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PuzzleJax: a benchmark for reasoning and learning

annonymous

Abstract

We introduce PuzzleJAX, a GPU-accelerated puzzle game engine and description
language designed to support rapid benchmarking of tree search, reinforcement
learning, and LLM reasoning abilities. Unlike existing GPU-accelerated learning
environments that provide hard-coded implementations of fixed sets of games,
PuzzleJAX allows dynamic compilation of any game expressible in its domain-
specific language (DSL). This DSL follows PuzzleScript, which is a popular and
accessible online game engine for designing puzzle games. In this paper, we
validate in PuzzleJAX several hundred of the thousands of games designed in
PuzzleScript by both professional designers and casual creators since its release in
2013, thereby demonstrating PuzzleJAX’s coverage of an expansive, expressive, and
human-relevant space of tasks. By analyzing the performance of search, learning,
and language models on these games, we show that PuzzleJAX can naturally express
tasks that are both simple and intuitive to understand, yet often deeply challenging
to master, requiring a combination of control, planning, and high-level insight

1 Introduction

Games, including board game, card games, and various types of video games, have been used to train
and test Al methods for a long time. The beauty of this is that depending on the particular game, and
how it is represented to the Al system, it can test different Al capabilities. This includes learning,
planning, and reasoning; specialized game-based benchmarks have been developed for different
methods, such as tree search, reinforcement learning, and large language models [31].

Relative to other genres (e.g. strategy games, platforming games, arcade games), puzzle games have
received comparatively less research attention. These games are typically single-player, with full
or nearly full state observability and relatively modest action spaces. What puzzle games lack in
dexterity-based challenges, they make up for in tests of logical inference and long-horizon planning.
Puzzle games also range from simple representation (e.g. Sokoban, Boulder Dash, or Lemmings)
to expansive and complex (e.g. Portal, The Witness, or Baba is You). We argue that even simple
tile-based puzzle games represent an important unsolved frontier in game Al research and help test
increasingly important aspects of artificial “cognition” in the era of large language models.

Rather than isolating a single puzzle game or group of games as a target or benchmark, we propose a
framework for analyzing and evaluating tile-based puzzle games more generally. Our approach builds
on PuzzleScript, a domain-specific language for expressing 2D tile-based puzzle games already used
by game developers around the world. We reimplement the core functionalities of PuzzleScript in JAX,
a modern Python library for hardware-accelerated code. The end result is a benchmark of over 400
diverse game environments and the capacity to generate and automatically compile completely novel
rulesets. Our benchmark, PuzzleJAX, avoids the common problem of model overfitting by offering a
vast array of environment dynamics and objectives while still providing a unified observation and
action space. PuzzleJAX is completely interoperable with existing PuzzleScript game descriptions,
giving easy access to thousands of unique and human-validated game environments. PuzzleJAX is
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(a) In Lime Rick, the player controls a caterpillar creature whose head can rise vertically by at most 3 tiles. The
player must navigate the level, using their own body and pushable crates to reach the exit against gravity.

(b) In Kettle, the player controls multiple walls of policemen, which can each move in one direction, and must
strategically sequence moves to push (or “kettle””) a group of civilians into a compact, confined square.

)
o
e
e
G W

W

L TR

(c) In Take Heart Lass, the player must reach the exit (red heart) before they are blocked by the spreadable
despair (black tiles). They can push pink hearts to block the despair or unblock hope (pink tiles) that spread and
consume despair.

Figure 1: Example games from the framework that showcase the diversity of PuzzleScript games.

also fast: by leveraging the power of modern computing hardware, we achieve speed-ups in all the
tested games ranging from 300% to 500% compared to existing implementations in JavaScript.

In the following sections, we describe the PuzzleJAX language and implementation in detail, pro-
vide comparisons to the existing PuzzleScript implementation, and showcase initial examples of
planning algorithms, reinforcement learning, and LLM-based players interacting with puzzle game
environments.

2 Related work

Games have been a test bed for Al algorithms, especially Reinforcement Learning algorithms [25]],
for many years. The reason behind this is the complexity a game offers to an Al algorithm, which can
help in benchmarking planning, reasoning, and learning. For example, AlphaGO [24] was an agent
that learned to play Go, which defeated the world champion in the game. Similarly, AlphaStar
defeated professional StarCraft 2 players, a game known to be one of the most challenging real-time
strategy games, and OpenAl Five [4] defeated professional Dota 2 players. Hence, games have been
stepping stones for researchers to bring progress to the Al algorithms. To this extent, previous works
have seen many games turning into Al benchmarks. Arcade Learning Environment [3]] uses Atari
games as a benchmark for learning algorithms. Minecraft [6], a popular 3D open-world game, has
been used as a benchmark for planning and learning in RL agents [2} [18]]. Super Mario Bros have
been used as a learning environment as well [8] [T}, 20].

Furthermore, generalisation in game-playing RL algorithms has been a core interest among RL
researchers. The General Video Game Al (GVGAI) research effort leveraged the Video Game
Description Language (VGDL) [[7] a Domain Specific Language (DSL) designed to support a large
set of arcade-style games, and studied the problem of generalization in RL [28,[10,[19]. Similarly,



61
62
63
64

65
66
67
68
69
70

71
72
73
74
75
76
7
78

79

80
81
82
83
84

86
87
88
89

90
91

92
93
94

95
96
97

98
99
100
101

102
103

104
105

106
107
108
109
110
111

NetHack Learning Environment [12]] (a port of NetHack) and Crafter [9] (a 2D version of Minecraft)
were developed to benchmark generalisation in RL algorithms. PuzzleJAX, follows in this line of
work, supporting hundreds of existing human games while also providing a DSL that is capable of
expressing a diverse range of game mechanics.

Due to the long training time for RL, previous works utilized JAX (a GPU-accelerated language) to
speed up the learning process of an agent. JAX is mostly used to implement problems outside of
games such as Kinetix [15], a physics-based environment for control tasks. Due to the complexity of
game mechanics and rules, fewer frameworks exist in JAX. Craftax [[14] (Crafter [9]) and XLand-
minigrid [17] (XLand [27] in a minigrid [3]) are two of the game benchmarks ported to JAX. To the
best of our knowledge, PuzzleJAX is the first JAX-compatible DSL for games.

Lastly, PuzzleJAX will also be used to benchmark planning and reasoning abilities in Large Language
Models (LLMs) and Vision Language Models (VLMs). Previously, GameTraversalBenchmark [[16]]
created a procedurally generated 2D games where LLMs were benchmarked for planning abilities by
traversing the maps. SmartPlay [30] introduced a benchmark for LLMs to play 6 games, including
Minecraft and Crafter. Dsgbench [26]] introduced 6 strategic games to assess decision-making abilities
in LLMs in the benchmark. Similarly, Balrog [21] introduces a benchmark consisting of 6 learning
environments, including Crafter and NetHack Learning Environment, for testing agentic capabilities
of long-context LLMs and VLMs.

3 PuzzleScript

PuzzleScript, released in 2013 by indie game developer Stephen Lavelle, is a description language
and game engine for puzzle games. It is implemented in JavaScript and served on a public website,
including an IDE, a debugger, and an interactive player. The central feature of the PuzzleScript
description language is its rewrite rules. The mechanics of the classic box-pushing game Sokoban [[1],
for example, are defined by the following rule:

[ Player | Crate ] [ Player | Crate ]

This indicates that whenever a Player object is in a cell adjacent to a Crate, and moves toward the
Crate, then the Crate likewise moves in this same direction. In general, these rewrite rules describe
how spatial patterns of objects and forces distributed over a given game level transform from one
timestep to the next.

PuzzleScript games are comprised of a single file, which is broken down into eight sections describing
different elements of the game:

The Prelude section includes metadata such as title, author name, website, and certain global
parameters, like whether rules should “tick” at the beginning of an episode of gameplay, or whether
the play window should display the entire map or an sub-section of the map centered at the Player.

The Objects section defines entities—like the Player and Crate above—that may exist in the game
level and interact with one another via rewrite rules. Each object is given a name, an optional
single-ASCII-character (for later use in levels), and an optional sprite representation.

The Legend section can be used to compositionally define meta-objects which can later be referred
to in rules. For example, one might define both Player and Crate as Moveable by stating Moveable =
Player or Crate, indicating either of the component sub-objects is present in a cell. Similarly, the user
can define joint-objects that can later be used to indicate the presence of both objects simultaneously.

The Sounds section defines sound effects that can occur under various conditions, though we ignore
it, given that sound effects in PuzzleScript games are largely auxiliary.

The Collision Layers section lists groups of objects (atomic, joint-, or meta-objects) on separate
lines to indicate that these objects collide with one another and therefore cannot overlap.

The Rules section defines the mechanics of the game. It includes the left-right pattern rewrite rules
like the “player pushes crate” rule described above. It may also prepend these rules with keywords
that define, for example, whether they only apply under certain rotations. Rule suffixes may also
indicate whether their application triggers a win state, a restart state (e.g. when the player walks
into lava), or the repeat application of the overall tick function after the current pass. Within rules,
objects (atomic, meta- or joint-objects) may be modified by relative or absolute force indicators
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Figure 2: Speed of PuzzleJAX compared against a random agent in the original PuzzleScript engine,
where random actions are carried out internally (NodeJS) or sent from Python (Python-NodeJS).

112 (<, >, A,V and “left, right, up, down” respectively) or other prefixes to indicate e.g. whether an
113 object is stationary or absent from a given cell. Left and right rule patterns may detect or project
114 overlapping objects, respectively, though the same number of cells must be included in left and right
115 patterns. The rules are applied in order from top to bottom and will be repeated by the system until
116 no more matching is happening.

117 The Win Conditions section describes a set of necessary conditions which, when satisfied, result in
118 the player “winning” the level. These conditions take the form: “All ObjectA on ObjectB”, “Some
119 ObjectA on ObjectB”, “No ObjectA”, or “Some ObjectA”, indicating that all or at least one (some)
120 of a given object (atomic, meta-, or joint-object) must be overlapping with another object type, or
121 that none or at least one (some) of a given object type is present in the level.

122 Finally, the Levels section defines the game levels’ initial layouts, using a rectangular arrangement
123 of ASCII shorthands for atomic or joint objects. This section may also define natural text messages
124 to be displayed to the player between levels, normally used by designers to convey to the player
125 instructions or narrative elements in the game.
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Game Solved Levels % # Total Levels Max Search Iterations

Sokoban Basic 100 % 2 900
Sokoban Match3 100 % 2 1,1620
Limerick 40% 10 1,000,000
Blocks 100 % 1 788,146
Slidings 100 % 11 12,189
Notsnake 0% 1 42,000
Traveling Salesman 100% 11 2,204
Zen Puzzle Garden 0% 5 1,000,000
Multi-Word Dictionary Game 100 % 1 15,875
Take Heart Lass 91.6% 12 1,000,000
Kettle 100 % 11 36298
Constellationz 100 % 5 193

Table 1: Efficacy of breadth-first search on various PuzzleScript games. For each game, we report the
percentage of solved levels within 1 million iterations or 1 minute of breadth-first search (out of the
total number of levels) as well as the maximum number of search iterations reached in any level.

4 PuzzleJAX Framework

PuzzleJAX is a port of PuzzleScript to JAX. The primary goal of the PuzzleJAX framework is fidelity:
to faithfully replicate the PuzzleScript engine, unifying a rich, widely-used, and challenging domain
with cutting-edge advances in hardware acceleration. We therefore focus on covering as much of
PuzzleScript’s feature space as possible, carefully validating implemented games and mechanics
against their JavaScript counterparts to ensure identical behavior (see[subsection 4.1). We emphasize
that PuzzleJAX is fully interoperable with PuzzleScript— users and game designers can write novel
games with their existing workflows and seamlessly compile them into JAX learning environments
without any modification. Our second goal is speed: we aim to provide state-of-the-art throughput
on a wide range of novel learning environments. PuzzleScript is actually a natural candidate for
hardware acceleration on modern GPUs, as games are formulated entirely in terms of local rewrite
rules that modify the tile-based game state and can be applied simultaneously over the entire board.
Finally, our third goal is accessibility. We provide interpretable environment code, readable syntax,
and support for a wide variety of search algorithms, learning frameworks, and reasoning models.

4.1 Implementing PuzzleJAX

PuzzleScript game description files can be cast as a context-free grammar [[13]]. We define such a
grammar in Lark [23]], and use it to transform PuzzleScript game description files into structured
Python objects. Levels are represented as multihot binary arrays, with channels representing the
presence of atomic objects and the directional movement or action forces that can be applied to each
object (with an additional channel indicating cells affected by the player’s last action).

To apply rewrite rules, we effectively detect the presence of objects and forces in the left pattern by
applying a convolution to the level, then project the right pattern by passing the resulting array of
binary activations through a transposed convolution. For rules involving meta-objects or ambiguous
forces (via the “moving” keyword), we apply custom detection and projection functions to convolu-
tional patches of the level, identifying the extant atomic objects or forces at runtime. Alternatively,
one might expand such abstract rules to a set of atomic sub-rules; the effect of such a decision on
run- and compile-time given variously compositionally complex rule and object definitions could be
explored in future work.

Rules in PuzzleScript allow for matching the left side to all the possible locations in the level, which
could be more than one. In general, if all of the distinct input kernels comprising a left pattern
are present at one or more points in a level, then the rule application function attempts to apply
all output kernels in the right pattern at whatever points their left-pattern counterparts are active.
This is implemented in a JITted jax while loop over active indices. If any of these kernel projection
operations change the level array, then the rule has been applied.



160
161
162
163
164
165

167
168
169
170

171
172
173
174
175
176
177
178
179

180

181
182
183

184
185

186
187
188
189

190
191
192

193
194

195
196
197
198

199
200
201

202
203
204

205
206
207

208

210
211

Generally, rules defined in PuzzleScript files are broken down at compile time into a Rule Group
comprising 4 rotated variants (or 2 given the rule prefixes “vertical” or “horizontal”; or 1 given the
rule prefixes “left”, “right”, “up”, or “down”). Each rule in a group is applied sequentially as many
times as possible until it no longer has an effect on the level state. Similarly, each rule group is
applied until it has no effect before moving on to the next. The game file may also manually define
looping rule blocks by enclosing rule definitions in “startLoop” and “endLoop” lines, in which case
the enclosed sequence of rule groups is repeatedly executed until ineffective. Finally, a movement
rule is likewise applied until it has no effect, which rule attempts to move objects one tile in the
direction of any force assigned to them (and if so, removing the force), attempting to apply such
forces as they appear in scan-order in the level, and to objects in the order they are defined in the
game’s collision layers section.

This hierarchical rule execution sequence can be leveraged to create complex dynamics between
ticks of the engine, such as gravity moving an object down. PuzzleJAX replicates this rule execution
logic with a series of nested JAX while loops. Wherever possible, we place logic inside python for
loop over static variables (i.e., the number of blocks, groups within each block, and rules within
each group). This comes at a cost in terms of compile time (as JAX effectively “unrolls” for loop
iterations into distinct blocks of compiled XL A code). Alternatively, we can use JAX swifch to select
from among the list of all rule functions. We found that using the switch significantly affects runtime
speed, so we decided to go with increasing compilation time, given that our target is deep learning
algorithms with high sample complexity.

4.2 PuzzleJAX games

We tailor a small dataset of sample games, which are mechanically simple and often challenging,
and which, taken together, give a sense of the breadth of the space of possible games supported by
PuzzleJAX. We describe some of them here and in[Figure 1]

Blocks is the simplest game with no rules; the game is mainly in the level design where the player
needs to navigate a maze to reach the exit.

Sokoban is the canonical PuzzleScript game, based on the game of the same title, in which the player
must navigate a top-down grid of traversible and wall tiles, pushing crates onto targets. The challenge
is to sequence moves such that crates do not wind up “deadlocked” in a position (e.g. a corner) from
which they cannot be moved onto a target tile.

Sokoban Match 3: as above, but when the player arranges 3 or more crates in a horizontal or vertical
line, they disappear (as Match-3 games like Candy Crush). The goal is to make sure that all the crates
disappear from the level.

In Multi-word Dictionary, the player arranges English letters by either pushing or pulling in different
directions to spell a correct English word.

Travelling salesman involves a player on a graph of nodes projected onto the map grid, with varying
connectivity patterns (represented by edges connecting the border of two nodes). The player must
produce a path that covers all of these nodes from their starting position. The player colors nodes once
it traverses them, is unable to return to colored nodes, and wins once all nodes have been colored.

Zen Puzzle Garden, similar to the previous game, allows the player to “rake” (similar to coloring the
tile) each cell in a central square of sand without retracing its steps, while at the same time avoiding
increasingly complex arrangements of obstacles within the sand patch.

NotSnake also follows the same idea of coloring cells. The player swaps the color of tiles as it
moves, with the aim of coloring the entire level, but is able to retrace its steps with the consequence
of flipping these tiles back to their original color.

In Slidings, the player can control any one of a number of boulders (swapping between them by
pressing the Action key), which they can “slide” in any direction until they hit an obstacle. The player
must arrange these boulders onto targets in a fixed number of moves.

In Constellationz, the player controls a group of objects simultaneously, all of which must be
moved onto targets (without any target left unoccupied); when player objects move onto special
teleportation/cloning cells, they disappear, and all unoccupied instances of these cloning cells spawn
new player objects (this game uses multi-kernel/non-local patterns to implement this mechanic).
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Figure 3: In Blocks, a PPO Reinforcement Learning agent quickly learns to improve score according
to the heuristic, but falls into a sub-optimal strategy in which one of the Player blocks is trapped in a
dead-end corridor adjacent to the one containing the last remaining target.

In Lime Rick shown in the player controls a caterpillar creature whose head can rise
vertically by at most 3 tiles. The player must navigate the level, using their own body and pushable
crates to reach the exit against gravity. Gravity affects the player’s movement and pushable blocks.

In Kettle shown in|[Figure 1b] the player controls multiple walls of policemen, which can each move
in one direction, and must strategically sequence moves to push (or “kettle”) a group of civilians into
a compact, confined square.

In Take Heart Lass shown in the player must reach the exit (red heart) before they are
blocked by the spreadable despair (black tiles). They can push pink hearts to block the despair or
unblock hope (pink tiles) that spread and consume despair.

In Atlas Shrank, the player is a platformer puzzle game where the player needs to reach the exit. The
player can’t jump, but it can move horizontally, vertically, and diagonally (if stair-shaped solids exist).
Most levels have boulders that the player can carry and place in another place to create a ladder to
help them navigate the complex level space.

5 Results

We converted PuzzleScript into a standalone Nodel]S package that could be called from Python
without a browser, removing GUI-related functionality for rendering text, images, and sounds (we
call that Nodejs framework). This framework will be our baseline of comparison for all the following
experiments. All the experiments were conducted on the same consumer machine with an NVIDIA
GeForce RTX 4090 GPU and Intel Core i9-1100K @ 3.5 GHz CPU.

5.1 Speed profiling

To compare the original PuzzleScript engine with PuzzleJAX, we measured frames per second for a
random agent taking random actions. We have two types of random agents, one completely in Nodejs
and another one where the actions are taken in Python and sent to Nodejs framework, which better
represents the RL training scenario that PuzzleJAX targets.

In we plot the number of frames per second obtained by PuzzleJAX on the first level of
various PuzzleScript games at different batch sizes (i.e. number of environments simulated in parallel).
We see that PuzzleJAX achieves significant speedups over the original PuzzleScript engine given
small rule-sets, particularly when integrating the engine with a Python wrapper. The speedup is
particularly pronounced at large batch sizes, owing to JAX’s efficient vectorization scheme. We note
that for games with particularly large numbers of rules (e.g. Slidings, Limerick, and Take Heart Lass),
random rollouts conducted within the original PuzzleScript engine outperform PuzzleJAX (indeed,
parallelization via multithreading of the original engine may widen this gap). However, PuzzleJAX
still handily outpaces the original engine when it is forced to communicate with a Python interface.
In the context of modern AI methods that involve training large neural networks or fine-tuning large
pre-trained models, it is this scenario that is most relevant. Additionally, training such agents or
networks with PuzzleJAX would not incur any communication costs between the CPU and GPU
because the entire environment is hardware accelerated—a fact which would further hamper pipelines
relying on the original engine.
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5.2 Tree search

To probe the complexity of PuzzleScript games, we perform breadth-first search over game states for
a small set of games and each of their levels. We limit the search to either 1 million environment
steps or 1 minute of elapsed time and report the number of levels solved as well as the maximum
number of search iterations reached over all levels in[Table T| We note that the performance of tree
search is very “all-or-nothing” as games tend to either be simple enough mechanically that brute force
suffices (e.g. Sokoban or Slidings), or complex enough that even the simplest levels are too difficult
to solve (e.g. Notsnake or Zen Puzzle Garden). In addition, we find that the number of search steps
required in a game tends to increase as levels progress, mirroring the increasing levels of planning
and problem-solving required of human players.

5.3 Reinforcement learning

We train standard PPO on individual levels from our set of example games, parameterizing agents as
simple convolutional and fully connected feedforward networks, feeding them the multihot encoded
level state as observation, and providing the difference between the distance-to-win heuristics derived
from the game’s win conditions as reward. This heuristic tries to minimize the distance between
player and objects required in winning condition and between objects in the winning condition.

We find that agents quickly learn to generate increased reward, but that this learning almost always
converges to incorrect solutions Sokoban and Sokoban Match 3, while solvable via brute-
force search, challenge RL agents that greedily maximize rewards but end up in deadlock states (e.g.,
pushing boxes to blocked targets). In LimeRick, agents may lead players vertically toward the Apple
but fall into pits, causing deadlocks. Interestingly, these same games can be quickly brute-force by
naive breadth-first tree search.

5.4 LLM agents

ChatGPT 40-mini

Deepseek-chat

Figure 4: Average Win Rate of three LLMs across 12 games.

In the PuzzleJAX benchmark, LLM player agents operate within a structured information framework
designed to enable effective puzzle solving without requiring visual interpretation capabilities. The
framework provides agents with an ascii_state containing both the current game state and a
dynamic mapping, complemented by its rules, alongside action_space and action_meanings.
Each experimental setup consisted of 10 independent runs per level with a maximum of 100 steps
allowed per episode. [Figure 4] presents the average win rates across our test suite, and most games
showed a consistent 0% win rate across all models except for Atlas Shrank with a small probability of
success and Slidings with a high probability for success for both ChatGPT 40-mini and Deepseek-chat.
In Atlas Shrank, this small nonzero win rate is likely owing to the first level being a simple tutorial
level involving a relatively direct traversal of the map. In Slidings, the small number of movements
needed to solve each level (with most levels requiring 4/5 movements to win) might have allowed the
system to stumble upon correct solutions. This demonstrate difficulty in tracking interconnected rules
and maintaining long-term plans, highlighting a significant gap between current LLM capabilities
and the specialized problem-solving skills required for structured puzzle environments.
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6 Discussion

Puzzle games present uncommon challenges for RL and LLM-based player agents. Specifically,
efficient solutions require logical inference (e.g., deduction/induction) as well as long-range planning.
Even apparently simple puzzle games can be fiendishly difficult in practice. This differs qualitatively
from the challenges posed by video games such as first-person shooters or platform games; at the same
time, these are single-player games, unlike classical board games such as Chess and Go. Another
main issue with puzzle games is the late rewards, where the only reward is usually if you win. This
sparsity of reward might pose a challenge for RL agents. This challenge might be harder in puzzle
games than in other ones with sparse rewards due to the existence of deadlock states (states where the
game is still playable but not winnable after reaching them). This might pose a great challenge even
for curiosity-driven agents and other techniques used to battle sparsity.

To avoid overfitting or over-tailoring a method to a game, it is crucial to test on a number of games,
preferably a large number. PuzzleScript fills that need, and PuzzleJAX makes it fast brings it into
the modern deep learning ecosystem. The results highlight the difficulty of puzzle games in general,
and offer a challenge to learning based methods—both those based on reinforcement learning and
on large language models—as the only methods that are successful on multiple games are based on
tree search. Solving the games as a human would solve them, without excessive testing of states by
taking actions more or less blindly, is very much an unsolved challenge.

Crucially, as PuzzleScript is a generative description language rather than just a collection of games,
this opens the door to automated or partially automated design of puzzle games. This could take
the form of an Al-assisted game design tool, and/or an open-ended system which combines models
learning to play games with another model learning to design them, in an evolutionary loop.

Limitations. Though most of the major features of PuzzleScript are replicated in PuzzleJAX, we
identify in our dataset of human games many edge cases which are incompatible with our engine,
either by violating our definition of the PuzzleScript DSL as a context-free grammar, or causing
compile or runtime issues in our JAX environment, which have yet to be addressed. At the same
time, having been designed with fidelity as a first priority, further speed optimizations are almost
certainly possible. Meanwhile, we apply only simple, off-the-shelf algorithms to our domain in
this preliminary study (foregoing, e.g. reasoning LLMs, which might have demonstrated enhanced
performance on these complex puzzle-solving tasks).

7 Conclusion

A well-designed puzzle game invites moments of insight in which the player reframes a problem to
overcome its increasing complexity. Our framework, PuzzleJAX, seeks to surface a space of problems
in which apparent functional simplicity is juxtaposed with the surprising depth of thought required to
arrive at a solution. By reimplementing PuzzleScript, an accessible and expressive game engine and
Description Language with an active community of casual and professional users and designers, we
not only gives Al researchers the ability to evaluate agents on hundreds of often carefully designed
human games, but also provide a concise and expressive means of defining new novel problems.
PuzzleJAX runs fast on the GPU by expressing rewrite rules as convolutional operations in Python’s
JAX library, and is by the same token easily connected to existing deep learning pipelines, while all
the while remaining interoperable with PuzzleScript.

In preliminary testing, we find that naive breadth-first tree search does surprisingly well on a large
number of games. Reinforcement Learning can quickly fall victim to local minima representing
greedy strategies, and Large Language Models often become helplessly stuck in environments
involving unconventional mechanics. This suggests the need for augmenting learning based methods
with “insights” derived from search to produce more generally capable Al. PuzzleJAX provides a
robust and efficient testing ground for such methods, in addition to other learning-based approaches
focusing on exploration. One possibility is that general agents can only emerge via continual learning
in a shifting landscape of semantically rich and varied tasks. PuzzleJAX makes such explorations
possible via its concise description language, and may ultimately serve both as a benchmark for
competent game-playing agents, and creative game designing agents.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce a jax-accelerated version of PuzzleScript which is fast, suitable
for RL and deep learning. It implements all major features of PuzzleScript and is validated
against hundreds of existing PuzzleScript games.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the many edge cases that appear in the large dataset of publicly
available PuzzleScript games we have scraped. These require further analysis. We acknowl-
edge our various benchmarking efforts are preliminary and do not test against all possible
games, but only a handful selected for their relative simplicity, interpretability and novelty.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We have no theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full experimental setup is detailed in the supplementary materials. We use
vanilla PPO, and prompt LLMs in a relatively straightforward way.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our code, with a Readme outlining how to run various experiments
both on our test set of games.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental details are given in the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Does not apply to deterministic BFS. We show standard deviation for RL
training curves, but do not perform statistical comparisons of success rates between various
methods, instead performing an exploratory analysis of these methods’ performance on
various games.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Full details in the supplementary material. Experiments run on a consumer
machine with a 4090.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We fully conform to the code of ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We address potential impacts on game developers in the supplementary
material.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

15


https://neurips.cc/public/EthicsGuidelines

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645

647
648
649
650

651

652
653
654

655

656

657

658

659
660
661
662

663
664

665
666

668

669
670
671

672

673
674

675

676

677

678
679

680

681
682

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creator of PuzzleScript is explicitly credited. Creators of games studied
here are listed in the supplementary material.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our code has ample documentations and comments.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not conduct crowdsourcing or user studies.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: ibid.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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734 * We recognize that the procedures for this may vary significantly between institutions

735 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
736 guidelines for their institution.

737 * For initial submissions, do not include any information that would break anonymity (if
738 applicable), such as the institution conducting the review.

739 16. Declaration of LLM usage

740 Question: Does the paper describe the usage of LLMs if it is an important, original, or
741 non-standard component of the core methods in this research? Note that if the LLM is used
742 only for writing, editing, or formatting purposes and does not impact the core methodology,
743 scientific rigorousness, or originality of the research, declaration is not required.

744 Answer: [Yes]

745 Justification: We describe our method of using LLMs as game-playing agents in sufficient
746 detail.

747 Guidelines:

748 * The answer NA means that the core method development in this research does not
749 involve LLMs as any important, original, or non-standard components.

750 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
751 for what should or should not be described.
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