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ABSTRACT

Biological and artificial neural systems form high-dimensional neural represen-
tations that underpin their computational capabilities. Methods for quantifying
geometric similarity in neural representations have become a popular tool for iden-
tifying computational principles that are potentially shared across neural systems.
These methods generally assume that neural responses are deterministic and static.
However, responses of biological systems, and some artificial systems, are noisy
and dynamically unfold over time. Furthermore, these characteristics can have
substantial influence on a system’s computational capabilities. Here, we demon-
strate that existing metrics can fail to capture key differences between neural sys-
tems with noisy dynamic responses. We then propose a metric for comparing the
geometry of noisy neural trajectories, which can be derived as an optimal trans-
port distance between Gaussian processes. We use the metric to compare models
of neural responses in different regions of the motor system and to compare the
dynamics of latent diffusion models for text-to-image synthesis.

1 INTRODUCTION

Biological and artificial neural systems represent their environments and internal states as high-
dimensional neural representations. These representations underpin the systems’ computational ca-
pabilities, suggesting that two systems with similar representational geometry may utilize similar
computational principles (Chung & Abbott, 2021; Kriegeskorte & Wei, 2021). Several measures of
representational (dis)similarity have been proposed, including Representational Similarity Analysis
(Kriegeskorte et al., 2008), Centered Kernel Alignment (CKA, Kornblith et al., 2019) and Procrustes
shape distance (Williams et al., 2021; Ding et al., 2021). These measures all assume that neural re-
sponses are deterministic and static.

However, biological neural systems, as well as some artificial neural systems, are far from deter-
ministic and static. For example, the responses of sensory neurons to the same stimulus vary across
repeated measurements (Goris et al., 2014), and the structure of these variations is thought to be
critical to a system’s perceptual capabilities (Averbeck et al., 2006). In addition, neural activities in
brain regions such as motor cortex evolve according to complex dynamical motifs that correspond
to current and future actions (Vyas et al., 2020). Similarly, responses of artificial neural systems can
be noisy (e.g., variational autoencoders) or dynamic (e.g., recurrent neural networks) or both (e.g.,
diffusion-based generative processes).

Quantifying similarity in either the stochastic or dynamic aspects of neural systems has been in-
dependently addressed in the literature. Duong et al. (2023) proposed Stochastic Shape Distance
(SSD), a stochastic extension to Procrustes shape distance (Williams et al., 2021) for quantifying
differences in trial-to-trial noise across networks without addressing recurrent dynamics. Ostrow
et al. (2023) utilized Koopman operator theory to develop Dynamical Similarity Analysis (DSA) to
compare recurrent flow fields without directly considering the effects of noise. However, on their
own, these methods can fail to capture differences between noisy neural dynamics.

Here, we propose a novel metric between noisy and dynamic neural systems that captures differences
in the systems’ noisy neural trajectories (Fig. 1A). The metric is naturally viewed as an extension of
Procrustes shape distance which compares average trajectories (Fig. 1B) and SSD which compares
marginal statistics or noise correlations (Fig. 1C). Conceptually, our metric compares the statistics
of entire trajectories (Fig. 1D). In particular, the metric can be derived as a (bi-)causal optimal
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Figure 1: Schematic of metrics for comparing the shapes noisy neural processes. A) Spike trains
for two populations of neurons with noisy dynamic responses. Each trial can be represented as a
trajectory in neural (firing rate) state space. (In the main text we account for cases that the popu-
lations have different numbers of neurons and trials.) B) Procrustes shape distance compares the
aligned mean trajectories (thick curves represent the mean neural responses during a trial). C)
Stochastic Shape Distance (SSD) compares the aligned marginal statistics. The faint ellipses repre-
sent the aligned marginal distributions at different times points. D) Our proposed metric (Causal OT
distance) directly compares entire trajectory statistics, thus capturing across-time statistical depen-
dencies.

transport (OT) distance (Lassalle, 2018; Backhoff et al., 2017) in which two systems are compared
by computing the cost of “transporting” a set of trajectories generated by one system to match a
set of trajectories generated by another system, and the mapping between trajectories must satisfy a
temporal causality condition. The causality condition is especially relevant when comparing neural
systems whose trajectories are close in space and yet the trajectories vary significantly in the amount
of information that is available at different time points (see Sec. 4.1 for simple illustrative example).
We apply our method to compare simplified models of motor systems (Sec. 4.2) and the dynamics
of conditional latent diffusion models (Sec. 4.3).

In summary, our main contributions are:

• We demonstrate how existing metrics for comparing neural responses can fail to capture
differences between neural population dynamics (Sec. 2).

• We propose a metric for comparing noisy neural population dynamics that is motivated by
causal optimal transport distances between Gaussian processes (Sec. 3 and Appx. A).

• We provide an alternating minimization algorithm for computing the distance between two
processes using their first- and second-order statistics (Appx. B).

• We apply our method to compare models of neural responses in different regions of the
motor system and to compare the dynamics of conditional latent diffusion models for text-
to-image synthesis (Sec. 4).

2 SET UP AND EXISTING METHODS

Consider a neural system that consists of N neurons whose activities (e.g., firing rates) at time
t ∈ {1, . . . , T} are represented by an N -dimensional random vector x(t). The sequence x = {x(t)}
defines a random trajectory, or stochastic process, in RN (Fig. 1A). Given two or more such neural
systems, we’d like to develop meaningful measures of their (dis)similarity.

2.1 PROCRUSTES SHAPE DISTANCE FOR COMPARING MEAN RESPONSES

Perhaps the simplest way to compare two dynamical neural systems living in different coordinate
systems is to compute the Procrustes shape distance on their mean trajectories (Fig. 1B). For pro-
cesses x and y with mean responses mx(t) := E[x(t)] and my(t) := E[y(t)], the (squared) Pro-
crustes shape distance is:

d2Procrustes(x,y) := min
Q∈O(N)

T∑
t=1

∥mx(t)−Qmy(t)∥22, (1)
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where O(N) denotes the set of orthogonal matrices. This metric conceptualizes each process as a
deterministic trajectory through neural state space and equates two processes if their mean responses
are equal up to a rotation and/or reflection of neural state space. A useful property of equation 1 is
that it defines a mathematical metric on neural processes. In particular, the function dProcrustes(·, ·) is
symmetric and satisfies the triangle inequality, which is helpful to establish theoretical guarantees
for many statistical analyses such as neighborhood-based clustering and regression (Cover & Hart,
1967; Dasgupta & Long, 2005).

A common goal in analyzing neural systems is to distinguish between the impacts of recurrent inter-
actions and feedforward input drive (Sauerbrei et al., 2020), so a useful measure should distinguish
systems with different recurrent interactions. Galgali et al. (2023, Figure 1e) shows a simple but
illuminating example for why this is challenging. They construct three different flow fields and ad-
versarially tune time-varying inputs for each system so that the trial-average trajectories match. By
construction, distances based on comparing mean trajectories (e.g., Procrustes shape distance) will
fail to capture differences between the three systems. Galgali et al. showed that these differences
can sometimes be accounted for by considering stochastic fluctuations about the mean trajectories.

It is easy, even in linear systems, to construct examples where the mean trajectories are insufficient
to distinguish between candidate dynamical models. For example, consider the case that the process
x satisfies a linear stochastic dynamical system of the form

x(t) = A(t)x(t− 1) + b(t) +Σ(t)w(t), (2)

where A(t) is an N ×N dynamics matrix, b(t) is the N -dimensional input-drive, Σ(t) is an N ×N
matrix that determines the noise structure, and w(t) is an independent N -dimensional Gaussian
random vector with zero mean and identity covariance matrix. Taking expectations on either side,
we see that its average trajectory evolves according to the deterministic dynamical system

mx(t) = A(t)mx(t− 1) + b(t). (3)

From this dynamics equation, we see that the evolution of the mean trajectory depends on the net
contributions from the (mean) recurrent interactions A(t)mx(t− 1) and the input-drive b(t). Con-
sequently, it is impossible to distinguish between recurrent dynamics and input-driven dynamics of
a linear system of the form in equation 2 only using the mean trajectory.

2.2 STOCHASTIC SHAPE DISTANCE FOR COMPARING NOISY RESPONSES

Duong et al. (2023) introduced generalizations of Procrustes shape distance to account for stochas-
tic neural responses. While their method was originally developed for networks with noisy static
responses in different conditions, it can be directly applied to compare noisy dynamic responses by
treating each time point as a different condition. Here we focus on SSDs that compare the first and
second-order marginal statistics at each time point. Specifically, define the marginal covariances of
a process x with mean trajectory mx by

Px(t) := E
[
(x(t)−mx(t)) (x(t)−mx(t))

⊤
]
, t = 1, . . . , T. (4)

The α-Stochastic Shape Distance (α-SSD) between processes x and y (Fig. 1C) is

d2α-SSD(x,y) := min
Q∈O(N)

T∑
t=1

{
(2− α)∥mx(t)−Qmy(t)∥2 + αB2

(
Px(t),QPy(t)Q

⊤)} , (5)

where O(N) is the set of orthogonal matrices, B(·, ·) denotes the Bures metric between positive
semidefinite matrices:

B(A,B) = min
U∈O(N)

∥A1/2 −B1/2U∥F , (6)

and 0 ≤ α ≤ 2 determines the relative weight placed on differences between the mean trajectories
or the marginal covariances. When α = 0, the distance reduces to the Procrustes shape distance
between the mean trajectories mx and my , so α-SSD can be viewed as a generalization that ac-
counts for second-order fluctuations of the marginal responses. Furthermore, if α = 1 and the
marginal distributions are Gaussian, i.e., x(t) ∼ N (mx(t),Px(t)) and y(t) ∼ N (my(t),Py(t))
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Procrustes

SSD

Causal OT

DSA

Figure 2: Demonstration that causal optimal transport (OT) distance disambiguates recurrent flow
fields while distances based on the mean trajectories and the marginal noise correlations do not.
On the left are simulations of three dynamical systems—a nonlinear dynamical system with two
stable fixed points, a linear dynamical system with a line attractor and a linear dynamical system
with a point attractor—with identical mean trajectories (top) and noise correlations (bottom) due to
adversarially chosen input drives and input noise. On the right are the pairwise distances between
the three systems using Procrustes shape distance, 2-SSD, 2-Causal OT distance and DSA distance.

for all t = 1, . . . , T , then equation 5 is the sum of squared Wasserstein distances (with p = 2) be-
tween these marginal distributions (Peyré & Cuturi, 2019). This interpretation of SSD as an optimal
transport distance between Gaussian distributions is relevant to the metric we develop in section 3
to compare full dynamical systems.

Lipshutz et al. (2024) showed that α-SSD with α ∈ {1, 2} can succesfully differentiate systems with
the same mean trajectories. To understand this, consider the special case that x satisfies equation 2.
Then its marginal covariance matrix evolves according to the dynamics1

Px(t) = A(t)Px(t− 1)A(t)⊤ +Σ(t)Σ(t)⊤. (7)

From this equation, we see that the evolution of the covariance matrix P (t) does not depend on
the input-drive b(t), so it can be used to compare the recurrent dynamics between two systems that
share a common noise structure; that is, when Px(0) = Py(0) and the input noise structure Σ(·) is
the same in both networks.

On the other hand, equation 7 also suggests that the marginal covariances alone cannot distinguish
between contributions from the recurrent dynamics A(t) and contributions from the noise covari-
ance Σ(t). We show this in Fig. 2 where we extend the example of Galgali et al. (2023) by ad-
versarially tuning the input noise Σ(t) in addition to the input drive b(t) to achieve systems with
different underlying recurrent dynamics, but the same mean and marginal covariance trajectories
(see Appx. D for details). This demonstrates that only comparing marginal distributions is insuffi-
cient for comparing Gaussian processes of the form in equation 2. In particular, these metrics do not
account for across-time statistical dependencies.

2.3 DYNAMICAL SIMILARITY ANALYSIS FOR COMPARING RECURRENT FLOW FIELDS

Ostrow et al. (2023) proposed DSA for comparing recurrent neural dynamics. The method is based
on the Hankel Alternative View of Koopman (HAVOK) method introduced by Brunton et al. (2017).
Essentially, the method involves constructing a Hankel matrix by delay-embedding a system’s ob-
served trajectories, and then fitting a reduced-rank regression model to obtain a linear estimate (i.e.,
a fixed dynamics matrix A) for the evolution of the singular vectors of the Hankel matrix. Even
though the approximation is linear, it can capture global nonlinear dynamics provided the delay is
sufficiently long (Takens, 1981). However, this can also lead to difficulties in practice since one
needs to select a sufficiently long delay to capture the nonlinear dynamics. The same procedure can

1This follows from substituting the dynamics equations governing x and mx (equation 2 and equation 3)
into the definition of the marginal covariance Px(t) in equation 4.
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be applied to another system and the linear approximations of the two systems’ dynamics can be
compared. Specifically, given two such dynamics matrices Ax and Ay , the distance between x and
y is computed as

dDSA(x,y) := min
Q∈O(N)

∥Ax −QAyQ
⊤∥F .

Ostrow et al. (2023) demonstrated that DSA can disambiguate dynamical systems with the same
mean trajectories but different underlying recurrent dynamics (i.e., the example in Galgali et al.,
2023, figure 1e). However, DSA is not explicitly designed to account for trajectories with varying
noise levels and therefore does not distinguish systems with varying noise levels (Appx. F). In addi-
tion, DSA depends on 2 hyperparameters: the number of delays used when constructing the Hankel
matrix and the choice of rank in the reduced-rank regression. When these hyperparameters are opti-
mally chosen, DSA successfully differentiates the dynamical systems in the extended example with
adversarially tuned input noise (Fig. 2); however, DSA can fail when the hyperparameters are not
optimally chosen (Appx. G).2

3 CAUSAL OPTIMAL TRANSPORT DISTANCES

We define a metric on noisy dynamic neural processes that accounts for both stochastic and dynamic
aspects of neural responses. The metric is motivated by Causal OT distances on stochastic processes
(Lassalle, 2018; Backhoff et al., 2017) and can conceptually be interpreted as the minimal L2-cost
for transporting a random set of trajectories generated by process x to a random set of trajectories
generated by process y, where the mapping (or coupling) between trajectories must satisfy a causal-
ity (or adapted) property that can be parsed as “the past of x is independent of the future of y given
the past of y” and vice versa. We define the distance in the next section and provide a first-principles
derivation of the distance in Appx. A.

3.1 DEFINITION OF CAUSAL OPTIMAL TRANSPORT DISTANCE

Given a N -dimensional process x = {x(t)} defined for t = 1, . . . , T , let Cx be the NT × NT
covariance matrix following a T × T block structure:

Cx =

Px(1, 1) . . . Px(1, T )
...

. . .
...

Px(T, 1) . . . Px(T, T )

 , Px(s, t) := E
[
(x(s)−mx(s))(x(t)−mx(t))

⊤] ,
where the blocks Px(s, t) are N ×N matrices encoding the across-time covariances. The α-Causal
OT distance between two processes x and y is defined to be

dα-causal(x,y) :=

min
Q∈O(N)

{
T∑

t=1

(2− α)∥mx(t)−Qmy(t)∥2 + αAB2N,T (Cx, (IT ⊗Q)Cy(IT ⊗Q⊤))

}
, (8)

where, as with α-SSD, 0 ≤ α ≤ 2 determines the relative weight place on differences between
the mean trajectories or the covariances, ABN,T (·, ·) is the adapted Bures distance on NT × NT
positive definite matrices defined by

ABN,T (A,B) := min
R1,...,RT∈O(N)

∥LA −LBdiag(R1, . . . ,RT )∥F , (9)

and A = LAL
⊤
A and B = LBL

⊤
B are the lower triangular Cholesky decompositions of positive

semidefinite matrices A and B. Note that the Cholesky decomposition is unique for positive definite
matrices. For a matrix with rank R < N , we take L to be the unique lower-triangular matrix with
exactly R positive diagonal elements and N −R columns containing all zeros (Gentle, 2012).

2We implemented DSA using the code provided in the GitHub respository https://github.com/
mitchellostrow/DSA.
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3.2 PROPERTIES AND COMPARISON WITH EXISTING METRICS

Causal OT distance is naturally interpreted as an extension of Procrustes shape distance and SSD.
When the across-time correlations are zero for both x and y, then Cx and Cy are block-diagonal
and α-Causal OT distance coincides with α-SSD defined in equation 5. Therefore, Causal OT dis-
tance can be viewed as an extension of SSD that accounts for across-time correlations of stochastic
processes. When applied to the dynamical systems with adversarially tuned input drives and input
noise, we find that Causal OT can disambiguate the different dynamical systems that Procrustes
shape distance and SSD cannot differentiate (Fig. 2).

It is also worth comparing Causal OT distance with Wasserstein (with p = 2) distance between
Gaussian processes (Mallasto & Feragen, 2017), which treats the processes as Gaussian vectors
without any notion of temporal ordering. The difference between the Wasserstein distance between
two Gaussian process and equation 8 is that the adapted Bures distanceABN,T (·, ·) is replaced with
the Bures distance B(·, ·) between the covariance matrices:

B(A,B) = min
U∈O(NT )

∥A1/2 −B1/2U∥F = min
U∈O(NT )

∥LA −LBU∥F . (10)

In the definition of Bures distance (equation 10), the minimization is over all orthogonal matrices
U ∈ O(NT ), whereas in the definition of adapted Bures distance (equation 9), the minimization
is over the subset of block diagonal matrices {diag(R1, . . . ,RT ),R1, . . . ,RT ∈ O(N)}. There-
fore, the adapted Bures distance is always larger than the Bures distances: AB(A,B) ≥ B(A,B).
The minimizations over rotations in equation 9 and equation 10 essentially amount to differences
in how probability mass is allowed to be “transported” when computing distances. In the definition
of adapted Bures distance (equation 9), the rotations are restricted to N × N spatial rotations, so
probability mass can be spatially transported, but not temporally transported. However, in the defi-
nition of Bures distance (equation 10), there are no restrictions on the rotations, so probability mass
can be transported across both space and time. This is important because two stochastic processes
may have sample trajectories that are close (so Wasserstein distance is small) and yet the processes
are very different in terms of how much information is available early in the trajectory (which is
captured by Causal OT distance but not Wasserstein distance). In section 4.1, we provide a tractable
example that illustrates the effect of preserving temporal causality when comparing two processes.

4 EXPERIMENTS

4.1 A SCALAR EXAMPLE

We first consider an analytically tractable scalar example that highlights the temporal causality prop-
erty of Causal OT, which is essentially a Gaussian process version of (Backhoff et al., 2022, figure
1). Consider two mean-zero scalar Gaussian processes x = {x(t)} and y = {y(t)} defined for
t = 0, 1, 2 (e.g., firing rates of two neurons over three time steps) that both start at zero and end
with distributionN (0, σ2) for some σ > 0. The difference between them is that the first step of x is
small stochastic and the second step of x is deterministic, whereas the first step of y is deterministic
and the second step of y is stochastic (Fig. 3).

Specifically, for some ϵ > 0 small, let

x(1) ∼ N (0, ϵ2), x(2) =
σ

ϵ
x(1)

y(1) = 0, y(2) ∼ N (0, σ2).

When ϵ > 0 is small, the sample trajectories of these processes are very close (Fig. 3). However,
x and y are very different as stochastic processes: if x(1) is known, then we have full information
about x(2), whereas if y(1) is known, then we have no additional information about y(2). In the
context of a neural system, the first process could represent a neuron whose activity is ramping in
time, whereas the second process could represent a neuron that is silent until the final time step.

The difference between the stochastic processes is captured by Causal OT, but not by Procrustes
distance, SSD or Wasserstein. In particular, the distances are (see Appx. C for details):

dProcrustes(x, y) = 0, d1-SSD(x, y) = ϵ

dWasserstein(x, y) = ϵ, d1-causal(x, y) =
√
σ2 + ϵ2.

6
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Figure 3: Five samples of two scalar processes over two time steps. The two processes have the
same marginal distributions at time t = 0 and t = 2. The difference between the process is whether
the first or second step is deterministic or stochastic. In this example, σ = 1.5 and ϵ = 0.5.

Procrustes distance cannot distinguish the two systems. Furthermore, as ϵ → 0, both d1-SSD(x, y)
and dWasserstein(x, y) converge to zero, whereas d1-causal(x, y) converges to σ. In particular, Causal
OT captures differences in the across-time statistical structure of the stochastic processes that is not
captured by SSD or Wasserstein.

4.2 SYNTHETIC EXPERIMENTS MODELING MOTOR SYSTEMS

We apply Causal OT distance to compare simple models of neural activity in motor systems. We take
inspiration from experimental measurements of motor cortical dynamics in which preparatory and
movement-related neural activity evolve into orthogonal subspaces (Kaufman et al., 2014; Church-
land & Shenoy, 2024), Fig. 4A. This effectively creates a gating mechanism by which the neural
activities can organize future movements without being “read out” into immediate motor actions.
Here, we consider a simple set up comparing two “systems”—one system includes preparatory ac-
tivity and motor activity that evolve in orthogonal subspaces and the other system only includes the
motor activity. We show that Causal OT distance can differentiate these two systems even when
preparatory activity is small (which has been observed experimentally, Churchland et al., 2012;
Kaufman et al., 2016), while SSD cannot.

The first system is a two-dimensional process x = {x(t) = (x1(t), x2(t))} that is a simple model
of motor cortex dynamics during a reaching task (Churchland et al., 2012; Kaufman et al., 2014).
The process is governed by the following time inhomogeneous linear system (explained below)

Preparatory dynamics x(t) = x(t− 1) + ue1 +w(t) (11a)
Rotational dynamics x(t) = Mx(t− 1) +w(t) (11b)

where e1, e2 are the standard basis vectors in R2 and w = {w(t)} is a two-dimensional additive
Gaussian noise process (note that e1 is aligned with the vertical axis and e2 is aligned with the hor-
izontal axis in Fig. 4A). Over the first Tp ≥ 1 time-steps, the system evolves along the preparatory
dimension (also referred to as the output-null direction in the literature) according to equation 11a,
where u takes values between [−1, 1] that determines the future output of the system. This is fol-
lowed by Tr ≥ 1 time-steps of rotational dynamics, equation 11b, where M is the rotation matrix
defined by

M :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]∣∣∣∣
θ=π/(2Tr)

.

At the end of the T = Tp+Tr time steps, the process lies along the readout dimension (also referred
to as the output-potent direction in the literature), Fig. 4A (trajectories are shown as solid curves).
The projections of x(t) onto the preparatory axis and read axis are shown in Fig. 4B.

The second system is a scalar process y = {y(t)} that represents the downstream motor readout of
first system and is a noisy projection of x(t) onto the readout axis:

Readout projection y(t) = e⊤2 x(t) + v(t), (12)

7
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Figure 4: Motor cortex preparatory activity in the nullspace. (A) State space activity x(t), accu-
mulating inputs along preparatory dimension, before entering rotational dynamics with non-zero
projection onto the readout dimension, showing different trajectories for different input scales (see
colorbar). We show two different scales of preparatory activity in solid and dashed lines. (B) Pro-
jections of state-space activity along the preparatory and readout dimensions. The readout y(t) is
a noisy version of the bottom row. (C) Same as in B for the low preparatory activity scale, with
scaling γ = 0.3. Notice that the readout dimension is the same as in B. (D) Distances (Procrustes,
DSA, 2-SSD, 2-Causal OT) as a function of the relative scale of the readout axis with respect to
preparatory, normalized so that each distance is 1 when the output potent/null ratio is 1. Note that
Procrustes shape distance and SSD are nearly identical when the output potent/null ratio is between
10−1 and 101.

where v(t) is additive Gaussian noise. Similar to the scalar example from the previous section, the
two process {x(t)} and {y(t)} have an important distinction: if the values of x(t) for t ∈ [0, Tp] are
known, then we have much more information about the values of x(t) for t ∈ [Tp, Tp + Tr]. On the
other hand, if the values of y(t) for t ∈ [0, Tp] are known, then we have no additional information
about the values of y(t) for t ∈ [Tp, Tp + Tr].

We apply Procrustes shape distance, SSD, DSA and Causal OT distance to compare the process x
and y (since y is a one-dimensional process, we embed it in R2 via the mapping y 7→ e2y). When
preparatory activity is large, we find that Procrustes shape distance, 2-SSD, DSA and 2-Causal OT
distance can each differentiate the two systems (Fig. 4D, vertical red line). However, often prepara-
tory activity is small relative to motor activity (Churchland et al., 2012; Kaufman et al., 2016). We
can model this by scaling the preparatory axis by a constant γ > 0: (x1, x2) 7→ (γx1, x2). This
results in smaller preparatory activity (Fig. 4A, trajectories are dashed curves), consistent with ex-
perimental observations. In this case, when preparatory activity is small, we see that Procrustes
shape distance and SSD are now much smaller whereas Causal OT and DSA distances do not sig-
nificantly change (Fig. 4D, vertical dashed blue line versus vertical red solid line). Moreover, as
preparatory activity shrinks γ → 0 (output potent/null ratio grows), then Procrustes shape distance
and SSD converge to zero, while Causal OT and DSA distances plateau (Fig. 4D). Importantly, this
implies that Procrustes shape distance and SSD cannot capture differences between a system with
small preparatory activity and motor activity and a system with only motor activity, while Causal
OT and DSA distances can distinguish these two systems. In this way, both Causal OT and DSA
distances capture important differences in the across-time statistical structure of the two processes
that is not captured by Procrustes shape distance and SSD.

4.3 LATENT DIFFUSION MODELS FOR IMAGE GENERATION

Denoising diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020;
Kadkhodaie & Simoncelli, 2021) are powerful conditional and unconditional generative models
with a wide range of applications (Yang et al., 2023). While there are well-established methods for
probing internal representations of deterministic and static neural networks, these methods have not
(to our knowledge) been widely applied to diffusion models (Klabunde et al., 2023). Furthermore,
the forward and reverse diffusion processes leveraged by these generative models are stochastic
dynamical systems, making them ideal candidates for the methodology we have developed.

Here, we investigate the extent to which the metrics (Procrustes, DSA, SSD, Causal OT) can dis-
tinguish stochastic dynamical trajectories generated by a diffusion model. Given the nonlinearity of
diffusion processes, it’s certainly possible that none of these measures can capture meaningful sim-
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Figure 5: Diffusion model example. Top row: Our dataset consisted of 60 random trajectories
from stochastic processes corresponding to two SOTA text-to-image stable diffusion models v1-1,
v1-2. For each diffusion model, we prompted it with 10 different prompts to sample trajectories
from 10 different conditional distributions. The 3 matrices show the estimated pairwise distances
between these different processes when computed using Procrustes shape distance, DSA distance,
SSD, and Causal OT distance. Bottom row: We show one example of a random trajectory from
the “primate” and “bird” prompts and their corresponding mean trajectories decoded into the pixel
space. While individual trajectories for each prompt category generate an image with features corre-
sponding to that category, the mean trajectories decoded into the pixel space do not contain prompt-
related visual features.

ilarities and differences between these trajectories. It’s also possible that these methods can capture
meaningful similarities and differences given enough samples, but the high-dimensionality of these
systems means that estimation of the statistics would require an unreasonable number of sample
trajectories.

To test our framework, we consider two pretrained text-to-image latent diffusion models (v1-1
and v1-2)3 trained to generate text-conditional images from noise (Rombach et al., 2022). Given
a text prompt, each model generates a 214-dimensional stochastic latent trajectory xmodel, prompt,
whose terminal point is decoded into an image (with dimensions 256 × 256 × 3). In particular,
each model and prompt corresponds to a distinct stochastic dynamical system. Therefore, we ex-
pect that for each model, d(xmodel, prompt,xmodel, prompt) = 0 for the same prompts, and potentially
d(xmodel, prompt A,xmodel, prompt B) > 0 for different prompts (though this is less clear due to the nui-
sance transform). Moreover, the training dataset used for v1-1 was a subset of the dataset used
for v1-2, so we might expect their dynamics to be similar, in which case we should find that
d(xv1-1, prompt,xv1-2, prompt) ≈ 0.

We prompted each diffusion model with 10 different prompts from both animate and inanimate
sources: “bird”, “car”, “fish”, “human face”, “invertebrate”, “machine”, “plant”, “primate”, “robot”,
“toy”. These prompts were inspired by the stimulus categories used to probe image representations
in humans (fMRI) and non-human primates (single-cell recordings) (Kriegeskorte et al., 2008). For
each prompt and each model, we generated 60 latent trajectories and decoded those trajectories into
the image space (examples of two decoded trajectories are shown in Fig. 5 and for several other
trajectories in Fig. 7 of the supplement). We repeated this process for 3 random seeds to use the
within-category distances as a baseline. This provided 60 datasets (2 diffusion models, 10 prompts,
3 seeds per prompt) each containing 60 latent trajectories.

For each pair of processes, we estimated the Procrustes shape distance, DSA distance, SSD and
Causal OT distance (Fig. 5). Estimating the distances in the 214-dimensional latent space is in-
tractable. Therefore, we first projected each set of latent trajectories onto its top 10 principal com-
ponents (PCs) before computing the distances between the 10-dimensional stochastic trajectories.
To ensure that 10 PCs are sufficient for recapitulating the data, we recomputed the pairwise distances

3Models were taken from https://huggingface.co/CompVis.
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as the number of PCs vary from 2 to 20 and showed that the distances indeed converge (Fig. 6 of the
supplement).

Visual inspection of the pairwise distance matrices reveals that SSD and Causal OT capture struc-
tured relations between the trajectories that are not captured by Procrustes shape distance or DSA
distance. First, both the SSD and Causal OT distance matrices have a 3 × 3 block-diagonal struc-
ture, while the Procrustes and DSA distance matrices do not. The 3 × 3 block-diagonal structure
reflects the expected smaller within-category distances than between-category distances; that is,
d(xA,xA) < d(xA,xB) for A ̸= B. This structure also suggests that the number of trials used for
computing distances provides sufficient statistical power for capturing meaningful distances. Sec-
ond, SSD and Causal OT appear to capture similarities in the representations between models v1-1
and v1-2, where as Procrustes does not. Specifically, SSD and Causal OT distance appear to mainly
depend on the prompt (i.e., they are invariant to the choice of model). This is reflected in the fact
that the four quadrants of the distance matrices have similar apparent structure. On the other hand,
this structure is not apparent in the Procrustes or DSA distance matrices. Together, these results
suggest that it is important to account for correlation structure (especially spatial correlations) when
comparing the similarities of these latent stochastic trajectories.

To better understand why Procrustes distance fails to capture structured differences between pro-
cesses, we investigated whether the mean latent trajectories contain any visual information about
the prompt categories. To this end, for each model and category, we passed the mean latent tra-
jectory through the decoder and visually inspected the resulting image (bottom row of Fig. 5, with
more examples shown in Fig. 7 of the supplement). The resulting generated images are largely in-
distinguishable from each other suggesting that the distances that only use the first moment fail to
capture important stochastic aspects of the internal representations in latent diffusion models.

There are some other interesting aspects related to the distance matrices. First, there is an apparent
hierarchy of representational distances encoded in the block diagonals which opens up interest-
ing questions about the differences between generative and discriminative models of vision for the
cognitive neuroscience community (e.g., see Fig. 8 of the supplement). Causal OT distances are
larger and appear less variable in the block diagonals suggesting that the full covariance structure
is informative for computing shape distances. Importantly, distances that capture the dynamic and
stochastic aspects of representations may be useful tools for investigating diffusion models.

5 DISCUSSION

In this work, we introduced Causal OT distance for comparing noisy neural dynamics. The distance
is a natural extension of existing shape metrics (Procrustes and SSD) that accounts for both the
stochastic and dynamic aspects of neural responses, while also respecting temporal causality. We
applied our method to compare simple models of neural responses in motor systems and found that
Causal OT distance can distinguish between neural responses encoding preparatory dynamics and
motor outputs versus neural responses that only encode motor outputs. We also applied our method
to compare representations in latent diffusion models whose generation process is a stochastic dy-
namical system. We found that Causal OT distances can differentiate generative processes while
Procrustes distance and DSA cannot (though SSD can), emphasizing the need to consider stochas-
ticity when analyzing such systems.

There are important limitations of this work. First, the Causal OT distance we introduced only cap-
tures first- and second-order moments, which is sufficient for distinguishing Gaussian processes;
however, they are not guaranteed to capture differences between non-Gaussian processes. Second,
even estimating first and second-order moments can require a significant number of sample trajec-
tories. For example, an N -dimensional trajectory with T time points has an NT ×NT covariance
matrix. When N or T are large, estimating this covariance can require more sample trajectories than
are available. One approach is to assume a linear dynamical system prior on the stochastic process
(Duncker et al., 2019). Alternatively, one can impose a prior distribution on how the covariance
structure changes in time (Nejatbakhsh et al., 2023). Theoretical analysis of estimating shape dis-
tances and other representational dissimilarity measures from finite data remains an active area of
study (Pospisil et al., 2023).
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A CAUSAL OPTIMAL TRANSPORT DISTANCE BETWEEN GAUSSIAN
PROCESSES

In this section, we provide a first-principles derivation of the Causal OT distance between two
processes defined in equation 8. The distance can be derived as an optimal transport distance
between two Gaussian processes x and y where the transport cost is an L2-distance and the ad-
missible couplings correspond the set of so-called causal synchronous couplings. These are syn-
chronous couplings because both Gaussian processes are driven by a common white noise process
w = {w(t)}, and they are causal in the sense that at any given time point, the current values of
the Gaussian processes x(t) and y(t) do not depend on the future values of the white noise process
w(t+ 1),w(t+ 2), . . . .

This distance is closely related to bi-causal optimal transport distances (also referred to as adapted
Wasserstein distances) between Gaussian processes (Lassalle, 2018; Backhoff et al., 2017; Gu-
nasingam & Wong, 2024). These are optimal transport distances in which the couplings between
the processes are required to satisfy a “bi-causal” property, which can be interpreted as “the past
of process 1 is independent of the future of process 2, conditioned on the past of process 2” and,
conversely, “the past of process 2 is independent of the future of process 1, conditioned on the past
of process 1”. Here our couplings are defined in terms of causal synchronous couplings rather than
bi-causal couplings. These two notions of coupling are equivalent in the scalar setting (Backhoff-
Veraguas et al., 2022); however, we are unaware of a proof of this in the multi-dimensional setting.

Suppose x and y are N -dimensional Gaussian processes defined for t = 1, . . . , T . Let w = {w(t)}
be a sequence of i.i.d. N -dimensional standard normal vectors (i.e., a white noise process). We
define a causal synchronous coupling between x and y as a pair of processes (x̂, ŷ) that satisfy the
following criteria:

• Synchronous coupling condition:
(i) there is a function that maps the white noise process w to (x̂, ŷ);

(ii) x̂ is equal in distribution to x and ŷ is equal in distribution to y.
• Causality condition:

(iii) for each t < T , there is a function that maps (w(1), . . . ,w(t)) to (x̂(t), ŷ(t)).

We now construct a family of causal synchronous couplings. Let x⃗ be the NT -dimensional Gaussian
random vector obtained by concatenating x(1), . . . ,x(T ):

x⃗ :=

x(1)
...

x(T )

 ∼ N (m⃗x,Cx) ,

where m⃗x and Cx denote the mean and covariance of the concatenated vector x⃗. Let Cx = LxL
⊤
x

be the Cholesky decomposition of the covariance matrix Cx. If Cx is full rank, then the decompo-
sition is unique. If Cx is rank R < N , then we take Lx to be the unique lower-triangular matrix
with exactly R positive diagonal elements and N −R columns containing all zeros (Gentle, 2012).
Given an N -dimensional driving white noise process w = {w(1), . . . ,w(T )}—i.e., w(t) are i.i.d.
N -dimensional Gaussian random vectors with identity covariance—define the process x̂ = {x̂(t)}
by  x̂(1)

...
x̂(T )

 = fx(w) := m⃗x +Lxw⃗, w⃗ :=

w(1)
...

w(T )

 .

Since the distribution of a Gaussian process can be completely characterized in terms of its first two
moments, the process x̂ is equal in distribution to the process x. Furthermore, by construction x̂ is a
continuous function of the driving white noise process w and, since Lx is lower triangular, for any
t = 1, . . . , T − 1,x̂(1)...

x̂(t)

 = fx
t (wt) := m⃗x,t +Lx,tw⃗t, w⃗t :=

w(1)
...

w(t)

 , (13)
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where m⃗x,t denotes Nt-dimensional vector that is equal to the first Nt coordinates of m⃗x, and
Lx,t denotes the Nt × Nt matrix that is equal to the first Nt rows and Nt columns of Lx. We
say that x̂ is adapted to the driving white noise process w since equation 13 holds; that is, for each
t = 1, . . . , T − 1, the vector x̂(t) is a function of the first t steps of the white noise process w. As a
corollary, x̂(t) is independent of the future values of the white noise process w(t+ 1), . . . ,w(T ).

Let fy(·) and fy
t (·) be defined as above but with x’s replaced by y’s. Then x̂ = fx(w) and

ŷ = fy(w) is a causal synchronous coupling between x and y. In general, we consider causal
synchronous couplings of the form:

x̂ = fx(w), ŷ = fy(R1w(1), . . . ,RTw(T )),

where R1, . . . ,RT are N×N orthogonal matrices. Since the distribution of white noise is invariant
these transformations, these define synchronous couplings of x and y. Furthermore, the rotations do
not rotate the white noise process in time, so they define causal synchronous couplings of x and y.

Having defined our admissible couplings, we now define the Causal OT distance as

dcausal(x,y) := min
Q,R1,...,RT∈O(N)

E
[
∥fx(w)− (IT ⊗Q)fy(R1w(1), . . . ,RTw(T ))∥2

]
, (14)

where the minimization is over nuisance transformations Q ∈ O(N) and over spatial rotations
R1, . . . ,RT ∈ O(N) of the noise. Substituting in with the formulas for fx and fy , we see that

E
[
∥fx(w)− (IT ⊗Q)fy(R1w(1), . . . ,RTw(T ))∥2

]
= ∥m⃗x − (IT ⊗Q)m⃗y∥2 + E

[
∥Lxw⃗ − (IT ⊗Q)Lydiag(R1, . . . ,RT )w⃗∥2

]
= ∥m⃗x − (IT ⊗Q)m⃗y∥2 + ∥Lx − (IT ⊗Q)Lydiag(R1, . . . ,RT )∥2F .

Substituting this expression back into equation 14, we get

d2causal(x,y) = min
Q∈O(N)

{
∥m⃗x − (IT ⊗Q)m⃗y∥2 +AB2N,T (Cx, (IT ⊗Q)Cy(IT ⊗Q⊤))

}
,

where ABN,T (·, ·) is the adapted Bures distance between positive semidefinite matrices defined

ABN,T (A,B) := min
R1,...,RT∈O(N)

∥LA −LBdiag(R1, . . . ,RT )∥F ,

where A = LAL
⊤
A and B = LAL

⊤
A are the Cholesky decompositions. In the scalar setting, this

reduces to the adapted Bures distance defined in (Gunasingam & Wong, 2024). While this metric
is motivated as a distance between Gaussian processes, it defines a proper (pseudo-)metric between
any stochastic processes in terms of their first- and second-order statistics.

It’s worth noting that if we relax the causality condition then we can consider a larger set of (acausal)
synchronous couplings:

x̂ = fx(w), ŷ = fy(ΦU (w)),

where U ∈ O(NT ) is any NT ×NT rotation and

ΦU (w) := U

w(1)
...

w(T )


is a rotation of the white noise process that leaves its distribution invariant. Minimizing the L2-
distance over all such couplings results in the following distance, which is equal to the Wasserstein
distance (with p = 2) between Gaussian random vectors (Mallasto & Feragen, 2017) up to a nui-
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sance transformation:

d2Wasserstein(x,y) = min
Q∈O(N)

min
U∈O(NT )

E
[
∥fx(w)− (IT ⊗Q)fy(ΦU (w))∥2

]
= min

Q∈O(N)

{
∥m⃗x − (IT ⊗Q)m⃗y∥2 + min

U∈O(NT )
E
[
∥Lxw⃗ − (IT ⊗Q)LyUw⃗∥2

]}
= min

Q∈O(N)

{
∥m⃗x − (IT ⊗Q)m⃗y∥2 + min

U∈O(NT )
∥Lx − (IT ⊗Q)LyU∥2F

}
= min

Q∈O(N)

{
∥m⃗x − (IT ⊗Q)m⃗y∥2 + min

U∈O(NT )

∥∥∥(Cx)
1/2 − (IT ⊗Q)(Cy)

1/2U
∥∥∥2
F

}
= min

Q∈O(N)

{
∥m⃗x − (IT ⊗Q)m⃗y∥2 + B2(Cx, (IT ⊗Q)Cy(IT ⊗Q⊤))

}
where B(·, ·) is the Bures distance on positive semidefinite matrices:

B(A,B) := min
U∈O(NT )

∥A1/2 −B1/2U∥F .

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B ALTERNATING MINIMIZATION ALGORITHM

Suppose x = {x(t)}t=1,...,T is an Nx-dimensional Gaussian process and y = {y(t)}t=1,...,T is an
Ny-dimensional Gaussian process. If Nx ̸= Ny , we can pad the lower-dimensional process with
zeros so that they are both N -dimensional processes, where N := max(Nx, Ny). For example, if
Ny < Nx, then we can embed y(t) into RN via the linear transformation

y(t) 7→
[
y(t)
0

]
,

where 0 is a (N − Ny)-dimensional vector of zeros. For the remainder of this section, we assume
that N = Nx = Ny .

From equation 8, we have that causal OT distance is equal to

min
Q,R1,...,RT

{
∥m⃗x − (IT ⊗Q)m⃗y∥2 + ∥Lx − (IT ⊗Q)Lydiag(R1, . . . ,RT )∥2F

}
. (15)

We solve this via an alternating minimization algorithm. For an NT ×NT matrix L and 1 ≤ s, t ≤
T , let Lst denote the (s, t)th N ×N block of L. We first rewrite the second term as:

∥Lx − (I ⊗Q)Lydiag(R1, . . . ,RT )∥2F =

T∑
s=1

t∑
t=1

∥Lx,st −QLy,stRt∥2F

=

T∑
t=1

T∑
s=t

∥Lx,st −QLy,stRt∥2F

=

T∑
t=1

∥∥∥∥∥∥∥
Lx,tt

...
Lx,T t

−
QLy,tt

...
QLy,T t

Rt

∥∥∥∥∥∥∥
2

F

.

Then optimizing over Rt yields:

Rt = argmin
R

∥∥∥∥∥∥∥
Lx,tt

...
Lx,T t

−
QLy,tt

...
QLy,T t

R

∥∥∥∥∥∥∥
2

F

Alternatively, we can express the sum in equation 15 as

∥m⃗x − (I ⊗Q)m⃗y∥2 + ∥Lx − (I ⊗Q)Lydiag(R1, . . . ,RT )∥2F

=

∥∥∥∥∥∥∥
m⊤

x,1
...

m⊤
x,T

−
m⊤

y,1
...

m⊤
y,T

Q⊤

∥∥∥∥∥∥∥
2

F

+

∥∥∥∥∥∥∥
L⊤

x,11
...

L⊤
x,TT

−
R⊤

1 L
⊤
y,11

...
R⊤

TL
⊤
y,TT

Q⊤

∥∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



m⊤
x,1
...

m⊤
x,T

L⊤
x,11
...

L⊤
x,TT


−



m⊤
y,1
...

m⊤
y,T

R⊤
1 L

⊤
y,11

...
R⊤

TL
⊤
y,TT


Q⊤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

F

.

Then optimizing over Q yields

Q = argmin
Q

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



m⊤
x,1
...

m⊤
x,T

L⊤
x,11
...

L⊤
x,TT


−



m⊤
y,1
...

m⊤
y,T

R⊤
1 L

⊤
y,11

...
R⊤

TL
⊤
y,TT


Q⊤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

F

.
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We summarize the previous steps into an algorithm. Given

m⃗ =

m1

...
mT

 , L =

L11

...
. . .

LT1 · · · LTT


define the functions

Ft(L) :=

Ltt

...
LTt

 , G(m⃗,L) :=



m⊤
1

...
m⊤

T

L⊤
11

L⊤
21

L⊤
22
...

L⊤
TT


.

Let Cholesky(·) be a function that maps a positive semidefinite matrix to its Cholesky decomposi-
tion. When the matrix is full rank, this decomposition is unique. When the matrix is rank R < N ,
we select the unique decomposition with R positive diagonal elements and N − R columns whose
entries are all zero.

Algorithm 1: Alternating minimization for computing causal OT distance

1: input: 0 ≤ α ≤ 2, m⃗x ∈ RNT , m⃗y ∈ RNT , Cx ∈ SNT
++ and Cy ∈ SNT

++ .
2: initialize: Q ∈ O(N)
3: Lx ← Cholesky(Cx)
4: Ly ← Cholesky(Cy)
5: while not converged do
6: for t = 1, . . . , T do
7: Mx,t ← Ft(Lx)
8: My,t ← Ft((Iy ⊗R)Ly)
9: Rt ← argminR∈O(N) ∥Mx,t −My,tR∥2F

10: end for
11: Nx ← G(m⃗x,Lx)
12: Ny ← g(m⃗y,Lydiag(R1, . . . ,RT ))
13: Qy ← argminQ∈O(N) ∥Nx −NyQ

⊤∥2F
14: end while
15: dist←

√
(2− α)∥m⃗x − (IT ⊗Q)m⃗y∥2 + α ∥Lx − (IT ⊗Q)Lydiag(R1, . . . ,RT )∥2F

16: return dist
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C SCALAR EXAMPLE

We derive the distances reported in Sec. 4.1. The means of x and y are identically zero so the
Procrustes distance is zero. The covariance matrices of (x(1), x(2)) and (y(1), y(2)) satisfy

Cx =

[
ϵ2 ϵσ
ϵσ σ2

]
=

[
ϵ 0
σ σ

] [
ϵ σ
0 σ

]
= LxL

⊤
x ,

Cy =

[
0 0
0 σ2

]
=

[
0 0
0 σ

] [
0 0
0 σ

]
= LyL

⊤
y .

From these expressions, we see that dSSD-1(x, y) = ϵ. Using the explicit formula for the Bures
distance (Bhatia et al., 2019), the Wasserstein distance is

dWasserstein(x, y) = B(Cx,Cy)

=

√
Tr(Cx) + Tr(Cy)− 2Tr

(√
CyCx

√
Cy

)1/2

=
√
(ϵ2 + σ2) + σ2 − 2σ2

= ϵ,

where we have used the fact that
√

Cy = Ly in the third equality. Finally, by equation 8, the Causal
OT-1 distance is

dcausal-1(x, y) = AB(Cx,Cy)

= min
α,β∈{±1}

∥Lx −Lydiag(α, β)∥F

= min
β∈{±1}

∥∥∥∥[ϵ 0
σ σ − βσ

]∥∥∥∥
=

√
ϵ2 + σ2.
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D ADVERSARIAL TUNING OF NOISE CORRELATIONS AND INPUT

In this section we describe how to build adversarial examples of systems with distinct recurrent
dynamics that share their marginal statistics. To achieve this, we will tune the input and noise
correlations to these systems. Denoting a reference system that has marginal means mt and marginal
covariances Pt our goal is to build linear systems for arbitrary recurrent dynamics matrices A such
that their marginal statistics are equivalent to the reference system.

To begin, we rewrite the dynamics of a linear system driven by inputs bt and noise correlations
ΣΣ⊤:

xt+1 = xt + dtAxt + dtbt +
√
dtΣtϵt

E[xt+1] = (I + dtA)E[xt] + dtbt

Cov(xt+1) = (I + dtA)Cov(xt)(I + dtA⊤) + dtΣtΣ
⊤
t .

Therefore in order to have E[xt] = mt and Cov(xt) = Pt we need to set bt,Σt according to the
following equations.

bt =
mt+1 − (I + dtA)mt

dt
, b0 = m0

Σt =

√
Pt+1 − (I + dtA)Pt(I + dtA⊤)√

dt
, Σ0 =

√
P0

In Fig. 2 we first generated data from the Saddle dynamics since it is the only nonlinear model among
the 3. We then used its marginal means and covariances to tune the inputs and noise correlations for
other two systems (Line and Point attractor).

For completeness, we include the dynamical equations for the 3 systems below:

• Saddle (assuming that θ ∈ {−0.1, 0.1} is the coherency level):

f1(x) = −0.6x3
1 + 2x1 + θ, f2(x) = −x2 + θ,

dx

dt
= f(x) + ϵt

• Point Attractor (assuming the linear dynamics mentioned above with A dynamics matrix):

A =

[
−0.5 0
0 −1

]
• Line Attractor (assuming the linear dynamics mentioned above with A dynamics matrix

and Rot(ϕ) is the rotation matrix for angle ϕ):

A =

[
0 0
0.7 −1

]
Rot(ϕ), ϕ = 45◦

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E DETAILS OF THE DIFFUSION MODEL EXPERIMENT

Stable diffusion for text-to-image generation are latent diffusion models that consist of a few com-
ponents. We denote images by random variable s, text by random variable p, and latent diffusion
process by random variable x1:T . An encoder E maps images into the latent space and a decoder D
maps the latent diffusion back into the image space. Text prompts are mapped into a fixed-length
embedding τθ(p) that can be used for conditioning the latent diffusion model. The text embedding
uses an architecture that is well-suited for the text modality.

Separately, a time-conditioned UNet architecture is used to run the backward diffusion process for
denoising images in the latent space. We denote the denoiser by ϵθ(xt, t). Conditioning on text is
performed via mapping the text representation to intermediate layers of the denoising UNet using a
cross-attention mechanism (see Rombach et al. (2022) for details). Finally, the conditional diffusion
process cost function L is used for the joint optimization of the denoiser and text embedding:

L = EE,p,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(xt, t, τθ(p)∥22

]
Once the components of the model are trained, the function ϵθ provides an approximation of the
score function∇ log p(x|p) for large t.

During the image generation, first the encoding of the text prompt is computed. Then starting from
random iid noise in the latent space, the following model is run forward:

xt+1 = xt + ht(ϵθ(xt, t, τθ(p))− xt) + γtzt.

In our experiments, we generated samples from this stochastic process conditioned on different
prompts and computed pairwise distances between different conditional processes using Procrustes,
DSA, SSD, and Causal OT distances. For DSA we chose the hyperparameters n delays = 9,
rank = 10. We fixed all the other hyperparameters to the following for this and all other DSA
experiments: delay interval = 1, lr = 0.01, iters = 1000. By computing these pairwise
distances we showed that both SSD and Causal OT capture our desired properties. Here, we present
more results validating our findings.

The size of the images are 256 × 256 × 3 (3 RGB channels) and the size of the latent space is
64 × 64 × 4. Therefore the latent representation provides a computational gain with a factor of
approximately 16. Since the dimension of the latent space is still very large, we performed PCA
on the latent trajectories to map it onto the top k PCs. In Fig. 6 we show the dependence of the
normalized distances on k ∈ {2, 4, 6, 8, 10, 15, 20}. We normalized the distances to the median
value of each distance matrix to focus on the relative changes. The normalized distance changes
are very small after k = 6 confirming that the distances are not an artifact of the lower-dimensional
projection.

In addition, we include the decoded sample trajectories and mean trajectories from all prompt cate-
gories for both models v1-1 and v1-2 in Fig. 7. The decoded mean trajectories show very subtle
signatures of the image category confirming that distances based on mean trajectories (e.g. Pro-
crustes) are not sufficient to capture differences in the stochastic processes.

Finally, we included the MDS projection of all three pairwise distances in Fig. 8. This figure shows
that in both SSD and Causal OT the conditional stochastic processes corresponding to the same
prompt category for different seeds and diffusion models cluster together. This suggests that MDS
embedding of the stochastic process distances is meaningful and potentially relevant for the cogni-
tive neuroscience community.
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Figure 6: Convergence of normalized shape distances with small number of principal components
(PCs). Pairwise distances from three different methods (rows; Causal OT, SSD, Procrustes) between
60 conditional stochastic processes are shown where the latent trajectories are projected onto top
d PCs for varying d ∈ {2, 4, 6, 8, 10, 15, 20} (columns). All normalized shape distances converge
after d = 6.
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Figure 7: Decoded sample and mean trajectories for all categories in models v1-1 and v1-2.
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v1-1
v1-2

DSA

Figure 8: Multi-dimensional scaling of the pairwise shape distances for Procrustes, DSA, SSD, and
Causal OT distances corresponding to the distance matrices shown in Fig. 5.
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F COMPARISON OF METRICS ON A SCALAR SYSTEM

Here, using a simple scalar dynamical system model (e.g., the dynamics of a single neuron’s re-
sponses), we demonstrate that DSA can distinguish systems with varying dynamics (i.e., different
underlying vector fields) but the same marginal statistics, while 2-SSD cannot. Conversely, we
show that 2-SSD can distinguish systems with varying noise levels but the same dynamics, while
DSA cannot. Finally, Causal OT can distinguish the systems in both cases while Procrustes cannot
distinguish the systems in either case.

Specifically, consider the scalar autoregressive process (of order 1)

x(t) = −ax(t− 1) + δw(t),

where −1 < a < 1 is a scalar that determines the autocorrelation of {x(t)}, δ > 0 is the input noise
level and w = {w(t)} is a driving white noise process (i.e., a sequence of i.i.d. standard normal
random variables). The process {x(t)} has a unique stationary distribution given by N (0, σ2),
where σ2 := δ2/(1 − a2). Therefore, if the process {x(t)} is initialized so that x(0) ∼ N (0, σ2),
then its marginal distribution satisfies x(t) ∼ N (0, σ2) for all t = 1, 2, . . . .

F.1 SYSTEMS WITH DIFFERENT DYNAMICS, SAME MARGINAL STATISTICS

We first show that when the dynamics are different across systems but the marginal distributions are
constant across systems, then Causal OT distance and DSA can discriminate between the systems
but Procrustes and 2-SSD cannot. For each a ∈ {0.1, 0.3, 0.5, 0.7, 0.9} we let δ2 = 1 − a2 so that
the stationary distribution of {x(t)} isN (0, 1) provided x(0) ∼ N (0, 1). As a increases, the sample
trajectories become smoother and have larger autocovariances (Fig. 9).

Figure 9: Five autoregressive processes with varying dynamics but constant marginal variances.
The top row shows five sample trajectories from each process along with the empirical mean (thick
red line) and marginal variance (dashed purple lines). The bottom row shows the autocovariance
matrices.

Based on visual inspection of the pairwise distance matrices (Fig. 10), it is clear that Causal OT and
DSA differentiate between the systems with varying autocorrelations, but Procrustes and SSD do
not.

F.2 SYSTEMS WITH THE SAME DYNAMICS, DIFFERENT NOISE STATISTICS

Next, we show that when the vector field is fixed across systems but the noise varies, then Causal
OT and SSD can discriminate between the systems but Procrustes and DSA cannot. Specifically,
we fix the vector field a = 0.3 and consider different noise levels δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. As
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Procrustes SSD Causal OT DSA

Figure 10: For each a ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, we generated 3 sets of 1000 samples trajectories
of length T = 10, from which we estimated the pairwise distances between the 5 × 3 = 15 sets of
sample trajectories. To compute the DSA distance we used the following parameters: n delays =
3, delay interval = 1, rank = 30.

Figure 11: Five autoregressive processes with fixed dynamics and varying noise levels. The top
row shows five sample trajectories from each process along with the empirical mean (thick red
line) and marginal variance (dashed purple lines). The bottom row shows the autocovariance
matrices. To compute the DSA distance we used the following parameters: n delays = 3,
delay interval = 1, rank = 30.

the noise level increases, the trajectories exhibit larger fluctuations about the mean however, the
autocovariance structure remains about constant (Fig. 11).

It is immediately clear from visual inspection that Causal OT and SSD differentiate between the
systems with varying noise, but Procrustes and DSA do not (Fig. 12).

Procrustes SSD Causal OT DSA

Figure 12: For each noise levels δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, we generated 3 sets of 1000 samples
trajectories of length T = 10, from which we estimated the pairwise distances between the 5× 3 =
15 sets of sample trajectories.
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These experiments on a scalar linear systems demonstrate that SSD and DSA can respectively dis-
criminate stochastic and dynamic aspects of stochastic processes; however, on their own they do
not capture both elements. On the other hand, Causal OT distance discriminates both stochastic and
dynamic characteristics.

G SENSITIVITY OF DSA ON HYPERPARAMETERS

DSA (Ostrow et al., 2023) crucially depends on 2 hyperparameters: the number of delays used when
creating the Hankel matrix and the rank selected when fitting the reduced-rank regression model to
linearly estimate the system’s dynamics. We applied DSA (with different choices of delays and rank)
to the 2-dimensional dynamical systems from Fig. 2 of the main text to demonstrate the sentivity of
the method to the choice of hyperparameters (Fig. 13). In Fig. 2, we presented the result when using
the best performing hyperparameters.

n_
de
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ys
=
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n_
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=
10

rank=5 rank=10 rank=20

Figure 13: Sensitivity of DSA to hyperparameter selection. We select n delays and rank on a
grid shown in rows and columns, and run DSA on the same toy dataset as in Fig. 2.
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