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Abstract

Sustaining perception-action loops is a fundamental brain computation, which can
be effectively described by stochastic optimal control theory through optimality
principles. When accounting for a realistic noise model of the sensorimotor system,
including multiplicative noise in feedback and motor output as well as internal noise
in estimation, the mathematical complexity of the problem increases significantly.
The standard algorithm in use is the one introduced in the seminal study in [1]. We
identify a limitation in the original derivation stemming from the assumption of
unbiased estimation and propose an efficient gradient descent optimization that
minimizes the cost-to-go, enforcing only the linearity of the control law. To achieve
the optimal solution, we propagate sufficient statistics in closed form to evaluate
the expected cost, then minimize this cost with respect to the filter and control
gains. Our results demonstrate that this approach achieves a lower overall cost than
state-of-the-art solutions when internal noise is considered. Deriving the optimal
control law in these cases is essential for addressing problems like inverse control
inference.

1 Introduction and Formalization of the Problem

The ability to achieve goal-oriented actions stems from the sensorimotor system’s exceptional
capacity to manage noise and the variety of potential solutions for each problem [2, 3, 4]. However,
the computational and algorithmic implementation of a regulatory control—necessary for producing
coordinated and complex behavior [5]—remains an open question in systems neuroscience.
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Stochastic optimal control theory serves as a powerful tool for interpreting motor behavior [6, 5, 1, 7],
but the success of this approach depends on the mathematical accuracy of the predictions and the
assumptions [1].

To solve an optimal control problem, one must identify a state-to-action policy that minimizes a cost
function, typically balancing control effort with task objectives [6]. The Linear-Quadratic-Gaussian
(LQG) framework allows for analytical solutions in stochastic, partially observable, continuous,
non-stationary, high-dimensional systems [8, 9]. However, incorporating a more realistic noise model,
including multiplicative and internal noise, is crucial for explaining many observed behaviors, such
as smooth velocity profiles and movement corrections [1, 10, 11, 12, 3, 13].

The seminal study in [1] developed an iterative algorithm to solve stochastic optimal control problems,
including motor, sensory, and internal noise. However, this algorithm relies on the assumption of
unbiased estimators, which is not accurate in this case. We introduce a gradient descent-based
algorithm that circumvents this issue, relying solely on the assumption of linear control [14]. Our
algorithm is efficient, leveraging recursive cost computation and novel derivative propagation methods.
When applied to a sensorimotor task, it outperforms the solution of [1] in the presence of internal
noise, reducing the cost by up to 90% when the internal noise accounts for approximately 10% of the
total. Applying our algorithm to a reaching task reveals distinct patterns, highlighting the importance
of providing the optimal solution to explain behavior in a principled way [14, 15].

Formalization of the Optimal Control Problem We formalize our problem using stochastic opti-
mal control theory [8, 9]. Following [1], we assume that the latent state dynamics (with multiplicative
control noise), observations (with multiplicative sensory noise), and state estimation (with internal
additive noise) of the full controller-environment system obeys the following equations in discrete
time (t = 1, ..., T − 1)

xt+1 = Axt +But + ξt +

c∑
i=1

εitCiut (1)

x̂t+1 = Ax̂t +But +Kt(yt −Hx̂t) + ηt (2)

yt = Hxt + ωt +

d∑
i=1

ρitDixt , (3)

where xt ∈ Rm is the latent state, x̂t ∈ Rm is the state estimate, ut ∈ Rp is the control signal,
yt ∈ Rk is the sensory feedback, at time t, and ξt, εt, ηt, ωt and ρt are white noise terms described in
Appendix A.1, following [1]. The linear dynamics are governed by the passive state-to-state transition
matrix A ∈ Rm×m and the control matrix B ∈ Rm×p. By assumption, the control-law is linear in
the state estimate,

ut = Ltx̂t , (4)

where Lt ∈ Rp×m are the control gains, a common result for LQG and the approach of [1]. We
furthermore assume a time-dependent, but state-independent Kalman filter Kt ∈ Rm×k, which is
again standard – it is exact for LQG problems with additive noise but becomes approximate under
multiplicative noise. Note that, by using the same set of matrices to update the state (Eq. 1) and state
estimate (Eq. 2), we implicitly assume that the internal model of the agent already matches the actual
latent dynamics of the system. The state estimate arises from a linear Kalman filter integrating and
filtering the sensory feedback yt. Such a feedback is considered to be a noisy linear transformation of
the state, as determined by the observation matrix H ∈ Rk×m. We will assume, as it is also standard,
that the initial state x1 and state estimate x̂1 have the same mean E[x1], with covariances respectively
given by Σx1

and Σx̂1
. Moreover, they are assumed to be independent at t = 1: their joint covariance

is Σx1x̂1
= 0. Solving the optimal control problem implies finding the optimal filters Kt and control

gains Lt in order to minimize a cost function given by

E[J ] =
T∑

t=1

E[jt] =
T∑

t=1

E [x⊺
tQtxt + u⊺

tRtut] , (5)

where T is the duration of the task, jt is the cost per step and J the total cost in a trial. We define the
expectation as E[f(·)] =

∫
dx2,...,T dx̂2,...,T f(·) p(x2,...,T , x̂2,...,T ), where p is the joint density of

latent and estimation variables. As the control ut is a linear function of x̂t, the cost is a quadratic
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function of state and state estimate. It includes a control cost, determined by the symmetric positive
definite matrix Rt ∈ Rp×p, Rt > 0, and a state cost, determined by Qt ∈ Rm×m. Again, Qt is
symmetric and positive definite, Qt > 0, and modulates the cost of the state being far from a chosen
target. In Appendix A.2 we provide more details on the LQG problem and on the state-of-the-art
solution for the multiplicative noise scenario, expanding on what said before.

2 A Novel Gradient Descent-Based Algorithm for Optimal Control Problems

2.1 How Internal Noise Affects Optimality

Here, we briefly address the challenges posed by internal noise in the algorithm from [1]. As noted
in Section 1, [1] uses the unbiased estimator condition, E[xt|x̂t] = x̂t, to derive the optimal control.
However, this condition never holds. In Appendix A.3, we show numerically how this condition
fails, with increasing discrepancies as internal noise grows. To heuristically prove this, we consider a
one-dimensional problem with a partially observable stochastic process xt. If E[xt−1|x̂t−1] = x̂t−1

holds at time t − 1, and a large positive internal noise fluctuation ηt−1 ≫ 1 occurs, then at time
t the state xt has on average changed little relative to xt−1, but the state estimate has increased
significantly due to the fluctuation, so that x̂t ≫ x̂t−1. Then, at time t, the averaged xt conditioned
on x̂t cannot be equal to x̂t, breaking the unbiasedness condition (Fig.1). Notably, the same issue
arises with large sensory noise fluctuations, even without internal noise. Furthermore, this effect is
more pronounced with large fluctuations in the state estimate, although a smaller bias persists even
with minor fluctuations.

Figure 1: A toy example to show the estimation bias. The black line, xt, represents the behavior of
a partially observable stochastic process. The red line, x̂t stands for the time evolution of a state
estimate, built upon the available observations, biased by random internal fluctuations due to the
noise term ηt (orange arrow).

In Appendix A.3.1, we demonstrate (in 1D for simplicity) that without internal noise, the unbiasedness
condition implies the orthogonality principle, E[xtx̂t] = E[x̂2

t ], which holds for an optimal Kalman
filter (see Fig. 5a). Thus, [1] finds optimal solutions in the absence of internal noise by implicitly
imposing this principle. However, when internal noise is present, this principle is no longer optimal
(see Fig. 5a), causing the algorithm to underperform in minimizing cost.

2.2 A Novel Algorithm for Optimal Control Problems

We propose an alternative method to solve the optimal control problem outlined in Section 1, following
[14]. We compute the expected total accumulated cost, E[J ], while averaging over all stochastic
terms appearing in Eqs. 1-3, as a function of Lt and Kt. With Lt and Kt fixed, E[J ] becomes
the objective function for a standard gradient descent algorithm used to minimize it. In Appendix
A.4, we show how to compute the afore-mentioned objective function in closed form by moment
propagation, and discuss how to minimize it with respect to L1,...,T−1 and K1,...,T−2. We also
derive the computationally cheaper analytical counterpart of this algorithm for a more constrained
definition of the problem in Appendix A.5. This results in an algorithm that iteratively alternates
between forward moment propagation and backward optimization of control and estimation until
convergence. We stress that our algorithm derives the optimal solutions without relying on the
incorrect unbiasedness condition. Here and in the following we call GD the numerical algorithm
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introduced in Appendix A.4, FPOMP (‘Fixed Point Optimization with Moments Propagation’) the
analytically-derived one, proposed in Appendix A.5, and TOD the algorithm of [1].

We also note that our framework is exact: no approximations are needed to compute the expectation
of the cost function, apart from the linearity of control. This is due to the linearity of control and
estimation processes (in both the state and state estimate), allowing the first two moments of x and
x̂ to be propagated in closed form. These moments serve as sufficient statistics for computing the
expected cost, independent of the distributions of x and x̂.

In Appendix A.8 we extend our approach to switching linear dynamics, to make the linear dynamics
assumption less restrictive.

3 Experiments

We first apply our algorithm and compare it with the solutions of [1] in a 1D example (see Ap-
pendix A.9.1) to show the qualitative and quantitative differences. Second, we apply our numerical
approach to a sensorimotor task, a single-joint reaching movement, with a four-dimensional state,
one-dimensional control and sensory feedback (m = 4, p = k = 1) and multiplicative and internal
noise, equivalent to the task implemented in [1].

Figure 2: Reaching task. (a) Expected accumulated cost E[J ] (average of Eq. 5 over 50k trials) as a
function of internal noise, with error bars (mean ± 1SEM from Monte Carlo simulations, error bars
not visible as too small), for TOD and GD algorithms. (b) Magnitude of the control gain vector as
a function of time for TOD and GD solutions. (c) Control signal u(t) in a sample trial for the two
algorithms for ση = 0.05. (d) Amount of control (mean integral of the absolute control signal for the
two algorithms, averaged over 50k trials) as a function of ση . (e) Mean position over time for the two
solutions, averaged over 50k trials.

The definition of the task is the same as in [1], with the only difference that [1] did not assume
any internal noise, whereas we do. All parameters of the problem can be found in Appendix A.9.8.
The solutions found by the GD algorithm lead to a lower expected accumulated cost E[J ], with a
performance gap increasing with the level of internal noise, ση (Fig. 2a). This is achieved by lowering
the control gains as ση increases (Fig. 2b), leading to a significantly smoother control signal on
individual trials (Fig. 2c) and an overall reduction in control effort (Fig. 2d). From these predictions,
two additional behavioral features emerge: movements become slower than with TOD solutions, and
trial-to-trial variability is significantly reduced (Fig. 2e). The performance improvement of the GD
algorithm is around 90% when the relative importance of internal noise is ≈ 10%.

In Appendices A.9.1, A.9.4 and A.9.7, we show that the FPOPM algorithm introduced in Appendix
A.5 and explicitly derived in Appendices A.7.1 and A.7.2, matches the solution of the numerical GD
algorithm. For the multi-dimensional case, we empirically validate it in the simplified case without
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multiplicative noise, as discussed in Appendix A.7.2. In Appendix A.9.9 we show how our algorithm
scales to higher-dimensional problems.

4 Conclusion

We propose a gradient descent-based algorithm for solving stochastic optimal control problems that
incorporate a realistic noise model of the sensorimotor system. By including control and signal-
dependent noise, along with internal noise in the estimation process, our approach extends, as
outlined in [1], the classic LQG framework to capture more realistic scenarios, albeit with reduced
mathematical tractability. Developing models that can generate and explain complex behaviors is
essential both in behavioral science and AI, particularly in creating real-time controllers. Solving
control problems with such models provides quantitative insights into the computational mechanisms
underlying behavior.

The key study in [1] derived an algorithm to determine the optimal feedback control law and
non-adaptive filters within this extended noise model. This solution is currently used in inverse
optimal control to interpret human behavior, with impacts that reach beyond theoretical aspects
[15, 16, 17, 18, 19, 20, 21]. Unfortunately, the algorithm’s derivation has a limitation due to its
assumption of unbiased estimators. This results in suboptimal solutions when internal noise is
introduced, and before algorithmic convergence, as discussed in Section 2, due to the breakdown of
the orthogonality principle.

Under the assumption that control is linearly dependent on the current state estimate, we develop
a revised algorithm that optimizes both control and estimation using gradient descent [14]. This
approach calculates the expected cost by propagating the sufficient statistics, followed by minimizing
this cost with respect to the filter and control gains. From the analytical point of view, this results in
an algorithm that achieves convergence by iteratively alternating two main steps: forward propagation
of moments and backward optimization of control and estimation. We demonstrate that our approach
results in lower costs, thus outperforming the current state-of-the-art solution in the presence of
internal noise (and at fixed filter gains, regardless of the presence of internal noise, see Appendix
A.9.6), providing mathematical and heuristic explanations for this enhanced performance. Optimal
filtering of internal fluctuations is achieved through an intertwined modulation of control and filter
gains, thereby enhancing adaptability, as discussed in Appendix A.9.3: when optimized for high
levels of internal noise, the system generalizes well to other noise levels.

We apply our algorithm to a reaching task, producing novel behavioral predictions that distinguish
our solution from that in [1]. As internal noise rises, control gains decrease, resulting in smoother
control signals within each trial. Consequently, movements become slower, with reduced variability
observed across trials.

Overall, our algorithm enhances the applicability of optimal feedback control, with notable benefits
for inverse optimal control applications [15].

Limitations and Future Work A limitation of our work is the assumption of state-independent
filter gains, which is suboptimal for multiplicative noise. Future directions include exploring more
realistic cost functions and biologically plausible learning rules. We also only rely on [1] for
exponential convergence guarantees. Next, we plan to extend the FPOMP algorithm to the case with
multiplicative noise and integrate it into the inverse optimal control framework to test behavioral data
predictions.
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A Appendix

A.1 A Realistic Noise Model of the Sensorimotor System

Following [1], we consider the system dynamics to be perturbed by additive and multiplicative noise
sources, affecting both the latent state xt and sensory feedback yt. The stochasticity on the state
dynamics is induced by the additive Gaussian noise ξt ∈ Rm, with zero mean and covariance Ωξ ≥ 0,
and the control-dependent multiplicative noise term C(ut) =

∑c
i=1 ε

i
tCiut. Following the notation

in [1], Ci are constant scaling matrices, Ci ∈ Rm×p, multiplying the i-th component εit of the random
vector εt ∈ Rc, where εt is a zero mean Gaussian noise term with identity covariance Ωε = I. Such
a term takes into account the fact that noise at the motor output level increases linearly with the
control signal [1, 22, 6, 23, 24]. In our case, this dependence is linear in the state estimate x̂t, given
that ut is given by Eq. 4. Similarly, at the sensory feedback level, there is additive Gaussian noise
ωt ∈ Rk, with zero mean and covariance Ωω ≥ 0, and the signal-dependent term

∑d
i=1 ρ

i
tDixt.

Again, ρt ∈ Rd is a zero mean Gaussian noise term with covariance Ωρ = I, and Di ∈ Rk×m are
the scaling matrices controlling the linear dependence between noise strength and sensory feedback
signal. Such a relationship has an experimental counterpart when considering vision as the main
sensory modality, since sensory noise linearly scales with visual eccentricity [1, 25, 26, 27]. Here we
extend the same linear dependence to other possible perceptual modes, such as proprioception [11].
More generally, multiplicative noise sources are required to mimic experimentally observed properties
of reaching movements, such as stereotyped bell-shaped profiles [1, 10, 11], and speed-accuracy
trade-off [1, 22, 28, 23]. Crucially, we assume state estimate computations , Eq. 2, to be perturbed by
zero-mean additive Gaussian noise, ηt ∈ Rm, with covariance Ωη ≥ 0. This term links experimental
evidence at the neural [2, 29, 30, 3] and behavioral [1, 31, 32] level. Importantly, ηt cannot be directly
filtered by the gains Kt, leading to possible control-estimation inter-dependencies, as we see in
Sections 2 and 3 — a fact that has been overlooked by previous approaches.

A.2 LQG Problem and State-of-the-Art Solutions for the Multiplicative Noise Scenario

When only additive noise at state and feedback levels is considered in the system of Eqs. 1-3 (that
is when setting Ci = 0, i = 1, ..., c, Di = 0, i = 1, ..., d and Ωη = 0), the problem reduces to the
Linear-Quadratic-Gaussian (LQG) problem [8]. It is known to have non-approximate analytical
solutions [8], which are for completeness provided in Appendix A.2.1. Its analytical tractability stems
from the mathematical independence between control and estimation optimizations [1], known as
the separation principle [33, 34, 35], which is closely related to the concept of certainty equivalence
[36]. Indeed, Eqs. 6 and 8 demonstrate that Lt and Kt can be solved for independently. The only
dependence between control and estimation arises through the state estimate x̂t. Once multiplicative
control and signal-dependent noise is present, such independence breaks down, causing control
and estimation to be closely intertwined [1]. For this scenario, [1] proposes an algorithm that
alternates between optimizing control and estimation while assuming linear and non-adaptive (i.e,
state-independent) filters for the estimator. As for the classic LQG problem, the control is optimized
iteratively in a backward-in-time fashion, while keeping the filters Kt fixed. The solution is derived
by using the method of dynamic programming, writing down the Bellman equation for the optimal
cost-to-go [1]. In this derivation, multiplicative noise causes the optimal ut to depend on the latent
state xt and the condition E[xt|x̂t] = x̂t is then used to ensure that the actual control signal would
depend only on the state estimate x̂t (which is the only available information at time t, given that the
system is only partially observable by the definition of the problem). From there, the optimal filters
Kt are found at fixed Lt, again by minimizing the cost-to-go. Taken together, these two optimization
steps lead to an iterative algorithm that is supposed to provide the optimal solution to the control
problem [1].

However, the assumption of "unbiasedness" E[xt|x̂t] = x̂t that is used to derive the optimal control
law in [1] does not hold (see Section 2).

A.2.1 LQG Solutions

The optimal control and filter gains, L1,...,T−1 and K1,...,T−2, for the LQG problem, that is the control
problem described by Eqs. 1-2 without multiplicative (Ci = 0, i = 1, ..., c, Di = 0, i = 1, ..., d) and

8



internal (Ωη = 0) noise are given by

Lt = −(Rt +B⊺St+1B)−1B⊺St+1A (6)
St = Qt +A⊺St+1(A−BLt) (7)

Kt = AΣe
tH

⊺(HΣe
tH

⊺ +Ωω)
−1 (8)

Σe
t+1 = Ωξ + (A−KtH)Σe

tA
⊺ . (9)

A.3 The Condition of Unbiasedness and the Role of Internal Noise

As mentioned in Sections 1 and 2, the condition E[xt|x̂t] = x̂t used in [1] to derive the optimal
control law is violated. We demonstrate this concept numerically, considering a 1D example, with the
same system dynamics as the one of Appendix A.9.1 (Table 2). We set σω = σξ = σϵ = σρ = 0.5
and varied ση = 0.0, 0.3, 0.6. The initial condition are x0 = x̂0 = 1. We considered T = 10 and
selected t = 8 to compute E[xt|x̂t] as a function of x̂t.

Figure 3: The invalidity of the unbiasedness condition. Here we plot E[xt|x̂t], for a given value of t,
as a function of the values x̂t for different levels of internal noise ση, for the algorithm in [1]. The
conditional expectation E[xt|x̂t] is computed through Monte Carlo (MC) simulations. (a) E[xt|x̂t] as
a function of x̂t for ση = 0 (dots with error bars given by the std of our MC estimate). The gray dotted
line stands for the bisector, where E[xt|x̂t] = x̂t. Note that for big values of x̂t the incorrectness
of the condition of unbiasedness is visible. (b) Same as (a), but for ση = 0.3. With internal noise
the deviation from E[xt|x̂t] = x̂t is more salient. (c) Same as (a) and (b), but for ση = 0.6. As
the internal noise level increases the condition of unbiasedness is more and more incorrect. (d-f)
Absolute value of the distance between E[xt|x̂t] and x̂t as a function of |x̂t| for ση = 0.0, 0.3, 0.6.
The gray dotted lines represent E[xt|x̂t] = x̂t.

Note that the choice of t is arbitrary. We collected the list of xt=8 and x̂t=8 over 5 ·107 trials. We then
binned the data for x̂t using δx̂ = 0.1 for the size of the bins. To obtain E[xt|x̂t] we then computed
the mean of all the xt falling in the same bin, and we used the std for the error bars.

We find that, without internal noise, the violation of unbiasedness is present, but it is only clearly
visible for large x̂t, because close to x̂t = 0 the bias will be small (the state estimate experiences
small fluctuations if we constrain to small values of x̂t – this is also why we chose in our example of
Fig. 1 a large fluctuation, but the same bias, albeit small, happen with small sensory or internal noise
perturbations). We also find that, when considering internal noise, the bias sensibly increases because
the internal fluctuations are not filtered at all by the gains Kt.

It is relevant to observe that the filter gains cannot directly reduce the internal noise. The only way to
filter internal fluctuations passes through the control optimization, given that the control signal ut is a
linear function of the state estimate x̂t (Eq. 4). As we see in Section 3, the optimal Lt and Kt have to
be interdependent when internal noise is turned on. In these circumstances, the separation principle
[8] does not hold anymore, regardless of the multiplicative nature of the noise. On the contrary, in the
algorithm proposed in [1], such a dependence arises only when multiplicative noise is considered, as
we show in Appendix A.9.7.

Additionally, we note here that the condition E[xt|x̂t] = x̂t is closely related to the orthogonality
principle, stating Ωt = E[x̂tx̂

⊺
t ]− E[xtx̂

⊺
t ] = 0, ∀t = 1, ..., T [8]. As we show in Appendix A.3.1,

the latter can be derived from the former. As a confirmation, the optimal estimator found in [1]
satisfies this condition in the absence of internal noise. Therefore, for zero internal noise, Ωη = 0, the

9



control-estimation optimization can be run with two distinct objective functions: Kt can be optimized
by imposing Ωt = 0,∀t = 1, ..., T (see Appendix A.3.1), while Lt comes from the minimization of
the cost function E[J ] (Eq. 19). It can be shown (see Appendix A.3.1) that when internal noise is
non-zero, Ωη > 0, a solution satisfying Ωt = 0,∀t = 1, ..., T is not guaranteed to exist and, in any
case, is not optimal (see Fig. 5a).

Separation Principle, Orthogonality Principle, Unbiasedness: A Brief Digression Unbiased-
ness, orthogonality and separation principle are related but distinct concepts. Here we briefly elaborate
on the differences and point in commons between them.

The separation principle comes from the formulation of the classic LQG problem: the optimal
solutions for control and estimator are mathematically independent, allowing for separate optimization
of the two. With multiplicative noise, this independence breaks down [1]. We argue that this happens
already with additive internal noise, contrary to what said in [1].

The orthogonality principle (in 1D) states that E[xtx̂t] = E[x̂2
t ]. This condition holds for an optimal

Kalman filter, without internal noise (Appendix A.3.1 and Fig. 5a). Then, internal fluctuations break
the mathematical independence between control and estimation, invalidating at the same time the
orthogonality principle.

However, these two concepts are separated: e.g., if we have no internal noise, but non zero multiplica-
tive noise, the orthogonality principle would still hold, but the mathematical independence between
control and estimation would break.

In Appendix A.3.1, we show that without internal noise, the orthogonality principle is satisfied when
Kt follows Eq. 15. Empirical validation of the optimality of this comes from finding the same Kt

with GD, TOD, and Eq. 15 (without internal noise).

The condition of unbiasedness (which never holds, as previously discussed) implies that E[xt|x̂t] = x̂t.
In Appendix A.3.1 we show that if E[xt|x̂t] = x̂t holds, then also the orthogonality principle does.
This explains the optimality of the approach in [1] in the absence of internal noise: not because the
unbiasedness condition is true, but because the orthogonality condition holds.

A.3.1 The Relationship Between Internal Noise and the Orthogonality Principle

We demonstrate here that from the condition E[xt|x̂t] = x̂t, used in [1] to derive the optimal control
law, we can derive the orthogonality principle. For simplicity, we consider here the one-dimensional
case in which m = p = k = 1 and we set c = d = 1, as done in [14].
The orthogonality principle states that [8]

Ωt ≡ E[x̂t(xt − x̂t)] = E[x̂2
t ]− E[xtx̂t] = 0. (10)

Taking
E[xt|x̂t] = x̂t (11)

and multiplying by x̂t on both sides and then taking the expectation over x̂t we obtain

E[x̂2
t ] = E[xtx̂t] (12)

corresponding to Eq. 10.

We also show here that, in the absence of internal noise, the optimal filter gains Kt can be found by
imposing the orthogonality principle, without the need to minimize the cost function. Using Eq. 27,

St+1 = MtSM⊺
t +Gt (13)

for the update of the non-central moments we get

Ωt+1 = (K2
t H

2 +K2
t D

2 −AKtH)E[x2
t ]+

+ (A2 +K2
t H

2 +ABLt − 2AKtH −BLtKtH)Ωt+

+ (AKtH −K2
t H

2)E[xtx̂t] +K2
t Ωω +Ωη

(14)

If we use Ωt=1 = 0, as in [1] due to the initial conditions, we can solve the equation Ωt = 0,
∀t = 1, ..., T , obtaining an equation for Kt,

Kt =
AHΓt ±

√
A2H2Γ2

t − 4(H2Γt +D2E[x2
t ] + Ωω)Ωη

2(H2Γt +D2E[x2
t ] + Ωω)

(15)
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with
Γt = E[x2

t ]− E[xtx̂t]. (16)
For Ωη = 0, Eq. 15 simplifies to

Kt =
AHΓt ±AHΓt

2(H2Γt +D2E[x2
t ] + Ωω)

. (17)

Observing that the solution Kt = 0 would correspond to an open-loop strategy, sub-optimal (sensory
information would not be integrated) for a stochastic partially observable system as the one we are
considering, we get for the optimal filter gains

K∗
t =

AHΓt

H2Γt +D2E[x2
t ] + Ωω

. (18)

It can be proven that the solution of [1] for Ωη = 0 aligns with Eq. 18 in one dimension. We observe
that Eq. 18 can be used in place of Eq. 39 in Algorithm 2 to optimize the filter gains. For Ωη = 0
this would lead to the optimal solution. Therefore, in the absence of internal noise, the optimization
of control and estimation can be performed with two separate objective functions, one imposing the
orthogonality principle for the optimal estimator and the other minimizing the cost function for the
optimal controller, regardless of the multiplicative nature of the noise. This could also be relevant
for more biologically plausible scenarios [5]. When Ωη > 0, it can be shown that the existence of
a real solution for Eq. 15 depends on the choice of the initial conditions. Moreover, we show in
Appendix A.9.1 that the optimal solutions found by the numerical gradient descent do not satisfy
Ωt = 0 for Ωη > 0. Therefore, it turns out that the orthogonality principle holds for an optimal
Kalman filter only for Ωη = 0. Consequently, the algorithm derived in [1] uses the assumption of
unbiased estimation, which should imply the orthogonality principle, even in situations where the
orthogonality principle no longer applies to the optimal estimator.

A.4 Minimization of Expected Cost Through Numerical Gradient Descent (GD)

By taking the expected value of Eq. 5 and using Eq. 4 we obtain

E[J ] =
T∑

t=1

E[jt] =
T∑

t=1

(E[xt]
⊺QtE[xt] + E[x̂t]

⊺L⊺
tRtLtE[x̂t]+

+ Tr[QtΣxt
] + Tr[L⊺

tRtLtΣx̂t
]),

(19)

where Tr[·] stands for the trace operation, Σxt
is the covariance matrix of the latent state xt and

Σx̂t
is the covariance of the state estimate at t. Note that E[xt], E[x̂t], Σxt

and Σx̂t
will implicitly

depend on L1,...,t−1 and K1,...,t−1. From Eqs. 1-3 we can derive the update equations to propagate
the first and second-order moments E[xt] E[x̂t], Σxt and Σx̂t in a closed-form manner, in order to
compute the total expected cost E[J ] at fixed L1,...,T−1 and K1,...,T−2. Here and in the following
we set c = d = 1 for simplicity (and without loss of generality, given the case with c, d > 1 would
follow the same exact procedure). To rewrite our results in a more compact form, we define, as in
[14]

µt =

(
E[xt]
E[x̂t]

)
, (20)

Σt =

(
Σxt Σxt,x̂t

Σx̂t,xt Σx̂t

)
, (21)

Mt =

(
A BLt

KtH A+BLt −KtH

)
(22)

and

Gt =

(
CLtE[x̂tx̂

⊺
t ]L

⊺
tC

⊺ +Ωξ 0
0 KtDE[xtx

⊺
t ]D

⊺K⊺
t +KtΩωK

⊺
t +Ωη

)
, (23)

where Σxt
= E[xtx

⊺
t ]−E[xt]E[xt]

⊺, Σx̂t
= E[x̂tx̂

⊺
t ]−E[x̂t]E[x̂t]

⊺, Σxt,x̂t
= E[xtx̂

⊺
t ]−E[xt]E[x̂t]

⊺

and Σx̂t,xt
= Σ⊺

xt,x̂t
. We have defined µt as a column vector whose components are m−dimensional

vectors. Similarly, Σt, Mt and Gt are block matrices, whose elements are m×m matrices. We then
have

µt+1 = Mtµt (24)
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and
Σt+1 = MtΣtM

⊺
t +Gt . (25)

In the presence of multiplicative noise, the covariance propagation, Eq. 25, furthermore requires us to
derive update equations for the non-central moments that appear in Gt. We can proceed in a similar
way by defining

St =
(
E[xtx

⊺
t ] E[xtx̂

⊺
t ]

E[x̂tx
⊺
t ] E[x̂tx̂

⊺
t ]

)
. (26)

We then have
St+1 = MtStM⊺

t +Gt , (27)
where Gt is now given by

Gt =

(
CLtS22t L⊺

tC
⊺ +Ωξ 0

0 KtDS11t D⊺K⊺
t +KtΩωK

⊺
t +Ωη

)
, (28)

and Sijt stands for the (i, j)-th block element of the block matrix St.
We assume, as in [1], that state and state estimate are initially uncorrelated, Σxt,x̂t

= Σx̂t,xt
= 0.

As a result, given the initial conditions for µ1 and Σ1, we can compute the expected accumulated
cost E[J ] at fixed L1,...,T−1 and K1,...,T−2, by using Eqs. 24-25 and 27 together with Eq. 19. The
pseudo-code for the algorithm to compute the expected cost E[J ] and therefore to implement the
numerical gradient descent is provided (with the details of the implementation) in Appendix A.6,
Algorithm 1. To find the optimal control and filter gains we would then use E[J ], given by Algorithm
1, as the objective function of a numerical gradient descent procedure. The analytical counterpart is
discussed in Appendix A.5.

We stress here that framework is exact: no approximations are needed to compute the expectation of
the cost function and therefore to find the optimal solutions.

Indeed, Eqs. 24-25 hold true even if the whole process is not Gaussian (the distributions of xt and x̂t

are not Gaussian due to the multiplicative noise in Eqs. 1-3). This is because control (Eq. 4) and
estimation processes are linear (in state and state estimate), which enables the propagation of the first
two moments of x and x̂ in closed form, regardless of the nature of the distribution. If this is violated,
higher order terms would appear in the propagation of the expected cost and an approximation of
Gaussianity might be needed. Note also that the noise terms are assumed to be uncorrelated one with
respect to the other and with zero mean [1].

Moreover, given that the cost function is quadratic in ut and xt, the first two moments of (x, x̂)
serve as sufficient statistics, allowing us to compute the expected cost without requiring higher-order
moments.

Derivation of Closed-Form Equations for Moments Propagation Eqs. 24-27 can be derived
from Eqs. 1-4 by taking the expected value of xt, x̂t, xtx̂

⊺
t , xtx

⊺
t , x̂tx̂

⊺
t over the joint distribution of

state, state estimate and sensory feedback, without assuming any form for the underlying distribution.
Indeed, we only need to compute the first two moments of the joint variable (xt, x̂t).

By taking the expected value of Eqs. 1-2 we obtain
E[xt+1] = AE[xt] +BLtE[x̂t] (29)
E[x̂t+1] = KtHE[xt] + (A+BLt −KtH)E[x̂t] , (30)

which correspond to Eq. 24. Similarly, we compute the second non-central moments of the joint
variable (x, x̂), resulting in

E[xt+1x
⊺
t+1] = AE[xtx

⊺
t ]A

⊺ +BLtE[x̂tx̂
⊺
t ]L

⊺
tB

⊺+

+AE[xtx̂
⊺
t ]L

⊺
tB

⊺ +BLtE[x̂tx
⊺
t ]A

⊺ + CLtE[x̂tx̂
⊺
t ]L

⊺
tC

⊺ +Ωξ

(31)

E[x̂t+1x̂
⊺
t+1] = KtHE[xtx

⊺
t ]H

⊺K⊺
t + (A+BLt −KtH)E[x̂tx̂

⊺
t ](A+BLt −KtH)⊺+

+KtHE[xtx̂
⊺
t ](A+BLt −KtH)⊺ + (A+BLt −KtH)E[x̂tx

⊺
t ]H

⊺K⊺
t +

+KtDE[xtx
⊺
t ]D

⊺K⊺
t +KtΩωK

⊺
t +Ωη

(32)

E[x̂t+1x
⊺
t+1] = KtHE[xtx

⊺
t ]A

⊺ + (A+BLt −KtH)E[x̂tx̂
⊺
t ]L

⊺
tB

⊺+

+KtHE[xtx̂
⊺
t ]L

⊺
tB

⊺ + (A+BLt −KtH)E[x̂tx
⊺
t ]A

⊺ (33)

E[xt+1x̂
⊺
t+1] = E[x̂t+1x

⊺
t+1]

⊺ . (34)

12



Given the definitions of µt,Σt,St and of the block matrices Mt, Gt one can rewrite the equations
above in the form of Eqs. 24-27.

A.5 An Analytical Approach: FPOMP Algorithm

For complex and realistic tasks, finding the optimal control and filter gains through numerical gradient
descent as described in the previous Section (Appendix A.4) can become computationally expensive.
As L1,...,T−1 ∈ Rp×m and K1,...,T−2 ∈ Rm×k, we would have a total of mp(T − 1) +mk(T − 2)
parameters to optimize, which can be large for a problem with a high-dimensional state.

We propose here an analytically-derived algorithm, where we alternate between finding the optimal
(i.e., cost-minimizing) Lt and Kt, denoted L∗

t and K∗
t , for fixed state and state estimate moments,

µt and Σt, and re-computing these moments in light of the updated Lt’s and Kt’s. We refer to this
method as the ‘Fixed Point Optimization with Moments Propagation’ (FPOMP) algorithm. We follow
the mathematical derivation presented in [14]. We can compute the expected cost per step at time
t+ i, i = 0, ..., T − t, conditioned to the moments Σt and µt as

E[jt+i|µt,Σt] = E[xt+i|µt,Σt]
⊺Qt+iE[xt+i|µt,Σt]+

+ E[x̂t+i|µt,Σt]
⊺L⊺

t+iRt+iLt+iE[x̂t+i|µt,Σt]+

+ Tr[Qt+iΣxt+i|µt,Σt
] + Tr[L⊺

t+iRt+iLt+iΣx̂t+i|µt,Σt
] ,

(35)

where E[xt+i|µt,Σt], E[xt+i|µt,Σt], Σxt+i|µt,Σt
and Σx̂t+i|µt,Σt

are computed by propagating the
moments µt and Σt (Eqs. 24-25) until t̃ = t+ i. Indeed, µt and Σt are the only necessary information
to propagate the expected cost, at fixed control and filter gains, and thus they are sufficient statistics.

We then set to zero the derivatives of the expected cost Eq. 19, excluding the constant terms, to derive
L∗
t and K∗

t

∂

∂Lt

T−t∑
i=0

E[jt+i|µt,Σt] =

T−t∑
i=0

∂

∂Lt
E[jt+i|µt,Σt] = 0 (36)

∂

∂Kt

T−t∑
i=1

E[jt+i|µt,Σt] =

T−t∑
i=1

∂

∂Kt
E[jt+i|µt,Σt] = 0 . (37)

As shown in Appendices A.7.1 and A.7.2, solving Eqs. 36-37 leads to a backward algorithm to
compute L∗

t and K∗
t ,

L∗
t = f(µt,Σt, L

∗
t+1,...,T−1,K

∗
t+1,...,T−2) (38)

K∗
t = g(µt,Σt, L

∗
t+1,...,T−1,K

∗
t+1,...,T−2) , (39)

with t = 1, ...T−1 for L∗
t and t = 1, ...T−2 for K∗

t . From this we can build an algorithm that, starting
from an initial guess for L∗

1,...,T−1 and K∗
1,...,T−2, iteratively computes all the moments µ1,...,T−1

and Σ1,...,T−1 (Eqs. 24-25) at fixed L∗
1,...,T−1 and K∗

1,...,T−2. Given those moments, L∗
1,...,T−1

and K∗
1,...,T−2 are updated by using Eqs. 38-39, and so on, until convergence is attained. The

pseudo-code for this analytical gradient descent algorithm can be found in Appendix A.6, Algorithm
2. In such a way, we eliminate the numerical optimization procedure, making the algorithm suitable
for realistic optimal control problems. In Appendix A.7.1, we explicitly solve Eqs. 36-37 for the
one-dimensional case, while in Appendix A.7.2 we extend the approach to a multi-dimensional
scenario, considering, for the sake of simplicity, the classic LQG problem (but including internal
noise), to prove the generalizability of Algorithm 2.
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A.6 Pseudo-Codes

Algorithm 1 Propagation of the expected - GD algorithm
1: Input: µ1, Σ1, S1 (initial conditions), L1,...,T−1, K1,...,T−2, and the system parameters (A, B,

H , Ci=1,...,c, Di=1,...,d, Ωξ, Ωω , Ωη).
2: Output: E[J ]
3: Algorithm steps:
4: E[J ] = 0
5: µold = µ1

6: Σold = Σ1

7: Sold = S1
8: for each iteration t = 1, 2, . . . , T do
9: E[J ]← E[J ] + E[jt], (Eq. 19)

10: Update Mt and Gt

11: Σnew = MtΣoldM
⊺
t +Gt

12: µnew = Mtµold

13: Snew = MtSoldM⊺
t +Gt

14: Σold ← Σnew

15: µold ← µnew

16: Sold ← Snew
17: end for

Algorithm 2 FPOMP algorithm

Input: µ1, Σ1, S1 (initial conditions), L(1)
1,...,T−1, K(1)

1,...,T−2 (initial guesses for L∗ and K∗), and
the system parameters (A, B, H , Ci=1,...,c, Di=1,...,d, Ωξ, Ωω , Ωη).

2: Output: L∗
1,...,T−1, K∗

1,...,T−2 (optimal control and filter gains)
Algorithm steps:

4: for each iteration k = 2, . . . , optimization steps do
µ1,...,T−1,Σ1,...,T−1← Eqs. 24 and 25 using L

(k−1)
1,...,T−1 and K

(k−1)
1,...,T−2

6: for each iteration i = 1, . . . , T − 1 do
t← T − i

8: L
(k)
t ← f(µt,Σt, L

(k)
t+1,...,T−1,K

(k−1)
t+1,...,T−2)

K
(k)
t ← g(µt,Σt, L

(k−1)
t+1,...,T−1,K

(k)
t+1,...,T−2)

10: end for
end for

12: L∗
1,...,T−1 ← L

(k)
1,...,T−1

K∗
1,...,T−2 ← K

(k)
1,...,T−2

In the pseudo-code, L(k)
t and K

(k)
t stand for, respectively, the control and filter gains at time t and at

optimization step k.

The hyper-parameters of all the used algorithms are provided in Table 1. For the GD algorithm
(Appendix A.4) we minimize the expected accumulated cost E[J ], computed through Algorithm 1,
using the function "GradientDescent()" in the "Optim.jl" Julia package.

Table 1: Hyper-parameters of the used algorithms

Algorithm Description value

GD Number of iterations of the "GradientDescent()" function 100000
FPOMP Number of iterations of the control-estimation optimization 1000
TOD Number of iterations of the control-estimation optimization 1000
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A.7 Derivations of the FPOMP Algorithm

We derive here the explicit form of Eqs. 38-39 to implement Algorithm 2, following [14].

A.7.1 One-Dimensional Case

In the one-dimensional case we have m = p = k = 1. Additionally, to simplify the notation, we set
c = d = 1. We start by defining

F⃗t =

(
Ft,1

Ft,2

Ft,3

)
=

 A2

(B2 + C2)L2
t

2ABLt

 (40)

G⃗t =

(
Gt,1

Gt,2

Gt,3

)
=

 K2
t (H

2 +D2)
(A+BLt)

2 +K2
t H

2 − 2AKtH − 2BLtKtH
2BLtKtH + 2AKtH − 2K2

t H
2

 (41)

H⃗t =

(
Ht,1

Ht,2

Ht,3

)
=

 AKtH
ABLt +B2L2

t −BLtKtH
A2 +ABLt −AKtH +BLtKtH

 . (42)

In one dimension, we can then rewrite Eq. 27 as
E[x2

t+1] = Ft,1E[x2
t ] + Ft,2E[x̂2

t ] + Ft,3E[xtx̂t] + Ωξ (43)

E[x̂2
t+1] = Gt,1E[x2

t ] +Gt,2E[x̂2
t ] +Gt,3E[xtx̂t] +K2

t Ωω +Ωη (44)

E[xt+1x̂t+1] = Ht,1E[x2
t ] +Ht,2E[x̂2

t ] +Ht,3E[xtx̂t] . (45)
The derivatives of the non-central moments with respect to Lt and Kt obey the following equations,
for i = 1, ..., T ,

∂E[x2
t+i]

∂Lt
= at+i−1,1Lt + bt+i−1,1 (46)

∂E[x̂2
t+i]

∂Lt
= at+i−1,2Lt + bt+i−1,2 (47)

∂E[xt+ix̂t+i]

∂Lt
= at+i−1,3Lt + bt+i−1,3 (48)

and
∂E[x2

t+i]

∂Kt
= αt+i−1,1Kt + βt+i−1,1 (49)

∂E[x̂2
t+i]

∂Kt
= αt+i−1,2Kt + βt+i−1,2 (50)

∂E[xt+ix̂t+i]

∂Kt
= αt+i−1,3Kt + βt+i−1,3 , (51)

with a⃗, b⃗, α⃗ and β⃗ given by the following recursive equations

a⃗t+1 =

(
at+1,1

at+1,2

at+1,3

)
=

F⃗t+1 · a⃗t
G⃗t+1 · a⃗t
H⃗t+1 · a⃗t

 (52)

b⃗t+1 =

(
bt+1,1

bt+1,2

bt+1,3

)
=

F⃗t+1 · b⃗t
G⃗t+1 · b⃗t
H⃗t+1 · b⃗t

 (53)

α⃗t+1 =

(
αt+1,1

αt+1,2

αt+1,3

)
=

F⃗t+1 · α⃗t

G⃗t+1 · α⃗t

H⃗t+1 · α⃗t

 (54)

β⃗t+1 =

(
βt+1,1

βt+1,2

βt+1,3

)
=

F⃗t+1 · β⃗t

G⃗t+1 · β⃗t

H⃗t+1 · β⃗t

 . (55)
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The initial conditions for Eqs. 52- 55 are

a⃗t =

2(B2 + C2)E[x̂2
t ]

2B2E[x̂2
t ]

2B2E[x̂2
t ]

 (56)

b⃗t =

 2ABE[xtx̂t]
2ABE[x̂2

t ]− 2BKtH(E[x̂2
t ]− E[xtx̂t])

AB(E[x̂2
t ] + E[xtx̂t])−BKtH(E[x̂2

t ]− E[xtx̂t])

 (57)

α⃗t =

 0
2H2(E[x2

t ] + E[x̂2
t ]− 2E[xtx̂t]) + 2Ωω + 2D2E[x2

t ]
0

 (58)

β⃗t =

 0
−2H(A+BLt)(E[x̂2

t ]− E[xtx̂t])
AH(E[x2

t ]− E[xtx̂t])−BLtH(E[x̂2
t ]− E[xtx̂t])

 . (59)

By observing that the expected accumulated cost, Eq. 19 (adapted to the one-dimensional case), will
be a function of E[x2

t ] and E[x̂2
t ], for t = 1, ..., T − t, and by using Eqs. 46-51, we can rewrite Eqs.

36-37 as

∂

∂Lt

T−t∑
i=0

E[jt+i|µt,Σt] = 2RtE[x̂2
t ]Lt+

+

T−t∑
i=1

[(Qt+iat+i−1,1 +Rt+iL
2
t+iat+i−1,2)Lt+

+ (Qt+ibt+i−1,1 +Rt+iL
2
t+ibt+i−1,2)] = 0

(60)

and

∂

∂Kt

T−t∑
i=0

E[jt+i|µt,Σt] =

T−t∑
i=1

[(Qt+iαt+i−1,1 +Rt+iL
2
t+iαt+i−1,2)Kt+

+ (Qt+iβt+i−1,1 +Rt+iL
2
t+iβt+i−1,2)] = 0 .

(61)

Therefore, from Eqs. 60-61, we have the following instantiations of Eqs. 38-39 for the optimal
control and filter gains at time t, L∗

t and K∗
t ,

L∗
t = −Lnum

t

Lden
t

(62)

K∗
t = −Knum

t

Kden
t

, (63)

with

Lnum
t =

T−t∑
i=1

(
Qt+ibt+i−1,1 +Rt+iL

2
t+ibt+i−1,2

)
, (64)

Lden
t = 2RtE[x̂2

t ]+

+

T−t∑
i=1

(Qt+iat+i−1,1 +Rt+iL
2
t+iat+i−1,2)

(65)

and

Knum
t =

T−t∑
i=1

(
Qt+iβt+i−1,1 +Rt+iL

2
t+iβt+i−1,2

)
, (66)

Kden
t =

T−t∑
i=1

(
Qt+iαt+i−1,1 +Rt+iL

2
t+iαt+i−1,2

)
. (67)

We can then use Eqs. 62-63, to implement Algorithm 2 and extract L∗
1,...,T−1, and K∗

1,...,T−2, for the
one-dimensional problem.
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A.7.2 Multi-Dimensional Case

For the multi-dimensional case, we derive Eqs. 38-39 for the classic LQG problem (Ci = 0 for
i =, .., c and Di = 0 for i =, .., d) in the presence of internal noise (Ωη ≥ 0) [14].

As a title of example, we derive here Eq. 38 for the optimal L∗
t (to be used in Algorithm 2), but

the approach would be the same for the optimal filter gains K∗
t . The extension to the more general

scenario including the multiplicative sources of noise would follow the same method. As outlined in
Appendix A.4, Eq. 19, the expected cost per step is given by

E[jt+i] = E[xt+i]
⊺Qt+iE[xt+i] + E[x̂t+i]

⊺L⊺
tRtLt+iE[x̂t+i]+

+ Tr[Qt+iΣxt+i
] + Tr[L⊺

t+iRt+iLt+iΣx̂t+i
],

(68)

for i = 0, ..., T − t.

When computing E[jt+i|µt,Σt] to write down Eq. 36 (with Ci = 0, i = 1, ..., c and Di = 0,
i = 1, ..., d), and derive Eq. 38, the coefficients multiplying E[x̂t]E[x̂t]

⊺ coming from the term
E[xt+i]

⊺Qt+iE[xt+i] in Eq. 68 will be the same as the ones multiplying Σx̂t and coming from the
term Tr[Qt+iΣxt+i

]. The same holds for the coefficients multiplying respectively E[xt]E[x̂t]
⊺ and

Σxt,x̂t
.

Similarly, we can group together the coefficients coming from the other two factors
E[x̂t+i]

⊺L⊺
tRtLt+iE[x̂t+i] and Tr[L⊺

t+iRt+iL
⊺
t+iΣx̂t+i ] in Eq. 68.

We now note that the terms dependent on Lt appearing in E[jt+i|µt,Σt] will show a dependence
on the afore-mentioned moments E[x̂t]E[x̂t]

⊺, Σx̂t , E[xt]E[x̂t]
⊺ and Σxt,x̂t . More specifically, the

quadratic factors in Lt will only depend on E[x̂t]E[x̂t]
⊺ and Σx̂t . Taken together, these observations

lead to the following form for Eq. 36,

JtL∗
tE[x̂tx̂

⊺
t ] + StE[xtx̂

⊺
t ] + PtE[x̂tx̂

⊺
t ] = 0, (69)

where we have used Σx̂t
+ E[x̂t]E[x̂t]

⊺ = E[x̂tx̂
⊺
t ] and Σxt,x̂t

+ E[xt]E[x̂t]
⊺ = E[xtx̂

⊺
t ].

Therefore, to find the optimal control gains L∗
t from Eq. 69, we only need to compute the coefficients

Jt, St and Pt, similar to what we have done for the one-dimensional case in Appendix A.7.1. As
before, we can compute the coefficients Jt, St and Pt by only looking at the first two terms appearing
in Eq. 68, that is E[xt+i]

⊺Qt+iE[xt+i] and E[x̂t+i]
⊺L⊺

tRtLt+iE[x̂t+i]. By using ([37])

∂v⃗⊺Xw⃗

∂X
= v⃗w⃗⊺, (70)

∂v⃗⊺X⊺w⃗

∂X
= w⃗v⃗⊺, (71)

∂

∂X
(v⃗⊺X⊺NXv⃗) = 2NXv⃗v⃗⊺, (72)

where v⃗ and w⃗ are vectors and N is a symmetric matrix, we obtain

Jt = 2Rt + 2

T−t∑
i=1

[
V ⊺
t+i−1(Qt+i + L⊺

t+iRt+iLt+i)Vt+i−1

]
(73)

St = 2

T−t∑
i=1

{
V ⊺
t+i−1

[
Qt+i

(
µt+i
Lt=0,(I,0)

)
1
+ L⊺

t+iRt+iLt+i

(
µt+i
Lt=0,(I,0)

)
2

]}
(74)

Pt = 2

T−t∑
i=1

{
V ⊺
t+i−1

[
Qt+i

(
µt+i
Lt=0,(0,I)

)
1
+ L⊺

t+iRt+iLt+i

(
µt+i
Lt=0,(0,I)

)
2

]}
(75)

with Vt+i given by

Vt+i =

i∏
j=1

(A+BLt+j)B (76)

for i = 1, ..., T − t, and
Vt = B . (77)
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In Eqs. 74-75,
(
µt+i
Lt=0,(·,·)

)
, is a vector whose elements are m×m matrices:

µt+i
Lt=0,(·,·) =

(µt+i
Lt=0,(·,·)

)
1(

µt+i
Lt=0,(·,·)

)
2

 (78)

The subscript (·, ·) indicates the initial condition (i = 0) for the evolution of µt+i
Lt=0,(·,·), with I

denoting the m×m identity matrix and 0 being an m×m matrix whose elements are all zeros, e.g.,

µt
Lt=0,(I,0) =

(
I
0

)
. (79)

µt+i
Lt=0,(·,·) is updated through the following equations

µt+i
Lt=0,(·,·) =

{
M̃tµ

t
Lt=0,(·,·), for i = 1

Mt+i−1µ
t+i−1
Lt=0,(·,·), for i = 2, ..., T − t

(80)

with Mt given by Eq. 22 and M̃t having the same form as the block matrix Mt, but with Lt = 0,

M̃t =

(
A 0

KtH A−KtH

)
. (81)

From Eq. 69 we can then write for Eq. 38

L∗
t = −J−1

t (StE[xtx̂
⊺
t ] + PtE[x̂tx̂

⊺
t ])E[x̂tx̂

⊺
t ]

† (82)

where ·† denotes the pseudoinverse operation. Note that Jt is a symmetric p × p matrix with
det[Jt] > 0 and therefore invertible. Due to the initial conditions for Σx̂1

and E[x̂1], the symmetric
matrix E[x̂tx̂

⊺
t ] could have a null determinant: for this reason we use the pseudoinverse operation.

This consideration is relevant only for an initial transient: after a certain time t̃ > 0 (depending on
the dynamics parameters) we would have det[E[x̂t̃x̂

⊺
t̃
]] > 0 and E[x̂tx̂

⊺
t ]

† = E[x̂tx̂
⊺
t ]

−1, due to the
properties of the pseudoinverse. With Eq. 82 we can implement Algorithm 2 to find the optimal
control gains L∗

1,...,T−1. The derivation of Eq. 39 for the optimal filter gains K∗
t would follow the

same procedure. To extend the presented approach to the case with multiplicative noise, we need
to propagate the terms depending on Ci, i = 1, ..., c and Di, i = 1, ..., d coming from the factors
Tr[Qt+iΣxt+i ] and Tr[L⊺

t+iRt+iLt+iΣx̂t+i ] in Eq. 68, similarly to what we have done with the
other terms in Eq. 80, but using ([37])

∂

∂X
Tr[ÃXB̃] = Ã⊺B̃⊺, (83)

∂

∂X
Tr[ÃX⊺B̃] = B̃Ã, (84)

∂

∂X
Tr[ÃXB̃X⊺C̃] = Ã⊺C̃⊺XB̃⊺ + C̃ÃXB̃ (85)

where Ã, B̃ and C̃ are matrices. We observe that, even when considering multiplicative noise, Eq.
82 will still be valid: only the matrices Jt, St and Pt will change, including now also the terms
depending on Ci, i = 1, ..., c, and Di, i = 1, ..., d.

From the form of Eq. 82, we can see why, mathematically, the control gains decrease when the
internal noise level is increased: the factor E[x̂tx̂

⊺
t ] will get bigger and bigger as Ωη gets larger.

A.8 Switching Linear Dynamics

We discuss here how to extend our approach to switching linear dynamics. One of the underlying
assumptions in this work and in [1], as outlined in Section 1, is that the agent has complete knowledge
of the updating rules of the latent dynamical system. By using the same set of matrices to update
the state and the state estimate, we implicitly assume that all uncertainty in the estimation process
arises solely from noise sources: the problem of inferring the matrices A and B goes beyond the
objectives of this approach. For this reason, to extend our work to the more general and realistic case
of switching linear dynamics (SLD), we can consider a matrix A depending on the time step t, At.
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A complete formulation of SLD might require adding another variable, a discrete switch variable
st regulating the way the matrices At vary with time and context (see [38]). Given that in our case
the agent has access to the updating rules of the dynamical system, we can omit st (the agent does
not have to infer st and At) and directly consider the case in which we have a predetermined set
of matrices A1,...T−1. The same applies to the matrix B, that can be replaced by B1,...T−1. Note
that to preserve linearity we assume At and Bt to be independent on x and x̂. We consider here the
multidimensional case to be as general as possible. To extend the GD algorithm we only need to
modify the block matrix Mt that we use to update the moments Σt,St, µt and eventually propagate
the expected cost E[J ] through Eq. 19. Indeed, once we can compute the expected cost at fixed control
and filter gains, L1,...,T−1, and K1,...T−2, we can use Algorithm 1 to define the objective function to
be minimized through Gradient Descent with respect to Lt and Kt. To update the block matrix Mt

we have to substitute A and B respectively with A1,...T−1 and B1,...T−1 in Eq. 22. To handle the
potentially high computational costs of performing a numerical Gradient Descent, we introduced the
analytical counterpart of the GD algorithm, the FPOMP algorithm. For the one-dimensional case,
it supports all the noise sources mentioned in Section 1 and Appendix A.1 (additive, multiplicative
and internal). We extended this algorithm to the multi-dimensional case for additive and internal
noise in Appendix A.7.2 for the sake of simplicity, leaving the more general version for future work
(Appendix A.7.2 outlines how this can be done). Here, we extend the afore-mentioned FPOMP
algorithm (for both one-dimensional and multi-dimensional cases) to switching linear dynamics,
following a similar procedure to that of the numerical algorithm. For the one-dimensional case, we
replace A and B respectively with At and Bt in Eqs. 40-42,and 56-59. For the multi-dimensional
case we have to substitute A with At+j and B with Bt+j in Eq. 76 and B with Bt in Eq. 77. Finally,
as previously done, we replace A with At in Eq. 81 for M̃t. With these changes, we can implement
Algorithm 2 for the case with switching linear dynamics.

A.9 Experiments

A.9.1 One-Dimensional Case

We consider a one-dimensional (m = p = k = 1) reaching task, in which all noise sources are
present: additive, control and signal-dependent, and internal. We show that, for non-zero internal
noise, Ωη > 0, our GD and FPOMP algorithms (see also Appendix A.9.4) outperform the widely
used algorithm of [1] (Fig. 6a). Parameters of the system are listed in Table 2 in Appendix A.9.5
(note that here we call ση =

√
Ωη).

Figure 4: Enhanced performance with internal noise. (a) E[J ], computed by averaging the quantity
from Eq. 5 over 50k trials, as a function of ση, with error bars (SEM - not visible as too small), for
TOD and GD algorithms. (b-c) Optimal control and filter gains (we also display the solutions of
FPOMP algorithm to show the convergence to the same solution).

The observed enhanced optimality is due to the different modulation of L1,...,T−1 and K1,...,T−2

while varying ση (Fig. 4b-c). Importantly, our solution leads to control gains that decrease with an
increase in internal noise, while the TOD solution does not show a strong dependence on the internal
noise magnitude (Fig. 4b). For a further discussion, see the next Section.
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A.9.2 One-Dimensional Case - The Validity of Orthogonality Principle in the Presence of
Internal Noise

In the presence of internal noise the optimal solution no longer is the one that minimizes Ωt =
E[x̂tx̂

⊺
t ]−E[xtx̂

⊺
t ] (Fig. 5a): the orthogonality principle, which would require Ωt = 0,∀t = 1, ..., T ,

does not hold anymore for ση > 0. In contrast, the optimal strategy seems to favour lower values
for Γt = E[xtx

⊺
t ] − E[xtx̂

⊺
t ], as shown in Fig. 5b. This allows the system to filter out the internal

fluctuations that affect the estimation process. In such a way, those fluctuations correlate less with the
dynamics of the latent state x. This mechanism results in a slightly (but significantly) larger absolute
estimation error |et| =

√
E[(xt − x̂t)2] =

√
Ωt + Γt, for the GD solutions (Fig. 5c), that seems to

help in decorrelating the internal noise from the state evolution. This "decorrelation mechanism" is
achieved through an intertwined modulation of control and filter gains. Such a relationship emerges
even in the absence of multiplicative noise: as discussed in Appendix A.3, the presence of internal
noise breaks the separation principle, making Lt and Kt interdependent.

In Appendix A.9.3, we further investigate this dependence through an eigenvector decomposition of
the dynamics, showing also how our optimal solution leads to a good generalizability to other levels
of internal noise. In Appendix A.9.4 we show that the FPOMP algorithm matches the solutions of the
numerical GD, leading to the same performance.

Figure 5: Filtering out the internal fluctuations. (a) Ωt, averaged over time (we indicate the time
average with ⟨·⟩), as a function of ση for TOD and GD algorithms. (b) ⟨Γ⟩ as a function of ση. (c)
⟨e⟩ as a function of ση. The error bars (± 1SEM from Monte Carlo simulations) are not visible as
too small. The system parameters are the same as the 1D problem discussed in the previous Section.

A.9.3 One-Dimensional Case - Eigenvector Analysis and Adaptability of the Optimal Solution

Figure 6: An intertwined modulation of control and filter gains. (a) Angles θt between the two
eigenvectors of the matrix Mt, at different levels of internal noise σoptim

η , for TOD and GD algorithms.
(b) "Adaptability" of the two solutions; the solution found by the GD algorithm (right panel)
generalizes better than the one by TOD (left panel) when optimized for a certain level of internal noise,
σoptim
η , and tested on another one, σtest

η : for larger σoptim
η , the generalization property improves

thanks to due modulation of θt.

We consider the matrix Mt, defined in Eq. 22, that regulates the dynamics of the mean and covariance
of x and x̂, and therefore of Ωt and Γt. The optimal solution arises from the adjustment of the
angle θ between the two eigenvectors (we are considering here a one-dimensional case) of Mt: as
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ση increases, θ also increases, thanks to the joined modulation of Lt and Kt with ση (Fig. 6a).
Increasing θ allows the system to filter the internal fluctuations (see next paragraph for the details),
and to better generalize to other levels of ση (Fig. 6b).

Eigenvector Decomposition - Mathematical Details In one dimension we can write the update
equations for

Γt = E[x2
t ]− E[xtx̂t] (86)

Ωt = E[x̂2
t ]− E[xtx̂t] (87)

as (
Γt+1

Ωt+1

)
=Mt

(
Γt

Ωt

)
+

(
Ωξ + C2L2

tE[x̂2
t ]

Ωη +K2
t Ωω +K2

t D
2E[x2

t ]

)
(88)

where

Mt = (A−KtH)

(
A −BLt

−KtH A+BLt −KtH

)
. (89)

The eigenvectors ofMt are given by

w⃗1 =

(
−1
1

)
(90)

w⃗2 =

(
BLt/KtH

1

)
. (91)

Note that the angles θt between these two eigenvectors are the same as the angles between the
eigenvectors of the matrix Mt. Indeed, the eigenvectors of Mt are given by

v⃗1 =

(
1
1

)
(92)

v⃗2 =

(
−BLt/KtH

1

)
. (93)

A parity operation (along the x-axis) maps ones into the others, preserving the angles. Therefore,
the results presented in Fig. 6 hold also for the matrixMt. By looking at the modulation of w⃗2,
while changing ση , in the plane (Γt − Ωt), we can provide a heuristic interpretation of the different
solutions found by TOD and GD algorithms. As ση increases, the angle between w⃗1 and w⃗2 gets
larger for both algorithms. However, such a modulation is much more pronounced in GD solution, as
we can see in Fig. 6a. Moreover, if only additive noise were considered, we would not observe any
modulation of θt with ση in TOD solution (for a confirmation of this see Appendix A.9.7: without
multiplicative noise, there is no modulation of the control gains with ση in TOD derivation).

As we can see in Fig. 7, the joined modulation of Lt and Kt causes w⃗2 to get closer and closer
to the y-axis in GD solution (green line). This configuration results in a more effective filtering
of the internal fluctuations, decoupling them from the dynamics of the latent state. Indeed, these
fluctuations are taking place on Ωt (see Eq. 88). This result is in line with what we observed in the
previous Sections regarding the relationship between internal noise and the separation principle: in
order to filter the internal fluctuations affecting the estimation process, the optimal solution involves
an intertwined optimization of control and filter gains, regardless of the presence of multiplicative
noise. Moreover, it also aligns with the observed decrease of Lt with ση (see Figs. 4 and 2): lowering
the control gain allows w⃗2 to be closer to the y-axis. Thus, this consideration of eigenvectors can
qualitatively explain the trends observed in Fig. 5 for ⟨Γ⟩ as a function of ση for TOD and GD
solutions.
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Figure 7: Eigenvector decomposition of the dynamics. We show here a qualitative representation of
the eigenvectors of the matrixMt in the plane (Γt,Ωt). The black arrow represents the "shared"
eigenvector w⃗1, while the blue (green) arrow represents w⃗2 for TOD (GD) solution. Note that, as can
be seen in Fig. 4, the optimal Lt are negative, while the optimal Kt are positive.

A.9.4 One-Dimensional Case - FPOMP

We show that the FPOMP and GD algorithms yield the same performance in the one-dimensional
problem introduced in Section 3, confirming their equivalence as discussed in Section 3.

Figure 8: Accumulated cost difference. Difference of E[J ] for GD and FPOMP solutions (computed
by averaging the quantity from Eq. 5 over 50k trials), as a function of ση, with error bars (mean ±
1SEM from Monte Carlo simulations).

A.9.5 One-Dimensional Case - Parameters

We set c = d = 1.

Table 2: Parameters of the one-dimensional problem

Name Description value

A Linear map for the system dynamics 1.0
B Scaling of the control signal 1.0
C Scaling matrix for control-dependent noise 0.5
D Scaling for signal-dependent noise in the sensory feedback 0.5
H Observation matrix 1
Rt Control-dependent cost at each t < T 1
Qt Task-related cost at each time t < T 1
QT Task-related cost at time t = T 20
T time steps 100
E[x̂1] = E[x1] Initial condition for the mean state and state estimate 1.0
Σx1

Initial covariance of the state 0.0
Σx̂1

Initial covariance of the state estimate 0.0
Ωξ Covariance matrix of the additive Gaussian noise ξt 0.52

Ωω Covariance matrix of the additive Gaussian noise ωt 0.52

ση Standard deviation of the additive internal Gaussian noise ηt {0.0 : 0.1 : 2.0}
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A.9.6 One-Dimensional Case - Suboptimality of TOD Solution at Fixed Filters

Here we briefly show that, even when there is no internal noise but convergence of the algorithm
has not been achieved, the solution proposed in [1] does not provide the optimal control law. We
demonstrate this in a one-dimensional example, using the same parameters shown in Appendix
A.9 (but the result is valid in general), while only varying the scaling matrix for the multiplicative
sensory noise D and keeping ση = 0. We fix the filter gains at the suboptimal constant value
K1,...,T−2 = A = 1.0, and optimize the vector L1,...,T−1 using TOD and GD algorithms. In Fig. 9
we can see how TOD control law leads to a higher expected accumulated cost E[J ]. This is because
control optimization implies already the optimality of the estimator, by using the unbiasedness
condition (that implies the orthogonality principle, as commented in Appendix A.3.1).

We note that a similar performance difference between the two algorithms would be observed if we
fixed the control gains and optimized the filter gains.

Figure 9: Enhanced performance when optimizing control at fixed filter gains and zero internal noise.
We plot the expected accumulated cost E[J ], computed by averaging the quantity from Eq. 5 over
50k trials, as a function of the scaling matrix D, with error bars (mean ± 1SEM from Monte Carlo
simulations, error bars not visible as too small), for the two algorithms TOD and GD.

A.9.7 LQG with Internal Noise: A Simplified Problem to Validate FPOMP

We consider here the same problem as the one described in Section 3, but without any multiplicative
sources of noise (see parameters in Appendix A.9.8, Table 4). This serves as a validation of the
FPOMP algorithm derived in Appendix A.7.2. In Fig. 10a, we see how using the FPOMP algorithm to
optimize the control gains Lt (at fixed filter gains Kt given by the TOD solution) leads to increasingly
better performance (orange dashed line) as we increase the level of internal noise.

However, this solution does not correspond to the optimal one, given that the estimator is still
optimized through the TOD algorithm. Indeed, when using the numeric GD to get the optimal Lt and
Kt, we obtain a lower accumulated cost (green dashed line).

The qualitative features found for the sensorimotor task (Section 3, Fig. 2b) are confirmed here:
control magnitude decreases as internal noise increases (Fig. 10b). We can also observe how TOD
solution does not enforce any modulation of the control with respect to the internal noise level if only
additive noise is considered. In contrast, in the FPOMP algorithm such a modulation takes place (Fig.
10b), leading to a lower accumulated cost (Fig. 10b).

An interesting feature of our algorithm is that, being completely "analytical", it could help improving
the numerical solutions. Indeed, due to a possibly shallow landscape (vanishing gradient) in the
parameters space (by parameters we mean now the coefficients of L1,...,T−1 and K1,...,T−2) and due
to potentially limited computation time, the GD optimization could stop in the proximity of the global
optimum, without fully reaching it. In Fig. 10c, we show how, taking the GD solution for the optimal
filter gains and re-optimizing the control gains Lt using the FPOMP algorithm we get a small but
significant performance boost, with small differences in the final Lt vector (we show, as an example
the first component of this vector in Fig. 10d). This also confirms that our algorithm finds the optimal
solutions. The extensions to the estimator optimization and to the multiplicative case are discussed in
Appendix A.7.2.
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Figure 10: Application of the FPOMP algorithm. (a) Expected accumulated cost E[J ], computed by
averaging the quantity from Eq. 5 over 50k trials, as a function of the internal noise level ση, with
error bars (mean ± 1SEM from Monte Carlo simulations, error bars not visible as too small) and for
TOD, GD and FPOMP (at fixed filters given by TOD solution). (b) Magnitude of the control gain
vector as a function of time for TOD and FPOMP (at fixed filters given by TOD solution) solutions.
(c) Same as (a), but comparing GD and FPOMP (now at fixed filters given by GD solution). (d) First
component of the vector Lt for the solution given by GD and FPOMP (now at fixed filters given by
GD solution).

A.9.8 Multi-Dimensional Case - Parameters

For the sensorimotor task described in Section 3 and the task for the LQG problem with additive
internal noise (Appendix A.9.7), the discrete-time dynamics is the same as in [1],

p(t+∆t) = p(t) + ṗ(t)∆t (94)
ṗ(t+∆t) = ṗ(t) + f(t)∆t/m (95)
f(t+∆t) = f(t)(1−∆t/τ2) + g(t)∆t/τ2 (96)
g(t+∆t) = g(t)(1−∆t/τ1) + u(t)(1 + σεεt)∆t/τ1 (97)

We have therefore the following system parameters (with c = d = 1)

A =

1 ∆t 0 0
0 1 ∆t/m 0
0 0 1−∆t/τ2 ∆t/τ2
0 0 0 1−∆t/τ1

 (98)

B = (0 0 0 ∆t/τ1)
⊺ (99)

C = (0 0 0 σε∆t/τ1)
⊺ (100)

H =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (101)

D =

σρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (102)
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Q1,...,T−1 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (103)

QT = p⃗p⃗⊺ + v⃗v⃗⊺ + f⃗ f⃗⊺ (104)

R1,...,T−1 =
r

T − 1
(105)

RT = 0 (106)
p⃗ = (1 0 0 0) (107)
v⃗ = (0 wv 0 0) (108)

f⃗ = (0 0 wv 0) (109)

Ωξ =

0 0 0 0
0 σ2

ξ 0 0
0 0 0 0
0 0 0 0

 (110)

Ωω = σ2
ω (111)

Ωη =


σ2
η 0 0 0
0 σ2

ηv
0 0

0 0 σ2
ηf

0

0 0 0 σ2
ηc

 (112)

with the initial conditions given by
E[x1] = (z 0 0 0)

⊺ (113)
E[x̂1] = E[x1] (114)

Σx1
=

σ2
z 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (115)

Σx̂1
=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (116)

For the sensorimotor task we have (std = standard deviation)

Table 3: Parameters of the sensorimotor task

Name Description value

∆t time-step (s) 0.010
m mass of the hand (Kg), modelled as a point mass 1
τ1 time constant of the second order low pass filter 0.04
τ2 time constant of the second order low pass filter 0.04
r Control-dependent cost at each t < T 1e−5

wv Task-related cost at time t = T for the velocity 0.2
wf Task-related cost at time t = T for the force 0.01
T time steps 100
z Target position 0.15
σz Target position standard deviation 0.0
σξ std of the additive Gaussian noise ξt 0.0
σω std of the additive Gaussian noise ωt 0.0
σε std of the control-dependent noise εt 0.5
σρ std of the signal-dependent noise ρ 0.5
ση std of the additive internal noise ηt for the position estimate {0.0, 0.005, 0.05, 0.5}
σηv

std of the additive internal noise ηt acting on the velocity estimate 0
σηf

std of the additive internal noise ηt for the force estimate 0
σηg

std of the additive internal noise ηt for the estimate of g 0
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while for the LQG problem with internal noise we consider

Table 4: Parameters of the LQG problem with internal noise

Name Description value

∆t time-step (s) 0.010
m mass of the hand (Kg), modelled as a point mass 1
τ1 time constant of the second order low pass filter 0.04
τ2 time constant of the second order low pass filter 0.04
r Control-dependent cost at each t < T 1e−5

wv Task-related cost at time t = T for the velocity 0.2
wf Task-related cost at time t = T for the force 0.01
T time steps 50
z Target position 0.15
σz Target position standard deviation 0.0
σξ std of the additive Gaussian noise ξt 0.5
σω std of the additive Gaussian noise ωt 0.5
σε std of the control-dependent noise εt 0.0
σρ std of the signal-dependent noise ρt 0.0
ση std of the additive internal noise ηt for the position estimate {0.0, 1.0, 2.0}
σηv

std of the additive internal noise ηt acting on the velocity estimate 0
σηf

std of the additive internal noise ηt for the force estimate 0
σηg

std of the additive internal noise ηt for the estimate of g 0

Note that in both the multi-dimensional problems the initial condition for the state x1 is the actual
target position: in such a way the control signal ut aims at minimizing the distance from xt = 0.

A.9.9 Application to Higher-Dimensional Problems

We demonstrate how our algorithm scales to high-dimensional problems, building on the discussion in
the final paragraph of Section 3. We implement a high-dimensional task to show the generalizability
of the GD algorithm. The same results would apply to its analytical counterpart, the FPOMP
algorithm, as discussed in Appendix A.5, and Appendices A.9.4, A.9.7. In this scenario, we set the
dimensions of the state, control, and observation to m = 10, p = 4, and k = 10, respectively. Note
that this significantly increases the dimensionality compared to the problem in Section 3 (for the
multi-dimensional case).

Figure 11: High-dimensional task. (a) Expected accumulated cost as a function of ση for TOD (blue
dots) and GD (green dots) algorithms. We see that even in this high-dimensional task, GD solutions
outperform the ones from [1]. To compute the expected cost, we used Algorithm 1 (but the results
are confirmed by Monte Carlo simulations). (b) Pseudo-determinant of the control gains L (averaged
over time), denoted as |L|p as a function of ση for TOD (blue dots) and GD (green dots) algorithms.

The system matrices A, B, and D are random matrices with elements drawn from a standard normal
distribution (mean zero, standard deviation one), while C is defined as C = σεB. The matrix H is
the identity matrix, and the time horizon is set to T = 10. All elements of the state and state estimate
vectors are initialized to one. We used σξ = σω = σρ = σε = 0.5 and varied ση across values of 0.0,
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0.5, and 1.0. The matrices defining the quadratic cost functions, Q and R, are identity matrices at
each time step. All the findings from Section 3 are confirmed in this high-dimensional setting (Fig.
11). The GD algorithm continues to outperform the solutions in [1], with performance improving as
internal noise increases, and the control gain magnitude decreases as internal fluctuations grow. In
fact, as internal noise increases, the optimal strategy involves reducing control over the system. To
quantify control magnitude, we compute the pseudo-determinant of L1,··· ,T−1 and average it over
time. The pseudo-determinant, a generalization of the determinant for non-square matrices, provides
a measure of the volume scaling induced by the control gains.
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