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Abstract

Owing to the growing concerns about privacy and regulatory compliance, it is desirable
to regulate the output of generative models. To that end, the objective of this work is to
prevent the generation of outputs containing undesired features from a pre-trained Gener-
ative Adversarial Network (GAN) where the underlying training data set is inaccessible.
Our approach is inspired by the observation that the parameter space of GANs exhibits
meaningful directions that can be leveraged to suppress specific undesired features. How-
ever, such directions usually result in the degradation of the quality of generated samples.
Our proposed two-stage method, known as ‘Adapt-then-Unlearn,’ excels at unlearning
such undesirable features while also maintaining the quality of generated samples. In the
initial stage, we adapt a pre-trained GAN on a set of negative samples (containing unde-
sired features) provided by the user. Subsequently, we train the original pre-trained GAN
using positive samples, along with a repulsion regularizer. This regularizer encourages the
learned model parameters to move away from the parameters of the adapted model (first
stage) while not degrading the generation quality. We provide theoretical insights into
the proposed method. To the best of our knowledge, our approach stands as the first
method addressing unlearning within the realm of high-fidelity GANs (such as StyleGAN).
We validate the effectiveness of our method through comprehensive experiments, encom-
passing both class-level unlearning on the MNIST and AFHQ dataset and feature-level
unlearning tasks on the CelebA-HQ dataset. Our code and implementation is available at:
https://anonymous.4open.science/r/Unlearning_GAN_Via_Few_Shot_Adaptation/.

1 Introduction

1.1 Unlearning

Recent advancements in deep generative models such as Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014; Arjovsky et al., 2017; Karras et al., 2018b;a; 2020) and Diffusion models (Ho et al., 2020;
Song & Ermon, 2019; Song et al., 2021) have showcased remarkable performance in diverse tasks, from gen-
erating high-fidelity images (Karras et al., 2018a; 2020; 2021) to text-to-image translations (Ramesh et al.,
2021; 2022; Rombach et al., 2022). Consequently, these models find application in various fields, including
but not limited to medical imaging (Celard et al., 2023; Varoquaux & Cheplygina, 2022), remote sensing
(Ball et al., 2017; Adegun et al., 2023), hyperspectral imagery (Jia et al., 2021; Wang et al., 2023), and many
others (Choudhary et al., 2022; Yang & Xu, 2021; Liu et al., 2021). However, the extensive incorporation
of data with possible undesired features or inherent biases cause these models to generate violent, racial,
or explicit content which poses significant concerns (Tommasi et al., 2017). Thus, these models are subject
to regulatory measures (Voigt & dem Bussche, 2017; Goldman, 2020). Identifying and eliminating these
undesired features from the model’s knowledge representation poses a challenging task. The framework of
Machine Unlearning (Xu et al., 2020; Nguyen et al., 2022b) tries to solve this problem by removing spe-
cific training data points containing undesired feature from the pre-trained model. Specifically, machine
unlearning refers to the task of forgetting the learned information (Sekhari et al., 2021; Ma et al., 2022; Ye
et al., 2022; Cao & Yang, 2015; Golatkar et al., 2021; 2020a; Ginart et al., 2019; Golatkar et al., 2020b), or
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Figure 1: (a) Block diagram of the proposed method: Stage-1: Negative Adaptation of the GAN to negative
samples received from user feedback and Stage-2: Unlearning of the original GAN using the positive samples
with a repulsion loss. (b) Illustrating linear interpolation and extrapolation in parameter space for unlearning
undesired features. We observe that in the extrapolation region, undesired features are suppressed, but the
quality of generated samples deteriorates. (c) An example of results obtained using our method on Mixture
of Gaussian (MoG) dataset, where we unlearn two centers provided in negative samples.

erasing the influence of specific data subset of the training dataset from a trained model in response to a
user request (Wu et al., 2020a; Guo et al., 2020; Graves et al., 2021; Wu et al., 2022; 2020b; Chourasia &
Shah, 2023).

The task of unlearning can be challenging because we aim to ‘unlearn’ a specific undesired feature without
negatively impacting the previously acquired knowledge. In other words, unlearning could lead to Catas-
trophic Forgetting (Ginart et al., 2019; Nguyen et al., 2022a; Golatkar et al., 2020b) which would significantly
deteriorate the performance of the model. Further, the level of difficulty faced in the process of unlearning
may vary depending on the specific features of the data that one is required to unlearn. For example, un-
learning a particular class (e.g. class of digit ‘9’ in MNIST) could be relatively easier than unlearning a more
subtle feature (e.g. beard feature in CelebA). This is because the classes in MNIST are quite distinct and
don’t necessarily share correlated features. Whereas, in the CelebA (Liu et al., 2015) dataset, the feature of
having a beard is closely linked to the concept of gender. So, unlearning this subtle feature while retaining
other correlated features such as gender, poses an increasingly difficult challenge. It is important to mention
that re-training the model from scratch without the undesired input data is not feasible in this setting due
unavailability of the training dataset.

1.2 Motivation and Contribution

In this work, we try to solve the problem of unlearning undesired feature in pre-trained generative adversarial
networks (GANs) without having access to the training data used for pre-training the GAN. We operate under
the feedback-based unlearning framework, where we start with a pre-trained GAN. A user is given a set of
generated samples from this GAN. The user chooses a subset of generated samples and identifies them as
‘undesirable’ (negative samples). The objective of the process of unlearning is to prevent the generation
of undesirable characteristics, as identified by the user. We propose to unlearn the undesired features by
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following a two-step approach. In the first step, we adapt the pre-trained generator to the undesired features
by using the samples marked as undesired by the user (negative samples). This ensures that the ‘adapted’
generator exclusively generates samples that possess the undesired features. In the next step, we unlearn
the undesired features from the original GAN by using the samples that weren’t marked as undesired by the
user (positive samples). While unlearning, we add a repulsion loss that encourages the parameters of the
generator to stay away from the parameters of the adapted generator (obtained from first step) while also
making sure that the quality of generated samples does not deteriorate. We provide theoretical justification
for the proposed method by using a bayesian framework. Particularly, we show that the proposed method
leads to contrastive-divergence kind of objective desired for unlearning. We call the proposed two-stage
process ‘Adapt-then-Unlearn’. An overview of the proposed method is shown in figure 1 (a).

Our approach hinges in realizing interpretable and meaningful directions within the parameter space of
a pre-trained GAN generator, as discussed in (Cherepkov et al., 2021). In particular, the first stage of
the proposed method leads to adapted parameters that exclusively generate negative samples. While the
parameters of the original pre-trained generator generate both positive as well as negative samples. Hence,
the difference between the parameters of adapted generator and the paramters of original generator can be
interpreted as the direction in parameter space that leads to a decrease in the generation of negative samples.
Given this, it is sensible to move away from the original parameters in this direction to further reduce the
generation of negative samples. This observation is shown in figure 1 (b). However, it’s worth noting that
such extrapolation doesn’t ensure the preservation of other image features’ quality. In fact, deviations too
far from the original parameters may hamper the smoothness of the latent space, potentially leading to a
deterioration in the overall generation quality (see last columns of figure 1 (b)). Inspired by this observation,
during unlearning stage, we propose to train the generator using adversarial loss while encouraging the
generator parameters to be away from the parameters of the adapted generator by employing a repulsion
regularization.

We provide a visual illustration of the proposed method on Mixture of Gaussian (MoG) dataset with eight
centers in figure 1 (c). The first column shows the original training dataset and the samples generated by the
pre-trained GAN. The second column shows the negative samples provided during feedback and the samples
generated by the adapted generator. We can see that the adapted generator exclusively generates samples
from the negative modes of MoG. Lastly, in the third column, we see the positive samples and the samples
generated after unlearning the negative modes. We clearly observe that after unlearning (via the proposed
method), the generator unlearns the negative modes and generates samples from the rest of the modes. This
gives a proof-of-concept for the proposed method.

We summarize our contribution as follows:

• We introduce a two-stage approach for machine unlearning in GANs. In the first stage, our method
adapts the pre-trained GAN to the negative samples. In the second stage, we train the GAN using
a repulsion loss, ensuring that the generator’s parameters diverge from those of the adapted GAN
in stage 1.

• By design, our method can operate in practical few-shot settings where the user provides a very
small amount of negative samples.

• We provide theoretical justification for the proposed method by showing that the proposed regular-
ization leads to contrastive-divergence kind of objectives appropriate for unlearning.

• The proposed method is thoroughly tested on multiple datasets, considering various types of un-
learning scenarios such as class-level unlearning and feature-level unlearning. Throughout these
tests, we empirically observe that the quality of the generated samples is not compromised.
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2 Related Work

2.1 Machine Unlearning

Unlearning can be naively done by removing the unwanted data subset from the training dataset and then
retraining the model from scratch. However, retraining is computationally costly and becomes impossible
if the unlearning request comes recursively for single data points. The task of recursively ’unlearning’ i.e.
removing information of a single data point in an online manner (also known as decremental learning) for
the SVM algorithm was introduced in (Cauwenberghs & Poggio, 2000). However, when multiple data points
are added or removed, these algorithms become slow because they need to be applied to each data point
individually. To address this, (Karasuyama & Takeuchi, 2009) introduced a newer type of SVM training
algorithm that can efficiently update an SVM model when multiple data points are added or removed simul-
taneously. Later, inspired by the problem of protecting user privacy (Cao & Yang, 2015) developed efficient
ways to delete data from certain statistical query algorithms and coined the term “machine unlearning”.
The works of (Ginart et al., 2019) extended the idea of unlearning to more complicated algorithms such
k-means clustering and also proposed the first definition of effective data deletion that can be applied to
randomized algorithms, in terms of statistical indistinguishability. Depending upon this statistical indistin-
guishability criteria machine unlearning processes are widely classified into exact unlearning (Ginart et al.,
2019; Brophy & Lowd, 2021) and approximate unlearning methods (Neel et al., 2021; Nguyen et al., 2020).
The goal of exact unlearning is to exactly match the parameter distributions of the unlearned model and
the retrained model where as, in approximate unlearning, the distributions of the unlearned and retrained
model’s parameters are close to some small multiplicative and additive terms (Neel et al., 2021). To extend
the idea of unlearning or efficient data deletion for non-convex models such as deep neural networks (Go-
latkar et al., 2020b) proposed a scrubbing mechanism for approximate unlearning in deep neural networks.
A more efficient method of unlearning in deep networks is proposed by (Goel et al.) where the initial layers
of deep networks are frozen while the last few layers are finetuned on the filtered dataset. Further to achieve
the goal of exact unlearning (Jia et al., 2023) exploit the model sparsification technique via weight pruning.
Even though all of these methods achieve unlearning in supervised deep networks, the generalization of these
methods for state-of-the-art high-fidelity GANs is unexplored. Few methods like cascaded unlearning (Sun
et al., 2023) and data redaction (Kong & Chaudhuri, 2023) try to prevent generation of undesired features
in GANs, however, their methods operate on very primitive DC-GAN as opposed to high-fidelity GANs
like StyleGAN which is the focus of this work. Our work proposes to fill this gap by unlearning undesired
features produced from a high-fidelity pre-trained GAN in a zero-shot setting.

2.2 Few-Shot Generative Domain Adaptation

The area of few-shot generative domain adaptation deals with the problem where a pre-trained generative
model is adapted to a target domain using very few samples. A general strategy to do this is to fine-tune
the model on target data using appropriate regularizers. Eg. Wang et al. (2018) observed that using a
single pre-trained GAN for fine-tuning is good enough for adaptation. However, due to the limited amount
of target data, this could lead to mode collapse, hence Noguchi & Harada (2019) proposed to fine-tune
only the batch statistics of the model. Although, such a strategy can be very restrictive in practice. To
overcome this issue, Wang et al. (2020) proposed to append a ‘miner’ network before the generator. They
propose a two-stage framework, where the miner network is first trained to transform the input latent space
to capture the target domain distribution then the whole pipeline is re-trained using target data. While
these fine-tuning based methods give equal weightage to all the parameters of the generator, Li et al. (2020)
proposed to fine-tune the parameter using Elastic Weight Consolidation (EWC). Particularly, EWC is used
to penalize large changes in important parameters. This importance is quantified using fischer-information
while adapting the pre-trained GAN. Mo et al. (2020) showed that fine-tuning a GAN by freezing the lower
layers of discriminator is good enough in few-shot setting. Recently, a string of work (Ojha et al., 2021; Xiao
et al., 2022; Lee et al., 2021) focuses on few-shot adaptation by preserving the cross-domain correspondence.
Lastly, Mondal et al. (2022) suggested an inference-time optimization approach where a they prepend a
latent-learner, and the latent-learner is optimized every time a new set of images are to be generated from
target domain.
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As mentioned earlier, our approach involves an adaptation stage, where we adapt the pre-trained GAN to
the negative samples provided by the user. In practice, the amount of negative samples provided by the user
is very less hence such an adaptation falls under the category of few-shot generative domain adaptation.
Hence, we make use of EWC (Li et al., 2020) for this adaptation phase (cf. Section 3.2 for details).

3 Proposed Methodology

3.1 Problem Formulation and Method Overview

Consider the generator GθG
of a pre-trained GAN with parameters θG and an implicit generator distribution

pG(y). The GAN is trained using a dataset D = {xi}|D|
i=1, where xi

iid∼ pdata(x). Using the feedback-
based framework (Moon et al., 2023), we obtain a few negative and positive samples, marked by the user.
Specifically, the user is provided with n samples S = {yi}n

i=1 where yi are the generated samples from
the pre-trained GAN, i.e., yi

iid∼ pG(y). The user identifies a subset of these samples Sn = {yi}i∈sn , as
negative samples or samples with undesired features, and the rest of the samples Sp = {yi}i∈sp as positive
samples or samples that don’t possess the undesired features. Here, sp and sn are index sets such that
sp ∪ sn = {1, 2, . . . , n} and sp ∩ sn = ϕ. Formally, {yi}i∈sn

iid∼ pN (y) and {yi}i∈sp

iid∼ pG\N (y), where, pN (y)
is the implicit generator distribution on negative samples and pG\N (y) is the implicit generator distribution
after removing support of negative samples. Given this, the goal of unlearning is to learn the parameters θP

such that the generator GθP
generates only positive samples. In other words, the parameters θP should lead

to unlearning of the undesired features.

Our approach involves two stages: In Stage 1, we adapt the pre-trained generator GθG
on the user-marked

negative samples. This step gives us the parameters θN such that GθN
generates only negative samples. In

Stage 2, we unlearn the undesired features by training the original generator GθG
on positive samples using

the usual adversarial loss while adding an additional regularization term that makes sure that the learned
parameter is far from θN . We call this regularization term repulsion loss as it repels the learned parameters
from θN .

3.2 Stage-1: Negative Adaptation

The aim of the first stage of our method is to obtain parameter θN such that the generator GθN
only generates

negative samples (Sn). However, one thing to note here is that the number of negative samples marked by
the user

(
|Sn|

)
might be much less in number (of the order of tens or a few hundred). Directly adapting a pre-

trained GAN with a much smaller amount of samples could lead to catastrophic forgetting (McClelland et al.,
1995; McCloskey & Cohen, 1989). To address this issue, we employ a few-shot GAN adaptation technique,
namely, Elastic Weight Consolidation (EWC) (Li et al., 2020), mainly because of its simplicity and ease of
implementation. EWC-based adaptation relies on the simple observation that the ‘rate of change’ of weights
is different for different layers. Further, this ‘rate of change’ is observed to be inversely proportional to
the fisher information, F of the corresponding weights, which can used for penalizing changes in weights in
different layers.

In our context, we want to adapt the pre-trained GAN on the negative samples. Hence, the optimal parameter
θN for the adapted GAN can be obtained by solving the following optimization problem:

θN , ϕN = arg min
θ

max
ϕ
Ladv + γLadapt (1)

where, Ladv = E
x∼pN (x)

[log Dϕ(x)] + E
z∼pZ (z)

[log(1−Dϕ(Gθ(z)))] (2)

Ladapt = λ
∑

i

Fi(θi − θG,i), F = E
[
− ∂2

∂θ2
G

L(Sn | θG)
]

(3)

Here, pZ(z) is the standard Gaussian prior, and L(Sn | θG) is the log-likelihood which is calculated through
binary cross-entropy loss using the output of the discriminator as mentioned in Li et al. (2020). In practice,
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we train multiple instances of the generator to obtain multiple θN . Specifically, given the negative samples
Sn, we adapt the pre-trained GAN k times to obtain {θj

N}k
j=1.

3.3 Stage-2: Unlearning

In the second stage of our method, the actual unlearning of undesired features takes place. In particular,
this stage is motivated by the observation that there exist meaningful directions in the parameter space of
the generator, shown in figure 1 (b). However, such extrapolation-based schemes could lead to degradation
in the quality of generated images.

Nevertheless, the above observation indicates that traversing away from θN helps us to erase or unlearn
the undesired features. Therefore, we ask the following question: Can we transverse in the parameter
space of a generator in such a way the parameters remain far from θN while making sure that
the quality of generated samples doesn’t degrade? To solve this problem, we make use of the positive
samples Sp provided by the user. Particularly, we propose to train the given GAN on the positive samples
while incorporating a repulsion loss component that ‘repels’ or keeps the learned parameters away from θN .
Mathematically, we obtain the parameters after unlearning θP by solving the following optimization problem:

θP , ϕP = arg min
θ

max
ϕ
L

′

adv + γLrepulsion (4)

where, L
′

adv = E
x∼pG\N (x)

[log Dϕ(x)] + E
z∼pZ(z)

[log(1−Dϕ(Gθ(z)))] (5)

Here, Lrepulsion is the repulsion loss. The repulsion loss is chosen such that it encourages the learned
parameters to be far from θN obtained from Stage-1. Further, L′

adv encourages the parameters to capture
the desired distribution pG\N (x). Hence, the combination of these two terms makes sure that we transverse
in the parameter space maintaining the quality of generated samples while unlearning the undesired features
as well.

Algorithm 1 Negative Adaptation
Required: Pre-trained parame-
ters (θG, ϕD), Negative samples
(Sn), Number of adapted models
(k)

Initialize: j ← 0
while j ≤ k do

θ ← θG, ϕ← ϕD

repeat
Sample x ∼ Sn and z ∼ N (0, I)
Ladv ← log Dϕ(x) +
log (1−Dϕ(Gθ(z)))
Ladapt ← λ

∑
i Fi(θi − θG,i)

θ ← θ − η∇θ(Ladv + Ladapt)
until convergence
θj

N ← θ
end while

Algorithm 2 Unlearning
Required: Pre-trained param-
eters (θG, ϕD), Positive sam-
ples (Sp), Adapted models (θN =
{θj

N}k
j=1)

Initialize: θP ← θG, ϕP ← ϕD

repeat
Sample x ∼ Sp and z ∼ N (0, I)
L′

adv ← log Dϕ(x) +
log (1−Dϕ(Gθ(z)))
Choose Lrepulsion from Eq. 6
θ ← θ − η∇θ(Ladv + Lrepulsion)

until convergence

3.4 Choice of Repulsion Loss

As mentioned above, the repulsion loss should encourage the learned parameter to traverse away from θN

obtained from the negative adaptation stage. There is a lineage of research work in Bayesian learning
called Deep Ensembles, where multiple MAP estimates of a network are used to approximate full-data
posterior (Levin et al., 1990; Hansen & Salamon, 1990; Breiman, 1996; Lakshminarayanan et al., 2017;
Ovadia et al., 2019; Wilson & Izmailov, 2020; D’Angelo & Fortuin, 2021a). However, if the members of
an ensemble are not diverse enough, then the posterior approximation might not capture the multi-modal
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nature of full-data posterior. As a consequence, there are several methods proposed to increase the diversity
of the members of the ensemble (Huang et al., 2016; Von Oswald et al., 2020; D’Angelo & Fortuin, 2021b;
Wenzel et al., 2020; D’Angelo & Fortuin, 2021a). Inspired by these developments, we make use of the
technique proposed in D’Angelo & Fortuin (2021a) where the members of an ensemble interact with each
other through a repulsive force that encourages diversity in the ensemble. Particularly, we explore three
choices for repulsion loss:

Lrepulsion =


LIL2

repulsion = 1
||θ−θN ||2

2
(Inverse ℓ2 loss)

LNL2
repulsion = −||θ − θN ||22 (Negative ℓ2 loss)
LEL2

repulsion = exp(−α||θ − θN ||22) (Exponential negative ℓ2 loss)
(6)

It can be seen that minimization of all of these choices will force θ to be away from θN , consequently serving
our purpose. In fact, in general, one can use any function of ∥θ − θN∥2

2 that has a global maxima at θN

as a choice for repulsion loss. In this work, we work with the above mentioned choices. An algorithmic
overview of Stage-1 Negative Adaptation is presented in Algorithms 1 and Stage-2 Unlearning is presented
in Algorithm 2

4 Theoretical Discussion

In this section, we present theoretical insights into the proposed method. Inspired by the work in ‘Nguyen
et al. (2020), we operate in Bayesian setting for these claims and make use of widely used Laplace approx-
imation around relevant parameters. Specifically, we demonstrate that for an optimal discriminator, the
proposed regularization term combined with the adversarial term results in a contrastive divergence-like
objective (a difference of two divergence terms). This encourages the generator to capture the implicit distri-
bution of the pre-trained generator without the support of negative samples while maximizing the divergence
between the parameter distribution of the post-unlearning generator and that of the generator which pro-
duces negative samples (Theorem 1). This result is shown in . Further, we show the relation between the
parameter space divergence and data space divergence (Claim 1).

For this, let Θ denote the parameter space of a generator network. Let θG ∈ Θ be the parameter of
a pre-trained generator with an implicit distribution pX

G(x) over the data space1. Further, consider two
distributions pΘ

N (θ) and pΘ
U (θ) over Θ, where the latter is a learnable distribution and the former is such

that for z ∼ pZ(z) the corresponding generated samples from manifested generator Gθ(z) ∼ pX
N (x). In other

words, samples from pΘ
N (θ) lead to the generation of negative samples.

Theorem 1. Consider the distributions pΘ
N (θ) and pΘ

U (θ) to be Gaussian, i.e., pΘ
N (θ) =

1
|2πΣ|d/2 exp

[ 1
2 (θ − θN )T Σ−1(θ − θN )

]
and pΘ

U (θ) = 1
|2πΣ|d/2 exp

[ 1
2 (θ − θP )T Σ−1(θ − θP )

]
, where Σ = I,

θN and θP are the mean parameters and θP is learnable. Then statements (1 - 3) hold for the following
optimization problem:

min
θP

max
ϕ

E
x∼pG\N (x)

[log Dϕ(x)] + Ez∼pZ

θ∼pU

[log(1−Dϕ(Gθ(z)))] + Lrepulsion (7)

1. for Lrepulsion = LIL2
repulsion, solving Eq. 7 leads to pΘ

U that minimizes

DJSD(pX
G\N || p

X
U ) +

[
DKL(pΘ

U || pΘ
N )

]−1

2. for Lrepulsion = LNL2
repulsion, solving Eq. 7 leads to pΘ

U that minimizes

DJSD(pX
G\N || p

X
U )−DKL(pΘ

U || pΘ
N )

3. for Lrepulsion = LEL2
repulsion, solving Eq. 7 leads to pΘ

U that minimizes

DJSD(pX
G\N || p

X
U )−DH(pΘ

U || pΘ
N )

1For convenience, we use superscript X and Θ to denote a distribution in data space and parameter space respectively. We
use the data space distribution from previous section as it is with a superscript X for this distinction.
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where, DKL(· || ·) and DH(· || ·) denote KL divergence and Hellinger divergence, and Gθ(z) ∼ pX
U (·) denotes

the implicit distribution of generator when z ∼ pZ and θ ∼ pΘ
U .

The proof for the aforementioned result is relatively straightforward; for the sake of completeness, we include
the proof in the Appendix. It is evident from the above result that the unlearning phase of the proposed
method, assuming a Gaussian parameter distribution, achieves two objectives: (a) minimizing the Jensen-
Shannon Divergence between the learned data distribution (pX

U ) and the implicit generator distribution
after removing the support of negative samples (pX

G\N ), and (b) maximizing a suitable divergence measure
between the parameter distribution during unlearning (pΘ

U ) and the parameter distribution that leads to
the generation of negative samples (pΘ

N ). Essentially, this aligns with the desired outcome of unlearning,
ensuring that the model captures only the desired support of the distribution. Furthermore, the proposed
method ensures that the learned parameter distribution moves away from the parameter distribution that
leads to negative sample generation.

An interesting observation from the above result is that utilizing LNL2
repulsion or LEL2

repulsion results in an objective
akin to contrastive divergence, i.e., it entails the difference between two divergences. However, these two
divergence metrics operate on distributions in distinct spaces: the first divergence operates in the data space,
while the second operates in parameter space. This prompts a natural question: how does the divergence
in parameter space relate to the corresponding distribution in data space? We address this question in the
following claim.
Claim 1. For any general f -divergence Df (· | ·), and a given latent vector, the following inequality holds:

DJSD(pX
G\N || p

X
U )−Df (pΘ

U || pΘ
N ) ≤ DJSD(pX

G\N || p
X
U )−Df (pX

U || pX
N ) (8)

Above result relies on simple application of data-processing inequality. The proof is provided in Appendix.
Since, KL and Hellinger divergence are both instances of f -divergence, the above result holds for Statements
2 and 3 of Theorem 1. Hence, we see that the while using LNL2

repulsion or LEL2
repulsion, the corresponding data

space objectives act as upper bounds to the parameter space objectives. With these insights, we end the
theoretical discussion.

5 Experiments and Results

5.1 Datasets

An unlearning algorithm should ensure that the generator should not generate images containing the unde-
sired (or unlearnt) feature. For our experiments, we consider two types of unlearning settings: (i) Class-level
unlearning and (ii) Feature-level unlearning. We use MNIST dataset (LeCun et al., 1998) and AFHQ
dataset (Choi et al., 2020) for class-level unlearning. MNIST consists of 60, 000 28 × 28 dimensional black
and white images of handwritten digits. For our experiments, we take three-digit classes: 1, 4, and 8 for
unlearning. AFHQ consists of 15, 000 high-quality animal face images at 512 × 512 resolution with three
categories: cat, dog and wildlife. We unlearn each class one at a time in our experiments. Similarly, we
use CelebA-HQ dataset (Liu et al., 2015) for feature-level unlearning. CelebA-HQ contains 30, 000 RGB
high-quality celebrity face images of dimension 256 × 256. Here, we unlearn the following subtle features:
(a) Bangs, (b) Hats, (c) Bald, and (d) Eyeglasses.

5.2 Experimental Details

Training Details: We use one of the state-of-the-art and widely used high-fidelity StyleGAN2 (Karras
et al., 2020) for demonstrating the performance of the proposed method on the tasks mentioned in previous
section. The StyleGAN is trained on the entire MNIST, AFHQ and CelebA-HQ datasets to obtain the
pre-trained GAN from which we desire to unlearn specific features. The training details of StyleGAN2 are
given in Supplementary Section A.
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Figure 2: Results of Unlearning different classes on AFHQ dataset.
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Figure 3: Results of Unlearning different features on CelebA dataset.

Unlearning Details: In our experiments, we employ a pre-trained classifier as a proxy for human to
obtain user feedback. Specifically, we pre-train the classifier to classify a given image as desired or undesired
(depending upon the feature under consideration). We classify 1, 000 generated images from pre-trained
GAN as positive and negative samples using the pre-trained classifier. The generated samples containing
the undesired features are marked as negative samples and the rest of the images are marked as positive
samples. These samples are then used in Stage-1 and Stage-2 of the proposed method for unlearning as
described in Section 3. We evaluate our result using all the choices of repulsion loss as mentioned in Eq. 6.
For reproducibility, we provide all the hyper-parameters and training details in Supplementary Section A.

5.3 Baselines and Evaluation Metrics

Baselines: To the best of our knowledge, ours is one of the first works that addresses the problem of
unlearning in high-fidelity generator models such as StyleGAN2. Hence, we evaluate and compare our
method with all the candidates for repulsion loss presented in Eq. 6. Further, we also include the results with
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extrapolation in the parameter space as demonstrated in figure 1 (b). We include recent unlearning baselines
tailored for classification, easily adaptable to generative tasks. Specifically, we incorporate EU-k, CF-k, and
ℓ1-sparse (Goel et al.; Jia et al., 2023) for comparison, with detailed information in the Supplementary
section A.4. Additionally, we assess our method against GAN adaptation to positive samples, utilizing
recent generative few-shot adaptation methods like EWC, CDC, and RSSA (Li et al., 2020; Ojha et al.,
2021; Xiao et al., 2022) as baselines. Apart from the above baselines, we also mention the results obtained
from training a GAN from scratch on only desirable data present in the dataset. This model acts as the gold
standard, however, due to unavailability of underlying dataset, this is not practical. Nonetheless, we mention
it in our tables for completeness. We evaluate the performance of each method across three independent
runs and report the result in the form of mean ± std. dev.

Evaluation Metrics: Various metrics have been devised for assessing machine unlearning methods (Xu
et al., 2020). To gauge the effectiveness of our proposed techniques and the baseline methods, we utilize
three fundamental evaluation metrics:

1. Percentage of Un-Learning (PUL): This metric quantifies the extent of unlearning by measuring
the reduction in the number of negative samples generated by the GAN post-unlearning compared
to the pre-unlearning state. PUL is computed as: PUL = (Sn)θG

−(Sn)θP

(Sn)θG
× 100, where, (Sn)θG

and
(Sn)θP

represent the number of negative samples generated by the original GAN and the GAN
after unlearning respectively. We generate 15,000 random samples from both GANs and employ a
pre-trained classifier (as detailed in Section 5.2) to identify the negative samples. PUL provides a
quantitative measure of the extent of the unlearning algorithm in eliminating the undesired feature
from the GAN.

2. Fréchet Inception Distance (FID): While PUL quantifies the degree of unlearning, it does
not assess the quality of samples generated by the GAN post-unlearning. Hence, we calculate
the FID (Heusel et al., 2017) between the generated samples and the original dataset without the
undesired samples.

3. Retraining FID (Ret-FID): To resemble the retrained GAN, we compute the FID between the
outputs of the GAN after unlearning and the GAN trained from scratch on the dataset obtained
after eliminating undesired features.

Please note that the original dataset is unavailable during the unlearning process. Consequently, the use of
the original dataset is solely for evaluation purposes.

5.4 Unlearning Results

We present our results and observations on MNIST, AFHQ and CelebA-HQ in Table 1. We observe that
the choice of LEL2

repulsion as repulsion loss provides the highest PUL in most of the cases for both the datasets.
Further, it also provides the best FID and Ret-FID as compared to other choices of repulsion loss. LNL2

repulsion

is stands out to be the second best in these metrics for most of the cases. Further, we observe that across all
datasets, the classification unlearning baselines perform very poorly on all metrics for unlearning in GANs.
This tells us that methods proposed for unlearning in classification are not suited for unlearning in generative
tasks. And lastly, we find that few-shot adaptation baselines, give relatively poor results when compared to
the proposed method. This observation indicates that it is not enough to just adapt the GAN on the positive
samples for unlearning, one needs to go further and use additional regularization to unlearn the undesired
features.

For MNIST, we observe in Table 1 that the proposed method with LEL2
repulsion as repulsion loss consistently

provides a PUL of above 95% while giving the best FID and Ret-FID compared to other methods. We
also observe that Extrapolation in parameter space leads to significant PUL albeit the FID and Ret-FID
are considerably worse compared to proposed method under different repulsion loss. This shows that the
proposed method decently solves the task of unlearning at class-level. Further, we make similar observations
for high-resolution AFHQ dataset as well. One can see that the proposed method provides highest PUL in
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Table 1: PUL (↑), FID (↓) and Ret-FID (↓) after unlearning MNIST, AFHQ classes and CelebA-HQ features.

Dataset Features Metrics Retraining CF-k
(Goel et al.)

EU-k
(Goel et al.)

ℓ1-Sparse
(Jia et al., 2023)

EWC
(Li et al., 2020)

CDC
(Ojha et al., 2021)

RSSA
(Xiao et al., 2022) Extrapolation LNL2

repulsion

(Ours)
LIL2

repulsion

(Ours)
LEL2

repulsion

(Ours)

MNIST

Class 1
PUL 98.80± 0.09 18.60± 2.30 31.77± 1.56 91.84± 0.55 90.93± 0.46 90.70± 0.16 38.36± 0.09 95.10± 0.69 97.85± 2.25 92.97± 0.48 99.32 ± 0.43
FID 4.94± 0.04 92.88± 0.51 15.34± 0.01 22.17± 0.14 7.18± 0.08 20.85± 0.49 12.70± 0.17 41.39± 1.76 9.69± 0.07 13.06± 0.46 9.65± 0.21
Ret-FID N/A 89.05± 0.93 14.05± 0.17 17.87± 0.42 5.10± 0.01 17.51± 1.86 13.54± 0.40 42.98± 0.68 6.70± 0.25 16.55± 0.54 6.29± 0.18

Class 4
PUL 98.58± 0.28 7.71± 0.18 17.59± 3.31 94.16± 0.06 82.78± 1.02 42.39± 0.66 71.96± 0.21 94.50± 0.05 93.03± 0.70 90.39± 1.36 96.23 ± 0.
FID 5.24± 0.09 33.61± 0.93 8.80± 0.08 23.24± 0.59 9.34± 0.08 17.82± 1.99 25.41± 0.06 17.90± 0.35 10.50± 0.34 15.54± 0.05 10.24± 0.19
Ret-FID N/A 30.76± 0.86 7.84± 0.24 17.25± 0.22 5.91± 0.04 12.39± 2.32 19.08± 0.59 27.81± 0.37 6.26± 0.12 8.64± 0.90 5.80± 0.04

Class 8
PUL 99.72± 0.01 16.03± 0.09 21.66± 0.70 95.42± 0.01 92.70± 0.81 18.86± 0.92 79.54± 0.32 90.90± 0.12 97.92± 0.67 98.28 ± 0.55 95.22± 0.34
FID 4.80± 0.11 36.67± 1.98 8.92± 0.77 22.23± 0.05 9.35± 0.04 11.18± 2.28 34.59± 0.26 45.79± 0.29 9.95± 0.17 9.72± 0.31 8.89± 0.52
Ret-FID N/A 33.14± 0.74 7.10± 0.10 16.83± 0.13 6.03± 0.04 12.38± 3.73 25.33± 0.39 44.30± 0.40 6.70± 0.18 11.64± 0.46 5.68± 0.10

AFHQ

Cat
PUL 93.37± 0.23 15.74± 0.41 16.08± 0.28 86.25± 1.35 90.58± 1.54 28.57± 0.43 66.86± 0.22 90.64± 0.33 94.28± 0.17 90.93± 0.51 95.76 ± 0.25
FID 12.45± 0.16 42.91± 0.33 43.21± 0.25 25.73± 0.05 15.30± 0.98 59.76± 0.40 59.88± 0.35 45.89± 2.60 16.29± 0.06 20.69± 0.04 16.50± 0.12
Ret-FID N/A 37.34± 0.29 37.62± 0.42 14.96± 0.11 8.29± 0.04 49.93± 1.02 46.80± 0.62 38.87± 1.93 8.93± 1.23 9.86± 0.08 8.17± 0.14

Dog
PUL 85.96± 0.21 13.12± 0.12 10.30± 0.13 68.21± 0.15 68.79± 0.08 9.60± 0.24 54.54± 0.36 82.08± 1.02 75.33± 0.35 76.53± 0.51 79.21 ± 0.18
FID 5.71± 0.43 64.50± 0.58 32.69± 0.23 19.54± 0.53 10.38± 1.08 47.85± 0.53 55.06± 0.20 25.54± 1.19 8.62± 0.08 9.37± 1.06 9.31± 0.14
Ret-FID N/A 65.72± 2.31 31.40± 0.36 15.10± 0.85 8.50± 0.35 46.79± 0.67 53.24± 0.34 24.98± 1.35 5.96± 0.45 6.84± 0.10 7.13± 0.12

Wild
PUL 88.60± 0.22 16.40± 0.55 16.63± 0.84 84.05± 0.45 73.44± 0.16 6.51± 0.13 43.99± 0.72 84.45± 0.11 82.82± 0.77 80.96± 0.18 89.09 ± 0.25
FID 15.24± 0.24 35.56± 0.11 35.80± 0.39 37.63± 0.52 16.32± 0.08 42.17± 0.19 60.95± 0.45 45.98± 2.66 17.69± 0.18 22.70± 0.11 19.67± 0.69
Ret-FID N/A 34.47± 0.94 32.55± 0.14 21.80± 0.16 14.38± 0.01 36.95± 0.28 44.20± 0.32 41.86± 1.99 14.89± 0.13 13.76± 0.12 14.90± 0.65

CelebA-HQ

Bangs
PUL 84.47± 1.49 18.60± 2.30 20.08± 1.35 75.78± 1.48 76.24± 2.14 83.76± 0.12 32.07± 0.58 89.54± 0.09 90.41± 0.19 84.05± 1.03 90.45 ± 1.02
FID 7.58± 0.06 9.65± 0.15 9.03± 0.23 16.20± 0.24 9.64± 0.05 34.66± 1.94 17.79± 0.02 11.54± 0.07 11.92± 0.46 13.09± 0.10 11.16± 0.08
Ret-FID N/A 7.70± 0.27 7.38± 0.06 13.77± 0.46 6.69± 0.03 24.67± 0.02 15.99± 0.08 11.02± 0.06 8.69± 0.05 9.07± 0.18 7.94± 0.32

Hat
PUL 98.65± 0.03 15.22± 0.05 17.96± 1.54 59.01± 1.67 74.14± 0.78 85.23± 0.77 22.70± 1.47 94.35± 0.12 93.99± 1.70 94.00± 0.75 94.40 ± 2.19
FID 6.35± 0.10 9.58± 0.09 9.4± 0.21 8.61± 0.09 9.06± 0.22 23.48± 0.12 18.83± 0.08 12.18± 0.04 9.60± 0.25 11.31± 0.06 9.45± 0.96
Ret-FID N/A 7.57± 0.05 7.16± 0.05 5.66± 0.09 6.44± 0.08 17.46± 0.22 14.87± 0.16 10.12± 0.07 6.44± 0.11 7.25± 0.13 6.31± 0.64

Bald
PUL 72.13± 0.07 48.17± 1.76 52.18± 0.53 67.26± 0.19 55.70± 2.57 90.10± 0.37 31.70± 1.89 94.44± 0.34 97.13 ± 1.42 83.51± 2.18 93.97± 2.65
FID 7.18± 0.08 9.30± 0.12 9.03± 0.06 16.27± 0.73 9.32± 0.07 26.96± 0.02 20.35± 0.34 23.44± 0.02 14.70± 0.55 12.94± 0.89 11.07± 0.86
Ret-FID N/A 7.37± 0.06 6.92± 0.05 14.14± 0.59 6.77± 0.04 17.99± 0.09 18.63± 0.01 26.40± 0.30 9.03± 0.13 9.87± 0.04 7.83± 0.05

Eyeglasses
PUL 58.57± 0.04 16.41± 0.73 16.41± 1.33 82.30± 1.96 46.51± 0.57 91.65± 0.31 26.21± 0.17 92.80± 0.14 83.76± 3.21 75.23± 6.25 93.63 ± 0.42
FID 6.50± 0.77 9.49± 0.15 9.39± 0.04 15.95± 0.02 9.19± 0.04 36.66± 0.02 22.24± 0.16 23.70± 0.07 12.81± 0.88 13.12± 0.78 9.66± 0.58
Ret-FID N/A 6.79± 0.06 6.85± 0.85 12.36± 0.32 6.56± 0.01 30.08± 0.27 18.09± 0.02 19.10± 0.10 7.93± 0.99 6.11± 0.24 9.84± 0.23

all the cases, while maintaining best FID as well as Ret-FID as well. Lastly, for feature-level unlearning
results on CelebA-HQ, it can be seen that the proposed method with LEL2

repulsion as repulsion loss consistently
provides a PUL of above 90%, illustrating significant unlearning of undesired features. Further, the FID
and Ret-FID using LEL2

repulsion stand out to be the best among all the methods. Furthermore, we observe
that the FID of the samples generated by the unlearnt GAN (on Hats) using LEL2

repulsion drops by about 4.15
points while it drops by 4.3 and 6.01 points while using LNL2

repulsion and LIL2
repulsion as compared to the pre-

trained GAN. This demonstrates that the proposed method is able to unlearn the undesired feature (hats) by
compromising slightly on the quality of generated samples. On the other hand, we notice that Extrapolation
in parameter space provides decent PUL, however, it can be seen that the FID and Ret-FID scores are
much worse. This supports our claim that extrapolation might unlearn the undesired feature, however, it
deteriorates the quality of generated samples significantly. Another interesting observation from the above
results is that the classification unlearning baselines consistently provide lower PUL, albeit with slightly
better FID and Ret-FID. This tells us that these baselines while capable of unlearning in classification tasks,
fail to nudge the generator appropriately for desired unlearning task. Leading to a suboptimal generator
which still generates undesired samples, without compromising on the quality of the generated samples.

The visual illustration of these methods for AFHQ and CelebA-HQ are shown in figure 2 and figure 3
respectively. Here, we observe that the proposed method effectively unlearns the undesired feature. Moreover,
it can be seen that the unlearning through extrapolation leads to the unlearning of correlated features as
well. E.g. Bangs are correlated with female attributes. It can be seen that the unlearning of Bangs through
extrapolation also leads to the unlearning of female feature which is not desired. However, unlearning through
the proposed method unlearns Bangs only, while keeping the other features as it is. Similar observations
could be made for AFHQ, where extrapolation leads to some minor artifacts in generates samples, whereas
proposed method generates plausible images without any artifacts. Similar visual results for MNIST is
provided in Supplementary Section B.

Another aspect of unlearning that we explore in our work is the effect of unlearning on other features.
Particularly, unlearning an undesired feature should not disturb the other features. For this we generate
samples from pre-trained and post-unlearning GANs. Then, we calculate the occurrence of specific features
within the two GANs and report the percentage change in these numbers. These results could be found in
Section D of Supplementary.

5.5 Comparison with DC-GAN Baselines

As previously mentioned, our proposed method operates with high-fidelity GANs. Nonetheless, in addition
to the tailored baselines, a few previous methods aim to unlearn undesired features in more primitive GANs,
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Table 2: Comparison of the proposed
method against DC-GAN baselines

Method Metrics Class 1 Class 4 Class 8

CUA
PUL 96.12± 1.21 95.49± 0.37 97.34± 1.21
FID 12.73± 0.48 11.61± 1.81 13.09± 1.03
Ret-FID 11.02± 1.52 11.57± 0.79 10.09± 1.21

DRed
PUL 98.13± 0.12 97.70± 0.26 96.54± 0.23
FID 11.72± 1.29 12.82± 1.11 10.32± 0.82
Ret-FID 8.72± 0.72 8.93± 0.86 10.12± 1.41

Ours
PUL 98.76 ± 0.56 99.18 ± 0.28 98.72 ± 0.42
FID 10.37 ± 0.94 9.72 ± 1.33 10.27 ± 0.82
Ret-FID 6.32 ± 0.43 7.23 ± 1.28 7.66 ± 1.30

Table 3: Effect on PUL (↑), FID (↓), and
Ret-FID (↓) with and without repulsion
loss.

Features Metrics L′

adv L′

adv + LEL2
repulsion

Bangs
PUL 79.89 ± 0.49 90.45 ± 1.01
FID 10.06 ± 0.24 11.16 ± 0.08
Ret-FID 8.69 ± 0.04 7.94 ± 0.32

Hat
PUL 84.68 ± 3.89 94.40 ± 2.19
FID 9.66 ± 0.16 9.45 ± 0.96
Ret-FID 6.45 ± 0.08 6.04 ± 0.02

such as DC-GANs, on low-resolution images. Notably, the methods proposed in Sun et al. (2023) and Kong &
Chaudhuri (2023) are highly relevant to our work. However, they primarily operate on DC-GAN. To ensure
a fair comparison, we implement our method on DC-GAN and evaluate it against these baselines using
the MNIST dataset (with LEL2

repulsion). Specifically, we compare our approach to the cascaded unlearning
algorithm (CUA) from Sun et al. (2023) and the data redaction method using validity data (DRed) from
Kong & Chaudhuri (2023). Our findings are summarized in Table 2. The results indicate that our method
outperforms both baselines across all metrics in all scenarios. All methods performed well on PUL, with
our method achieving the best PUL, followed by DRed and then CUA in most cases. A similar trend is
observed in the FID scores. Although DRed is a close competitor to our proposed method, our approach
yields a significantly better Ret-FID than DRed, suggesting that the post-unlearning GAN using our method
is closer to the gold standard compared to DRed.

5.6 Ablation Study

Lastly, we present the ablation study to observe the effect of repulsion loss. In particular, we see if adapting
the pre-trained GAN only on the positive samples leads to desired levels of unlearning. Our observations on
CelebA-HQ for Bangs and Hats are presented in Table 3. Here, we use LEL2

repulsion as repulsion loss. It can be
seen that only using adversarial loss doesn’t lead to significant unlearning of undesired feature. E.g. using
repulsion loss provides and increase of about 10.56% and 9.72% in PUL. The FID increases by minor 0.66
point on Bangs while it decreases by 0.21 points on Hats. Hence, we conclude that repulsion loss is indeed
crucial for unlearning.

6 Conclusion

We propose a novel unlearning method designed for high-fidelity GANs. Our approach is distinguished via
its unique ability to operate in zero-shot scenario, entirely independent of the original data on which GAN is
trained. We operate under feedback-based framework in two stages. The initial stage adapts the pre-trained
GAN on the negative samples whereas the later stage unlearns the undesired feature by adapting on positive
samples along with a repulsion regularizer. A notable advantage of our approach is its capability to conduct
the unlearning process without significantly impacting other desirable features. We firmly believe that our
work represents a substantial advancement in the field of unlearning within deep generative models. This
progress holds particular relevance in addressing critical societal concerns, particularly those related to the
generation of biased, racial, or harmful content by these models.

Limitation and Future Work: We note that our study does not address aspects like ‘toxicity’ due to the
absence of annotated datasets with explicit characteristics. Despite this limitation, it’s crucial to emphasize
that our explored features are subtle and interconnected. For example, subtle details like hairstyles (e.g.,
bangs) are strongly linked to gender, and characteristics like baldness correlate with physical appearance,
also associated with gender. Additionally, attributes such as hats and eyeglasses are tied to accessories.
Though not the primary focus for unlearning, these features hold potential utility for such purposes. In
future, we aspire to provide rigorous theoretical guarantees to such methods making them more dependable
and safe for deployment.
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A Training Details

Here, we provide the details pertaining to the proposed method. Specifically, we provide the details of the pre-
trained GANs and pre-trained Classifiers used in the proposed method. We also provide details pertaining
to the training strategy used during Unlearning. All the experiments are performed on RTX-A6000 GPUs
with 48GB memory. Our code and implementation is available at: https://anonymous.4open.science/r/
Unlearning_GAN_Via_Few_Shot_Adaptation/.

A.1 Details of Pre-trained GAN

As mentioned in the main text, we use the famous StyleGAN2 architecture to obtain the pre-trained GAN.
We use the open-source pytorch repository2 for implementation. We resize the MNIST images to 32×32 and
CelebA-HQ images to 256×256 to fit in the StyleGAN2 architecture. The latent space dimension for MNIST
and CelebA-HQ is consequently set to 128 × 1 and 512 × 1. We train the GAN using the non-saturating
adversarial loss along with path-regularization for training. We use default optimizers and hyperparameters
as provided in the code for training. We train the GAN for 2 × 105 and 3.6 × 105 epochs for MNIST and
CelebA-HQ respectively.

A.2 Details of Pre-trained Classifiers

We use pre-trained classifiers to simulate the process of obtaining the feedback. More specifically, the
feedbacks (positive and negative samples) are obtained by passing the generated samples (from the pre-
trained GAN) through these pre-trained classifiers. The classifier classifies the generated samples into positive
and negative samples. Furthermore, the classifiers are also employed for obtaining the evaluation metrics as
discussed in Section-4.3 of the main text.

MNIST: We use simple LeNet model (LeCun et al., 1998) for classification among different digits of MNIST
dataset3. The model is trained with a batch-size of 256 using Adam optimizer with a learning rate of
2× 10−3, β1 = 0.9 and β2 = 0.999. The model is trained for a resolution of 32× 32 same as the pre-trained
GAN for 12 epochs. After training the classifier has an accuracy of 99.07% on the test split of MNIST dataset.

CelebA-HQ: We use ResNext50 model (Xie et al., 2017) for classification among different facial attributes
contained in CelebA4. Note that we train the classifier on normal CelebA as the ground truth values are
available for it. The classifier is trained with a batch-size of 64 using Adamax optimizer with a learning rate
of 2× 10−3, β1 = 0.9 and β2 = 0.999. The model is trained for a resolution of 256× 256 for 10 epochs. We
also employ image augmentation techniques such as horizontal flip, image resize, and cropping to improve
the performance of the classifier. The trained model exhibits a test accuracy of 91.93%.

A.3 Unlearning Hyper-parameters

Here we mention the hyper-parameters pertaining to the proposed negative adaptation and unlearning stages.
As mentioned, we use an EWC regularizer during adaptation to avoid overfitting. The value of λ (Eq.3) is
set to 5× 108 for all the experiments. Further, γ (Eq.5) is chosen between 0.1, 1 and 10 when LIL2

repulsion and
LNL2

repulsion are chosen as repulsion loss. It is varied between 10 and 500 when LEL2
repulsion is chosen as repulsion

loss. Further, the value of α for LEL2
repulsion (Eq.7) is varied between 0.1 and 0.001. These values are chosen

and adjusted to ensure that both the loss components L′

adv and Lrepulsion are minimized properly.

A.4 Details of Baselines

Here, we present the details pertaining to the baselines presented in Table 1.

2https://github.com/rosinality/stylegan2-pytorch
3https://github.com/csinva/gan-vae-pretrained-pytorch/tree/master/mnist_classifier
4https://github.com/rgkannan676/Recognition-and-Classification-of-Facial-Attributes/
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EU-k and CF-k (Goel et al.) propose to train just the last k layers of the model from scratch (in EU-k) or
from pre-trained initialization (in CF-k) for unlearning on the positive samples. We employ the same strategy
to GANs directly with k = 10 layers. Further, ℓ1-sparse (Jia et al., 2023) proposes to use sparse weights
for fine-tuning to unlearn the undesired features. To this end, they propose to use ℓ-1 regularization while
fine-tuning. Hence, for our case, we fine-tune the model on positive samples by adding an ℓ-1 regularization
on weights of the network.

For the few-shot adaptation baselines, we directly employ the provided open-source codebase of CDC5 and
RSSA6 for adaptation on positive samples to obtain results.

B MNIST Qualitative Results

We present visual illustration of images generated after unlearning using various methods in figure 4. Here,
we unlearn class of digits 1, 4, and 8. We observe that all the proposed methods effectively unlearn the
undesired classes. Moreover, it can be seen that although extrapolation leads to unlearning, it does so at
the expense of the quality of the generated images. In contrast, the quality of the generated images after
unlearning using the proposed method leads to unlearning with plausible image quality. We refer the reader
the reader to main text for quantitative evaluation.
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ss
 8

Original Samples Extrapolation

Figure 4: Results of Unlearning undesired feature (class) via different methods. The undesired class contains
digits 1(top row), 4(second row), 8 (bottom row).

C Proofs

Proof of Theorem 1. The said objective function is given by-

min
θP

max
ϕ

E
x∼pX

G\N

[log Dϕ(x)] + Ez∼pZ

θ∼pΘ
U

[log(1−Dϕ(Gθ(z)))] + Lrepulsion

≡ min
θP

max
ϕ

E
x∼pX

G\N

[log Dϕ(x)] + E
x∼pX

U

[log(1−Dϕ(x))] + Lrepulsion (9)

Since ϕ depends only on the first two terms of Eq. 9, the optimal discriminator as obtained in Goodfellow et al.
(2014) is given as Dϕ∗ = pX

G\N

pX
G\N

+pX
U

. Substituting this in Eq. 9 and using standard results from Goodfellow
et al. (2014) gives -

min
θP

DJSD(pX
G\N ||p

X
U ) + Lrepulsion (10)

5https://github.com/utkarshojha/few-shot-gan-adaptation
6https://github.com/StevenShaw1999/RSSA
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(
Lrepulsion = LIL2

repulsion

)
: Since pΘ

N (θ) = 1
|2πΣ|d/2 exp

[ 1
2 (θ − θN )T Σ−1(θ − θN )

]
and pΘ

U (θ) =
1

|2πΣ|d/2 exp
[ 1

2 (θ − θP )T Σ−1(θ − θP )
]

are both Gaussian distributions, then DKL(pΘ
U ||pΘ

N ) = ∥θP−θN∥2 =⇒
[DKL(pΘ

U ||pΘ
N )]−1 = 1

∥θP −θN ∥2 = LIL2
repulsion. Substituting in the above we get -

min
θP

DJSD(pX
G\N ||p

X
U ) + [DKL(pΘ

U ||pΘ
N )]−1 (11)

(
Lrepulsion = LNL2

repulsion

)
: Similar to above argument, DKL(pΘ

U ||pΘ
N ) = ∥θP − θN∥2 =⇒ −DKL(pΘ

U ||pΘ
N ) =

−∥θP − θN∥2 = LNL2
repulsion. Substituting in the above we get -

min
θP

DJSD(pX
G\N ||p

X
U )−DKL(pΘ

U ||pΘ
N ) (12)

(
Lrepulsion = LEL2

repulsion

)
: Again, since pΘ

N and pΘ
U follow Gaussian distribution, the Hellinger divergence

between two Gaussian distribution is a shifted negative Manhabolis distance between the means of the two
distributions, i.e., DH(pΘ

U ||pΘ
N ) = 1 − exp (−∥θP − θN∥2) =⇒ 1 − DH(pΘ

U ||pΘ
N ) = exp (−∥θP − θN∥2) =

LEL2
repulsion. Substituting in above we get -

min
θP

DJSD(pX
G\N ||p

X
U )−DH(pΘ

U ||pΘ
N ) + 1 (13)

≡ min
θP

DJSD(pX
G\N ||p

X
U )−DH(pΘ

U ||pΘ
N ) (14)

This completes the proof of all the three statements.

Proof of Claim 1. For a given latent vector, θ → Gθ(z) is a map from parameter space to generated sample
in the data space. Hence, we can use data-processing inequality to obtain -

Df (pX
U ||pX

N ) ≤ Df (pΘ
U ||pΘ

N ) (15)
=⇒ DJSD(pX

G\N ||p
X
U )−Df (pΘ

U ||pΘ
N ) ≤ DJSD(pX

G\N ||p
X
U )−Df (pX

U ||pX
N ) (16)

This completes the proof.

D Effect on other features after Unlearning

As previously discussed, the unlearning procedure aims to exclusively erase undesired features without
impacting other features. Consequently, it becomes imperative to assess whether the unlearning process
exerts any influence on other features. To address this concern, we introduce plots illustrating the percentage
change in the presence of other features.

Specifically, we undertake the generation of 15, 000 random samples from both the pre-trained GAN and the
GAN after the unlearning procedure. Subsequently, employing the pre-trained classifiers (for comprehensive
details, please refer to the Supplementary), we calculate the occurrence of specific features within the two
GANs. We report the percentage change in these numbers to demonstrate how has the unlearning process
affected this feature. Hence, a lower percentage change is better as it means that the other features are
not affected after unlearning. This experiment is repeated across multiple features, and our findings after
unlearning Bangs in CelebA-HQ are depicted in figure 5. We observe that for all the features, unlearning via
extrapolation leads to significant changes in other features. Whereas, unlearning via the proposed method
leads to minor changes in the features. For instance, since Bangs are highly correlated with gender, we
observe that unlearning Bangs via extrapolation leads to an increase in Males. However, unlearning via the
proposed method leads to minor changes in the number of samples with Male features. This shows that
the proposed method is effective in erasing the undesired feature while preserving other features. It can be
observed that in majority of the cases, extrapolation leads to significant change in the features, indicating
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that unlearning via extrapolation leads to significant change in other features as well. This also indicates
that extrapolation leads to unlearning of several correlated features. On the other hand, we observe that
unlearning using the proposed method with LEL2

repulsion gives the least change in most of the cases. This
illustrates the efficacy of the proposed method in preserving features other than the unlearnt feature.
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(a) Unlearnt feature: Bald
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(b) Unlearnt feature: Bangs
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(c) Unlearnt feature: Hats
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(d) Unlearnt feature: Eyeglasses

Figure 5: Percentage (%) change in several features after unlearning specific features. A lower percentage
change denotes that the method has successfully preserved that feature after unlearning. Here, we clip the
bar to 100% if the percentage change in that feature is more than 100% to make the plots legible.
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