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Abstract

We introduce PuzzleJAX, a GPU-accelerated puzzle game engine and description1

language designed to support rapid benchmarking of tree search, reinforcement2

learning, and LLM reasoning abilities. Unlike existing GPU-accelerated learning3

environments that provide hard-coded implementations of fixed sets of games,4

PuzzleJAX allows dynamic compilation of any game expressible in its domain-5

specific language (DSL). This DSL follows PuzzleScript, which is a popular and6

accessible online game engine for designing puzzle games. In this paper, we7

validate in PuzzleJAX several hundred of the thousands of games designed in8

PuzzleScript by both professional designers and casual creators since its release in9

2013, thereby demonstrating PuzzleJAX’s coverage of an expansive, expressive, and10

human-relevant space of tasks. By analyzing the performance of search, learning,11

and language models on these games, we show that PuzzleJAX can naturally express12

tasks that are both simple and intuitive to understand, yet often deeply challenging13

to master, requiring a combination of control, planning, and high-level insight.114

1 Introduction15

Games, including board game, card games, and various types of video games, have been used to train16

and test AI methods for a long time. The beauty of this is that depending on the particular game, and17

how it is represented to the AI system, it can test different AI capabilities. This includes learning,18

planning, and reasoning; specialized game-based benchmarks have been developed for different19

methods, such as tree search, reinforcement learning, and large language models [31].20

Relative to other genres (e.g. strategy games, platforming games, arcade games), puzzle games have21

received comparatively less research attention. These games are typically single-player, with full22

or nearly full state observability and relatively modest action spaces. What puzzle games lack in23

dexterity-based challenges, they make up for in tests of logical inference and long-horizon planning.24

Puzzle games also range from simple representation (e.g. Sokoban, Boulder Dash, or Lemmings)25

to expansive and complex (e.g. Portal, The Witness, or Baba is You). We argue that even simple26

tile-based puzzle games represent an important unsolved frontier in game AI research and help test27

increasingly important aspects of artificial “cognition” in the era of large language models.28

Rather than isolating a single puzzle game or group of games as a target or benchmark, we propose a29

framework for analyzing and evaluating tile-based puzzle games more generally. Our approach builds30

on PuzzleScript, a domain-specific language for expressing 2D tile-based puzzle games already used31

by game developers around the world. We reimplement the core functionalities of PuzzleScript in JAX,32

a modern Python library for hardware-accelerated code. The end result is a benchmark of over 40033

diverse game environments and the capacity to generate and automatically compile completely novel34

rulesets. Our benchmark, PuzzleJAX, avoids the common problem of model overfitting by offering a35

vast array of environment dynamics and objectives while still providing a unified observation and36

action space. PuzzleJAX is completely interoperable with existing PuzzleScript game descriptions,37

giving easy access to thousands of unique and human-validated game environments. PuzzleJAX is38

1Our code is available at https://anonymous.4open.science/r/script-doctor-BDA4
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(a) In Lime Rick, the player controls a caterpillar creature whose head can rise vertically by at most 3 tiles. The
player must navigate the level, using their own body and pushable crates to reach the exit against gravity.

(b) In Kettle, the player controls multiple walls of policemen, which can each move in one direction, and must
strategically sequence moves to push (or “kettle”) a group of civilians into a compact, confined square.

(c) In Take Heart Lass, the player must reach the exit (red heart) before they are blocked by the spreadable
despair (black tiles). They can push pink hearts to block the despair or unblock hope (pink tiles) that spread and
consume despair.

Figure 1: Example games from the framework that showcase the diversity of PuzzleScript games.

also fast: by leveraging the power of modern computing hardware, we achieve speed-ups in all the39

tested games ranging from 300% to 500% compared to existing implementations in JavaScript.40

In the following sections, we describe the PuzzleJAX language and implementation in detail, pro-41

vide comparisons to the existing PuzzleScript implementation, and showcase initial examples of42

planning algorithms, reinforcement learning, and LLM-based players interacting with puzzle game43

environments.44

2 Related work45

Games have been a test bed for AI algorithms, especially Reinforcement Learning algorithms [25],46

for many years. The reason behind this is the complexity a game offers to an AI algorithm, which can47

help in benchmarking planning, reasoning, and learning. For example, AlphaGO [24] was an agent48

that learned to play Go, which defeated the world champion in the game. Similarly, AlphaStar [29]49

defeated professional StarCraft 2 players, a game known to be one of the most challenging real-time50

strategy games, and OpenAI Five [4] defeated professional Dota 2 players. Hence, games have been51

stepping stones for researchers to bring progress to the AI algorithms. To this extent, previous works52

have seen many games turning into AI benchmarks. Arcade Learning Environment [3] uses Atari53

games as a benchmark for learning algorithms. Minecraft [6], a popular 3D open-world game, has54

been used as a benchmark for planning and learning in RL agents [2, 18]. Super Mario Bros have55

been used as a learning environment as well [8, 11, 20].56

Furthermore, generalisation in game-playing RL algorithms has been a core interest among RL57

researchers. The General Video Game AI (GVGAI) [22] research effort leveraged the Video Game58

Description Language (VGDL) [7] a Domain Specific Language (DSL) designed to support a large59

set of arcade-style games, and studied the problem of generalization in RL [28, 10, 19]. Similarly,60
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NetHack Learning Environment [12] (a port of NetHack) and Crafter [9] (a 2D version of Minecraft)61

were developed to benchmark generalisation in RL algorithms. PuzzleJAX, follows in this line of62

work, supporting hundreds of existing human games while also providing a DSL that is capable of63

expressing a diverse range of game mechanics.64

Due to the long training time for RL, previous works utilized JAX (a GPU-accelerated language) to65

speed up the learning process of an agent. JAX is mostly used to implement problems outside of66

games such as Kinetix [15], a physics-based environment for control tasks. Due to the complexity of67

game mechanics and rules, fewer frameworks exist in JAX. Craftax [14] (Crafter [9]) and XLand-68

minigrid [17] (XLand [27] in a minigrid [5]) are two of the game benchmarks ported to JAX. To the69

best of our knowledge, PuzzleJAX is the first JAX-compatible DSL for games.70

Lastly, PuzzleJAX will also be used to benchmark planning and reasoning abilities in Large Language71

Models (LLMs) and Vision Language Models (VLMs). Previously, GameTraversalBenchmark [16]72

created a procedurally generated 2D games where LLMs were benchmarked for planning abilities by73

traversing the maps. SmartPlay [30] introduced a benchmark for LLMs to play 6 games, including74

Minecraft and Crafter. Dsgbench [26] introduced 6 strategic games to assess decision-making abilities75

in LLMs in the benchmark. Similarly, Balrog [21] introduces a benchmark consisting of 6 learning76

environments, including Crafter and NetHack Learning Environment, for testing agentic capabilities77

of long-context LLMs and VLMs.78

3 PuzzleScript79

PuzzleScript, released in 2013 by indie game developer Stephen Lavelle, is a description language80

and game engine for puzzle games. It is implemented in JavaScript and served on a public website,81

including an IDE, a debugger, and an interactive player. The central feature of the PuzzleScript82

description language is its rewrite rules. The mechanics of the classic box-pushing game Sokoban [1],83

for example, are defined by the following rule:84

[ > Player | Crate ] -> [ > Player | > Crate ]85

This indicates that whenever a Player object is in a cell adjacent to a Crate, and moves toward the86

Crate, then the Crate likewise moves in this same direction. In general, these rewrite rules describe87

how spatial patterns of objects and forces distributed over a given game level transform from one88

timestep to the next.89

PuzzleScript games are comprised of a single file, which is broken down into eight sections describing90

different elements of the game:91

The Prelude section includes metadata such as title, author name, website, and certain global92

parameters, like whether rules should “tick” at the beginning of an episode of gameplay, or whether93

the play window should display the entire map or an sub-section of the map centered at the Player.94

The Objects section defines entities—like the Player and Crate above—that may exist in the game95

level and interact with one another via rewrite rules. Each object is given a name, an optional96

single-ASCII-character (for later use in levels), and an optional sprite representation.97

The Legend section can be used to compositionally define meta-objects which can later be referred98

to in rules. For example, one might define both Player and Crate as Moveable by stating Moveable =99

Player or Crate, indicating either of the component sub-objects is present in a cell. Similarly, the user100

can define joint-objects that can later be used to indicate the presence of both objects simultaneously.101

The Sounds section defines sound effects that can occur under various conditions, though we ignore102

it, given that sound effects in PuzzleScript games are largely auxiliary.103

The Collision Layers section lists groups of objects (atomic, joint-, or meta-objects) on separate104

lines to indicate that these objects collide with one another and therefore cannot overlap.105

The Rules section defines the mechanics of the game. It includes the left-right pattern rewrite rules106

like the “player pushes crate” rule described above. It may also prepend these rules with keywords107

that define, for example, whether they only apply under certain rotations. Rule suffixes may also108

indicate whether their application triggers a win state, a restart state (e.g. when the player walks109

into lava), or the repeat application of the overall tick function after the current pass. Within rules,110

objects (atomic, meta- or joint-objects) may be modified by relative or absolute force indicators111
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Figure 2: Speed of PuzzleJAX compared against a random agent in the original PuzzleScript engine,
where random actions are carried out internally (NodeJS) or sent from Python (Python-NodeJS).

(“<,>,∧,∨” and “left, right, up, down” respectively) or other prefixes to indicate e.g. whether an112

object is stationary or absent from a given cell. Left and right rule patterns may detect or project113

overlapping objects, respectively, though the same number of cells must be included in left and right114

patterns. The rules are applied in order from top to bottom and will be repeated by the system until115

no more matching is happening.116

The Win Conditions section describes a set of necessary conditions which, when satisfied, result in117

the player “winning” the level. These conditions take the form: “All ObjectA on ObjectB”, “Some118

ObjectA on ObjectB”, “No ObjectA”, or “Some ObjectA”, indicating that all or at least one (some)119

of a given object (atomic, meta-, or joint-object) must be overlapping with another object type, or120

that none or at least one (some) of a given object type is present in the level.121

Finally, the Levels section defines the game levels’ initial layouts, using a rectangular arrangement122

of ASCII shorthands for atomic or joint objects. This section may also define natural text messages123

to be displayed to the player between levels, normally used by designers to convey to the player124

instructions or narrative elements in the game.125
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Game Solved Levels % # Total Levels Max Search Iterations

Sokoban Basic 100% 2 900
Sokoban Match3 100% 2 1,1620
Limerick 40% 10 1,000,000
Blocks 100% 1 788,146
Slidings 100% 11 12,189
Notsnake 0% 1 42,000
Traveling Salesman 100% 11 2,204
Zen Puzzle Garden 0% 5 1,000,000
Multi-Word Dictionary Game 100% 1 15,875
Take Heart Lass 91.6% 12 1,000,000
Kettle 100% 11 36298
Constellationz 100% 5 193

Table 1: Efficacy of breadth-first search on various PuzzleScript games. For each game, we report the
percentage of solved levels within 1 million iterations or 1 minute of breadth-first search (out of the
total number of levels) as well as the maximum number of search iterations reached in any level.

4 PuzzleJAX Framework126

PuzzleJAX is a port of PuzzleScript to JAX. The primary goal of the PuzzleJAX framework is fidelity:127

to faithfully replicate the PuzzleScript engine, unifying a rich, widely-used, and challenging domain128

with cutting-edge advances in hardware acceleration. We therefore focus on covering as much of129

PuzzleScript’s feature space as possible, carefully validating implemented games and mechanics130

against their JavaScript counterparts to ensure identical behavior (see subsection 4.1). We emphasize131

that PuzzleJAX is fully interoperable with PuzzleScript– users and game designers can write novel132

games with their existing workflows and seamlessly compile them into JAX learning environments133

without any modification. Our second goal is speed: we aim to provide state-of-the-art throughput134

on a wide range of novel learning environments. PuzzleScript is actually a natural candidate for135

hardware acceleration on modern GPUs, as games are formulated entirely in terms of local rewrite136

rules that modify the tile-based game state and can be applied simultaneously over the entire board.137

Finally, our third goal is accessibility. We provide interpretable environment code, readable syntax,138

and support for a wide variety of search algorithms, learning frameworks, and reasoning models.139

4.1 Implementing PuzzleJAX140

PuzzleScript game description files can be cast as a context-free grammar [13]. We define such a141

grammar in Lark [23], and use it to transform PuzzleScript game description files into structured142

Python objects. Levels are represented as multihot binary arrays, with channels representing the143

presence of atomic objects and the directional movement or action forces that can be applied to each144

object (with an additional channel indicating cells affected by the player’s last action).145

To apply rewrite rules, we effectively detect the presence of objects and forces in the left pattern by146

applying a convolution to the level, then project the right pattern by passing the resulting array of147

binary activations through a transposed convolution. For rules involving meta-objects or ambiguous148

forces (via the “moving” keyword), we apply custom detection and projection functions to convolu-149

tional patches of the level, identifying the extant atomic objects or forces at runtime. Alternatively,150

one might expand such abstract rules to a set of atomic sub-rules; the effect of such a decision on151

run- and compile-time given variously compositionally complex rule and object definitions could be152

explored in future work.153

Rules in PuzzleScript allow for matching the left side to all the possible locations in the level, which154

could be more than one. In general, if all of the distinct input kernels comprising a left pattern155

are present at one or more points in a level, then the rule application function attempts to apply156

all output kernels in the right pattern at whatever points their left-pattern counterparts are active.157

This is implemented in a JITted jax while loop over active indices. If any of these kernel projection158

operations change the level array, then the rule has been applied.159
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Generally, rules defined in PuzzleScript files are broken down at compile time into a Rule Group160

comprising 4 rotated variants (or 2 given the rule prefixes “vertical” or “horizontal”; or 1 given the161

rule prefixes “left”, “right”, “up”, or “down”). Each rule in a group is applied sequentially as many162

times as possible until it no longer has an effect on the level state. Similarly, each rule group is163

applied until it has no effect before moving on to the next. The game file may also manually define164

looping rule blocks by enclosing rule definitions in “startLoop” and “endLoop” lines, in which case165

the enclosed sequence of rule groups is repeatedly executed until ineffective. Finally, a movement166

rule is likewise applied until it has no effect, which rule attempts to move objects one tile in the167

direction of any force assigned to them (and if so, removing the force), attempting to apply such168

forces as they appear in scan-order in the level, and to objects in the order they are defined in the169

game’s collision layers section.170

This hierarchical rule execution sequence can be leveraged to create complex dynamics between171

ticks of the engine, such as gravity moving an object down. PuzzleJAX replicates this rule execution172

logic with a series of nested JAX while loops. Wherever possible, we place logic inside python for173

loop over static variables (i.e., the number of blocks, groups within each block, and rules within174

each group). This comes at a cost in terms of compile time (as JAX effectively “unrolls” for loop175

iterations into distinct blocks of compiled XLA code). Alternatively, we can use JAX switch to select176

from among the list of all rule functions. We found that using the switch significantly affects runtime177

speed, so we decided to go with increasing compilation time, given that our target is deep learning178

algorithms with high sample complexity.179

4.2 PuzzleJAX games180

We tailor a small dataset of sample games, which are mechanically simple and often challenging,181

and which, taken together, give a sense of the breadth of the space of possible games supported by182

PuzzleJAX. We describe some of them here and in Figure 1.183

Blocks is the simplest game with no rules; the game is mainly in the level design where the player184

needs to navigate a maze to reach the exit.185

Sokoban is the canonical PuzzleScript game, based on the game of the same title, in which the player186

must navigate a top-down grid of traversible and wall tiles, pushing crates onto targets. The challenge187

is to sequence moves such that crates do not wind up “deadlocked” in a position (e.g. a corner) from188

which they cannot be moved onto a target tile.189

Sokoban Match 3: as above, but when the player arranges 3 or more crates in a horizontal or vertical190

line, they disappear (as Match-3 games like Candy Crush). The goal is to make sure that all the crates191

disappear from the level.192

In Multi-word Dictionary, the player arranges English letters by either pushing or pulling in different193

directions to spell a correct English word.194

Travelling salesman involves a player on a graph of nodes projected onto the map grid, with varying195

connectivity patterns (represented by edges connecting the border of two nodes). The player must196

produce a path that covers all of these nodes from their starting position. The player colors nodes once197

it traverses them, is unable to return to colored nodes, and wins once all nodes have been colored.198

Zen Puzzle Garden, similar to the previous game, allows the player to “rake” (similar to coloring the199

tile) each cell in a central square of sand without retracing its steps, while at the same time avoiding200

increasingly complex arrangements of obstacles within the sand patch.201

NotSnake also follows the same idea of coloring cells. The player swaps the color of tiles as it202

moves, with the aim of coloring the entire level, but is able to retrace its steps with the consequence203

of flipping these tiles back to their original color.204

In Slidings, the player can control any one of a number of boulders (swapping between them by205

pressing the Action key), which they can “slide” in any direction until they hit an obstacle. The player206

must arrange these boulders onto targets in a fixed number of moves.207

In Constellationz, the player controls a group of objects simultaneously, all of which must be208

moved onto targets (without any target left unoccupied); when player objects move onto special209

teleportation/cloning cells, they disappear, and all unoccupied instances of these cloning cells spawn210

new player objects (this game uses multi-kernel/non-local patterns to implement this mechanic).211
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Figure 3: In Blocks, a PPO Reinforcement Learning agent quickly learns to improve score according
to the heuristic, but falls into a sub-optimal strategy in which one of the Player blocks is trapped in a
dead-end corridor adjacent to the one containing the last remaining target.

In Lime Rick shown in Figure 1a, the player controls a caterpillar creature whose head can rise212

vertically by at most 3 tiles. The player must navigate the level, using their own body and pushable213

crates to reach the exit against gravity. Gravity affects the player’s movement and pushable blocks.214

In Kettle shown in Figure 1b, the player controls multiple walls of policemen, which can each move215

in one direction, and must strategically sequence moves to push (or “kettle”) a group of civilians into216

a compact, confined square.217

In Take Heart Lass shown in Figure 1c, the player must reach the exit (red heart) before they are218

blocked by the spreadable despair (black tiles). They can push pink hearts to block the despair or219

unblock hope (pink tiles) that spread and consume despair.220

In Atlas Shrank, the player is a platformer puzzle game where the player needs to reach the exit. The221

player can’t jump, but it can move horizontally, vertically, and diagonally (if stair-shaped solids exist).222

Most levels have boulders that the player can carry and place in another place to create a ladder to223

help them navigate the complex level space.224

5 Results225

We converted PuzzleScript into a standalone NodeJS package that could be called from Python226

without a browser, removing GUI-related functionality for rendering text, images, and sounds (we227

call that Nodejs framework). This framework will be our baseline of comparison for all the following228

experiments. All the experiments were conducted on the same consumer machine with an NVIDIA229

GeForce RTX 4090 GPU and Intel Core i9-1100K @ 3.5 GHz CPU.230

5.1 Speed profiling231

To compare the original PuzzleScript engine with PuzzleJAX, we measured frames per second for a232

random agent taking random actions. We have two types of random agents, one completely in Nodejs233

and another one where the actions are taken in Python and sent to Nodejs framework, which better234

represents the RL training scenario that PuzzleJAX targets.235

In Figure 2, we plot the number of frames per second obtained by PuzzleJAX on the first level of236

various PuzzleScript games at different batch sizes (i.e. number of environments simulated in parallel).237

We see that PuzzleJAX achieves significant speedups over the original PuzzleScript engine given238

small rule-sets, particularly when integrating the engine with a Python wrapper. The speedup is239

particularly pronounced at large batch sizes, owing to JAX’s efficient vectorization scheme. We note240

that for games with particularly large numbers of rules (e.g. Slidings, Limerick, and Take Heart Lass),241

random rollouts conducted within the original PuzzleScript engine outperform PuzzleJAX (indeed,242

parallelization via multithreading of the original engine may widen this gap). However, PuzzleJAX243

still handily outpaces the original engine when it is forced to communicate with a Python interface.244

In the context of modern AI methods that involve training large neural networks or fine-tuning large245

pre-trained models, it is this scenario that is most relevant. Additionally, training such agents or246

networks with PuzzleJAX would not incur any communication costs between the CPU and GPU247

because the entire environment is hardware accelerated—a fact which would further hamper pipelines248

relying on the original engine.249
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5.2 Tree search250

To probe the complexity of PuzzleScript games, we perform breadth-first search over game states for251

a small set of games and each of their levels. We limit the search to either 1 million environment252

steps or 1 minute of elapsed time and report the number of levels solved as well as the maximum253

number of search iterations reached over all levels in Table 1. We note that the performance of tree254

search is very “all-or-nothing” as games tend to either be simple enough mechanically that brute force255

suffices (e.g. Sokoban or Slidings), or complex enough that even the simplest levels are too difficult256

to solve (e.g. Notsnake or Zen Puzzle Garden). In addition, we find that the number of search steps257

required in a game tends to increase as levels progress, mirroring the increasing levels of planning258

and problem-solving required of human players.259

5.3 Reinforcement learning260

We train standard PPO on individual levels from our set of example games, parameterizing agents as261

simple convolutional and fully connected feedforward networks, feeding them the multihot encoded262

level state as observation, and providing the difference between the distance-to-win heuristics derived263

from the game’s win conditions as reward. This heuristic tries to minimize the distance between264

player and objects required in winning condition and between objects in the winning condition.265

We find that agents quickly learn to generate increased reward, but that this learning almost always266

converges to incorrect solutions Figure 3. Sokoban and Sokoban Match 3, while solvable via brute-267

force search, challenge RL agents that greedily maximize rewards but end up in deadlock states (e.g.,268

pushing boxes to blocked targets). In LimeRick, agents may lead players vertically toward the Apple269

but fall into pits, causing deadlocks. Interestingly, these same games can be quickly brute-force by270

naive breadth-first tree search.271

5.4 LLM agents272

Figure 4: Average Win Rate of three LLMs across 12 games.

In the PuzzleJAX benchmark, LLM player agents operate within a structured information framework273

designed to enable effective puzzle solving without requiring visual interpretation capabilities. The274

framework provides agents with an ascii_state containing both the current game state and a275

dynamic mapping, complemented by its rules, alongside action_space and action_meanings.276

Each experimental setup consisted of 10 independent runs per level with a maximum of 100 steps277

allowed per episode. Figure 4 presents the average win rates across our test suite, and most games278

showed a consistent 0% win rate across all models except for Atlas Shrank with a small probability of279

success and Slidings with a high probability for success for both ChatGPT 4o-mini and Deepseek-chat.280

In Atlas Shrank, this small nonzero win rate is likely owing to the first level being a simple tutorial281

level involving a relatively direct traversal of the map. In Slidings, the small number of movements282

needed to solve each level (with most levels requiring 4/5 movements to win) might have allowed the283

system to stumble upon correct solutions. This demonstrate difficulty in tracking interconnected rules284

and maintaining long-term plans, highlighting a significant gap between current LLM capabilities285

and the specialized problem-solving skills required for structured puzzle environments.286
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6 Discussion287

Puzzle games present uncommon challenges for RL and LLM-based player agents. Specifically,288

efficient solutions require logical inference (e.g., deduction/induction) as well as long-range planning.289

Even apparently simple puzzle games can be fiendishly difficult in practice. This differs qualitatively290

from the challenges posed by video games such as first-person shooters or platform games; at the same291

time, these are single-player games, unlike classical board games such as Chess and Go. Another292

main issue with puzzle games is the late rewards, where the only reward is usually if you win. This293

sparsity of reward might pose a challenge for RL agents. This challenge might be harder in puzzle294

games than in other ones with sparse rewards due to the existence of deadlock states (states where the295

game is still playable but not winnable after reaching them). This might pose a great challenge even296

for curiosity-driven agents and other techniques used to battle sparsity.297

To avoid overfitting or over-tailoring a method to a game, it is crucial to test on a number of games,298

preferably a large number. PuzzleScript fills that need, and PuzzleJAX makes it fast brings it into299

the modern deep learning ecosystem. The results highlight the difficulty of puzzle games in general,300

and offer a challenge to learning based methods—both those based on reinforcement learning and301

on large language models—as the only methods that are successful on multiple games are based on302

tree search. Solving the games as a human would solve them, without excessive testing of states by303

taking actions more or less blindly, is very much an unsolved challenge.304

Crucially, as PuzzleScript is a generative description language rather than just a collection of games,305

this opens the door to automated or partially automated design of puzzle games. This could take306

the form of an AI-assisted game design tool, and/or an open-ended system which combines models307

learning to play games with another model learning to design them, in an evolutionary loop.308

Limitations. Though most of the major features of PuzzleScript are replicated in PuzzleJAX, we309

identify in our dataset of human games many edge cases which are incompatible with our engine,310

either by violating our definition of the PuzzleScript DSL as a context-free grammar, or causing311

compile or runtime issues in our JAX environment, which have yet to be addressed. At the same312

time, having been designed with fidelity as a first priority, further speed optimizations are almost313

certainly possible. Meanwhile, we apply only simple, off-the-shelf algorithms to our domain in314

this preliminary study (foregoing, e.g. reasoning LLMs, which might have demonstrated enhanced315

performance on these complex puzzle-solving tasks).316

7 Conclusion317

A well-designed puzzle game invites moments of insight in which the player reframes a problem to318

overcome its increasing complexity. Our framework, PuzzleJAX, seeks to surface a space of problems319

in which apparent functional simplicity is juxtaposed with the surprising depth of thought required to320

arrive at a solution. By reimplementing PuzzleScript, an accessible and expressive game engine and321

Description Language with an active community of casual and professional users and designers, we322

not only gives AI researchers the ability to evaluate agents on hundreds of often carefully designed323

human games, but also provide a concise and expressive means of defining new novel problems.324

PuzzleJAX runs fast on the GPU by expressing rewrite rules as convolutional operations in Python’s325

JAX library, and is by the same token easily connected to existing deep learning pipelines, while all326

the while remaining interoperable with PuzzleScript.327

In preliminary testing, we find that naive breadth-first tree search does surprisingly well on a large328

number of games. Reinforcement Learning can quickly fall victim to local minima representing329

greedy strategies, and Large Language Models often become helplessly stuck in environments330

involving unconventional mechanics. This suggests the need for augmenting learning based methods331

with “insights” derived from search to produce more generally capable AI. PuzzleJAX provides a332

robust and efficient testing ground for such methods, in addition to other learning-based approaches333

focusing on exploration. One possibility is that general agents can only emerge via continual learning334

in a shifting landscape of semantically rich and varied tasks. PuzzleJAX makes such explorations335

possible via its concise description language, and may ultimately serve both as a benchmark for336

competent game-playing agents, and creative game designing agents.337
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NeurIPS Paper Checklist420

1. Claims421

Question: Do the main claims made in the abstract and introduction accurately reflect the422

paper’s contributions and scope?423

Answer: [Yes]424

Justification: We introduce a jax-accelerated version of PuzzleScript which is fast, suitable425

for RL and deep learning. It implements all major features of PuzzleScript and is validated426

against hundreds of existing PuzzleScript games.427

Guidelines:428

• The answer NA means that the abstract and introduction do not include the claims429

made in the paper.430

• The abstract and/or introduction should clearly state the claims made, including the431

contributions made in the paper and important assumptions and limitations. A No or432

NA answer to this question will not be perceived well by the reviewers.433

• The claims made should match theoretical and experimental results, and reflect how434

much the results can be expected to generalize to other settings.435

• It is fine to include aspirational goals as motivation as long as it is clear that these goals436

are not attained by the paper.437

2. Limitations438

Question: Does the paper discuss the limitations of the work performed by the authors?439

Answer: [Yes]440

Justification: We discuss the many edge cases that appear in the large dataset of publicly441

available PuzzleScript games we have scraped. These require further analysis. We acknowl-442

edge our various benchmarking efforts are preliminary and do not test against all possible443

games, but only a handful selected for their relative simplicity, interpretability and novelty.444

Guidelines:445

• The answer NA means that the paper has no limitation while the answer No means that446

the paper has limitations, but those are not discussed in the paper.447

• The authors are encouraged to create a separate "Limitations" section in their paper.448

• The paper should point out any strong assumptions and how robust the results are to449

violations of these assumptions (e.g., independence assumptions, noiseless settings,450

model well-specification, asymptotic approximations only holding locally). The authors451

should reflect on how these assumptions might be violated in practice and what the452

implications would be.453

• The authors should reflect on the scope of the claims made, e.g., if the approach was454

only tested on a few datasets or with a few runs. In general, empirical results often455

depend on implicit assumptions, which should be articulated.456

• The authors should reflect on the factors that influence the performance of the approach.457

For example, a facial recognition algorithm may perform poorly when image resolution458

is low or images are taken in low lighting. Or a speech-to-text system might not be459

used reliably to provide closed captions for online lectures because it fails to handle460

technical jargon.461

• The authors should discuss the computational efficiency of the proposed algorithms462

and how they scale with dataset size.463

• If applicable, the authors should discuss possible limitations of their approach to464

address problems of privacy and fairness.465

• While the authors might fear that complete honesty about limitations might be used by466

reviewers as grounds for rejection, a worse outcome might be that reviewers discover467

limitations that aren’t acknowledged in the paper. The authors should use their best468

judgment and recognize that individual actions in favor of transparency play an impor-469

tant role in developing norms that preserve the integrity of the community. Reviewers470

will be specifically instructed to not penalize honesty concerning limitations.471

3. Theory assumptions and proofs472
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Question: For each theoretical result, does the paper provide the full set of assumptions and473

a complete (and correct) proof?474

Answer: [NA]475

Justification: We have no theoretical results.476

Guidelines:477

• The answer NA means that the paper does not include theoretical results.478

• All the theorems, formulas, and proofs in the paper should be numbered and cross-479

referenced.480

• All assumptions should be clearly stated or referenced in the statement of any theorems.481

• The proofs can either appear in the main paper or the supplemental material, but if482

they appear in the supplemental material, the authors are encouraged to provide a short483

proof sketch to provide intuition.484

• Inversely, any informal proof provided in the core of the paper should be complemented485

by formal proofs provided in appendix or supplemental material.486

• Theorems and Lemmas that the proof relies upon should be properly referenced.487

4. Experimental result reproducibility488

Question: Does the paper fully disclose all the information needed to reproduce the main ex-489

perimental results of the paper to the extent that it affects the main claims and/or conclusions490

of the paper (regardless of whether the code and data are provided or not)?491

Answer: [Yes]492

Justification: Full experimental setup is detailed in the supplementary materials. We use493

vanilla PPO, and prompt LLMs in a relatively straightforward way.494

Guidelines:495

• The answer NA means that the paper does not include experiments.496

• If the paper includes experiments, a No answer to this question will not be perceived497

well by the reviewers: Making the paper reproducible is important, regardless of498

whether the code and data are provided or not.499

• If the contribution is a dataset and/or model, the authors should describe the steps taken500

to make their results reproducible or verifiable.501

• Depending on the contribution, reproducibility can be accomplished in various ways.502

For example, if the contribution is a novel architecture, describing the architecture fully503

might suffice, or if the contribution is a specific model and empirical evaluation, it may504

be necessary to either make it possible for others to replicate the model with the same505

dataset, or provide access to the model. In general. releasing code and data is often506

one good way to accomplish this, but reproducibility can also be provided via detailed507

instructions for how to replicate the results, access to a hosted model (e.g., in the case508

of a large language model), releasing of a model checkpoint, or other means that are509

appropriate to the research performed.510

• While NeurIPS does not require releasing code, the conference does require all submis-511

sions to provide some reasonable avenue for reproducibility, which may depend on the512

nature of the contribution. For example513

(a) If the contribution is primarily a new algorithm, the paper should make it clear how514

to reproduce that algorithm.515

(b) If the contribution is primarily a new model architecture, the paper should describe516

the architecture clearly and fully.517

(c) If the contribution is a new model (e.g., a large language model), then there should518

either be a way to access this model for reproducing the results or a way to reproduce519

the model (e.g., with an open-source dataset or instructions for how to construct520

the dataset).521

(d) We recognize that reproducibility may be tricky in some cases, in which case522

authors are welcome to describe the particular way they provide for reproducibility.523

In the case of closed-source models, it may be that access to the model is limited in524

some way (e.g., to registered users), but it should be possible for other researchers525

to have some path to reproducing or verifying the results.526
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5. Open access to data and code527

Question: Does the paper provide open access to the data and code, with sufficient instruc-528

tions to faithfully reproduce the main experimental results, as described in supplemental529

material?530

Answer: [Yes]531

Justification: We provide our code, with a Readme outlining how to run various experiments532

both on our test set of games.533

Guidelines:534

• The answer NA means that paper does not include experiments requiring code.535

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/536

public/guides/CodeSubmissionPolicy) for more details.537

• While we encourage the release of code and data, we understand that this might not be538

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not539

including code, unless this is central to the contribution (e.g., for a new open-source540

benchmark).541

• The instructions should contain the exact command and environment needed to run to542

reproduce the results. See the NeurIPS code and data submission guidelines (https:543

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.544

• The authors should provide instructions on data access and preparation, including how545

to access the raw data, preprocessed data, intermediate data, and generated data, etc.546

• The authors should provide scripts to reproduce all experimental results for the new547

proposed method and baselines. If only a subset of experiments are reproducible, they548

should state which ones are omitted from the script and why.549

• At submission time, to preserve anonymity, the authors should release anonymized550

versions (if applicable).551

• Providing as much information as possible in supplemental material (appended to the552

paper) is recommended, but including URLs to data and code is permitted.553

6. Experimental setting/details554

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-555

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the556

results?557

Answer: [Yes]558

Justification: Experimental details are given in the supplementary material.559

Guidelines:560

• The answer NA means that the paper does not include experiments.561

• The experimental setting should be presented in the core of the paper to a level of detail562

that is necessary to appreciate the results and make sense of them.563

• The full details can be provided either with the code, in appendix, or as supplemental564

material.565

7. Experiment statistical significance566

Question: Does the paper report error bars suitably and correctly defined or other appropriate567

information about the statistical significance of the experiments?568

Answer: [No]569

Justification: Does not apply to deterministic BFS. We show standard deviation for RL570

training curves, but do not perform statistical comparisons of success rates between various571

methods, instead performing an exploratory analysis of these methods’ performance on572

various games.573

Guidelines:574

• The answer NA means that the paper does not include experiments.575

• The authors should answer "Yes" if the results are accompanied by error bars, confi-576

dence intervals, or statistical significance tests, at least for the experiments that support577

the main claims of the paper.578
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• The factors of variability that the error bars are capturing should be clearly stated (for579

example, train/test split, initialization, random drawing of some parameter, or overall580

run with given experimental conditions).581

• The method for calculating the error bars should be explained (closed form formula,582

call to a library function, bootstrap, etc.)583

• The assumptions made should be given (e.g., Normally distributed errors).584

• It should be clear whether the error bar is the standard deviation or the standard error585

of the mean.586

• It is OK to report 1-sigma error bars, but one should state it. The authors should587

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis588

of Normality of errors is not verified.589

• For asymmetric distributions, the authors should be careful not to show in tables or590

figures symmetric error bars that would yield results that are out of range (e.g. negative591

error rates).592

• If error bars are reported in tables or plots, The authors should explain in the text how593

they were calculated and reference the corresponding figures or tables in the text.594

8. Experiments compute resources595

Question: For each experiment, does the paper provide sufficient information on the com-596

puter resources (type of compute workers, memory, time of execution) needed to reproduce597

the experiments?598

Answer: [Yes]599

Justification: Full details in the supplementary material. Experiments run on a consumer600

machine with a 4090.601

Guidelines:602

• The answer NA means that the paper does not include experiments.603

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,604

or cloud provider, including relevant memory and storage.605

• The paper should provide the amount of compute required for each of the individual606

experimental runs as well as estimate the total compute.607

• The paper should disclose whether the full research project required more compute608

than the experiments reported in the paper (e.g., preliminary or failed experiments that609

didn’t make it into the paper).610

9. Code of ethics611

Question: Does the research conducted in the paper conform, in every respect, with the612

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?613

Answer: [Yes]614

Justification: We fully conform to the code of ethics.615

Guidelines:616

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.617

• If the authors answer No, they should explain the special circumstances that require a618

deviation from the Code of Ethics.619

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-620

eration due to laws or regulations in their jurisdiction).621

10. Broader impacts622

Question: Does the paper discuss both potential positive societal impacts and negative623

societal impacts of the work performed?624

Answer: [Yes]625

Justification: We address potential impacts on game developers in the supplementary626

material.627

Guidelines:628

• The answer NA means that there is no societal impact of the work performed.629
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• If the authors answer NA or No, they should explain why their work has no societal630

impact or why the paper does not address societal impact.631

• Examples of negative societal impacts include potential malicious or unintended uses632

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations633

(e.g., deployment of technologies that could make decisions that unfairly impact specific634

groups), privacy considerations, and security considerations.635

• The conference expects that many papers will be foundational research and not tied636

to particular applications, let alone deployments. However, if there is a direct path to637

any negative applications, the authors should point it out. For example, it is legitimate638

to point out that an improvement in the quality of generative models could be used to639

generate deepfakes for disinformation. On the other hand, it is not needed to point out640

that a generic algorithm for optimizing neural networks could enable people to train641

models that generate Deepfakes faster.642

• The authors should consider possible harms that could arise when the technology is643

being used as intended and functioning correctly, harms that could arise when the644

technology is being used as intended but gives incorrect results, and harms following645

from (intentional or unintentional) misuse of the technology.646

• If there are negative societal impacts, the authors could also discuss possible mitigation647

strategies (e.g., gated release of models, providing defenses in addition to attacks,648

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from649

feedback over time, improving the efficiency and accessibility of ML).650

11. Safeguards651

Question: Does the paper describe safeguards that have been put in place for responsible652

release of data or models that have a high risk for misuse (e.g., pretrained language models,653

image generators, or scraped datasets)?654

Answer: [NA]655

Justification: We do not release data or models.656

Guidelines:657

• The answer NA means that the paper poses no such risks.658

• Released models that have a high risk for misuse or dual-use should be released with659

necessary safeguards to allow for controlled use of the model, for example by requiring660

that users adhere to usage guidelines or restrictions to access the model or implementing661

safety filters.662

• Datasets that have been scraped from the Internet could pose safety risks. The authors663

should describe how they avoided releasing unsafe images.664

• We recognize that providing effective safeguards is challenging, and many papers do665

not require this, but we encourage authors to take this into account and make a best666

faith effort.667

12. Licenses for existing assets668

Question: Are the creators or original owners of assets (e.g., code, data, models), used in669

the paper, properly credited and are the license and terms of use explicitly mentioned and670

properly respected?671

Answer: [Yes]672

Justification: The creator of PuzzleScript is explicitly credited. Creators of games studied673

here are listed in the supplementary material.674

Guidelines:675

• The answer NA means that the paper does not use existing assets.676

• The authors should cite the original paper that produced the code package or dataset.677

• The authors should state which version of the asset is used and, if possible, include a678

URL.679

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.680

• For scraped data from a particular source (e.g., website), the copyright and terms of681

service of that source should be provided.682
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• If assets are released, the license, copyright information, and terms of use in the683

package should be provided. For popular datasets, paperswithcode.com/datasets684

has curated licenses for some datasets. Their licensing guide can help determine the685

license of a dataset.686

• For existing datasets that are re-packaged, both the original license and the license of687

the derived asset (if it has changed) should be provided.688

• If this information is not available online, the authors are encouraged to reach out to689

the asset’s creators.690

13. New assets691

Question: Are new assets introduced in the paper well documented and is the documentation692

provided alongside the assets?693

Answer: [Yes]694

Justification: Our code has ample documentations and comments.695

Guidelines:696

• The answer NA means that the paper does not release new assets.697

• Researchers should communicate the details of the dataset/code/model as part of their698

submissions via structured templates. This includes details about training, license,699

limitations, etc.700

• The paper should discuss whether and how consent was obtained from people whose701

asset is used.702

• At submission time, remember to anonymize your assets (if applicable). You can either703

create an anonymized URL or include an anonymized zip file.704

14. Crowdsourcing and research with human subjects705

Question: For crowdsourcing experiments and research with human subjects, does the paper706

include the full text of instructions given to participants and screenshots, if applicable, as707

well as details about compensation (if any)?708

Answer: [NA]709

Justification: We do not conduct crowdsourcing or user studies.710

Guidelines:711

• The answer NA means that the paper does not involve crowdsourcing nor research with712

human subjects.713

• Including this information in the supplemental material is fine, but if the main contribu-714

tion of the paper involves human subjects, then as much detail as possible should be715

included in the main paper.716

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,717

or other labor should be paid at least the minimum wage in the country of the data718

collector.719

15. Institutional review board (IRB) approvals or equivalent for research with human720

subjects721

Question: Does the paper describe potential risks incurred by study participants, whether722

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)723

approvals (or an equivalent approval/review based on the requirements of your country or724

institution) were obtained?725

Answer: [NA]726

Justification: ibid.727

Guidelines:728

• The answer NA means that the paper does not involve crowdsourcing nor research with729

human subjects.730

• Depending on the country in which research is conducted, IRB approval (or equivalent)731

may be required for any human subjects research. If you obtained IRB approval, you732

should clearly state this in the paper.733
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• We recognize that the procedures for this may vary significantly between institutions734

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the735

guidelines for their institution.736

• For initial submissions, do not include any information that would break anonymity (if737

applicable), such as the institution conducting the review.738

16. Declaration of LLM usage739

Question: Does the paper describe the usage of LLMs if it is an important, original, or740

non-standard component of the core methods in this research? Note that if the LLM is used741

only for writing, editing, or formatting purposes and does not impact the core methodology,742

scientific rigorousness, or originality of the research, declaration is not required.743

Answer: [Yes]744

Justification: We describe our method of using LLMs as game-playing agents in sufficient745

detail.746

Guidelines:747

• The answer NA means that the core method development in this research does not748

involve LLMs as any important, original, or non-standard components.749

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)750

for what should or should not be described.751
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