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Abstract

Although transformer networks are recently employed in the various vision tasks1

with the outperforming performance, large training data and a lengthy training2

time are required to train a model to disregard an inductive bias. Using trainable3

links between the channel-wise spatial attention of a pre-trained Convolutional4

Neural Network (CNN) and the attention head of Vision Transformers (ViT), we5

present a regularization technique to improve the training efficiency of ViT. The6

trainable links are referred to as the attention augmentation module, which is7

trained simultaneously with ViT, boosting the training of ViT and allowing it to8

avoid the overfitting issue caused by a lack of data. From the trained attention9

augmentation module, we can extract the relevant relationship between each CNN10

activation map and each ViT attention head, and based on this, we also propose an11

advanced attention augmentation module. Consequently, even with a small amount12

of data, the suggested method considerably improves the performance of ViT while13

achieving faster convergence during training.14

1 Introduction15

Convolutional Neural Networks (CNN) have become standard for solving image-related tasks using16

deep neural networks since the advent of large publicly available datasets [1, 2]. Recently, models17

with attention mechanisms mainly adopted in the area of natural language processing are becoming18

to take part in solving image-based tasks, which is called the Vision Transformer (ViT) [3, 4]. ViT is19

a transformer-based neural network fed by the patches of images with class-token for classification,20

replacing its input of the embedded words in natural language processing. Although ViT shows21

impressive accuracy compared to modern CNNs by ignoring the inductive bias of locality, a significant22

amount of data is required to train the model to achieve satisfactory performance without overfitting23

issues. Furthermore, most researchers with the limited computing hardware are not affordable to train24

the ViT due to its lengthy training time.25

The overfitting and lengthy training issues must be solved to broaden the usability of ViT, so many26

recent studies have tried to solve the problem [5, 6, 7, 8, 9, 10]. We can divide the studies by three27

categories: the advanced architecture-based method [4, 8, 11, 12], the parameter compression-based28

method [13, 14], and the knowledge distillation-based method [6, 15]. The advanced architecture-29

based methods manipulate the architecture of ViT to achieve improved training efficiency and30

generalized prediction even with the small dataset. On the other hand, the parameter compression-31

based methods focus on a low-rank approximation of the transformer encoder in ViT, which results32

in the boosted training speed and the suppressed overfitting issue. The knowledge distillation-based33

methods utilize the prediction of additional CNN models to avoid the overfitting problem and achieve34

rapid training convergence. The previous studies have shown the meaningful development of ViT for35

the small dataset and the reduced training time.36
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However, the previous studies have the remaining limitations where the training datasets must be37

equivalent for both the student and teacher models. The architectural manipulation of initial ViT [3]38

cannot be applied to different versions of ViTs, hence limiting the handling of new ViT models. Even39

though the knowledge distillation-based methods can be employed with the small manipulation of a40

model such as the knowledge distillation token, it should be assured to have the initial models trained41

by a target dataset, which takes the additional costs for the acquisition of initial models before the42

training of main ViT model.43

In this paper, we propose a novel regularization method to reduce the convergence time and avoid the44

overfitting problem on a small dataset, simultaneously. The proposed method utilizes an attention45

augmentation module containing multiple trainable weights that estimate the affinity between the46

channel-wise activation map of CNN and the head-wise attention map of ViT. Since the attention47

augmentation module is located to regularize the attention of ViT heads, the architecture of ViT can48

be perfectly preserved, which lets us enable to employ the proposed algorithm in ViT variants based49

on the attention maps. In addition, since the attention map can be obtained even when the task of50

the pre-trained CNN is not equivalent to the target task, we can employ our method without the51

pre-trained CNN model with the same target dataset. We validate our regularization method by using52

ImageNet and CIFAR10 datasets with various scenarios, which show the outperforming accuracy53

and the reduction of epochs required for its training convergence. Furthermore, we investigate the54

important factors for ViT to avoid the overfitting issue by analyzing the trained weights of the attention55

augmentation module, and through the investigation, we present the dissimilarity of the deep layers’56

roles between CNN and ViT.57

We can summarize our contributions as following:58

• We propose a novel regularization method to resolve the issues of overfitting and lengthy59

training time of ViT through the trainable attention links between the ViT attention maps60

and CNN activation maps.61

• The proposed scheme preserves the original architecture of ViT, which results in its general62

employment regardless of the architecture of ViT.63

• Through the proposed algorithm, the performance of ViT can be dramatically improved with64

the limited size of dataset, and the training time is reduced without the loss of performance65

in various scenarios.66

• The relationship between ViT and CNN is analyzed in terms of attentional regions, which67

validates the analysis from the previous studies.68

2 Related Work69

2.1 Transformers in Vision70

Transformer models introduced by [16] are neural networks that purely utilize the attention mech-71

anism. While they have been used broadly in the field of natural language processing, Vision72

Transformer (ViT) [3] adapted them in the domain of computer vision with minimal modification to73

its architecture. ViT showed comparable performance to CNN in the condition of large pre-training.74

For the advanced optimization of ViT, CaiT [4] used layer normalization in ViT layers and changed75

the input location of class token to prevent saturation of performance in deep layers. Swin Transform-76

ers [12] adopted a hierarchical transformer that computes shifted windows to make it suitable for the77

vision domain. PiT [10] introduced the concept of pooling in ViT from CNN, improving the gener-78

alization of ViT. T2T-ViT [8] enhanced sample efficiency by reshaping input tokens and changing79

the backbone of networks motivated by several CNN architectures. Raghu et al. [17] measured the80

similarity of representations between specific layers of CNN and ViT using centered kernel alignment.81

With additional relative positional encoding, Cordonnier et al. [18] proved attention mechanisms in82

ViTs can perform as convolution layers in CNNs and showed their functional similarity. From the83

investigation, ConViT [7] was motivated to use relative positional encoding to give locality – the84

inductive bias of CNNs – to ViT.85

The research was extended to [19], reparameterizing pre-trained convolutional layers as a format of86

ConViT. Refiner [11] tackled the over-smoothing problem between tokens in deep layers of ViT, and87

relieve it by projecting attention heads into the higher dimensions and applying convolution directly88

to attention maps to learn local relationship among the tokens. Those variants of ViT improved89

the optimization and data efficiency of the initial ViT model by modifying the architecture itself.90
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Figure 1: Our distillation procedure. ViT attention maps are augmented through adaptive attention
links, which build linear combinations of different original maps. Then, those augmented attention
maps mimic CNN activation maps at one-on-one correspondence.

However, our method does not touch any part of ViT modules, but only connects attention between91

ViT and CNN, transferring attention through links to give ViT a learning signal from the teacher.92

2.2 Knowledge Distillation:93

In knowledge distillation, a student model leverages a pre-trained teacher model’s soft prediction94

divided by the same temperature values [20]. The softened predictions can be regarded as label-95

smoothing, and by using them, the student model can achieve the data augmentation effect. Distillation96

between different types of neural architectures has also been proposed, DistilBERT [21] showed the97

effectiveness of a distilled knowledge from BERT [22] into LSTM [23]. DeiT [6] distilled knowledge98

from CNN to ViT, which seems similar to our work. The knowledge distillation has been also99

employed into the transformer-based model of natural language processing, which results in the100

performance improvement by using the teacher model [24, 25] However, in contrast to the previous101

study using the prediction for the knowledge distillation, our framework transfers the knowledge102

based on the similarity of the latent feature maps. As a result, we can extend the range of teacher103

models to cover the models in which the prediction vectors differ from the prediction of the task.104

On the other hand, we can transfer latent representations of teacher models to those of student models.105

FitNets [26] improved the stability of deep network training by guiding the latent layers to the106

teacher’s well-trained latent representation. Zagoruyko et al. [27] considered attention as projected107

activation maps of CNN into a spatial dimension, which could be regarded as spatial attention. They108

showed that spatial attention contains valuable information that is useful to improve the performance109

of the student network. Kim et al. [28] used a paraphraser to extract and pass the teacher’s knowledge110

to the student’s translator to learn its representation. Meanwhile, Heo et al. [5] demonstrated that111

the knowledge transfer based on the neurons’ activation is a more classification-friendly approach112

than the direct transfer using output values. Attention-based feature distillation [29] measured the113

similarities between teacher and student features through attention, which determines the importance114

of knowledge to transfer.115

3 Attention Link-based ViT Regularization116

In this section, we first explain the backgrounds of the self-attention mechanism and ViT. Then,117

we explain the method to extract the attention maps from ViT, followed by the description of the118

architecture and the training method of the augmented attention module is described. The overall119

framework is depicted in Fig. 1120

3.1 Background of ViT121

We first explain the self-attention mechanism and the original ViT model referred to by [3]. The122

self-attention mechanism mimics the human cognition system making the attention to the external123
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stimulus, which is designed by a transformer-based model with the attention matrix estimated by124

pairs of key and query.125

Self-attention Mechanism: We define the input sequence by X ∈ RL×Din where L is the length126

of the sequence and Din means the dimension of one sequential element in the sequence. Then, we127

can estimate the elements of the attention mechanism composed of key, query, and value vectors by128

linearly projecting the input sequence by the corresponding embedding weights Wk, Wq , and Wv ,129

respectively. Thus, when we define the key, query, and value vectors by Q, K, and V, respectively,130

we obtain the vectors as following:131

K = XWk,Q = XWq,V = XWv, (1)

where W ∈ RDin ×Dhead from W ∈ {Wk,Wq,Wv} and Dhead is the dimension of the head132

embedding.133

Then, the self-attention of the head can be estimated by:134

f(X) = s
(
QKT /

√
Dhead

)
V ∈ RL×Dhead , (2)

where s(Z) is a function to transfer each row vector of input matrix Z by softmax. According to the135

derivation, self-attention can consider the semantic dependency among sequential inputs.136

Many transformer-based models are based on the architecture stacked by the Multi-Head Self-137

Attention layers (MHSA) containing multiple self-attention heads with independent embedding138

weights. For the given input X, we define the output of m-th self-attention head at n-th level depth139

by f(m,n)(X). Then, we denote the corresponding key, query, and value vectors by K(m,n), Q(m,n),140

and V(m,n), respectively.141

ViT Framework: The original ViT model directly employed the conventional transformer-based142

model built for the natural language processing of the visual classification task. We can summarize143

the inference process of the original ViT as following. At first, we divide an input image by P 2144

patches with the same size and sequentially order the patches after their vectorization. Since the145

transformer network is invariant to the order of the sequential data, ViT concatenates positional146

embedding vectors to the input patches to represent the original position of the patch.147

We define the sequential data obtained from one image by X0 ∈ RP 2×Dim , where Dim is the148

size of the vector linearly projected from the vectorized image patch and the positional embedding149

vector. Before we feed X0 into the transformer modules, the trainable class token sized byRDim is150

sequentially connected ahead of X′
0, which results in X0 ∈ R(P 2+1)×Dim .151

The transformer-based encoders of ViT are the modules containing the series of a layer normalization,152

a self-attention multi-head module, a fully connected layer, and a layer normalization, where every153

normalization layer has a residual connection. We define the serial process by a function of Xn+1 =154

g(Xn) ∈ R(P 2+1)×D where D is the size of latent vectors. When N modules are stacked in the155

transformer-based encoder, the class-wise score is estimated by linearly projecting the final output of156

the class token as following: p(cls|X) = softmax(FC(XN )). For a detailed explanation of ViT,157

you can be referred to [3].158

3.2 Attention Map Extraction159

We need to compare the ViT attention map and the CNN activation map for our regularization-based160

algorithm. Instead of the relative positional embedding [7] or the attention bias [11], we preserve the161

original architecture of ViT to generalize the usability of our framework to cover the ViT variants.162

To obtain the attention map from the original ViT, we utilize the attention value between the class163

token and the image patch. The class token takes a key role to determine the final prediction, so164

we can assume that the attention to the class token may represent the importance of image patches165

for the classification result. Thus, when feeding the class token into the transformer module as its166

query vector, we obtain the attention value by estimating the dot product between the embedding167

vectors of the class token and the corresponding image patch. Then, for m-th head in n-th multi-head168

self-attention layer, we can estimate the attention value as:169

A(m,n) = Rec
(
s
(
Q(m,n)[0]K(m,n)[1 :]T

) )
∈ RP×P , (3)
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where Rec is a function to reconstruct the rectangular matrix of P × P from its input vector of P∈170

according to the order of the sequential patches, and Q(m,n)[0] and K(m,n)[1 :] represent the first171

query vector of the class token and the key vectors of the image patches, respectively.172

In the case of the CNN activation map, we extract the activation maps after the normalization of every173

convolution block. Instead of integrating the channel-wise activation maps, we consider the separated174

activation maps independently to improve the degree of freedom of our attention augmentation175

module. In contrast to the constant resolution of ViT attention maps, the resolution of the CNN176

activation maps decreases with deep layers by pooling layers and strides of convolution layers. Thus,177

to preserve the resolution of every activation map, we resize all the CNN activation maps to have the178

same size with the ViT attention maps by using bicubic interpolation. We define the c-th resized CNN179

activation map by Bc, where c ∈ {1, ..., C} and C is the number of entire CNN activation maps.180

3.3 Attention Augmentation Module181

3.3.1 Module Architecture182

Even though both the CNN activation and ViT attention maps represent the key parts of the target183

object for the prediction, their distribution such as a center point and a variance would be different184

from each other due to the dissimilarities of their operations. For example, while the ViT attention map185

is distributed between 0 and 1 because of the softmax estimation, the values in the CNN activation186

map are normalized by a batch normalization, which can contain negative values. Furthermore, in187

general, the number of CNN activation maps is much larger than the number of ViT attention maps188

due to the large channel-wise depth of CNNs. As a result, it is impossible to directly compare each of189

the CNN activation maps with the ViT attention maps.190

The attention augmentation module is designed to solve the problems of different distributions and a191

varying number of maps. We design the attention augmentation module to contain multiple attention192

links which are the trainable weight parameters to scale the ViT attention maps. By estimating the193

weighted summation of ViT attention maps with the attention links, we can obtain the augmented194

attention maps where the number is equivalent to the number of CNN activation maps. Thus, we can195

estimate the augmented attention maps as following:196

A+
c =

M,N∑
m,n=1

w(m,n)
c A(m,n) + bc, (4)

where w
(m,n)
c and bc are the attention link and a trainable bias for c-th augmented attention map197

(c ∈ {1, ..., C}), respectively. M is the number of self-attention heads in one level depth and N198

presents the maximum level depth. Note that the weight of attention link w
(m,n)
c is used to analyze199

the strength of connectivity for each CNN/ViT layer in section 4.1.200

We implement the augmented attention module by a 1× 1 convolution layer generating C augmented201

attention maps from a tensor of RP 2×MN where the ViT attention maps are stacked. Because we202

only use the augmented attention maps only for the training loss, the attention augmentation module203

has no role in the inference, which can be removed after the training of ViT.204

3.3.2 Module Training205

By using the augmented attention module, we can obtain the same number of augmented attention206

maps A+
c with the CNN attention maps Bc. To ignore the remaining scale gap between the two207

maps, we first apply the l2 normalization, and then the mean squared error is estimated to build the208

attention-based regularization loss as:209

Latt =
∥∥A+

c /∥A+
c ∥2 −Bc/∥Bc∥2

∥∥
2
. (5)

Then, we integrate the attention-based regularization loss Latt with the cross-entropy loss LCE of210

original ViT as:211

L = LCE + λLatt, (6)
where λ is a scaling factor to control the effect of our regularization. Since the regularization loss can212

work as an obstacle to ignoring the inductive bias, referred by [7], we suppress the value of λ at the213

specified epochs to increase the effectiveness of the cross-entropy loss. We exponentially decay the214

value of λ by multiplying a decay constant between 1 and 0 at every epoch.215
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(a) ImageNet (b) ImageNet-5% (c) Cifar-10

Figure 2: Relations between CNN Activation Maps and ViT attention maps. The x-axis and y-axis
indicates the depth of ViT layer and CNN block, respectively. We obtain the heatmap by averaging
the magnitudes of attention links.

CNN Block Level 1 2 3 4 5 6 7

ViT Layer Level α-link 1 ∼ 3 1 ∼ 5 3 ∼ 5 4 ∼ 6 4 ∼ 6 6 ∼ 11 7 ∼ 12
β-link 1 ∼ 2 1 ∼ 5 3 ∼ 5 4 ∼ 6 4 ∼ 7 6 ∼ 10 7 ∼ 10

Table 1: Selective Link Configuration.

4 Link Selection for Advanced Regularization216

In this section, we build the advanced architecture of the attention augmentation module based on the217

analysis of the fully-trained attention links. After showing the resultant attention links, we explain the218

advanced link designed by considering the relation between CNN activation and ViT attention maps.219

4.1 Analysis of Resultant Attention Links220

We visualize heat maps to show the scale distribution of the attention links after their training.221

To compare the relationship between the ViT attention and the CNN activation maps, we only222

consider the magnitude of the weight parameters in the attention links. As shown in Fig. 2, we obtain223

multiple heat maps by using three datasets including ImageNet [30], a 5% subset of ImageNet, and224

Cifar-10 [31].225

As analyzed in many previous studies [18, 17], the ViT attention maps are highly related to the CNN226

activation maps located at a similar level. The results validate that the self-attention multi-heads of227

ViT can train the hierarchical information by the stacked architecture, which is similar to the training228

mechanism of CNN. Thus, the CNN activation maps would be helpful to regularize the ViT attention229

maps if we can find their level similarity.230

In addition to the well-known hypothesis, the heat maps from the attention links show the interesting231

characteristic where the high-level heads are not regularized when the large dataset is given. When a232

large dataset is provided, we can observe the suppressed magnitudes of the attention links at high-level233

heads in comparison to small datasets. The discovery exploits the high-level heads should not be234

trained by the regularization of the high-level CNN layers, which verifies the high-level heads can235

represent more complicated semantic information than CNN layers. In other words, the representation236

can be seen out of the inductive bias of CNNs, so we can show semantic information that overwhelms237

the inductive bias is hard to be trained without a large dataset.238

DeiT [6] and Swin Transformers [12] showed that the employment of the inductive bias of CNN is239

effective for the training of ViT. At the end of the training, we observed that high-level heads are240

disconnected from augmented attention maps, which means they are no more regularized by CNN241

activation maps. This indicates that high-level heads would escape the inductive bias of locality, and242

they are trained by a long-range dependency that cannot be acquired by CNNs.243

We can summarize the two hypotheses from the analysis as following:244

• The ViT attention and the CNN activation maps are similar to each other at a similar level.245

• The high-level ViT heads can present the semantic information that cannot be represented246

by the CNN layers, but training the semantic information requires a large dataset.247
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Train
Size

Top-1 Top-5
DeiT ConViT AAL (Ours) Gap Deit ConViT AAL(Ours) Gap

5% 34.8% 47.8% 51.7% 49%/8% 57.8% 70.7% 75.9% 31%/7%
10% 48.0% 59.6% 64.7% 35%/9% 71.5% 80.3% 85.8% 20%/7%
30% 66.1% 73.7% 76.1% 15%/4% 86.0% 90.7% 93.0% 8%/3%
50% 74.6% 78.2% 78.9% 6%/1% 91.8% 93.8% 94.5% 3%/1%

100% 79.9% 81.4% 81.0% 1%/0% 95.0% 95.8% 95.5% 1%/0%
Table 2: ImageNet test accuracy with different sampling ratios. The Gap columns represent the
relative performance improvement of the AAL over DeiT and ConViT, respectively.

4.2 Selective Attention Link248

Based on the analysis, we additionally propose the selective attention link to improve the training249

efficiency of the attention augmentation module. Instead of the full link in the original attention250

augmentation module, only a part of the attention links are utilized to obtain the augmented attention251

maps. Based on the two hypothesis from our analysis, the augmented attention map is generated252

only by the ViT attention maps with the similar levels, and no link is connected to the high-level ViT253

attention maps when the training dataset is sufficiently large.254

Accordingly, we build two types of selective attention link, which are denoted by α-link and β-link.255

α-link connects the ViT attention maps to only the augmented attention maps at a similar level. β-link256

is similar to the α-link but the links to the high-level heads are entirely disconnected. The detailed257

connections are given in Table 1.258

5 Experiments259

In experiments, we showed that transferring attention from pre-trained CNN models to ViTs can inject260

CNN’s inductive bias (i.e locality) naturally in standard self-attention layers, without the necessity261

of additional modules extending the self-attention network. Thus, we examine how efficiently the262

method helps ViT to be converged for optimal performance, especially showing a large gap in a small263

data regime.264

5.1 Experimental Settings265

Models DeiT-B ConViT AAL
Top-1 97.5% 95.4% 97.5%

Table 3: CIFAR10 Top-1 test accuracy

Implementation Details: The computing re-266

source used in our experiments is Nvidia A100.267

If not mentioned otherwise, the student ViT268

model used for experiments is DeiT-S (distilled269

version) and used EfficientNet-B3 [32] as the270

teacher CNN model. We set λ to 2000 and the decay constant for λ is set to 0.99 for the first 200271

epochs and 0.98 for the last 100 epochs. For a fair comparison, we preserve the values of the remaining272

hyperparameters and the training strategies from our baseline model of DeiT [6].273

Comparisons and Dataset: For comparison, we consider two previous studies, which include DeiT274

and ConViT. DeiT utilizes the knowledge distillation method to improve the ViT-based models, and275

ConViT shows the state-of-the-art performance when the training data is given sufficiently even276

without using the knowledge distillation methods. To show the generality of our algorithm, we utilize277

four classification datasets: ImageNet, CIFAR10, Caltech-UCSD Birds-200-2011 (CUB-200), and278

Oxford 102 Flowers (Flower-102). In the case of ImageNet, we extract the subsets randomly sampled279

with the various ratios (5%, 10%, 30%, 50%), maintaining class balance, to show the validity of the280

proposed algorithm when the insufficient data is given for the training.281

5.2 Quantitative Results282

We first perform the comparisons with the various subsets of ImageNet. As shown in Table 2, the283

proposed algorithm shows the state-of-the-art performance when the ImageNet subsets are used284

to train the model. The performance of our framework is similar to that of ConViT when the285

entire dataset is considered for training. However, the performance gap between our framework and286

ConViT becomes enlarged with the insufficient training data. Furthermore, we should notice that287
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Train
Size

Top-1 Top-5
Full-link Selective-link Gap Full-link Selective-link Gap

5% 48.9% 51.7% 5.7% 73.6% 75.9% 3.1%
10% 63.0% 64.7% 2.6% 84.6% 85.8% 1.4%
30% 75.2% 76.1% 1.2 % 92.4% 93.0% 0.6%
50% 78.5% 78.9% 0.5% 94.3% 95.0% 0.7%

100% 81.0% 80.9% -0.1% 95.5% 95.5% 0.0%
Table 4: ImageNet test accuracy with different sampling ratios. The Gap columns represent the
relative performance improvement of Selective-link.

Teacher Model Student Model Teacher Model
Top-1

Student Model
Top-1

ResNet34 DeiT-S w/ distill 73.3% 79.4%
EfficientNet-B3 DeiT-B w/ distill 81.1% 82.8%
Table 5: ImageNet test accuracy with various teacher and student models

EfficientNet-B3 that is our teacher model needs only 12.2M parameters, which is much smaller288

than 86.6M parameters of RegNetY-16GF [33] used in DeiT [6]. Thus, we can validate that our289

proposed framework can overwhelm DeiT-B even by using the light teacher model. In addition, while290

ConViT-S needs 5M more parameters than ours or DeiT, our method outperforms both of DeiT and291

ConViT-S, which validates the efficiency of our framework. The quantitative results for CUB and292

Flower datasets are represented in the supplementary material.293

Table 3 shows the experimental results with CIFAR10 dataset. The results verifies that the proposed294

algorithm can increase the robustness to the insufficient size of training data. In addition, in the DeiT295

paper, 7200 training epochs were needed to achieve 97.5% top-1 test accuracy when training from296

scratch using the DeiT-B model which has more attention heads than DeiT-S. On the other hand, our297

method only needed to train 300 training epochs to reach the same test accuracy while using the298

DeiT-S model, which validates its training efficiency.299

5.3 Analysis300

In addition to the following analysis, we present the additional experiments to show the validity of301

our framework in the supplementary material. The additional experiments include the performance of302

weakly supervised object localization, the qualitative results for attention maps, the learning curve,303

and epoch-wise qualitative changes of attention links.304

Effectiveness of Selective Links: To show that our selective attention link-based transfer efficiently305

matches ViT attention maps with CNN activation maps, we compared two different settings on the306

attention augmentation module. Full-link fully connects each ViT attention map to produce augmented307

attention maps that match CNN activation maps as one-to-one channel-wise correspondence. In the308

case of the full ImageNet dataset, β-link was used for the selective link, while we utilized α-link for309

the other small datasets. As shown in Table 4, the attention transfer with a fully connected attention310

link shows superior performance to the accuracy of DeiT and ConViT (Table 2) in low data regime,311

and the selective attention links show further improvement from its results.312

Robustness to Variety of Models: We add results with the variants composing of different teacher313

and student models to show the generality of our method upon various environments. As shown in314

Table 5, the proposed framework successfully improves the performance of its teacher model even315

with the different teacher and student models. Interestingly, when we use a light teacher model, we316

can achieve the large performance gap between the teacher and student models.317

Data and Model Efficiency: Our additional trainable module, which is the attention augmentation318

module, includes only a single 1x1 Conv layer which augments the attention maps of the student ViT.319

In our default settings, the number of the parameter is 0.068M, which is quite small compared to320

DeiT-S of 22M parameters. As we mentioned, the lengthy training time of ViT is a critical drawback321

especially when the computational resources are limited. The reduced training time of our method322

can be validated through the learning curve represented in the supplementary material.323
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Strong Data Aug. (Default) Weak Data Aug.
Methods Top-1 Top-5 Methods Top-1 Top-5

Cross Entropy (CE) 91.3% 99.6% Cross Entropy (CE) 84.2% 98.7%
CE + AAL 97.4% 99.9% CE + AAL 92.5% 99.7%

CE + Soft Distillation 91.0% 99.6% CE + Soft Distillation 84.0% 98.9%
CE + Hard Distillation 92.0% 99.8% CE + Hard Distillation 85.1% 99.0%

CE + AAL + Hard Dist. 96.5% 99.9% CE + AAL + Hard Dist. 94.1% 99.7%
Table 6: Ablation Test with different settings of data augmentation and distillation methods

Ablation studies: For additional verification of our knowledge transfer method, we trained on324

CIFAR10 with different scenarios. To sternly check the performance difference of knowledge dis-325

tillation effect from each method, we used much weaker data augmentation than the setting used326

in other experiments with only simple techniques such as random crops and horizontal flips. This327

allows us to confirm the data efficiency in a low data regime. In addition, we compared our method328

to other knowledge distillation methods introduced by DeiT with a teacher model pre-trained on329

the CIFAR10 dataset. As shown in Table 6, for both soft label distillation and hard label distillation,330

our method outperforms the class prediction-based distillation method. From this result, we could331

infer that directly transferring attention gives a better learning signal than giving the teacher model’s332

output predictions. Furthermore, we could confirm that knowledge earned from a large dataset can333

give a good learning direction. Compared to the result of Table 3 where the teacher model pre-trained334

by ImageNet was used, the performance drops due to the lack of information in the teacher model335

pre-trained by CIFAR10. This could be another advantage since teacher models in DeiT are restricted336

to be trained on the target dataset to give proper output prediction.337

Various Baseline: In Table 7, we show that applying our method is not only limited to standard ViT.338

In the experiments, we employ our method to Pooling based ViT (PiT-S) [10], and we observed the339

sample efficiency of the model increased by a large margin using our method.340

Pit-S Pit-S + AAL
Top-1 12.2% 44.0%
Top-5 25.2% 67.3%

Table 7: Our method with PiT (ImageNet 5%)

Robustness to random initialization: We per-341

form several trials with different random seeds342

as shown in Table 8. Our algorithm shows con-343

sistency even with the various initial parameters.344

Due to our limited computation, we run 240345

epochs of training in contrast to 300 epochs of346

training in the default setting.347

Prediction-based distillation and Fine-tuning: Our method can be jointly applied with class348

prediction-based distillation. Thus, both Table 2 and Table 3 verify that our method can show synergy349

with the distillation method proposed in [6]. In addition, we perform the additional comparison to350

fine-tuning algorithms with self-supervised learning (SSL) for ViT [34], SSL with linear classifier,351

and SSL with k-NN classifier respectively show 77% and 74.5% for ImageNet top-1 test accuracy.352

Every accuracy is lower than our performance of 81.0% with the same ViT model, which validates353

the synergy of our method with the self-supervised fine-tuning mechanisms.354

6 Conclusion355

Trial I Trial II Trial III
Top-1 47.3% 46.5% 47.2%
Top-5 71.9% 71.3% 72.0%

Table 8: Repeated trials (ImageNet 5%)

In this paper, we have introduced a novel method356

of transferring knowledge from CNN to ViT.357

By accessing attention of CNNs and adaptively358

adopting them, student ViT was able to earn high359

quality of learning signal with CNN’s inductive360

bias. By applying our method, we could train361

ViT in less training epochs without overfitting362

even with the small dataset or limited labeled363

data. Also, we revealed relations between inter-364

mediate representations from those different types of neural networks, which varied due to the training365

dataset. Furthermore, by analyzing those relationship with trained attention links, we could take366

advantage of more efficient connection between networks. We leave wider application of our methods367

to new ViT architectures in future works.368
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