves towards full exploitation.

SWITCHER LEARNS FASTER THAN EXPLOITER

The role of g is to determine if at a given state s, the exploration policy πre should be activated. In
this setup, the policy πit first proposes an action which is observed by the policy g. If activated,
the policy πre determines the (exploratory) action to be selected otherwise the action is selected
according to the policy πit. The policy g involves a binary decision at each state leading to a a decision
space of S × {0, 1}— this differs from Exploiter though both agents share the same experiences.
Consequently, the learning process for g is relative quick (and unlike Exploiter’s who must optimise
over a decision space which is |S| · |A|, choosing an action from its action space at every state).
This results in the Switcher rapidly learning when to activate πre, enabling it to efficiently guide
exploration during training (Mguni et al., 2022).

RELATION TO OTHER EXPLORATORY MECHANISMS

Many existing exploration models can be viewed as some degenerate form of SEREX. For instance,
the classical ε-greedy exploration can be interpreted as SEREX with a random switching mechanism
and uniform exploration policy. If we consider the case in which Switcher has the identical objective
to Exploiter, consists of task rewards with additive intrinsic rewards, then the model is equivalent to
exploration with intrinsic bonus (Schmidhuber, 1991; Pathak et al., 2017; Burda et al., 2018). We
hope the framework of a dual system for exploration-exploitation tradeoff proposed in the current
paper could inspire more systematic exploration methods currently unthought of.

TRAINING

As we show in Sec. 4, the learning processes for both agents converge to a stable solution. Note that
since Are ≡ Ait, the Exploiter is trained off-policy using the data generated by both exploration and
exploitation policies. The Exploiter, the Explorer and the Switcher maintain their independent replay
buffers with respective reward functions. We note as the learning process progresses, the uncertainty
inevitably decreases, yielding the reward structure for the exploration policy training non-stationary.
To counteract the non-stationarity of the reward structure of Explorer, the discounting factor γ2 is set
to be appropriately lower (comparing to standard values) such that the agent still learns a policy that
maximises future returns, but at the same time reduce the negative effects caused by the distributional
shift in the reward distribution in Explorer learning.
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Algorithm 1: SElective Reinforcement EXploration (SEREX)
Algorithm 1

1: Given reward objective function for Switcher, uncertainty objective function L(·, ·), initialise
Replay Buffers Bit, Bre, Bg, Switcher intervention cost β.

2: for Nepisodes do
3: Reset state s0

4: for t = 0, 1, . . . do
5: Sample Exploiter action, ait

t ∼ πit(·|st); Explorer action, are
t ∼ πre(st); Switcher action,

gt ∼ g(st),
6: if gt = 0 then
7: Apply ait

t so st+1 ∼ P (·|ait
t , st),

8: else
9: Apply are

t so st+1 ∼ P (·|are
t , st),

10: end if
11: Receive rewards rit

t = R(st, a
it
t ), rre

t = L(st, a
re
t ) and

rgt = L(st, a
it
t )− 1(gt)(L(st, a

it
t )−L(st, a

re
t ) + β).

12: Store (st, a
it
t , st+1, r

it
t ) in Bit, store (st, a

re
t , st+1, r

re
t ) in Bre, store (st, gt, st+1, r

g
t ) in Bg,

13: end for
14: // Learn the individual policies
15: Sample batches of |B| transitions, Bi = {(sit, ait, sit+1, r

i
t}
|B|
b=1 from Bi for i ∈ {it, re, g}

16: Update πit with Bit, update πre with Bre, update g with Bg.
17: end for

4 CONVERGENCE & OPTIMALITY OF SEREX

A key aspect of SEREX is the presence of two RL agents that each adapt their play according to the
other’s behaviour. This produces two concurrent learning processes each designed to fulfill distinct
objectives. At a stable point of the learning processes the Switcher minimises uncertainty about
less explored states while Exploiter maximises the environment reward. Introducing simultaneous
learners can occasion issues that prevent convergence to the stable point (Zinkevich et al., 2006).

We now show G admits a stable point and that our method converges to it. In particular, we show
that the joint system converges in its value functions for each agent. Additionally, we show that
SEREX induces a natural schedule in which as the environment is explored, Switcher’s interventions
(to perform exploration) tend to 0 (all proofs can be found in Appendix 9). We solve these challenges
with the following scheme of results:

[A] Given any Exploiter policy, the Switcher’s learning process converges.

[B] The switch activations performed by Switcher can be characterised by a ‘single obstacle condition’
which can be evaluated online. Moreover, the number of switch activations tends to 0 as the system
uncertainty decreases.

[C] The system of two joint learners (SEREX) converges, moreover, SEREX converges to an
approximate solution using function approximators for the critic.

We begin by stating a key result:

Theorem 1 SEREX converges to a stable solution in the agents’ value functions.

Theorem 1 is established by proving a series of results; firstly that for a given Exploiter policy,
Switcher’s learning process converges (to its optimal value function). Secondly, we show that the
system of the two learners Exploiter and Switcher jointly converges to their optimal value functions.

Our first result proves the Switcher’s optimal value function can be obtained as a limit point of a se-
quence of Bellman operations. We then prove that its convergence extends to function approximators.
To begin, first define a projection Π by: ΠΛ := arg min

Λ̄∈{Φr|r∈Rp}

∥∥Λ̄− Λ
∥∥ for any function Λ.
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Proposition 1 For a given Exploiter policy π ∈ Π, the Switcher’s learning process converges,
moreover given a set of linearly independent basis functions Φ = {φ1, . . . , φp} where φ1≤k≤p ∈ L2,
the Switcher’s value function converges to a limit point r? ∈ Rp which is the unique solution to
ΠF(Φr?) = Φr? where F is defined by: FΛ := R+ γP max{MΛ,Λ} whereM is the Switcher’s
intervention operator (c.f. (13)). Moreover, r? satisfies: ‖Φr? −Q?2‖ ≤ (1− γ2)−1/2 ‖ΠQ?2 −Q?2‖.

Prop. 1 establishes the convergence of the Switcher’s learning process with the use of a function
approximator. The second statement bounds the proximity of the convergence point by the smallest
approximation error that can be achieved given the choice of basis functions.

Having constructed a procedure to find the optimal Exploiter policy, our next result characterises the
Switcher policy g and the times that Switcher must perform an intervention.

Proposition 2 i) For any s ∈ S, the Switcher intervention times are given by the following:

τk = inf
{
τ > τk−1|Mπre

vπ
it,πre

2 = vπ
it,Πre

2

}
(5)

ii) Denote by µl(g) the number of switch activations performed by the Switcher when
max

(s,a)∈S×A
L(s, a) = l under the Switcher policy g, then lim

l→0
µl(g) = 0.

Part i) of Prop. 2 characterises the distribution g. Moreover, given the function V , the times {τk} can
be determined by evaluating ifMV = V holds. Part ii) of Prop. 2 establishes that the number of
switches performed by Switcher tends to 0 as the system uncertainty is reduced through Switcher’s
exploration. This induces a natural exploration schedule based on the current system uncertainty.

RELATION TO MARKOV GAMES.

Our framework involves a system of two agents each with their individual objectives. Settings of this
kind are formalised by Markov games (MG), a framework for studying self-interested agents that
simultaneously act over time (Littman, 1994). In the standard MG setup, the actions of both agents
influence both each agent’s rewards and the system dynamics. Therefore, each agent i ∈ {1, 2} has
its own reward function Ri : S × (×2

i=1Ai)→ R and action set Ai and its goal is to maximise its
own expected returns. The system dynamics, now influenced by both agents, are described by a
transition probability P : S × (×2

i=1Ai)× S → [0, 1]. Unlike classical MGs, in our MG, Switcher
does not intervene at each state but is allowed to assume control of the system at certain states which
it decides using impulse controls. Our setup is related to stochastic differential games with impulse
control (Mguni, 2018). However, our Markov Game differs markedly since it is nonzero-sum, an
agent assumes control and is a discrete-time treatment.

5 RELATED WORK

Exploration-Exploitation Tradeoff is a fundamental question in RL research, i.e. trading off
finding higher reward states and exploiting known rewards. Existing approaches include directly
injecting pure noise or certain parametric stochasticity into action choices during learning (Sutton
& Barto, 2018; Lillicrap et al., 2015); using stochastic controllers regularised by the maximum
entropy principle (Haarnoja et al., 2018); augmenting task rewards with synthetic exploration bonus /
intrinsic reward (Stadie et al., 2015; Pathak et al., 2017; Sekar et al., 2020). Despite the simplicity, no
existing methods explicitly learn an exploration policy for performing targeted explorative actions
that maximise the expected uncertainty over the future states. Moreover, most existing methods utilise
one policy for capturing both the task-dependent optimal behaviour and the explorative behaviour for
efficient covering of the state space, yielding suboptimal learning in both aspects, whereas SEREX is
able to disentangle the learning of the two policies with independently trained RL agents, leading to
improved training for both the optimal policy and the exploration policy. Among more systematic
approaches , is exploration according to ‘Optimism in the Face of Uncertainty’ (OFU). Some popular
algorithms under the OFU framework include the Upper Confidence Bound (UCB) algorithm Auer
(2002) that achieves theoretically justified regret bounds and active inference algorithms that relate
exploration with free energy maximisation under the variational inference principle (Schwartenbeck
et al., 2013). However such systematic approaches predominantly exist in the multit-armed bandits
literature, whereas SEREX addresses reinforcement learning in Markov decision processes.
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Reward free exploration, also known as the task-agnostic or reward-agnostic setting is a closely
related method (Zhang et al., 2020; Jin et al., 2020). In this setting, the agent goes through a two-stage
process. In the exploration phase the agent interacts with the environment without the guidance
of any reward information, and in the planning phase the reward information is revealed and the
agent computes a policy based on the transition information collected in the exploration phase and
the reward information revealed in the planning phase. We also separate the tasks of exploration
from exploitation using two processes, however we note that here the two processes are performed
concurrently and actions are chosen based on either process interchangeably, hence achieving a more
self-contingent tradeoff between exploration and exploitation.

Uncertainty quantification in exploration is an active field of research in RL. It is common practice
to use the disagreement of the predictions over an ensemble of neural networks as the epistemic un-
certainty to guide exploration Osband et al. (2016); Janner et al. (2019); Sekar et al. (2020); Lee et al.
(2021). Connections between ensemble disagreement and information theory have been drawn such
that choosing actions that maximises the expected ensemble disagreement would maximally increase
the information gain, improving the efficiency of exploration Sekar et al. (2020); O’Donoghue (2021).
Other popular alternatives involve the prediction error of a discriminative dynamics model Schmid-
huber et al. (1997); Pathak et al. (2017) and the predictive uncertainty given a generative dynamics
model Ratzlaff et al. (2020); Jiang & Lu (2020). We wish to note that existing works utilise the
uncertainty as the additive intrinsic reward that facilitate implicit exploration towards less explored
states, and the single augmented reward fails to learn optimal exploitation or exploration policies.

6 EXPERIMENTS

We performed a series of experiments to demonstrate that SEREX’s multi-player framework is able
to improve the tradeoff between exploration and exploitation leading to marked improvement of the
underling RL methods (all experimental details can be found in Appendix 11).

Specifically, we wish to address the question that if SEREX learns to improve performance of an
underlying base RL learner by more efficiently locating higher reward states in MDPs with a) discrete
b) continuous action spaces with different base learners (e.g., value-based and actor-critic). Moreover,
we wish to empirically investigate if the non-stationary exploration reward structure negatively impact
the overall learning (hence justifying our choice of lower discounting value for the Explorer).

6.1 MINIGRID EXPERIMENTS

We firstly demonstrate SEREX in combination with a standard DQN (Mnih et al., 2013). It
is well known that DQN usually performs poorly in sparse-reward settings (Osband et al.,
2016; Pathak et al., 2017). To this end, we choose the MiniGrid environments (Chevalier-
Boisvert et al., 2018), where all transitions to non-goal states leads to zero reward. As
we observe in Figure 2(b), SEREX-DQN quickly learns to consistently navigate towards
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Figure 2: DQN and SEREX-DQN in the MiniGrid-
World Chevalier-Boisvert et al. (2018). (a) Graph-
ical illustration of the “8x8" minigrid-world envi-
ronment, only transitions into goal states (green
block) lead to non-zero rewards; (b) SEREX-DQN
quickly learns the optimal policy to the goal state
while the standard DQN has not learned good pol-
icy over 150 episodes of training.

the goal state within 100 training episodes,
whereas the standard DQN with ε-greedy has
failed to acquire a sensible policy over the 150
episodes. Hence we conclude that SEREX can
be readily plugged into DQNs to deal with
sparse-reward and/or goal-directed tasks.

6.2 MUJOCO EXPERIMENTS

We evaluate SEREX on the continuous con-
trol benchmarks from the MuJoCo suite (Fig-
ure 3(a); Todorov et al. (2012)) to show that
SEREX yields a more efficient explorative strat-
egy that enables more sample-efficient and
stronger learning of the optimal (exploitation)
policy. We choose to implement SEREX on the
Soft Actor-Critic (SAC; Haarnoja et al. (2018)).
SAC is an off-policy policy gradient algorithm
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Figure 3: Evaluation of SEREX with the baseline SAC algorithm on the MuJoCo tasks (Todorov et al.,
2012). (a) Graphical demonstration of the selected MuJoCo environments; (b) Average evaluation
returns (over 5 random seeds) of SEREX-SAC and SAC over 1× 106 training steps.

where the policy is trained under the maximum entropy principle, and it achieves state-of-the-art
performance across a number of continuous control benchmarks.

From Figure 3(b), we observe that in 3 out of the 4 selected tasks, SEREX-SAC outperforms
the baseline SAC agent in terms of both sample efficiency and the asymptotic performance, over
the first 1 × 106 training steps. SEREX-SAC performs slightly worse than the baseline SAC on
the HalfCheetah task in terms of sample efficiency of learning, but reaches similar asymptotic
performance. Moreover, we note that across all 4 tasks, SEREX-SAC leads to more robust training, as
indicated by the standard deviation of the evaluation scores over 5 random seeds throughout training.
The gain may be attributed to the effective exploration by the Switcher, especially during the early
phase of training, which facilitates the diversity of the off-policy replay buffer, hence enabling the
identifying of better solutions.

In order to disentangle the contribution to the performance improvement with respect to the
uncertainty-based reward signal for guiding exploration and the learned impulse switching con-
trol mechanism for the arbitration between exploration and exploitation, we implement SAC-intrinsic,
which utilise the ensemble epistemic uncertainty (Eq. 3) as the additive intrinsic reward for incen-
tivising exploration towards less explored states. In Figure 3(b) we observe that merely including
the additive uncertainty-based intrinsic reward leads to worse performance across all tasks, and
SEREX-SAC outperforms SAC-intrinsic on all 4 selected mujoco tasks. Hence we have empiri-
cally justified that the impulse swtiching control arbitration enables the learning of more targeted
exploration policies comparing to the naive additive combination of the extrinsic reward and the
uncertainty-based exploration bonus.

6.2.1 ABLATION STUDIES ON THE Explorer DISCOUNTING FACTOR

As discussed in Sec. 3, the discounting factor for the Explorer needs to be set small to mitigate the
negative effects of the non-stationarity reward structured in the training of Explorer. However, naively
setting the discounting factor too small would not yield good performance either, where the resulting
agent takes exploratory actions only dependent on the epistemic uncertainty of the current state
instead of a value estimate that guides targeted exploration towards areas of high uncertainties. Here
we empirically justify our hypothesis by performing an ablation study on the effect of the value of
the discounting factor for the learning of the Explorer. By examining the asymptotic performance
given 1× 106 training stes (Table 1), we see that setting the discounting factor too large or too small
both induce worse performance, whereas intermediate values of γ2 (0.6) yields the best performance.
Noticeably, we also observe that setting γ2 too large or too small would yield the training less robust
with respect to the random seed, leading to increased noise in the evaluation performance.
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Ant HalfCheetah Reacher Walker2D
SEREX-SAC (γ2 = 0.6) 2607.6± 99.0 2327.8± 102.5 21.8± 2.0 1996.1± 69.9

SEREX-SAC (γ2 = 0.1) 1853.7± 1362.7 2205.4± 846.2 20.2± 4.0 1169.7± 762.9

SEREX-SAC (γ2 = 0.98) 2477.9± 128.9 1944.9± 587.0 18.6± 0.8 1720.7± 177.6

Table 1: Ablation studies on the effects of Explorer’s discounting factor (γ2).
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Figure 4: Mean and median human normalised scores of evaluations of SEREX-Eff-DQN and
selected baselines (see Appendix 11) on Atari 100K benchmarks.

6.3 ATARI EXPERIMENTS

We further evaluate SEREX on a set of sample-constrained discrete control tasks, the Atari 100K
benchmark (Kaiser et al., 2019). Here we instantiate SEREX based on DQN (Mnih et al., 2013), with
additional components, including double Q-learning (Van Hasselt et al., 2016), dueling network for
value estimation (Wang et al., 2016), and multi-step TD-target (Mnih et al., 2016). We additionally
utilise the image augmentation techniques for training the DQN (Kostrikov et al., 2020) (we only
use the “intensity" augmentation instead of all augmentation types as in Kostrikov et al. (2020)). We
apply the resulting model, SEREX-Eff-DQN on all games in the Atari 100K benchmark, and we
evaluate the performance given 100K training steps. We follow the evaluation procedures outlined
in Kaiser et al. (2019). In Figure 4, we show that SEREX-Eff-DQN outperforms all selected baselines
(see Appendix 11) in terms of both the median and mean human normalized returns for all SEREX-
Eff-DQN and selected baselines, hence again indicating the improvement brought by the SEREX
framework. Full experimental setup and results (for all games) can be found in Appendix 11 and 12.

7 DISCUSSION

We introduced SEREX, a plug-and-play framework that seeks to learn the optimal arbitration between
exploitative and exploratory behaviours using an impulse control mechanism. SEREX can be readily
combined with existing value-based and actor-critic algorithms, here we demonstrate the instantiations
of SEREX given DQN and SAC, but more combinations can be considered for future works. We
formulate the problem of the arbitration between the exploration and the exploitation policies under a
Markov game framework, where the Exploiter seeks to only maximise the cumulative return and the
Explorer seeks to minimise the epistemic uncertainty of the Exploiter’s value estimate over the state
space. We provide theoretical justification for the convergence of SEREX to the optimal achievable
value estimates with linear function approximator. We demonstrate the utility of SEREX through
extensive experimental studies on continuous control benchmarks. When implemented with state-of-
the-art policy gradient algorithms (SAC), we show that the SEREX-augmented agents consistently
yield improvement in terms of sample efficiency and asymptotic performance with respect to the
baseline agents. We also showed that SEREX can be combined with value-based algorithms such as
DQN, and yield improvement on the Atari 100K benchmarks over competitive baseline algorithms.

Behaviourally, animals tend to sacrifice short-term rewards to obtain information gain in uncertain
environments (Bromberg-Martin & Hikosaka, 2009; Gottlieb et al., 2013). Blanchard et al. (2015)
demonstrated that the OFC neurons have firing correlated with both information value and primary
value signals. Instead of integrating these variables to code subjective value, they found that OFC
neurons tend to encode the two signals in an orthogonal manner. Hence despite being behaviourally
similar, the dual system of independent value representation and learning in SEREX may provides a
more biologically plausible framework for exploration-exploitation tradeoff than intrinsic exploration
based on the combination of extrinsic primary reward and intrinsic estimate of information value.
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