
000 050

001 051

002 052

003 053

004 054

005 055

006 056

007 057

008 058

009 059

010 060

011 061

012 062

013 063

014 064

015 065

016 066

017 067

018 068

019 069

020 070

021 071

022 072

023 073

024 074

025 075

026 076

027 077

028 078

029 079

030 080

031 081

032 082

033 083

034 084

035 085

036 086

037 087

038 088

039 089

040 090

041 091

042 092

043 093

044 094

045 095

046 096

047 097

048 098

049 099

EHOP: A Dataset of Everyday NP-hard Optimization Problems

Anonymous ACL submission

Abstract

We introduce the dataset of Everyday Hard Opti�
mization Problems (EHOP), a collection of NP�
hard optimization problems expressed in natural
language. EHOP includes problem formulations
that could be found in computer science text�
books, versions that are dressed up as problems
that could arise in real life, and variants of well�
known problems with inverted rules. We find that
state�of�the�art LLMs, across multiple prompting
strategies, systematically solve textbook prob�
lems more accurately than their real�life and
inverted counterparts. We argue that this consti�
tutes evidence that LLMs adapt solutions seen
during training, rather than leveraging reasoning
abilities that would enable them to generalize to
novel problems.

1 Introduction

Many real�world tasks that people face in their
personal and professional lives are NP�hard opti�
mization problems. Such problems are as diverse
as planning family vacations, scheduling airline
crews (Gopalakrishnan and Johnson, 2005), and
allocating organ donations (Abraham et al., 2007).
People rarely enjoy solving these problems, and
they are not particularly good at solving them
either (Hidalgo�Herrero et al., 2013).

One of the most exciting promises of large
language models (LLMs) is that they can help
non�experts solve their real�world computational
problems when they express them in natural lan�
guage (NL). The hope is that a wide range of
users across a wide range of tasks will be able to
describe their problem to the LLM, and the LLM
will handle the difficult task of “problem solving,”
i.e., recognizing that the real�world problem can
be described in terms of a known computational
problem and then solving that problem efficiently
and optimally. In the case of NP�hard problems,
this could potentially be accomplished with the

Textbook: Given an undirected graph 𝐺, color
its nodes such that no two adjacent nodes have
the same color. Use as few colors as possible.
Costumed (💔 Parties with Exes): Your birth�
day is coming up, and you want to celebrate with
all your friends. You do not want people who
used to be in a relationship at the same party.
How many parties do you need, and who should
be invited to which party?
Inverted: Given an undirected graph 𝐺, color
its nodes such that no two non-adjacent nodes
have the same color. Use as few colors as pos�
sible.

Figure 1: Three variants of Graph Coloring in
EHOP.

LLM solving the problem by itself, e.g., through
chain�of�thought (CoT) reasoning (Fan et al.,
2024), or the LLM could convert the NL descrip�
tion into a linear program (LP) and solve it with
specialized tools (AhmadiTeshnizi et al., 2024).

However, recent work has raised the question
of “reasoning vs. reciting”: are LLMs actually car�
rying out systematic problem�solving, or are they
simply adapting solutions for similar problems in
their training data (Mirzadeh et al., 2024; Wu et al.,
2024)? LLMs that can only solve problems whose
solution paths are documented on the Internet will
not fulfill the promise of opening general problem�
solving to lay users.

In this paper, we contribute to the reasoning
vs. reciting debate by introducing the dataset of
Everyday Hard Optimization Problems (EHOP),
which consists of NP�hard optimization prob�
lems presented in both textbook and real�world
variants. EHOP is based on three well�studied
problems (Graph Coloring, Knapsack, and
Traveling Salesman). We “dress up” the
instances of each problem with three different cos-

1

100 150

101 151

102 152

103 153

104 154

105 155

106 156

107 157

108 158

109 159

110 160

111 161

112 162

113 163

114 164

115 165

116 166

117 167

118 168

119 169

120 170

121 171

122 172

123 173

124 174

125 175

126 176

127 177

128 178

129 179

130 180

131 181

132 182

133 183

134 184

135 185

136 186

137 187

138 188

139 189

140 190

141 191

142 192

143 193

144 194

145 195

146 196

147 197

148 198

149 199

tumes (see Figure 1 for an example) that represent
real�world situations which require solving the un�
derlying problem. Furthermore, we add inverted
variants of all problems, which fundamentally
distort the solutions of the problem with a small
change in problem formulation. If LLMs perform
reasoning, they should solve textbook, inverted,
and costumed problems at similar levels of accu�
racy. If they recite, we would expect textbook
problems, for which solution mechanisms are pre�
sented explicitly on the Internet, to be easier.

In our experiments on EHOP, we find that while
both GPT�4o (OpenAI, 2024) and Llama 3.1 70B
Instruct (Grattafiori et al., 2024) solve small text�
book instances quite well through CoT reasoning,
the proportion of textbook problems they solve
optimally is substantially higher than for the in�
verted and costumed variants, often by more than
20 percentage points. When we use these LLMs to
convert problems into LPs and solve the LPs with
a standalone tool, accuracy on textbook problems
is even higher and scales much better to larger in�
stance sizes, but the vulnerability to inversion and
costuming persists. This is evidence that LLMs
draw their apparent problem�solving capabilities
from an ability to adapt solutions seen in training
and struggle to generalize to novel problems.

We will make EHOP publically available upon
acceptance.

2 Related Work

LLMs have been shown to perform remarkably
well on benchmarks for complex problem�solving
tasks, such as tool use (Yao et al., 2023), complex
gameplay (Wang et al., 2023), and AI planning
(Stein et al., 2024). This has been attributed to
the ability of iterative prompting strategies such as
chain�of�thought (Kojima et al., 2022; Wei et al.,
2022) to perform general reasoning and problem
solving.

However, recent work has raised the question
of whether LLMs actually perform systematic
reasoning, or whether they are “reciting” solution
paths from their training data by adapting them
gracefully to the inference�time problem (Wu et
al., 2024; Kambhampati, 2024). The fact that LLM
reasoners often degrade in accuracy for larger
problem instances is one piece of evidence for
the recitation hypothesis. Furthermore, as long as
chains of thought are limited to a polynomial num�
ber of steps, transformers provably solve exactly
the problems that can be solved in polynomial

time (Merrill and Sabharwal, 2024), which fails
to cover most reasoning problems, for which no
optimal polynomial algorithms are known.

In this paper, we focus on NP�hard optimization
problems, with particular attention to the differ�
ence between textbook and everyday problems.
The performance of LLMs on NP�hard problems
has been investigated in a number of recent stud�
ies. NPHardEval (Fan et al., 2024) looks only
at textbook problems, including the three base
problems we consider here. GraphArena (Tang
et al., 2024) evaluates LLMs on NP�hard graph
problems on a variety of large real�world graphs,
and is also limited to textbook problems. NL4Opt
(Ramamonjison et al., 2022) and NLP4LP (Ahma�
diTeshnizi et al., 2024) provide evaluation datasets
on real�world NP�hard problems, but they are
not linked to the underlying textbook problems.
EHOP differs from all these datasets in that we
present the exact same instances of the base
problem both in textbook and real�world variants,
making it possible for the first time to measure the
impact of this distinction.

3 Everyday optimization problems

An optimization problem is called NP-hard if
every problem that can be solved in non�deter�
ministic polynomial time can be reduced to it
in polynomial time (Garey and Johnson, 1979).
While it is generally assumed that deterministic
algorithms that solve NP�hard problems must have
worst�case exponential runtime, problems in NP
are still of lower computational complexity than,
e.g., planning or reasoning. In this paper, we
focus on three well�known NP�hard optimization
problems: Graph Coloring, Knapsack, and
Traveling Salesman.

To construct EHOP, we first generate a number
of random instances for each of the three base
problems. Instances are concrete examples of a
problem; for example, an instance of the Graph
Coloring example in Figure 1 consists of a
specific graph 𝐺. We present each instance in its
Textbook form; in addition, we dress it up in real�
world costumes and invert it. This yields a total of
eight variants of each instance. Table 5 to Table 7
in the appendix show examples of all variants.

Not all instances of an NP�hard problem are
equally difficult. We therefore take special care to
ensure that experimental results remain compara�

2

200 250

201 251

202 252

203 253

204 254

205 255

206 256

207 257

208 258

209 259

210 260

211 261

212 262

213 263

214 264

215 265

216 266

217 267

218 268

219 269

220 270

221 271

222 272

223 273

224 274

225 275

226 276

227 277

228 278

229 279

230 280

231 281

232 282

233 283

234 284

235 285

236 286

237 287

238 288

239 289

240 290

241 291

242 292

243 293

244 294

245 295

246 296

247 297

248 298

249 299

ble across variants, especially when we invert the
problems.

3.1🖌 Graph Coloring

An instance of the Graph Coloring problem
consists of an undirected graph 𝐺 = (𝑉 ,𝐸). The
task is to assign each node a color such that no two
adjacent nodes have the same color, while using
the fewest colors possible.

Inverted Graph Coloring asks for color
assignments in which no two non-adjacent nodes
have the same color. For each instance 𝐺 of the
base problem, we take the complement of 𝐺 as
an instance of the inverted problem; it has an
edge between two nodes if and only if there is no
edge between them in 𝐺. Thus, the same coloring
will solve the inverted problem on the inverted
instance, ensuring identical difficulty.

In addition to the 🖌 Textbook variant, we have
constructed three costumes that are not obviously
about graph coloring:
🏫 Student Groups. 𝑉 represents a set of

students, and 𝐸 represents friendships. A teacher
wants to assign students to as few groups as pos�
sible, while ensuring that no student is distracted
by a groupmate who is also a friend.
💔 Parties with Exes. 𝑉 represents a person’s

set of friends, and 𝐸 represents which friends used
to be in a romantic relationship with each other.
This person wants to celebrate their birthday with
their friends while avoiding any awkwardness
arising from exes being at the same party. They
want to minimize the number of parties they have
to plan.
🥋 Taekwondo Tournament. 𝑉 represents

participants in a Taekwondo tournament, and 𝐸
represents which participants will be fighting one
another in the tournament. The tournament orga�
nizer wants to assign participants to warm�up
rooms without giving opponents the chance to
study each other in advance of the competition.

3.2🎒 Knapsack

An instance of the Knapsack problem consists
of a knapsack with some capacity 𝐶 ∈ ℕ and a set
of items with weights 𝑤1,…,𝑤𝑛 ∈ ℕ and values
𝑣1,…, 𝑣𝑛 ∈ ℕ. The task is to find a subset of items
that maximizes the sum of the values of these
items, under the constraint that their total weight
must not be greater than 𝐶.

In inverted Knapsack, the task is to minimize
the selected items’ total value, with the constraint
that the items’ total weight must be at least 𝐶. For
each instance of the base problem, we construct
an instance of the inverted problem by setting
the knapsack capacity to ∑𝑤𝑖 − 𝐶. Then the op�
timal solution of the inverted instance consists of
exactly the items that were left out of the knapsack
in the original instance, ensuring equal difficulty.

We have constructed the following costumes:
🍋 Lemonade Stand. We have 𝐶 liters of

lemonade to sell at our lemonade stand and would
like to sell it for as much money as possible. Each
of our 𝑛 customers offers to pay a price 𝑣𝑖 for 𝑤𝑖
liters of lemonade.
🏛 Sightseeing. We have 𝐶 hours to spend in

Paris and would like to visit attractions that give us
maximal total satisfaction. Each of the 𝑛 possible
attractions will give us some satisfaction 𝑣𝑖 and
take some time 𝑤𝑖 to visit.
🎉 Party Planning. We have a decoration bud�

get 𝐶 for the party we are planning, and we wish
to maximize the total coolness of our party. Each
potential decoration item has a coolness score of
𝑣𝑖 and a price of 𝑤𝑖.

3.3✈ Traveling Salesman

An instance of the Traveling Salesman prob�
lem consists of a set 𝐶 = {1,…, 𝑛} of cities,
and for any pair of cities, we have a distance
𝑑(𝑖, 𝑗) ∈ ℕ. The task is to find the shortest round
trip that visits all the cities. That is, we are looking
for a permutation 𝜋 : 𝐶 → 𝐶 that minimizes

𝑑(𝜋𝑛, 𝜋1) + ∑
𝑛−1

𝑖=1
𝑑(𝜋𝑖, 𝜋𝑖+1).

Inverted Traveling Salesman changes the
goal to maximizing the sum of the distances
rather than minimizing it. For each instance of the
base problem, we construct an instance of the in�
verted problem by converting each distance 𝑑(𝑖, 𝑗)
to 𝑚 − 𝑑(𝑖, 𝑗) + 𝑠, where 𝑚 = max𝑑(𝑖, 𝑗). We
sample a random shift 𝑠 ∈ {1,…, 𝑛} for each in�
stance to maintain some variety of edge weights.
This construction ensures that the optimal solu�
tions of an instance and its inverted instance are
the same.

We have constructed the following costumes:
📋 Task Schedule. 𝐶 represents a set of tasks

that have to be done daily, and 𝑑 represents the
time it takes to modify one’s workspace to transi�

3

300 350

301 351

302 352

303 353

304 354

305 355

306 356

307 357

308 358

309 359

310 360

311 361

312 362

313 363

314 364

315 365

316 366

317 367

318 368

319 369

320 370

321 371

322 372

323 373

324 374

325 375

326 376

327 377

328 378

329 379

330 380

331 381

332 382

333 383

334 384

335 385

336 386

337 387

338 388

339 389

340 390

341 391

342 392

343 393

344 394

345 395

346 396

347 397

348 398

349 399

tion between tasks. Note that the transition from
one day to the next captures the term 𝑑(𝜋𝑛, 𝜋1).
📆 Exercise Schedule. As their New Year’s res�

olution, a person will do a physical activity from
a set 𝐶 every day, never repeating until they’ve
exhausted the set, after which they will go through
it again in the same order as before. They want
to maximize the day�to�day variety of their activ�
ities by minimizing the similarity score 𝑑 between
adjacent activities.
🪑 UN Seating. A staff member at the United

Nations needs to figure out how to seat the rep�
resentatives 𝐶 from various countries around a
circular table. They want to minimize the total po�
litical tension 𝑑 between adjacent representatives.

4 Experiments

4.1 Dataset

The EHOP dataset consists of two parts: EHOP�
RANDOM and EHOP�HARD. Each of these two
sub�datasets consists of 150 distinct instances of
each of the three base problems (100 for Graph
Coloring in EHOP�HARD, see below), pre�
sented in each of the eight variants (Textbook
and three costumes × standard/inverted). In total,
EHOP has 6800 NL task descriptions.

To create EHOP�RANDOM, we randomly
sampled 25 instances of each base problem for
six different instance sizes: for Graph Color�
ing and Traveling Salesman, we generated
instances with 4, 5, 6, 7, 8, and 9 nodes/cities, and
for Knapsack, we generated instances with 4, 8,
12, 16, 20, and 24 items. We chose these scales to
represent a spectrum of difficulties ranging from
easy to hard. We determined the optimal solution
for each instance with an optimal solver.¹

EHOP�HARD contains similar instances that
are less vulnerable to being solved by greedy
heuristics; we will explain it in detail in Sec�
tion 5.3.

4.2 Models and Prompting

We evaluated GPT�4o (gpt-4o-2024-08-06) and
Llama�3.1�70B Instruct on EHOP (see Appen�
dix A for model details). For each LLM, we

¹Solvers for Graph Coloring and Traveling
Salesman were coded using the gurobipy package (Gurobi
Optimization LLC, 2024), and Knapsack instances were
solved using Google OR�Tools.

evaluated a number of prompting strategies; the
detailed prompts are in Appendix D.

1. One-Shot: We prompt the LLM for a solu�
tion to the NL task description, with a single
example and its optimal answer prepended
to the prompt. The example is from the same
variant and of the largest input size for the
base problem, e.g., a 9�node graph for all
Graph Coloring instances. This ensures
that any reduction in problem�solving accu�
racy is not caused by length generalization
issues, which are a known problem for trans�
formers (Zhou et al., 2024; Anil et al., 2022).

2. Zero-Shot Chain-of-Thought (CoT): The
task description is followed by the sentence
“Let’s think step by step.” (Kojima et al.,
2022)

3. One-Shot Chain-of-Thought (CoT): We
prepend to the prompt the same example
used in the one�shot case, this time with an
answer text that includes a chain of thought
resulting in a solution (Wei et al., 2022).

We also implemented an ILP Python prompting
strategy, which prompts the LLM to translate the
problem instance into Python code that calls the
Gurobi solver on an Integer Linear Program (ILP)
encoding of the instance (Gurobi Optimization
LLC, 2024). Unlike in the first three prompting
strategies, ILP Python does not attempt to solve
the optimization problems through LLM reason�
ing; the problem is solved exactly and optimally
by Gurobi, and the LLM merely translates the
NL specifications to code and then translates the
code’s output back into NL. If the code generated
by the LLM produces an error, we halt the process
and count it as a failure.

We chose Python as the ILP specification syn�
tax because this has been shown to outperform
LLM translations into domain�specific languages
(Bogin et al., 2024). We include results for spec�
ifying the ILPs in the domain�specific LP file
format in Appendix F. Note that the idea of
mapping NP�complete problems into ILPs using
LLMs was previously explored by AhmadiTesh�
nizi et al. (2024), but not evaluated as systemati�
cally as in this paper.

Finally, we compare LLM problem�solving ac�
curacy on each problem to greedy baselines. For
Graph Coloring, the greedy heuristic colors

4

https://developers.google.com/optimization/
https://docs.gurobi.com/projects/optimizer/en/current/reference/python.html
https://docs.gurobi.com/projects/optimizer/en/current/reference/fileformats/modelformats.html#formatlp
https://docs.gurobi.com/projects/optimizer/en/current/reference/fileformats/modelformats.html#formatlp

400 450

401 451

402 452

403 453

404 454

405 455

406 456

407 457

408 458

409 459

410 460

411 461

412 462

413 463

414 464

415 465

416 466

417 467

418 468

419 469

420 470

421 471

422 472

423 473

424 474

425 475

426 476

427 477

428 478

429 479

430 480

431 481

432 482

433 483

434 484

435 485

436 486

437 487

438 488

439 489

440 490

441 491

442 492

443 493

444 494

445 495

446 496

447 497

448 498

449 499

Figure 2: Percentage of instances solved optimally, as a function of instance size. Results are on the textbook
variants in EHOP�RANDOM.

each node with the smallest color (where colors
are represented by the numbers 1, 2, …) that does
not conflict with any neighbors that have already
been colored. Nodes are traversed in descending
order of degree. For Knapsack, the strategy
iterates through the items in descending order of
density (value divided by weight), adding each
item to the knapsack if it still fits in the remaining
capacity. For Traveling Salesman, we use the
strategy of always moving to the closest unvisited
city. We apply the greedy baselines directly to
the original problem instances. Note that all three
greedy strategies are linear�time algorithms which
always produce valid solutions, but give no guar�
antee of optimality.

4.3 Evaluation

We run all models with all prompting strategies
on all instances in EHOP and classify the correct�
ness of the output using the following scheme. An
incompatible response is syntactically flawed; it
can’t be parsed as a solution to the problem. An er-
roneous response can be parsed as a solution, but
it violates constraints of the underlying problem;
for instance, it assigns adjacent nodes in Graph
Coloring the same color. Among the remaining
responses, we distinguish between optimal and
suboptimal solutions, depending on whether they
find a configuration that optimizes the objective
as much as possible. ILP Python can additionally
produce ILP code failures if the LLM�generated
code cannot be executed without errors. See Ap�
pendix B for examples of each result category.

5 Results

5.1 Scaling to larger instances is hard, except
for ILP

Figure 2 gives an overview of the percentage of
instances for each textbook problem that were
solved optimally, as a function of input size.
For readability, we focus on One�Shot CoT since
it consistently outperformed One�Shot and Zero�
Shot CoT; full results are in Appendix F. We
find that as instances are scaled up, the accuracy
of most methods drops dramatically. The greedy
heuristics outperform all LLM�based methods ex�
cept ILP Python.

The ILP Python approach with GPT�4o main�
tains a higher accuracy even for larger instances.
In this condition, the LLM is still required to make
use of its “world knowledge” to flesh out the
textual problem into a fine�grained symbolic ILP
specification. However, it is freed up from hav�
ing to perform complex combinatorial reasoning
and keeping track of long chains of intermediate
results (Zhang et al., 2024), which becomes expo�
nentially harder as instances scale up. Unlike the
other strategies, the ILP approach does not expose
the LLM to the NP�hardness of the problem; the
complexity of the language�to�ILP translation task
grows linearly with input length.

5.2 Textbook is easier than other variants

We next measure whether the Textbook presenta�
tions are easier than the costumed and inverted
variants, in order to provide new evidence on
the reasoning vs. reciting debate. Recall from Sec�
tion 3 that we carefully designed the instances of

5

500 550

501 551

502 552

503 553

504 554

505 555

506 556

507 557

508 558

509 559

510 560

511 561

512 562

513 563

514 564

515 565

516 566

517 567

518 568

519 569

520 570

521 571

522 572

523 573

524 574

525 575

526 576

527 577

528 578

529 579

530 580

531 581

532 582

533 583

534 584

535 585

536 586

537 587

538 588

539 589

540 590

541 591

542 592

543 593

544 594

545 595

546 596

547 597

548 598

549 599

One�Shot Zero�Shot CoT One�Shot CoT ILP PythonProblem Variant GreedyGPT Llama GPT Llama GPT Llama GPT Llama
Textbook 42.0 9.3 60.7 38.7 60.0 52.0 56.0 14.0
Inverted −39.3 +4.7 −59.4 −38.7 −59.3 −52.0 −41.3 −7.3🖌 GCP

98.0

Costumed −6.2 −6.2 −6.5 −17.8 −4.7 −19.6 −43.8 +20.7
Textbook 22.7 15.3 48.0 37.3 50.0 37.3 89.3 51.3
Inverted +4.6 −7.3 +2.7 −2.6 −4.7 −26.0 −0.6 +6.0🎒 KSP

75.3

Costumed −2.0 −1.5 −1.8 −4.9 −2.2 −4.4 −7.5 −0.9
Textbook 34.7 28.7 31.3 25.3 37.3 25.3 86.0 15.3
Inverted −20.7 −24.0 −14.0 −11.3 −9.3 −15.3 −10.7 −10.6✈ TSP

30.7

Costumed −8.3 −14.0 −1.7 −5.5 −9.1 −8.0 −37.1 −11.5

Table 1: Percentage of instances solved optimally on EHOP�RANDOM, broken down by problem variant. Values
from the non�textbook variants are provided as their differences relative to Textbook. “Costumed” is the average
over the three costumes of each base problem.

GPT Llama
🖌 GCP 52.1% 66.4%
🎒 KSP 16.8% 37.6%
✈ TSP 4.8% 5.1%

Table 2: The percentages of LLM responses on EHOP�
RANDOM that were erroneous or incompatible, aver�
aged across prompting strategies and variants.

each base problem to be of equal difficulty across
variants.

As Table 1 shows, the methods we evaluated
perform better on the Textbook variant than on the
other variants in almost all conditions. The rows
labeled “inverted” represent the inverted Textbook
variants; the “costumed” rows are averages over
all three costumes. Results for the individual
variants, including ones that are inverted and cos�
tumed at the same time, are in Appendix F. The
drop is especially pronounced for the inverted
problems, which are worded in ways that make
them recognizably related to well�documented ar�
chetypes of NP�hard problems. This very likely
confuses the LLM, which might not register any
difference from the standard problem.

While the ILP Python prompting strategy
outperforms the others, it is still sensitive to
deviations from the textbook presentations. This
suggests that while the model no longer struggles
to perform the right computation, the task of trans�
lating a problem to code is nevertheless affected
by the ability to recognize the problem (when it
is costumed) or to recognize how it deviates from
the standard assumptions (when it is inverted).

5.3 LLMs rarely beat greedy heuristics

One of the most striking findings of Figure 2 is the
extent to which the greedy heuristics are compet�
itive with the LLM�based approaches: the greedy
approach is near�optimal on Graph Coloring,
outperforms CoT reasoning on Knapsack, and
is on par with it on Traveling Salesman.
This raises the question of whether the LLM�based
solvers achieve their relatively high accuracies
in Table 1 only because the instances in EHOP�
RANDOM are very easy for their size. This echoes
the point made by Tedeschi et al. (2023) that the
capabilities of a model can only be accurately
measured on sufficiently difficult datasets.

The gap between the LLM�based methods and
the greedy heuristics is smallest on Traveling
Salesman. This may be due to the fact that it
is relatively easy for the LLM to generate a valid
(if perhaps suboptimal) solution, as illustrated in
Table 2. In Traveling Salesman, any answer
that consists of 1 followed by a permutation of
the numbers 2,…, 𝑛 is a valid solution. On the
other hand, Graph Coloring and Knapsack
both have constraints which eliminate potential
solutions in more unpredictable ways.

We analyze the exact impact of instance diffi�
culty on the performance of the different strategies
by constructing a second sub�dataset of EHOP,
which we call EHOP�HARD. This dataset is gen�
erated similarly to EHOP�RANDOM, except we
only retain instances which the greedy heuristics
of Section 4.2 do not solve optimally. This results
in the Graph Coloring instances being limited
to instance sizes 6–9, as virtually all instances
with four or five nodes are solved optimally by the
greedy heuristic.

6

600 650

601 651

602 652

603 653

604 654

605 655

606 656

607 657

608 658

609 659

610 660

611 661

612 662

613 663

614 664

615 665

616 666

617 667

618 668

619 669

620 670

621 671

622 672

623 673

624 674

625 675

626 676

627 677

628 678

629 679

630 680

631 681

632 682

633 683

634 684

635 685

636 686

637 687

638 688

639 689

640 690

641 691

642 692

643 693

644 694

645 695

646 696

647 697

648 698

649 699

Figure 3: Percentage of instances solved optimally, as a function of instance size. Results are on the Textbook
variants in EHOP�HARD. Note that this plot uses different greedy heuristics than Figure 2.

One�Shot Zero�Shot CoT One�Shot CoT ILP Python GreedyProblem Variant GPT Llama GPT Llama GPT Llama GPT Llama (weak)
Textbook 16.0 1.0 25.0 7.0 25.0 16.0 60.0 2.0
Inverted −16.0 +4.0 −25.0 −7.0 −24.0 −16.0 −54.0 −1.0🖌 GCP

45.0

Costumed +5.3 −1.0 +0.7 −1.0 −0.7 −7.0 −52.7 +19.3
Textbook 8.7 5.3 18.0 10.7 14.7 31.3 92.0 45.3
Inverted +11.3 +9.4 +18.7 +15.3 +24.6 −17.3 −4.7 +8.0🎒 KSP

61.3

Costumed +2.2 +5.1 +3.6 +5.1 +9.5 −5.7 −8.0 −1.1
Textbook 15.3 8.0 24.7 12.0 20.7 6.0 87.3 13.3
Inverted −4.6 −6.7 −6.7 −5.3 −4.7 −2.7 −12.6 −7.3✈ TSP

—–

Costumed −1.7 −3.3 −3.6 −4.4 −11.6 −0.7 −33.7 −9.5

Table 3: Optimality rates on EHOP�HARD, as a function of problem variant. Formatting matches that of Table 1.

We repeat the analyses of Section 5.1 and Sec�
tion 5.2 on EHOP�HARD. The results are shown
in Figure 3 and Table 3. Note that we use a differ�
ent set of weak greedy heuristics than in Figure 2,
because EHOP�HARD is constructed such that
the original greedy heuristics solve none of the
instances optimally. For Graph Coloring, we
traverse the nodes in random order, rather than
in descending order of degree; for Knapsack,
we pick the highest�value, rather than the high�
est�density, items first. We call these heuristics
“weak” because they performed worse than the
original heuristics on EHOP�RANDOM.

The purely LLM�based approaches perform
much more poorly overall than in the experiments
on EHOP�RANDOM, giving further evidence to
the fact that they primarily follow a greedy strat�
egy. While their accuracy does not drop to zero,
they are still being systematically outperformed by
the “weak” greedy heuristics. The ILP approach
is largely unaffected, illustrating the strength of

the neurosymbolic translation�based method. The
overall pattern in Table 3 is still that the Textbook
variant is easier than the others, except for meth�
ods that already perform very poorly on Textbook.

5.4 Generalization over numbers is brittle

While the ILP method outperforms the other
prompting strategies in our experiments, it also
exposes an interesting weakness of LLMs as trans�
lators. Gurobi is an optimal solver for ILPs; thus,
those instances of EHOP that are not solved opti�
mally by ILP Python must be due to mistakes that
the LLM made in mapping the NL task description
to a linear program (or in mapping code output
back to NL). The instances of the same size differ
only in the values of the parameters; specifically
in Knapsack and Traveling Salesman, the
prompts have identical length and content, and the
only change is in some numbers. Thus, the fact that
ILP Python does not yield 100% or 0% optimal
accuracy among the instances of the same size in

7

700 750

701 751

702 752

703 753

704 754

705 755

706 756

707 757

708 758

709 759

710 760

711 761

712 762

713 763

714 764

715 765

716 766

717 767

718 768

719 769

720 770

721 771

722 772

723 773

724 774

725 775

726 776

727 777

728 778

729 779

730 780

731 781

732 782

733 783

734 784

735 785

736 786

737 787

738 788

739 789

740 790

741 791

742 792

743 793

744 794

745 795

746 796

747 797

748 798

749 799

Figure 2 indicates that changing a number in the
prompt can make the difference between the LLM
mapping it into the correct ILP or not. Table 9 in
Appendix E shows a concrete example of this.

Note that this failure mode is orthogonal to
the difficulty for the LLM of actually solving the
problem; in the ILP method, the LLM acts as
a semantic parser that must simultaneously recog�
nize a textual problem as an instance of a textbook
problem and map it to an ILP. This echoes the
finding that other forms of semantic parsing are
hard for few�shot prompting as well, with LLMs
as recent as GPT�4 (Ettinger et al., 2023).

6 Discussion

The results above paint an intricate picture of the
features that make it easy or difficult for an LLM
to solve NP�hard optimization problems. First,
given previous research, it was expected that in-
stance size would negatively impact accuracy; we
have confirmed this for purely LLM�based meth�
ods. Second, we have identified instance difficulty
as an important factor: among instances of the
same size, those that cannot be solved by greedy
heuristics are also harder for LLMs. Neurosym�
bolic methods that combine LLMs as semantic
parsers with exact ILP solvers are more robust to
both of these factors.

Finally, the presentation of a problem instance
impacts how difficult it is for LLM�based methods
to solve; all methods, including the ILP�based
ones, perform much better on the well�established
textbook presentations rather than our novel cos�
tumed and inverted variants. This sheds doubt on
the LLMs having learned general problem�solving
skills that would allow them to generalize from
one problem formulation to another (“reasoning”).
Instead, it seems that they are much better at gen�
eralizing existing solution methods for textbook
problems that are documented on the Internet to
other instances of the same textbook problem
(“reciting”).

In the experiments above, we have deliberately
avoided the use of LLMs that perform uncontrol�
lable and undocumented chain�of�thought reason�
ing and code generation “behind the scenes” (e.g.,
o1) in order to obtain interpretable results. Both
CoT reasoning and code generation were included
in a controlled fashion in the experiments, sug�
gesting that these mechanisms by themselves will
not make LLMs general problem�solvers. We con�
jecture that the ability of LLMs to generalize to

novel problems could be increased in the future by
explicitly including problem solving (rather than
the supervised replication of existing solutions) in
the training regime.

Furthermore, we have deliberately designed our
prompts such that they do not name the base
problem in the dressed�up task descriptions. It is
possible that giving such hints to the LLM would
substantially improve its ability to recognize the
variant as equivalent to the base problem, closing
the gap between the variants. However, this sort
of hand�holding would greatly undermine the use�
fulness of LLMs as general problem�solvers. The
exciting promise of LLMs is their potential to pro�
vide general�purpose assistance to a wide range of
people in a wide range of contexts. For this vision
to be realized, we require that LLMs are able to
recognize the underlying computational problems
presented to them, even, and especially, when this
is not obvious to their users. We cannot assume
that the average user will ask their assistant to
view their request for travel advice as an instance
of Knapsack – the average user has almost cer�
tainly never heard of Knapsack.

Our results show that LLMs struggle when
textbook problems are obscured by even the most
superficial of costumes. It follows that they would
be even less likely to recognize and correctly solve
such optimization problems when embedded in
more realistic contexts–e.g., optimizing the energy
grid or allocating government resources. If LLMs
depend on their human prompters to have done the
creative problem solving for them, they will be a
far less useful technology than is currently hoped.

7 Conclusion

We have shown that current LLMs are much
better at solving NP�hard optimization problems
when they are presented in their well�documented
textbook form than when they arise as everyday
problems or are subtly distorted. This is further
evidence that LLMs are often reciting when they
appear to be reasoning.

One limitation of EHOP as a dataset of real
problem�solving tasks is that real users will often
not be able to spell an instance of an everyday
problem out in detail, e.g. by assigning a numeric
satisfaction value to every museum in Paris. It
would be interesting to explore dialogue systems
performing actual collaborative problem�solving
with the user. The costumes of EHOP could be a
good starting point for such work.

8

800 850

801 851

802 852

803 853

804 854

805 855

806 856

807 857

808 858

809 859

810 860

811 861

812 862

813 863

814 864

815 865

816 866

817 867

818 868

819 869

820 870

821 871

822 872

823 873

824 874

825 875

826 876

827 877

828 878

829 879

830 880

831 881

832 882

833 883

834 884

835 885

836 886

837 887

838 888

839 889

840 890

841 891

842 892

843 893

844 894

845 895

846 896

847 897

848 898

849 899

Limitations

In addition to the limitations that we already dis�
cussed in Section 6, it is worth considering the
limitations of the EHOP dataset which we intro�
duce here.

The instances of EHOP cover a limited range
of instance sizes. We chose the sizes for each base
problem based on the performance of the greedy
heuristics, and we believe that they are sufficiently
representative to support the claims we make.
As LLMs improve, it may become informative
to evaluate on larger instances. We will make
the code for generating more EHOP�like task de�
scriptions available alongside the dataset itself to
facilitate this.

Furthermore, EHOP is based on three well�
established textbook problems, and the costumes
do not actually cover full�blown real�world use
cases like the ones in NL4Opt (Ramamonjison et
al., 2022). This is because we did not construct
EHOP to be predictive of real�world problem�
solving accuracies but instead to permit a targeted
comparison of the impact of problem presentation.

References

David J. Abraham, Avrim Blum, and Tuomas Sand�
holm. 2007. Clearing algorithms for barter exchange
markets: enabling nationwide kidney exchanges. In
Proceedings of the 8th ACM Conference on Elec-
tronic Commerce, pages 295–304, San Diego, Cali�
fornia, USA. Association for Computing Machinery.

Ali AhmadiTeshnizi, Wenzhi Gao, Herman Brun�
borg, Shayan Talaei, and Madeleine Udell. 2024.
Optimus�0.3: Using Large Language Models to
Model and Solve Optimization Problems at Scale.
arXiv preprint arXiv:2407.19633.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen,
Aitor Lewkowycz, Vedant Misra, Vinay Venkatesh
Ramasesh, Ambrose Slone, Guy Gur�Ari, Ethan
Dyer, and Behnam Neyshabur. 2022. Exploring
Length Generalization in Large Language Models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems.

Ben Bogin, Shivanshu Gupta, Peter Clark, and Ashish
Sabharwal. 2024. Leveraging Code to Improve In�
Context Learning for Semantic Parsing. In Kevin
Duh, Helena Gomez, and Steven Bethard, editors,
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 4971–5012, Mexico

City, Mexico. Association for Computational Lin�
guistics.

Allyson Ettinger, Jena Hwang, Valentina Pyatkin,
Chandra Bhagavatula, and Yejin Choi. 2023. “You
Are An Expert Linguistic Annotator”: Limits
of LLMs as Analyzers of Abstract Meaning
Representation. In Houda Bouamor, Juan Pino, and
Kalika Bali, editors, Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
8250–8263, Singapore. Association for Computa�
tional Linguistics.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang
Ling, and Yongfeng Zhang. 2024. NPHardEval:
Dynamic Benchmark on Reasoning Ability of Large
Language Models via Complexity Classes. In Lun�
Wei Ku, Andre Martins, and Vivek Srikumar, edi�
tors, Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4092–4114, Bangkok, Thai�
land. Association for Computational Linguistics.

Michael R Garey and David S Johnson. 1979. Com-
puters and Intractability.volume 174. Freeman San
Francisco.

Balaji Gopalakrishnan and Ellis L. Johnson. 2005. Air�
line Crew Scheduling: State�of�the�Art. Annals of
Operations Research, 140:305–337.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al�
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi�
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, et al. 2024. The Llama 3 Herd of Models.
arXiv preprint arXiv:2407.21783.

Gurobi Optimization LLC. 2024. Gurobi Optimizer
Reference Manual.

Mercedes Hidalgo�Herrero, Pablo Rabanal, Is�
mael Rodriguez, and Fernando Rubio. 2013.
Comparing Problem Solving Strategies for NP�hard
Optimization Problems. Fundamenta Informaticae,
124:1–25.

Subbarao Kambhampati. 2024. Can Large Language
Models Reason and Plan?. Annals of the New York
Academy of Sciences, 1534(1):15–18.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large
Language Models are Zero�Shot Reasoners. In Ad-
vances in Neural Information Processing Systems,
volume 35, pages 22199–22213.

William Merrill and Ashish Sabharwal. 2024. The
Expressive Power of Transformers with Chain of
Thought. In The Twelfth International Conference
on Learning Representations.

9

https://doi.org/10.1145/1250910.1250954
https://doi.org/10.1145/1250910.1250954
https://arxiv.org/abs/2407.19633
https://arxiv.org/abs/2407.19633
https://openreview.net/forum?id=zSkYVeX7bC4
https://openreview.net/forum?id=zSkYVeX7bC4
https://doi.org/10.18653/v1/2024.naacl-long.279
https://doi.org/10.18653/v1/2024.naacl-long.279
https://doi.org/10.18653/v1/2023.findings-emnlp.553
https://doi.org/10.18653/v1/2023.findings-emnlp.553
https://doi.org/10.18653/v1/2023.findings-emnlp.553
https://doi.org/10.18653/v1/2023.findings-emnlp.553
https://doi.org/10.18653/v1/2024.acl-long.225
https://doi.org/10.18653/v1/2024.acl-long.225
https://doi.org/10.18653/v1/2024.acl-long.225
https://arxiv.org/abs/2407.21783
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.3233/FI-2013-822
https://doi.org/10.3233/FI-2013-822
https://doi.org/10.1111/nyas.15125
https://doi.org/10.1111/nyas.15125
https://doi.org/https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/https://doi.org/10.48550/arXiv.2205.11916
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh

900 950

901 951

902 952

903 953

904 954

905 955

906 956

907 957

908 958

909 959

910 960

911 961

912 962

913 963

914 964

915 965

916 966

917 967

918 968

919 969

920 970

921 971

922 972

923 973

924 974

925 975

926 976

927 977

928 978

929 979

930 980

931 981

932 982

933 983

934 984

935 985

936 986

937 987

938 988

939 989

940 990

941 991

942 992

943 993

944 994

945 995

946 996

947 997

948 998

949 999

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. 2024. GSM�Symbolic: Understanding
the Limitations of Mathematical Reasoning
in Large Language Models. arXiv preprint
arXiv:2410.05229.

OpenAI. 2024. GPT�4o System Card. arXiv preprint
arXiv:2410.21276.

Rindranirina Ramamonjison, Timothy Yu, Ray�
mond Li, Haley Li, Giuseppe Carenini, Bis�
san Ghaddar, Shiqi He, Mahdi Mostajabdaveh,
Amin Banitalebi�Dehkordi, Zirui Zhou, and Yong
Zhang. 2022. NL4Opt Competition: Formulating
Optimization Problems Based on Their Natural
Language Descriptions. In Marco Ciccone, Gustavo
Stolovitzky, and Jacob Albrecht, editors, Proceed-
ings of the NeurIPS 2022 Competitions Track,
volume 220, pages 189–203. PMLR.

Katharina Stein, Daniel Fišer, Jörg Hoffmann,
and Alexander Koller. 2024. AutoPlanBench:
Automatically generating benchmarks for LLM
planners from PDDL. arXiv Preprint
arXiv:2311.09830.

Jianheng Tang, Qifan Zhang, Yuhan Li, and Jia Li.
2024. GraphArena: Benchmarking Large Language
Models on Graph Computational Problems. arXiv
preprint arXiv:2407.00379.

Simone Tedeschi, Johan Bos, Thierry Declerck, Jan
Hajič, Daniel Hershcovich, Eduard Hovy, Alexan�
der Koller, Simon Krek, Steven Schockaert, Rico
Sennrich, Ekaterina Shutova, and Roberto Nav�
igli. 2023. What`s the Meaning of Superhuman
Performance in Today`s NLU?. In Anna Rogers,
Jordan Boyd�Graber, and Naoaki Okazaki, editors,
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 12471–12491, Toronto,
Canada. Association for Computational Linguistics.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, Yitao Liang, and Team CraftJarvis.
2023. Describe, explain, plan and select: interactive
planning with large language models enables open�
world multi�task agents. In Proceedings of the 37th
International Conference on Neural Information
Processing Systems, New Orleans, LA, USA. Curran
Associates Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain�of�Thought Prompting
Elicits Reasoning in Large Language Models. In
36th Conference on Neural Information Processing
Systems.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin
Akyürek, Boyuan Chen, Bailin Wang, Najoung
Kim, Jacob Andreas, and Yoon Kim. 2024.

Reasoning or Reciting? Exploring the Capabilities
and Limitations of Language Models Through
Counterfactual Tasks. In Proceedings of the NAACL-
HLT.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023. ReAct: Synergizing Reasoning and Acting in
Language Models. In The Eleventh International
Conference on Learning Representations.

Chunhui Zhang, Yiren Jian, Zhongyu Ouyang,
and Soroush Vosoughi. 2024. Working Memory
Identifies Reasoning Limits in Language Models.
In Yaser Al�Onaizan, Mohit Bansal, and Yun�Nung
Chen, editors, Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 16896–16922, Miami, Florida, USA.
Association for Computational Linguistics.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam
Razin, Omid Saremi, Joshua M. Susskind, Samy
Bengio, and Preetum Nakkiran. 2024. What
Algorithms can Transformers Learn? A Study in
Length Generalization. In The Twelfth International
Conference on Learning Representations.

10

https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.21276
https://proceedings.mlr.press/v220/ramamonjison23a.html
https://proceedings.mlr.press/v220/ramamonjison23a.html
https://proceedings.mlr.press/v220/ramamonjison23a.html
https://doi.org/https://doi.org/10.48550/arXiv.2311.09830
https://doi.org/https://doi.org/10.48550/arXiv.2311.09830
https://doi.org/https://doi.org/10.48550/arXiv.2311.09830
https://arxiv.org/abs/2407.00379
https://arxiv.org/abs/2407.00379
https://doi.org/10.18653/v1/2023.acl-long.697
https://doi.org/10.18653/v1/2023.acl-long.697
https://doi.org/https://doi.org/10.48550/arXiv.2302.01560
https://doi.org/https://doi.org/10.48550/arXiv.2302.01560
https://doi.org/https://doi.org/10.48550/arXiv.2302.01560
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://aclanthology.org/2024.naacl-long.102
https://aclanthology.org/2024.naacl-long.102
https://aclanthology.org/2024.naacl-long.102
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/2024.emnlp-main.938
https://doi.org/10.18653/v1/2024.emnlp-main.938
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX

1000 1050

1001 1051

1002 1052

1003 1053

1004 1054

1005 1055

1006 1056

1007 1057

1008 1058

1009 1059

1010 1060

1011 1061

1012 1062

1013 1063

1014 1064

1015 1065

1016 1066

1017 1067

1018 1068

1019 1069

1020 1070

1021 1071

1022 1072

1023 1073

1024 1074

1025 1075

1026 1076

1027 1077

1028 1078

1029 1079

1030 1080

1031 1081

1032 1082

1033 1083

1034 1084

1035 1085

1036 1086

1037 1087

1038 1088

1039 1089

1040 1090

1041 1091

1042 1092

1043 1093

1044 1094

1045 1095

1046 1096

1047 1097

1048 1098

1049 1099

Result LLM Response Optimal
Solution

Optimal 1,2,3,4,1 1, 2, 3, 4
Suboptimal 1,4,3,2,1 1, 4, 2, 3
Erroneous 1, 1, 1, 1, 1 1, 4, 3, 5, 2
Incompatible 1,4,1,2,3,5,1 1, 4, 2, 3, 5

from gurobipy import GRB, Model, quicksum

def f():
 # Create the model
 model = Model("Traveling Salesman Problem")

 # Create helper variables
 n = 4 # number of cities
 dist = [[0, 5, 11, 4], [5, 0, 1, 1], [11, 1, 0, 3], [4, 1, 3, 0]] # distance matrix

 # Add variables
 x = model.addVars(n, n, vtype=GRB.BINARY, name="x") # x[i, j] = 1 if we travel
from city i to city j
 u = model.addVars(n, vtype=GRB.INTEGER, name="u") # u[i] = order in which we visit
city i

 # Add constraints
 model.addConstrs(quicksum(x[i, j] for j in range(n)) == 1 for i in range(n)) #
each city is visited exactly once
 model.addConstrs(quicksum(x[j, i] for j in range(n)) == 1 for i in range(n)) #
each city is left exactly once
 model.addConstrs(u[i] - u[j] + n * x[i, j] <= n - 1 for i in range(n) for j in
range(n) if i != j) # subtour elimination
 model.addConstrs(x[i, i] == 0 for i in range(n)) # we cannot visit the same
city twice
 model.addConstr(u[0] == 1) # we start at city 1

 # Set objective
 model.setObjective(quicksum(dist[i][j] * x[i, j] for i in range(n) for j in
range(n)), GRB.MINIMIZE)

 # Optimize/solve the model
 model.optimize()

 # Return the optimized model
 return model
This ILP formulation uses the following variables:
. . .
The objective function is the total distance traveled, which is minimized.

ILP Failure 1, 2, 3, 4

AttributeError at line 117: Unable to retrieve attribute 'X'

Table 4: The following examples are all generated by Llama for textbook Traveling Salesman with the ILP
Python prompting strategy. Except for the code failure instance, there was a code response which was then executed
successfully and returned to the model before the final output was produced. The code which produced an error is
shown in the ILP Failure case. The error here is indicative of an ILP model which cannot be properly optimized.

A Language Model Details

For both GPT�4o and Llama 3.1 70B Instruct,
we use the following sampling parameters for all
LLM�only prompting strategies:
 max_tokens=1024
 temperature=0.0
 presence_penalty=0.0
 frequency_penalty=0.0
 seed=1
 In the case of the ILP LP prompting strategy,
max_tokens is set to 6000 for the completion that
is meant to produce the LP code. We similarly
change max_tokens to 3072 for the ILP Python
prompting strategy in the generation step. After
the generation step, max_tokens is reset to 1024

(when asking the LLM to translate code output
back to NL).

It is not known how many parameters GPT�4o
has, and Llama 3.1 70B Instruct has 70 billion pa�
rameters. GPT�4o was prompted using API calls,
so we do not know the GPU cost associated with
running this subset of the experiments, though the
API calls took about 50 hours in total to complete
(excluding the ILP LP prompting strategy). We
estimate that it takes about 240 GPU hours running
on NVIDIA H100 PCIe GPUs to run the entire
experiment (excluding ILP LP) on Llama 3.1 70B
Instruct.

11

1100 1150

1101 1151

1102 1152

1103 1153

1104 1154

1105 1155

1106 1156

1107 1157

1108 1158

1109 1159

1110 1160

1111 1161

1112 1162

1113 1163

1114 1164

1115 1165

1116 1166

1117 1167

1118 1168

1119 1169

1120 1170

1121 1171

1122 1172

1123 1173

1124 1174

1125 1175

1126 1176

1127 1177

1128 1178

1129 1179

1130 1180

1131 1181

1132 1182

1133 1183

1134 1184

1135 1185

1136 1186

1137 1187

1138 1188

1139 1189

1140 1190

1141 1191

1142 1192

1143 1193

1144 1194

1145 1195

1146 1196

1147 1197

1148 1198

1149 1199

➡ Standard 🔄 Inverted

🖌

Textbook

I have a network of 4 nodes, numbered 1 to 4, with various nodes being
connected to one another. I want to color the nodes such that no two
connected nodes have the same color.
The connections are as follows: Node 1 and node 3 are connected. Node 1
and node 4 are connected. Node 2 and node 3 are connected. Node 2 and
node 4 are connected.
How can I color the nodes using the fewest colors possible? Generate
a comma�separated list of the colors for each node, where the colors are
represented by integers ranging from 1 to the number of colors used. The
colors should be in the order of the vertices, so the first color will correspond
to node 1, the second color will correspond to node 2, and so on.

I have a network of 4 nodes, numbered 1 to 4, with various nodes being
connected to one another. I want to color the nodes such that no two uncon�
nected nodes have the same color.
The connections are as follows: Node 1 and node 2 are connected. Node 3
and node 4 are connected.
How can I color the nodes using the fewest colors possible? Generate
a comma�separated list of the colors for each node, where the colors are
represented by integers ranging from 1 to the number of colors used. The
colors should be in the order of the vertices, so the first color will correspond
to node 1, the second color will correspond to node 2, and so on.

🏫

Student
Groups

I am a teacher, and I want to assign my 4 students to different groups. I
need the groups to focus, so I need to make sure that no two students who
are friends with one another are in the same group, otherwise they may get
distracted. I don’t need the groups to all be the same size, but I want to
minimize the total number of groups.
The friendships are as follows: Student 1 and student 3 are friends. Student
1 and student 4 are friends. Student 2 and student 3 are friends. Student 2
and student 4 are friends.
Which group should each student be assigned to? Generate a comma�sepa�
rated list with each student’s group, where the groups are represented by
integers ranging from 1 to the total number of groups. The groups should
be in the order of the students’ numbers, so the first group in the list will
correspond to student 1, the second group will correspond to student 2, and
so on.

I am a teacher, and I want to assign my 4 students to different groups. I want
the groups to have fun, so I need to make sure that only students who are
friends with one another are in the same group. In other words, no group
can have a pair of students who aren’t friends with each other. I don’t need
the groups to all be the same size, but I want to minimize the total number
of groups.
The friendships are as follows: Student 1 and student 2 are friends. Student
3 and student 4 are friends.
Which group should each student be assigned to? Generate a comma�sepa�
rated list with each student’s group, where the groups are represented by
integers ranging from 1 to the total number of groups. The groups should
be in the order of the students’ numbers, so the first group in the list will
correspond to student 1, the second group will correspond to student 2, and
so on.

💔

Parties
with Exes

My birthday is coming up, and I want to celebrate with my 4 friends. Unfor�
tunately, some of my friends used to be in romantic relationships with each
other, and they don’t get along anymore. I will therefore be having multiple
birthday parties. I want to invite each person to one party, and I want to
invite exes to different parties so that no two people who used to date one
another are at the same party. I have a list of who used to date whom, and
I want to host as few parties as possible while avoiding the awkardness of
having a pair of exes at the same party.
The past relationships are as follows: Friend 1 and friend 3 used to be in a
relationship. Friend 1 and friend 4 used to be in a relationship. Friend 2 and
friend 3 used to be in a relationship. Friend 2 and friend 4 used to be in a
relationship.
Which party should each friend be invited to? Generate a comma�separated
list with each friend’s party, where the parties are represented by integers
ranging from 1 to the total number of parties. The parties should be in the
order of the friends’ numbers, so the first party in the list will correspond to
friend 1, the second party will correspond to friend 2, and so on.

My birthday is coming up, and I want to celebrate with my 4 friends. Some
of my friends used to be in romantic relationships with each other, and
they don’t get along anymore. I will therefore be having multiple birthday
parties. I want to invite each person to one party, and I want to make things
as awkward as possible, so I only want to invite two people to the same party
if they used to be in a relationship. I have a list of who used to date whom,
and I want to host as few parties as possible while avoiding having a pair of
people who haven’t dated at the same party.
The past relationships are as follows: Friend 1 and friend 2 used to be in a
relationship. Friend 3 and friend 4 used to be in a relationship.
Which party should each friend be invited to? Generate a comma�separated
list with each friend’s party, where the parties are represented by integers
ranging from 1 to the total number of parties. The parties should be in the
order of the friends’ numbers, so the first party in the list will correspond to
friend 1, the second party will correspond to friend 2, and so on.

🥋

Taekwondo
Tournament

I am organizing a taekwondo tournament. There are 4 participants, and I
need to reserve some rooms in the tournament hall for them to warm up in. I
want to make sure that no two participants who are competing against each
other are in the same room. This way, no one will learn about an opponent’s
technique ahead of the actual competition. I have a list of who is competing
against whom, and I want to reserve as few rooms as possible while making
sure no one is in the same room as any of their opponents.
Here are the matchups: Participant 1 and participant 3 are competing against
one another. Participant 1 and participant 4 are competing against one
another. Participant 2 and participant 3 are competing against one another.
Participant 2 and participant 4 are competing against one another.
Which room should each participant be assigned to? Generate a comma�
separated list with each participant’s room, where the rooms are represented
by integers ranging from 1 to the total number of rooms. The rooms should
be in the order of the participants’ numbers, so the first room in the list will
correspond to participant 1, the second room will correspond to participant
2, and so on.

I am organizing a taekwondo tournament. There are 4 participants, and I
need to reserve some rooms in the tournament hall for them to warm up in.
I want to make sure that if two participants are not competing against each
other, then they are in different rooms. This way, competitive tension will
be as high as possible. I have a list of who is competing against whom, and
I want to reserve as few rooms as possible while making sure no one is in
the same room as a non�opponent.
Here are the matchups: Participant 1 and participant 2 are competing against
one another. Participant 3 and participant 4 are competing against one
another.
Which room should each participant be assigned to? Generate a comma�
separated list with each participant’s room, where the rooms are represented
by integers ranging from 1 to the total number of rooms. The rooms should
be in the order of the participants’ numbers, so the first room in the list will
correspond to participant 1, the second room will correspond to participant
2, and so on.

Table 5: Examples of the four Graph Coloring costumes, both standard (textbook rules) and inverted, all
generated using the same problem instance.

B Result Category Examples

Table 4 shows examples of each result type within
the context of Traveling Salesman. It should
be noted that since models often would repeat the
first node at the end of a tour (as seen in all of the
responses in this table), we treated both “1, 2, 3,
4” and “1, 2, 3, 4, 1” as proper formatting. The
response “1, 1, 1, 1, 1” is classified as erroneous

since it has the right length (5 locations) but it does
not meet the constraint of visiting each location
exactly once. The response “1,4,1,2,3,5,1”, on the
other hand, is classified as incompatible since it
has 7 locations (6 after removing the redundant 1
at the end), which is more than the expected format
(5 locations).

12

1200 1250

1201 1251

1202 1252

1203 1253

1204 1254

1205 1255

1206 1256

1207 1257

1208 1258

1209 1259

1210 1260

1211 1261

1212 1262

1213 1263

1214 1264

1215 1265

1216 1266

1217 1267

1218 1268

1219 1269

1220 1270

1221 1271

1222 1272

1223 1273

1224 1274

1225 1275

1226 1276

1227 1277

1228 1278

1229 1279

1230 1280

1231 1281

1232 1282

1233 1283

1234 1284

1235 1285

1236 1286

1237 1287

1238 1288

1239 1289

1240 1290

1241 1291

1242 1292

1243 1293

1244 1294

1245 1295

1246 1296

1247 1297

1248 1298

1249 1299

➡ Standard 🔄 Inverted

🎒

Textbook

I am trying to fill a bag with valuable items. Each item has a weight and
a value.
Here are the items I have: Item 1 has a weight of 1 kg and a value of 2 €.
Item 2 has a weight of 1 kg and a value of 2 €. Item 3 has a weight of 3 kg
and a value of 3 €. Item 4 has a weight of 3 kg and a value of 4 €.
Which items should I pack to get the most value possible while also making
sure the total weight of the items does not exceed the bag’s capacity of 1 kg?
Generate a comma�separated list of the items I should put in the bag, where
each item is represented by its number.

I am trying to fill a bag with worthless items. Each item has a weight and
a value.
Here are the items I have: Item 1 has a weight of 1 kg and a value of 2 €.
Item 2 has a weight of 1 kg and a value of 2 €. Item 3 has a weight of 3 kg
and a value of 3 €. Item 4 has a weight of 3 kg and a value of 4 €.
Which items should I pack to get the least value possible while also making
sure the total weight of the items is at least 7 kg? Generate a comma�sepa�
rated list of the items I should put in the bag, where each item is represented
by its number.

🍋

Lemonade
Stand

I am running a lemonade stand where I don’t set a single price but rather
let the customers make custom offers. Each customer is offering a specific
amount of money for a specific amount of lemonade. Each offer is rigid, so
I can only fulfill it exactly as stated or not fulfill it at all.
I have the following offers: Customer 1 is offering $2 for 1 gallon of
lemonade. Customer 2 is offering $2 for 1 gallon of lemonade. Customer
3 is offering $3 for 3 gallons of lemonade. Customer 4 is offering $4 for 3
gallons of lemonade.
Which customers’ offers should I take up to make my revenue as large
as possible given that I can’t sell more than 1 total gallons of lemonade?
Generate a comma�separated list of the customers whose offers I should take
up, where each customer is represented by their number.

I am running a lemonade stand where I don’t set a single price but rather
let the customers make custom offers. Each customer is offering a specific
amount of money for a specific amount of lemonade. Each offer is rigid, so
I can only fulfill it exactly as stated or not fulfill it at all.
I have the following offers: Customer 1 is offering $2 for 1 gallon of
lemonade. Customer 2 is offering $2 for 1 gallon of lemonade. Customer
3 is offering $3 for 3 gallons of lemonade. Customer 4 is offering $4 for 3
gallons of lemonade.
I don’t want to seem greedy. Which customers’ offers should I take up to
make my total revenue as small as possible while selling at least 7 gallons of
lemonade? Generate a comma�separated list of the customers whose offers
I should take up, where each customer is represented by their number.

🏛

Sightseeing

I am going to be visiting Paris tomorrow, and I want to make the most of
my time there. I have a list of attractions I want to visit, but I don’t have
enough time to visit all of them. I have given each attraction a point value
and determined how many minutes I would need to spend on it.
Here are the attractions: Attraction 1 has a score of 2 points and would
require 10 minutes. Attraction 2 has a score of 2 points and would require 10
minutes. Attraction 3 has a score of 3 points and would require 30 minutes.
Attraction 4 has a score of 4 points and would require 30 minutes.
Which attractions should I visit to make the total point value as high as
possible while not having the total time required go over my sightseeing
limit of 10 minutes? Generate a comma�separated list of the attractions I
should visit, where each attraction is represented by its number.

I am going to be visiting Paris tomorrow with a friend. I need to go through
some emails at the start of the trip while my friend gets a head start on the
sightseeing. I want to tell him which attractions he can visit before I join
him so that I miss out as little as possible. I have given each attraction on
our list a point value and determined how many minutes one would need to
spend on it.
Here are the attractions: Attraction 1 has a score of 2 points and would
require 10 minutes. Attraction 2 has a score of 2 points and would require 10
minutes. Attraction 3 has a score of 3 points and would require 30 minutes.
Attraction 4 has a score of 4 points and would require 30 minutes.
Which attractions should I tell my friend to visit to make the total score of
the attractions he sees without me as low as possible while ensuring that the
total time required to visit them is at least 70 minutes? Generate a comma�
separated list of the attractions I should suggest to my friend, where each
attraction is represented by its number.

🎉

Party
Planning

I am planning a party, and I need to buy some decorations. Each decoration
has a cost and a point value I’ve assigned in terms of its worth as a deco�
ration.
Here are the decorations I can buy: Decoration 1 has a cost of $10 and a point
value of 2. Decoration 2 has a cost of $10 and a point value of 2. Decoration
3 has a cost of $30 and a point value of 3. Decoration 4 has a cost of $30
and a point value of 4.
I can buy at most one of each decoration. Which decorations should I
purchase to make the total point value as high as possible without going
over my budget of $10? Generate a comma�separated list of the decorations
I should buy, where each decoration is represented by its number.

I am planning a party, and I need to buy some decorations. I don’t want the
decorations to be the focus of the party, so I wan’t to pick the worst ones,
but I still need to spend the decorations budget. Each decoration has a cost
and a point value I’ve assigned in terms of its worth as a decoration.
Here are the decorations I can buy: Decoration 1 has a cost of $10 and a point
value of 2. Decoration 2 has a cost of $10 and a point value of 2. Decoration
3 has a cost of $30 and a point value of 3. Decoration 4 has a cost of $30
and a point value of 4.
I can buy at most one of each decoration. Which decorations should I
purchase to make the total point value as low as possible while spending at
least $70? Generate a comma�separated list of the decorations I should buy,
where each decoration is represented by its number.

Table 6: Examples of the four Knapsack costumes, both standard (textbook rules) and inverted, all generated
using the same problem instance.

C Costumes

Table 5, Table 6, and Table 7 display examples
of how problem instances were presented to the
LLM. The instances used to generate all examples
were of the smallest scale used in the EHOP
dataset (4 nodes/4 items/4 cities).

D Prompting Strategies

Table 8 presents the overall structure of each
prompting strategy. The BASE PROMPT would
be of the form of one of the examples seen
in Appendix C. It is also worth noting that the
DEMO PROMPT and DEMO GREEDY CoT

were always formatted to match the variant of the
BASE PROMPT.

In the One�Shot strategies, the Assistant re�
sponse was provided by us to emulate a past
response in the conversational context. In the ILP
cases, on the other hand, the Assistant response
was in fact generated by the LLM, and the follow�
ing User response would depend on its content.
If the code ran successfully, its output would be
inserted in the format of the response shown, and
if the LLM’s code produced an error, the instance
would be marked as a code failure, and there
would be no follow�up. For full implementation
details, see our codebase.

13

1300 1350

1301 1351

1302 1352

1303 1353

1304 1354

1305 1355

1306 1356

1307 1357

1308 1358

1309 1359

1310 1360

1311 1361

1312 1362

1313 1363

1314 1364

1315 1365

1316 1366

1317 1367

1318 1368

1319 1369

1320 1370

1321 1371

1322 1372

1323 1373

1324 1374

1325 1375

1326 1376

1327 1377

1328 1378

1329 1379

1330 1380

1331 1381

1332 1382

1333 1383

1334 1384

1335 1385

1336 1386

1337 1387

1338 1388

1339 1389

1340 1390

1341 1391

1342 1392

1343 1393

1344 1394

1345 1395

1346 1396

1347 1397

1348 1398

1349 1399

➡ Standard 🔄 Inverted

✈

Textbook

I am planning a trip to visit several cities. Here are the distances between
each pair of cities:
City 1 and city 2 are 8 miles apart. City 1 and city 3 are 14 miles apart. City
1 and city 4 are 13 miles apart. City 2 and city 3 are 6 miles apart. City 2
and city 4 are 15 miles apart. City 3 and city 4 are 3 miles apart.
What is the shortest possible route that starts at city 1, visits each city exactly
once, and returns to city 1? Please generate a comma�separated list of the
cities in the order I should visit them, where the cities are represented by
their respective numbers.

I am planning a trip to visit several cities. Here are the distances between
each pair of cities:
City 1 and city 2 are 11 miles apart. City 1 and city 3 are 5 miles apart. City
1 and city 4 are 6 miles apart. City 2 and city 3 are 13 miles apart. City 2
and city 4 are 4 miles apart. City 3 and city 4 are 16 miles apart.
What is the longest possible route that starts at city 1, visits each city exactly
once, and returns to city 1? Please generate a comma�separated list of the
cities in the order I should visit them, where the cities are represented by
their respective numbers.

📋

Task
Schedule

I have a set of tasks that I have to complete every day. My boss always makes
me start with task 1, but the order in which I complete the rest is up to me.
It takes me a certain amount of time to modify my workspace to transition
from one task to another, and at the end of the day, I’ll need to set up my
space for task 1 so that I’m ready the next morning. Here is the time it takes
me to transition from one task to another:
It takes 8 minutes to transition between task 1 and task 2. It takes 14 minutes
to transition between task 1 and task 3. It takes 13 minutes to transition
between task 1 and task 4. It takes 6 minutes to transition between task 2 and
task 3. It takes 15 minutes to transition between task 2 and task 4. It takes 3
minutes to transition between task 3 and task 4.
It takes me the same amount of time to transition between one task and
another, regardless of which task I’m transitioning from and which task
I’m transitioning to. In what order should I complete the tasks every day to
minimize the total time spent transitioning between tasks? Please generate a
comma�separated list of the tasks in the order I should complete them, where
the tasks are represented by their respective numbers.

I have a set of tasks that I have to complete every day. My boss always makes
me start with task 1, but the order in which I complete the rest is up to me.
It takes me a certain amount of time to modify my workspace to transition
from one task to another, and at the end of the day, I’ll need to set up my
space for task 1 so that I’m ready the next morning. Here is the time it takes
me to transition from one task to another:
It takes 11 minutes to transition between task 1 and task 2. It takes 5 minutes
to transition between task 1 and task 3. It takes 6 minutes to transition
between task 1 and task 4. It takes 13 minutes to transition between task 2
and task 3. It takes 4 minutes to transition between task 2 and task 4. It takes
16 minutes to transition between task 3 and task 4.
It takes me the same amount of time to transition between one task and
another, regardless of which task I’m transitioning from and which task I’m
transitioning to, and the only time I get to relax during the day is during these
transitions. In what order should I complete the tasks every day to maximize
the total time spent transitioning between tasks? Please generate a comma�
separated list of the tasks in the order I should complete them, where the
tasks are represented by their respective numbers.

📆

Exercise
Schedule

My New Year’s resolution is to be more physically active. I’ve made a list
of 4 activities, and I want to do one of them every day. After I do an activity,
I can’t do it again until I’ve done everything else on the list. I’m going to
start with activity 1 on January first, but the order in which I complete the
rest is up in the air. Then, when I’m done with the list, I want to go through
the activities again in the same order I used before. I’ve scored each pair of
activities based on how similar they are, with more similar activities getting
higher scores. Here are the scores:
Activity 1 and activity 2 have a similarity of 8. Activity 1 and activity 3
have a similarity of 14. Activity 1 and activity 4 have a similarity of 13.
Activity 2 and activity 3 have a similarity of 6. Activity 2 and activity 4 have
a similarity of 15. Activity 3 and activity 4 have a similarity of 3.
I want to have a lot of variety from day to day. What is the best order in
which to do the activities to minimize the total similarity between activities
on adjacent days, including between the last activity and activity 1 (when
starting the next round)? Please generate a comma�separated list of the
activities in the order I should complete them, where the activities are
represented by their respective numbers.

My New Year’s resolution is to be more physically active. I’ve made a list
of 4 activities, and I want to do one of them every day. After I do an activity,
I can’t do it again until I’ve done everything else on the list. I’m going to
start with activity 1 on January first, but the order in which I complete the
rest is up in the air. Then, when I’m done with the list, I want to go through
the activities again in the same order I used before. I’ve scored each pair of
activities based on how similar they are, with more similar activities getting
higher scores. Here are the scores:
Activity 1 and activity 2 have a similarity of 11. Activity 1 and activity 3
have a similarity of 5. Activity 1 and activity 4 have a similarity of 6. Activity
2 and activity 3 have a similarity of 13. Activity 2 and activity 4 have a
similarity of 4. Activity 3 and activity 4 have a similarity of 16.
I want to have smooth transitions from one day to the next. What is the best
order in which to do the activities to maximize the total similarity between
activities on adjacent days, including between the last activity and activity
1 (when starting the next round)? Please generate a comma�separated list of
the activities in the order I should complete them, where the activities are
represented by their respective numbers.

🪑

UN Seating

I am responsible for the seating assignments at an upcoming UN meeting.
There will be representatives from 4 nations sitting at a round table. The
representative from nation 1 will be leading the discussion, so they will be
sitting in the designated “Director Seat,” but nothing else is decided yet.
There is some amount of political tension between each pair of nations, and
I’ve been given a list of tension scores for each pair of representatives, with
higher scores indicating higher tension. Here are the tension levels between
each pair of representatives:
Representative 1 and representative 2 have tension score 8. Representative 1
and representative 3 have tension score 14. Representative 1 and represen�
tative 4 have tension score 13. Representative 2 and representative 3 have
tension score 6. Representative 2 and representative 4 have tension score 15.
Representative 3 and representative 4 have tension score 3.
I want to minimize the total tension between adjacent pairs of representa�
tives to prevent the discussion from getting heated. What should the seating
order be, starting at the Director Seat and continuing clockwise? Note that
the last person in the ordering will also be sitting next to the Director Seat.
Please generate a comma�separated list of the representatives in the order
they should be seated, where the representatives are represented by their
respective numbers.

I am responsible for the seating assignments at an upcoming UN meeting.
There will be representatives from 4 nations sitting at a round table. The
representative from nation 1 will be leading the discussion, so they will be
sitting in the designated “Director Seat,” but nothing else is decided yet.
There is some amount of political tension between each pair of nations, and
I’ve been given a list of tension scores for each pair of representatives, with
higher scores indicating higher tension. Here are the tension levels between
each pair of representatives:
Representative 1 and representative 2 have tension score 11. Representative
1 and representative 3 have tension score 5. Representative 1 and represen�
tative 4 have tension score 6. Representative 2 and representative 3 have
tension score 13. Representative 2 and representative 4 have tension score
4. Representative 3 and representative 4 have tension score 16.
I want to maximize the total tension between adjacent pairs of representa�
tives to encourage discussion and progress. What should the seating order
be, starting at the “Director Seat” and continuing clockwise? Note that the
last person in the ordering will also be sitting next to the Director Seat.
Please generate a comma�separated list of the representatives in the order
they should be seated, where the representatives are represented by their
respective numbers.

Table 7: Examples of the four Traveling Salesman costumes, both standard (textbook rules) and inverted, all
generated using the same problem instance.

ILP LP. The ILP LP prompting strategy is very
similar to ILP Python, with the exception that the
LLM is asked to express the ILP program in the
LP file format instead of as a Python program. We
use the Gurobi solver (Gurobi Optimization LLC,

2024) to evaluate the code generated by the LLM,
and we return the variable assignments generated
by Gurobi in our follow�up message to the LLM.
See our codebase for more details.

14

https://docs.gurobi.com/projects/optimizer/en/current/reference/fileformats/modelformats.html#lp-format

1400 1450

1401 1451

1402 1452

1403 1453

1404 1454

1405 1455

1406 1456

1407 1457

1408 1458

1409 1459

1410 1460

1411 1461

1412 1462

1413 1463

1414 1464

1415 1465

1416 1466

1417 1467

1418 1468

1419 1469

1420 1470

1421 1471

1422 1472

1423 1473

1424 1474

1425 1475

1426 1476

1427 1477

1428 1478

1429 1479

1430 1480

1431 1481

1432 1482

1433 1483

1434 1484

1435 1485

1436 1486

1437 1487

1438 1488

1439 1489

1440 1490

1441 1491

1442 1492

1443 1493

1444 1494

1445 1495

1446 1496

1447 1497

1448 1498

1449 1499

Zero�Shot CoT

User: <BASE PROMPT>
You may explain your reasoning, but do not add any more explana�
tions once you have produced the comma�separated list.
Let’s think step by step.

User: <DEMO PROMPT>
Assitant: <DEMO ANSWER>One�Shot

User: <BASE PROMPT>
User: <DEMO PROMPT>

Assitant: <DEMO GREEDY CoT>
<DEMO ANSWER>One�Shot CoT

User: <BASE PROMPT>
User: <BASE PROMPT>

Instead of solving the problem, please express it as an Integer Linear
Programming (ILP) problem in the LP file format. Here is an example
of the LP file format:
LP EXAMPLE
Start by thinking step by step about the variables and constraints
you’ll need in order to express the problem fully, and then create the
specification in the LP format.
<CAUTION AGAINST COMMON MISTAKES>
Please provide the ILP problem in the LP format and do not solve the
problem yourself.

Assistant: <LLM GENERATED CODE>

ILP LP

User: Your ILP problem was successfully solved. Here is the solution:
<ILP MODEL PARAMETER VALUES>
Translate this solution back to the original problem and provide it as
originally specified.
Do not add any more explanation once you’ve provided the solution.

User: <BASE PROMPT>
Please express this as an Integer Linear Programming (ILP) problem
using Python with the gurobipy library. Specifically, define a function
named f that returns an optimized `gurobipy.Model` object which
represents the problem. Here is an example of the format you should
use for your answer:
PYTHON EXAMPLE
Start by thinking step by step about the variables and constraints you’ll
need in order to express the problem fully, and then define the Python
function f.
<CAUTION AGAINST COMMON MISTAKES>

Assistant: <LLM GENERATED CODE>

ILP Python

User: Your code was executed successfully. Here are all the variables of the
model and their optimal values:
<ILP MODEL PARAMETER VALUES>
Translate this solution back to the original problem and provide it as
originally specified.
Do not add any more explanation once you’ve provided the solution.

Table 8: The structures of each prompting strategy.

15

1500 1550

1501 1551

1502 1552

1503 1553

1504 1554

1505 1555

1506 1556

1507 1557

1508 1558

1509 1559

1510 1560

1511 1561

1512 1562

1513 1563

1514 1564

1515 1565

1516 1566

1517 1567

1518 1568

1519 1569

1520 1570

1521 1571

1522 1572

1523 1573

1524 1574

1525 1575

1526 1576

1527 1577

1528 1578

1529 1579

1530 1580

1531 1581

1532 1582

1533 1583

1534 1584

1535 1585

1536 1586

1537 1587

1538 1588

1539 1589

1540 1590

1541 1591

1542 1592

1543 1593

1544 1594

1545 1595

1546 1596

1547 1597

1548 1598

1549 1599

Prompt

I am planning a trip to visit several cities.
Here are the distances between each pair of
cities:

City 1 and city 2 are 8 miles apart.
City 1 and city 3 are 1 miles apart.
City 1 and city 4 are 1 miles apart.
City 2 and city 3 are 2 miles apart.
City 2 and city 4 are 13 miles apart.
City 3 and city 4 are 8 miles apart.

What is the shortest possible route that…

I am planning a trip to visit several cities.
Here are the distances between each pair of
cities:

City 1 and city 2 are 15 miles apart.
City 1 and city 3 are 14 miles apart.
City 1 and city 4 are 14 miles apart.
City 2 and city 3 are 16 miles apart.
City 2 and city 4 are 1 miles apart.
City 3 and city 4 are 16 miles apart.

What is the shortest possible route that…
Result Optimal: 1, 3, 2, 4 Code Failure: KeyError at line 28: (0, 0)

Table 9: The beginnings of two ILP Python prompts that are identical except for the numeric details of the instances
(as indicated by the highlighting), yet have quite different results when presented to GPT�4o.

E Generalization over numbers is brittle:
Example

We show an example where changing some num�
bers makes the difference between a correct ILP
translation and one that generates invalid Python
code in Table 10.

F Full Results

Table 10 and Table 11 present full de�aggregated
results from our experiments. They break down
results using the result categories discussed in
Section 4.3.

16

1600 1650

1601 1651

1602 1652

1603 1653

1604 1654

1605 1655

1606 1656

1607 1657

1608 1658

1609 1659

1610 1660

1611 1661

1612 1662

1613 1663

1614 1664

1615 1665

1616 1666

1617 1667

1618 1668

1619 1669

1620 1670

1621 1671

1622 1672

1623 1673

1624 1674

1625 1675

1626 1676

1627 1677

1628 1678

1629 1679

1630 1680

1631 1681

1632 1682

1633 1683

1634 1684

1635 1685

1636 1686

1637 1687

1638 1688

1639 1689

1640 1690

1641 1691

1642 1692

1643 1693

1644 1694

1645 1695

1646 1696

1647 1697

1648 1698

1649 1699

One�Shot Zero�Shot CoT One�Shot CoT ILP LP ILP Python
O S E I O S E I O S E I O S E I F O S E I F

🖌 42.0 9.3 48.7 0.0 60.7 4.0 34.7 0.7 60.0 2.7 37.3 0.0 42.0 7.3 48.0 0.0 2.7 56.0 14.0 25.3 4.7 0.0
🏫 37.3 10.7 52.0 0.0 55.3 9.3 34.7 0.7 57.3 5.3 37.3 0.0 38.0 6.7 54.7 0.7 0.0 26.0 46.0 24.0 0.7 3.3
💔 38.7 4.7 56.7 0.0 54.0 6.0 38.0 2.0 52.0 4.0 43.3 0.7 44.7 18.7 26.7 3.3 6.7 10.0 51.3 25.3 1.3 12.0

➡

🥋 31.3 18.7 50.0 0.0 53.3 14.0 30.0 2.7 56.7 3.3 40.0 0.0 19.3 13.3 58.0 0.7 8.7 0.7 0.0 0.7 0.0 98.7
🖌 2.7 1.3 96.0 0.0 1.3 5.3 90.7 2.7 0.7 4.7 94.7 0.0 17.3 10.0 65.3 0.0 7.3 14.7 5.3 68.7 8.0 3.3
🏫 27.3 8.0 64.7 0.0 46.0 4.0 50.0 0.0 47.3 8.0 44.7 0.0 10.0 4.7 80.7 0.0 4.7 40.7 19.3 32.7 5.3 2.0
💔 22.0 9.3 68.7 0.0 15.3 8.0 74.0 2.7 26.7 10.0 63.3 0.0 18.0 15.3 50.7 4.7 11.3 34.0 29.3 27.3 4.7 4.7

GPT

🔄

🥋 10.0 6.7 83.3 0.0 4.0 2.0 93.3 0.7 14.0 6.7 79.3 0.0 7.3 18.7 68.0 2.7 3.3 0.0 0.0 8.7 10.0 81.3
🖌 9.3 2.7 88.0 0.0 38.7 14.0 36.7 10.7 52.0 15.3 29.3 3.3 1.3 12.7 56.0 1.3 28.7 14.0 8.7 30.7 0.0 46.7
🏫 0.7 4.0 95.3 0.0 21.3 42.0 30.7 6.0 28.7 35.3 32.7 3.3 1.3 11.3 48.0 0.0 39.3 38.0 6.7 44.7 2.0 8.7
💔 4.7 0.7 94.7 0.0 18.7 9.3 49.3 22.7 34.7 16.0 42.0 7.3 4.0 8.7 25.3 32.0 30.0 26.0 10.0 45.3 7.3 11.3

➡

🥋 4.0 1.3 94.0 0.7 22.7 27.3 40.0 10.0 34.0 23.3 37.3 5.3 2.0 11.3 44.7 0.0 42.0 40.0 2.7 22.7 2.0 32.7
🖌 14.0 2.0 84.0 0.0 0.0 2.0 90.7 7.3 0.0 3.3 86.7 10.0 1.3 8.0 50.0 0.7 40.0 6.7 3.3 59.3 0.0 30.7
🏫 13.3 0.0 86.7 0.0 10.0 0.0 56.7 33.3 13.3 0.0 86.0 0.7 1.3 6.0 42.0 0.0 50.7 10.0 5.3 50.0 2.0 32.7
💔 20.0 8.7 71.3 0.0 8.0 6.0 66.0 20.0 18.0 2.0 70.7 9.3 2.0 10.0 22.0 21.3 44.7 0.0 3.3 50.0 10.7 36.0

🖌

GCP

Llama

🔄

🥋 19.3 3.3 77.3 0.0 8.0 4.0 78.7 9.3 11.3 2.0 79.3 7.3 0.0 6.0 57.3 0.0 36.7 0.7 0.0 26.0 0.0 73.3
🎒 22.7 68.0 9.3 0.0 48.0 44.0 2.0 6.0 50.0 35.3 14.0 0.7 98.7 0.7 0.7 0.0 0.0 89.3 3.3 7.3 0.0 0.0
🍋 23.3 63.3 13.3 0.0 49.3 35.3 13.3 2.0 52.7 35.3 10.7 1.3 99.3 0.7 0.0 0.0 0.0 84.7 5.3 10.0 0.0 0.0
🏛 21.3 72.0 6.7 0.0 45.3 49.3 5.3 0.0 48.7 42.7 7.3 1.3 99.3 0.7 0.0 0.0 0.0 76.7 7.3 16.0 0.0 0.0

➡

🎉 17.3 62.7 20.0 0.0 44.0 52.0 2.7 1.3 42.0 52.0 5.3 0.7 100.0 0.0 0.0 0.0 0.0 84.0 4.0 12.0 0.0 0.0
🎒 27.3 23.3 49.3 0.0 50.7 42.7 5.3 1.3 45.3 43.3 11.3 0.0 98.0 1.3 0.7 0.0 0.0 88.7 3.3 8.0 0.0 0.0
🍋 12.0 37.3 50.7 0.0 52.7 38.0 8.0 1.3 47.3 40.7 12.0 0.0 99.3 0.0 0.0 0.0 0.7 78.7 7.3 14.0 0.0 0.0
🏛 9.3 23.3 67.3 0.0 27.3 50.7 17.3 4.7 24.7 58.0 17.3 0.0 98.0 0.7 1.3 0.0 0.0 74.0 8.0 18.0 0.0 0.0

GPT

🔄

🎉 10.0 42.0 48.0 0.0 38.0 44.7 16.7 0.7 29.3 62.0 7.3 1.3 98.0 1.3 0.7 0.0 0.0 86.0 3.3 10.7 0.0 0.0
🎒 15.3 58.7 24.0 2.0 37.3 42.7 6.7 13.3 37.3 50.0 12.0 0.7 92.0 6.0 2.0 0.0 0.0 51.3 18.7 29.3 0.7 0.0
🍋 14.0 62.7 20.0 3.3 31.3 36.7 23.3 8.7 37.3 36.7 24.0 2.0 76.7 20.7 2.7 0.0 0.0 46.0 14.7 34.0 0.0 5.3
🏛 14.7 53.3 32.0 0.0 32.7 46.7 4.7 16.0 33.3 48.7 18.0 0.0 91.3 1.3 6.0 0.0 1.3 52.0 13.3 33.3 0.0 1.3

➡

🎉 12.7 48.7 38.7 0.0 33.3 50.7 8.7 7.3 28.0 47.3 24.0 0.7 94.0 5.3 0.7 0.0 0.0 53.3 11.3 35.3 0.0 0.0
🎒 8.0 24.7 56.7 10.7 34.7 39.3 22.0 4.0 11.3 46.0 34.7 8.0 90.7 0.7 5.3 0.0 3.3 57.3 4.7 38.0 0.0 0.0
🍋 8.7 22.0 64.0 5.3 29.3 42.0 20.7 8.0 13.3 34.7 45.3 6.7 77.3 2.7 10.7 0.0 9.3 47.3 7.3 38.7 0.7 6.0
🏛 4.7 35.3 60.0 0.0 19.3 27.3 33.3 20.0 5.3 41.3 48.0 5.3 82.7 2.7 2.0 0.0 12.7 50.0 7.3 40.0 0.0 2.7

🎒

KSP

Llama

🔄

🎉 2.7 42.7 50.7 4.0 20.0 39.3 24.7 16.0 9.3 36.7 45.3 8.7 90.7 1.3 7.3 0.0 0.7 33.3 6.0 60.7 0.0 0.0
✈ 34.7 65.3 0.0 0.0 31.3 67.3 0.7 0.7 37.3 62.7 0.0 0.0 16.7 11.3 1.3 10.0 60.7 86.0 9.3 0.0 2.7 2.0
📋 27.3 72.7 0.0 0.0 30.7 68.7 0.0 0.7 22.7 77.3 0.0 0.0 4.7 32.7 2.7 14.0 46.0 60.0 10.0 1.3 17.3 11.3
📆 22.7 77.3 0.0 0.0 32.0 68.0 0.0 0.0 30.7 69.3 0.0 0.0 2.0 31.3 9.3 4.0 53.3 32.7 30.7 19.3 6.0 11.3

➡

🪑 29.3 70.7 0.0 0.0 26.0 72.7 0.0 1.3 31.3 68.7 0.0 0.0 2.7 40.7 0.0 0.0 56.7 54.0 44.0 0.7 0.0 1.3
✈ 14.0 86.0 0.0 0.0 17.3 68.0 2.0 12.7 28.0 72.0 0.0 0.0 14.7 6.7 0.7 6.0 72.0 75.3 20.7 1.3 2.0 0.7
📋 14.7 85.3 0.0 0.0 24.7 75.3 0.0 0.0 18.7 80.7 0.0 0.7 2.7 14.7 1.3 6.0 75.3 46.7 22.0 2.7 18.0 10.7
📆 30.0 70.0 0.0 0.0 34.0 63.3 0.0 2.7 28.0 72.0 0.0 0.0 2.7 11.3 12.0 4.7 69.3 16.0 12.7 44.0 11.3 16.0

GPT

🔄

🪑 27.3 72.7 0.0 0.0 27.3 72.7 0.0 0.0 28.0 72.0 0.0 0.0 5.3 11.3 0.0 0.7 82.7 50.7 42.0 4.7 2.0 0.7
✈ 28.7 71.3 0.0 0.0 25.3 52.7 1.3 20.7 25.3 74.7 0.0 0.0 0.7 2.7 0.0 1.3 95.3 15.3 33.3 14.0 6.7 30.7
📋 18.7 81.3 0.0 0.0 23.3 61.3 0.0 15.3 19.3 80.7 0.0 0.0 0.0 1.3 0.0 0.7 98.0 7.3 16.0 4.7 7.3 64.7
📆 8.7 91.3 0.0 0.0 17.3 74.7 2.0 6.0 12.0 87.3 0.0 0.7 0.7 5.3 2.7 3.3 88.0 4.0 18.0 0.0 0.0 78.0

➡

🪑 16.7 83.3 0.0 0.0 18.7 76.7 0.0 4.7 20.7 78.0 0.0 1.3 0.7 8.7 2.7 0.0 88.0 0.0 5.3 0.0 0.0 94.7
✈ 4.7 95.3 0.0 0.0 14.0 63.3 0.0 22.7 10.0 89.3 0.0 0.7 1.3 3.3 0.0 0.7 94.7 4.7 21.3 10.0 5.3 58.7
📋 8.0 92.0 0.0 0.0 18.0 69.3 2.0 10.7 16.7 82.7 0.0 0.7 0.0 0.7 0.7 0.0 98.7 1.3 26.7 4.0 10.0 58.0
📆 14.0 86.0 0.0 0.0 23.3 69.3 1.3 6.0 21.3 78.7 0.0 0.0 2.0 5.3 1.3 0.7 90.7 11.3 40.7 2.7 0.0 45.3

✈

TSP

Llama

🔄

🪑 14.0 86.0 0.0 0.0 20.7 76.0 0.7 2.7 22.0 78.0 0.0 0.0 0.7 0.7 3.3 0.0 95.3 0.0 0.0 0.0 0.0 100.0

Table 10: Full results for EHOP�RANDOM, including the ILP LP prompting strategy and a breakdown of result
categories (➡: standard, 🔄: inverted; O: optimal, S: suboptimal, E: erroneous, I: incompatible, F: ILP code failure).
Costumes are represented by their emojis (established in Section 3). Greedy results do not vary by condition, and
were provided in Table 1.

17

1700 1750

1701 1751

1702 1752

1703 1753

1704 1754

1705 1755

1706 1756

1707 1757

1708 1758

1709 1759

1710 1760

1711 1761

1712 1762

1713 1763

1714 1764

1715 1765

1716 1766

1717 1767

1718 1768

1719 1769

1720 1770

1721 1771

1722 1772

1723 1773

1724 1774

1725 1775

1726 1776

1727 1777

1728 1778

1729 1779

1730 1780

1731 1781

1732 1782

1733 1783

1734 1784

1735 1785

1736 1786

1737 1787

1738 1788

1739 1789

1740 1790

1741 1791

1742 1792

1743 1793

1744 1794

1745 1795

1746 1796

1747 1797

1748 1798

1749 1799

One�Shot Zero�Shot CoT One�Shot CoT ILP LP ILP Python
O S E I O S E I O S E I O S E I F O S E I F

🖌 16.0 15.0 69.0 0.0 25.0 18.0 53.0 4.0 25.0 14.0 61.0 0.0 40.0 5.0 49.0 0.0 6.0 60.0 7.0 30.0 3.0 0.0
🏫 24.0 13.0 63.0 0.0 28.0 16.0 55.0 1.0 26.0 12.0 60.0 2.0 39.0 0.0 59.0 0.0 2.0 15.0 50.0 28.0 4.0 3.0
💔 19.0 10.0 71.0 0.0 28.0 13.0 57.0 2.0 22.0 10.0 68.0 0.0 34.0 12.0 35.0 6.0 13.0 7.0 48.0 25.0 2.0 18.0

➡

🥋 21.0 22.0 57.0 0.0 21.0 31.0 46.0 2.0 25.0 9.0 66.0 0.0 20.0 6.0 68.0 3.0 3.0 0.0 0.0 1.0 0.0 99.0
🖌 0.0 0.0 100.0 0.0 0.0 1.0 98.0 1.0 1.0 2.0 97.0 0.0 4.0 4.0 81.0 0.0 11.0 6.0 3.0 86.0 5.0 0.0
🏫 8.0 8.0 84.0 0.0 23.0 9.0 68.0 0.0 33.0 15.0 52.0 0.0 4.0 1.0 94.0 0.0 1.0 42.0 10.0 36.0 11.0 1.0
💔 6.0 7.0 87.0 0.0 2.0 5.0 93.0 0.0 3.0 18.0 77.0 2.0 10.0 11.0 58.0 10.0 11.0 37.0 34.0 28.0 1.0 0.0

GPT

🔄

🥋 1.0 11.0 88.0 0.0 0.0 2.0 98.0 0.0 0.0 10.0 90.0 0.0 7.0 3.0 84.0 3.0 3.0 0.0 0.0 11.0 9.0 80.0
🖌 1.0 1.0 98.0 0.0 7.0 32.0 48.0 13.0 16.0 33.0 44.0 7.0 1.0 11.0 56.0 3.0 29.0 2.0 9.0 25.0 1.0 63.0
🏫 0.0 0.0 100.0 0.0 9.0 40.0 40.0 11.0 5.0 55.0 39.0 1.0 0.0 12.0 46.0 0.0 42.0 31.0 4.0 59.0 3.0 3.0
💔 0.0 2.0 97.0 1.0 4.0 9.0 57.0 30.0 13.0 34.0 47.0 6.0 0.0 4.0 23.0 40.0 33.0 9.0 11.0 56.0 8.0 16.0

➡

🥋 0.0 1.0 99.0 0.0 5.0 41.0 49.0 5.0 9.0 28.0 55.0 8.0 1.0 22.0 38.0 0.0 39.0 24.0 3.0 36.0 1.0 36.0
🖌 5.0 2.0 93.0 0.0 0.0 0.0 83.0 17.0 0.0 4.0 83.0 13.0 0.0 3.0 43.0 4.0 50.0 1.0 5.0 47.0 1.0 46.0
🏫 1.0 0.0 99.0 0.0 3.0 0.0 70.0 27.0 0.0 0.0 98.0 2.0 0.0 12.0 51.0 0.0 37.0 14.0 7.0 48.0 0.0 31.0
💔 5.0 10.0 85.0 0.0 3.0 4.0 65.0 28.0 4.0 2.0 85.0 9.0 0.0 7.0 18.0 30.0 45.0 0.0 6.0 42.0 12.0 40.0

🖌

GCP

Llama

🔄

🥋 5.0 2.0 93.0 0.0 2.0 7.0 80.0 11.0 0.0 2.0 95.0 3.0 0.0 4.0 59.0 1.0 36.0 0.0 0.0 11.0 2.0 87.0
🎒 8.7 67.3 24.0 0.0 18.0 72.0 2.0 8.0 14.7 68.7 16.0 0.7 99.3 0.0 0.7 0.0 0.0 92.0 3.3 4.7 0.0 0.0
🍋 11.3 66.0 22.7 0.0 14.7 60.0 21.3 4.0 24.0 60.0 14.7 1.3 100.0 0.0 0.0 0.0 0.0 82.0 6.0 12.0 0.0 0.0
🏛 8.0 77.3 14.7 0.0 22.0 74.0 2.7 1.3 16.0 72.7 10.0 1.3 98.7 0.7 0.7 0.0 0.0 84.0 6.7 9.3 0.0 0.0

➡

🎉 13.3 60.0 26.7 0.0 28.0 64.0 4.0 4.0 32.7 59.3 8.0 0.0 99.3 0.7 0.0 0.0 0.0 86.0 4.0 10.0 0.0 0.0
🎒 20.0 29.3 50.7 0.0 36.7 58.7 4.0 0.7 39.3 53.3 7.3 0.0 98.7 0.7 0.7 0.0 0.0 87.3 5.3 7.3 0.0 0.0
🍋 14.7 37.3 48.0 0.0 30.0 60.7 8.0 1.3 26.7 64.0 8.7 0.7 98.0 0.0 1.3 0.0 0.7 77.3 6.0 14.7 2.0 0.0
🏛 13.3 14.0 72.7 0.0 26.0 54.0 15.3 4.7 28.0 62.0 10.0 0.0 98.7 0.0 1.3 0.0 0.0 78.0 5.3 16.7 0.0 0.0

GPT

🔄

🎉 14.0 39.3 46.7 0.0 31.3 52.7 13.3 2.7 34.7 58.0 7.3 0.0 93.3 2.7 4.0 0.0 0.0 82.0 5.3 11.3 0.7 0.7
🎒 5.3 68.0 25.3 1.3 10.7 72.7 4.7 12.0 31.3 60.0 7.3 1.3 92.7 6.7 0.7 0.0 0.0 45.3 19.3 35.3 0.0 0.0
🍋 10.7 71.3 12.0 6.0 17.3 43.3 32.0 7.3 28.7 49.3 18.7 3.3 68.7 24.0 5.3 0.7 1.3 36.7 17.3 40.7 0.0 5.3
🏛 9.3 57.3 33.3 0.0 13.3 64.0 4.7 18.0 21.3 64.0 14.7 0.0 92.0 4.0 4.0 0.0 0.0 49.3 16.0 33.3 0.0 1.3

➡

🎉 11.3 52.0 36.7 0.0 16.7 68.7 6.7 8.0 26.7 50.7 22.0 0.7 92.0 6.7 1.3 0.0 0.0 46.7 10.7 42.7 0.0 0.0
🎒 14.7 18.7 54.0 12.7 26.0 54.0 14.7 5.3 14.0 42.7 36.0 7.3 88.0 0.7 7.3 0.0 4.0 53.3 11.3 35.3 0.0 0.0
🍋 19.3 8.7 68.7 3.3 22.0 56.7 17.3 4.0 16.7 32.0 49.3 2.0 68.7 6.7 10.7 0.0 14.0 45.3 11.3 36.7 0.7 6.0
🏛 11.3 23.3 64.7 0.7 20.7 35.3 29.3 14.7 10.0 32.7 55.3 2.0 83.3 4.7 2.7 0.0 9.3 56.0 8.0 35.3 0.0 0.7

🎒

KSP

Llama

🔄

🎉 8.7 28.7 54.7 8.0 26.7 32.7 26.0 14.7 13.3 33.3 45.3 8.0 87.3 0.7 10.0 0.0 2.0 36.0 14.7 49.3 0.0 0.0
✈ 15.3 84.7 0.0 0.0 24.7 74.0 0.0 1.3 20.7 78.0 1.3 0.0 12.7 10.7 1.3 12.7 62.7 87.3 11.3 0.7 0.7 0.0
📋 13.3 86.7 0.0 0.0 22.7 77.3 0.0 0.0 8.0 92.0 0.0 0.0 6.0 30.0 4.0 12.0 48.0 59.3 13.3 3.3 11.3 12.7
📆 18.0 82.0 0.0 0.0 15.3 82.7 0.7 1.3 14.0 86.0 0.0 0.0 5.3 28.7 7.3 4.7 54.0 34.7 24.7 18.7 7.3 14.7

➡

🪑 9.3 90.7 0.0 0.0 25.3 74.0 0.0 0.7 5.3 94.7 0.0 0.0 3.3 40.7 0.0 0.0 56.0 66.7 29.3 4.0 0.0 0.0
✈ 10.7 89.3 0.0 0.0 18.0 70.0 0.7 11.3 16.0 84.0 0.0 0.0 14.0 6.7 0.0 6.0 73.3 74.7 20.0 3.3 2.0 0.0
📋 8.0 92.0 0.0 0.0 21.3 76.0 0.0 2.7 8.7 90.0 0.0 1.3 1.3 7.3 3.3 3.3 84.7 35.3 26.0 2.7 21.3 14.7
📆 8.7 91.3 0.0 0.0 15.3 82.7 0.7 1.3 3.3 96.0 0.0 0.7 3.3 8.0 15.3 2.0 71.3 19.3 14.0 40.7 12.0 14.0

GPT

🔄

🪑 10.7 89.3 0.0 0.0 19.3 78.0 0.0 2.7 3.3 96.7 0.0 0.0 3.3 10.7 0.7 0.0 85.3 58.7 34.7 3.3 2.0 1.3
✈ 8.0 92.0 0.0 0.0 12.0 62.7 1.3 24.0 6.0 94.0 0.0 0.0 1.3 2.7 0.0 0.0 96.0 13.3 36.0 8.0 6.7 36.0
📋 5.3 94.7 0.0 0.0 7.3 72.7 0.0 20.0 6.7 93.3 0.0 0.0 0.0 2.7 0.0 0.0 97.3 8.0 18.0 2.7 9.3 62.0
📆 3.3 96.7 0.0 0.0 9.3 80.7 2.0 8.0 4.7 94.7 0.0 0.7 0.0 4.7 2.0 2.7 90.7 3.3 20.0 0.0 0.7 76.0

➡

🪑 5.3 94.7 0.0 0.0 6.0 90.7 0.0 3.3 4.7 95.3 0.0 0.0 0.7 7.3 0.7 0.0 91.3 0.0 4.7 0.0 0.0 95.3
✈ 1.3 98.7 0.0 0.0 6.7 74.0 0.7 18.7 3.3 96.0 0.0 0.7 0.7 5.3 0.0 0.7 93.3 6.0 14.0 8.0 8.7 63.3
📋 5.3 94.7 0.0 0.0 5.3 75.3 0.7 18.7 8.0 90.7 0.0 1.3 0.0 0.0 0.7 0.7 98.7 2.7 22.0 5.3 7.3 62.7
📆 5.3 94.7 0.0 0.0 9.3 80.7 2.7 7.3 4.7 95.3 0.0 0.0 0.0 4.0 1.3 0.0 94.7 14.0 40.0 1.3 0.7 44.0

✈

TSP

Llama

🔄

🪑 7.3 92.7 0.0 0.0 6.0 90.0 0.7 3.3 4.7 95.3 0.0 0.0 0.7 2.7 1.3 0.7 94.7 0.0 0.7 0.0 0.0 99.3

Table 11: Full results for EHOP�HARD, with formatting matching that of Table 10. Greedy results do not vary by
condition, and were provided in Table 3.

18

	Introduction
	Related Work
	Everyday optimization problems
	🖌 Graph Coloring
	🎒 Knapsack
	✈ Traveling Salesman

	Experiments
	Dataset
	Models and Prompting
	Evaluation

	Results
	Scaling to larger instances is hard, except for ILP
	Textbook is easier than other variants
	LLMs rarely beat greedy heuristics
	Generalization over numbers is brittle

	Discussion
	Conclusion
	Limitations
	Bibliography
	Language Model Details
	Result Category Examples
	Costumes
	Prompting Strategies
	Generalization over numbers is brittle: Example
	Full Results

