
Published in Transactions on Machine Learning Research (07/2025)

SparseDiff: Sparse Discrete Diffusion for Scalable Graph
Generation

Yiming Qin yiming.qin@epfl.ch
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Clément Vignac vignac@isomorphiclabs.com
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Pascal Frossard pascal.frossard@epfl.ch
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Reviewed on OpenReview: https: // openreview. net/ forum? id= kuJ3lpxnVC

Abstract

Graph generative models encounter significant scaling challenges due to the need to pre-
dict the presence or type of edges for every node pair, resulting in quadratic complexity.
While some models attempt to support large graph generation, they often impose restrictive
assumptions, such as enforcing cluster or hierarchical structures, which can limit generaliz-
ability and result in unstable generation quality across various graph types. To address this,
we introduce SparseDiff, a novel diffusion framework that leverages the inherent sparsity
in large graphs - a highly relaxed assumption that enables efficient sparse modeling with-
out sacrificing generation quality for different datasets. SparseDiff reduces the complexity
of the three core components in graph diffusion models. It first introduces a noising tra-
jectory that preserves sparsity with more memory-efficient computation. During training,
SparseDiff uses a denoising network based on convolutional attention layers over a sparse
edge subsets combining edge-based graph attention and query edge-based random attention
mechanisms, maintaining expressiveness with reduced memory usage. Finally, for inference,
at each denoising step, SparseDiff generates edge subsets iteratively, progressively recon-
structing the adjacency structure. SparseDiff achieves state-of-the-art results on both small
and large datasets, showing its robustness across varying graph sizes and its scalability.
Additionally, it ensures faster convergence for large graphs, achieving a fourfold speedup
on the large-scale Ego dataset compared to dense models. SparseDiff’s efficiency, combined
with its effective control over space complexity, positions it as a powerful solution for scaling
applications involving large graphs. 1

1 Introduction

Graph generation plays a pivotal role in various fields, such as molecular chemistry (Vignac et al., 2023b),
neural architecture search (Asthana et al., 2024) and social network analysis (Schweimer et al., 2022), for its
ability to model complex relationships and create realistic structured data. Over the past decades, random
graph models have played a foundational role in graph generation (Erdős et al., 1960; Barabási, 2013).
However, their limitations in capturing complex dependencies in real-world data have shifted research toward
machine learning based graph generative models. Traditional frameworks like generative adversarial networks
(De Cao & Kipf, 2018) and variational autoencoders (Simonovsky & Komodakis, 2018) have primarily focused
on small graphs. Recently, denoising diffusion models (Jo et al., 2022; Niu et al., 2020), especially those
employing discrete modeling to better capture graph structure (Vignac et al., 2023a), have emerged, setting

1Codes available at https://github.com/qym7/SparseDiff.

1

https://openreview.net/forum?id=kuJ3lpxnVC
https://github.com/qym7/SparseDiff

Published in Transactions on Machine Learning Research (07/2025)

Sparse noise Cross-entropy

G

Gt Ĝq = (X̂, ̂Yq, Eq)

Gq

Query edges Eq

Predicted distribution

True labels

1. Efficient noise model 2. Sparse denoising network 3. Iterative inference

E1
q

E2
q

E3
q

Figure 1: SparseDiff employs three key components for efficiency: (1) a noise model that constructs a sparse
noisy graph Gt with high probability, preserving sparsity and enabling more efficient computation, (2) a
denoising network trained over all nodes and a sparse subset of query edges with controllable size, Eq, and
(3) an iterative inference step that, at each time step t, progressively fills the adjacency matrix using sparse
inputs given by Ei

q, for i ∈ {1, 2, 3}.

new benchmarks in graph generation tasks and improving scalability by generating graphs with up to 200
nodes. Nonetheless, scaling to even larger graphs remains challenging, restricting application in fields such
as protein generation (Yim et al., 2023), histopathology (Madeira et al., 2023), transportation (Rong et al.,
2023) or anomaly detection in financial systems (Li et al., 2023).

Motivated by these limitations and recognizing that most real-world graphs are inherently sparse — for
instance, cells in digital pathology connect only with immediate neighbors (Madeira et al., 2023), and con-
nections in social networks are sparse (McCallum et al., 2000) — we propose SparseDiff. SparseDiff is a
discrete diffusion framework that leverages graph sparsity without additional assumptions. Our technical
contributions are fourfold. (1) We observe the universal sparsity of real-world graphs, adopting a sparse
triplet graph representation (E, X, Y) in place of dense formats, which scales more efficiently for graphs
with different sizes (see Appendix E.2). This enables the realization of the remaining contributions of
SparseDiff, representing the three core components of diffusion models (detailed in Section 2.1) as illustrated
in Figure 1: (2) The efficient noise model (Section 3.1) introduces a sparse noising process that preserves
the sparsity of graphs along the forward diffusion trajectory with more space-efficient computation. (3) The
sparse denoising neural network (Section 3.2) uses convolutional attention layers adapted to our sparse graph
representation. Its complexity scales with the number of non-zero entries of its sparse attention map, which
covers existing edges and a tunable number of random node pairs, enabling training on large graphs under
controllable space complexity without compromising performance. The model is trained on random query
edges at each step, analogous to mini-batches in SGD, allowing optimization under constrained computation
resources. (4) The iterative inference procedure (Section 3.3) modifies the standard sampling strategy to
align with the sparse attention used during training. At each diffusion step, it incrementally reconstructs the
dense adjacency matrix by adding edge subsets defined by query edges, maintaining structural consistency
and improving efficiency at generation time.

Our experiments demonstrate that SparseDiff consistently achieves state-of-the-art performance on both
small graphs, including those with complex priors like molecular graphs, and large graph datasets. Notably,
SparseDiff handles much larger graphs (up to 2485 nodes), while the performance of DiGress degrades
on graphs with over 200 nodes. Specifically, SparseDiff outperforms both dense models like SPECTRE
(Martinkus et al., 2022) and DiGress (Vignac et al., 2023a), as well as other scalable models like EDGE (Chen
et al., 2023) and HGGT (Jang et al., 2023). SparseDiff also converges four times faster than dense diffusion
models on large graphs, such as social networks. These results empirically demonstrate the effectiveness of

2

Published in Transactions on Machine Learning Research (07/2025)

our sparse modeling approach and confirm its robustness through consistently high performance across a
diverse range of datasets.

In summary, SparseDiff is able to match the performance of dense diffusion models without restrictive
assumptions, pioneering the use of sparse representations in graph diffusion, and distinguishing it from
hierarchical and autoregressive methods. SparseDiff is implemented within the discrete diffusion framework,
specifically following the setup of Vignac et al. (2023a). Its noise model is particularly well-suited for scenarios
where non-existent edges dominate, such as marginal trajectories in SparseDiff or absorbing trajectories that
converge to empty graphs. Additionally, the sparse attention mechanism and iterative sampling are broadly
applicable to both diffusion or flow-based generative models, as they focus solely on sparsifying the attention
map and the corresponding adjacency matrix. As a remark, while SparseDiff can potentially improve diffusion
and flow models with sparse noisy graphs, it provides no benefit for continuous models that do not preserve
sparsity, as they must be modeled using a dense adjacency matrix.

2 Related Work

2.1 Denoising Diffusion Models for Graphs

Diffusion models have gained increasing popularity due to their impressive performance across various gen-
erative tasks in fields such as computer vision (Dhariwal & Nichol, 2021; Ho et al., 2022), protein generation
(Baek et al., 2021; Ingraham et al., 2022), and audio synthesis (Kong et al., 2020). These models are char-
acterized by three core components. The first is a Markovian noise model, which progressively corrupts
a data point x to a noisy sample zt over iterative steps t from 1 to T , until it conforms to a simple pre-
defined prior distribution at step T . The second component is a denoising network, parametrized by θ,
which is trained to restore the corrupted data back to its less noisy state. Typically, this network aims
to predict the original data x given the noisy sample zt. The third component is the reverse process for
data generation, where a fully noisy data point zT is first sampled from a prior distribution. The denoising
network then operates at each time step t ∈ [T, ..., 1] to predict the less noisy distribution according to
pθ(zt−1|zt) =

∫
x

q(zt−1|zt, x) dpθ(x|zt), from which a new data point zt−1 is sampled. While this integral is
generally difficult to evaluate, two prominent frameworks, Gaussian diffusion (Ho et al., 2020) and discrete
diffusion (Austin et al., 2021), facilitate its efficient computation.

Initial graph diffusion models employed Gaussian noise directly on adjacency matrices (Niu et al., 2020; Jo
et al., 2022). These models use a graph attention network to regress the added noise ϵ, where ϵ = zt − x,
effectively regressing the noise up to an affine transformation, akin to regressing the discrete clean graph. To
preserve the inherent discreteness of graphical data, subsequent models (Vignac et al., 2023a; Haefeli et al.,
2022) have leveraged discrete diffusion, reformulating graph generation as a series of classification tasks, and
achieving top-tier results. However, these models require predictions for all pairs of nodes, which implies a
quadratic space complexity and thus restricts their scalability. We further provide a detailed discussion of
discrete graph diffusion models in Appendix E.2.

2.2 Scalable Graph Generation

Efforts to enhance the scalability of graph generative models mainly follow two paradigms: hierarchical re-
finement and subgraph aggregation. The hierarchical refinement approach initially generates a low-resolution
graph, which undergoes successive refinements for enhanced detail (Yang et al., 2021; Karami, 2023). For
instance, the HGGT model (Jang et al., 2023) employs a hierarchical K2-tree representation. For molecule
generation, fragment-based models (Jin et al., 2018; 2020; Maziarz et al., 2022) adeptly assemble compounds
using pre-defined molecular fragments. Recently, Bergmeister et al. (2023) proposes a hierarchical diffusion
model based on spectrum-preserving local expansion algorithms, enabling the generation of non-attributed
large graphs. On the other side, the subgraph aggregation approach divides larger graphs into smaller
subgraphs, which are subsequently combined. For instance, SnapButton (Yang et al., 2021) enhances au-
toregressive models (Liu et al., 2018; Liao et al., 2019; Mercado et al., 2021) by merging subgraphs, and
SaGess (Limnios et al., 2023) trains a dense diffusion model to generate subgraphs sampled from a large
graph that are then merged.

3

Published in Transactions on Machine Learning Research (07/2025)

Additionally, some approaches predict all node pairs in an auto-regressive manner. Kong et al. (2023)
integrated diffusion with autoregressive models, suggesting learning the node ordering, which is theoreti-
cally as difficult as isomorphism testing. Alternatively, EDGE (Chen et al., 2023) uses absorbing states
to create sparse diffusion by first generating a node degree distribution d0 and gradually constructing the
adjacency matrix A based on node degree changes during inference. While this factorization is universally
applicable, the conditional distribution pθ(A|d0) may occasionally lead to degree distributions that are not
feasible for undirected graphs during sampling, introducing a slight misalignment between training and gen-
eration. EDGE’s performance also falls behind SparseDiff on both small and large graphs. Besides, while
latent diffusion is commonly used for scalability in vision tasks, applying it to graphs is more challenging
due to permutation equivariance, where the decoded graph can appear in any permutation, necessitating
graph matching. Current latent graph diffusion models either use predefined orderings (Evdaimon et al.,
2024), or perform diffusion on node features followed by link prediction (Yang et al., 2024), with the latter
underperforming SparseDiff or other dense models (see App. E.1 for details).

Overall, scalable generation models often introduce dependencies on node orderings, incorporate assumptions
about data distributions, or leverage specific graph properties, while latent graph diffusion faces challenges
for graph matching. In contrast, the SparseDiff model described in the next section aims at making no
assumption besides graph sparsity, offering a more general and streamlined framework for graph generation,
while preserving competitive performance across a wide range of graphs with different sizes.

3 SparseDiff: Sparse Discrete Diffusion for Graph Generation

We now introduce SparseDiff, a Sparse Denoising Diffusion Model that matches the performance of dense
models while significantly enhancing the scalability of graph diffusion to graphs with over 2, 000 nodes, a
significant improvement over previous dense models limited to around 200 nodes.

Unlike previous graph diffusion models, SparseDiff builds on a sparse representation of graphs. A graph G,
consisting of n nodes and m edges, is represented as a triplet (E, X, Y). Here, E ∈ N2×m indicates the edge
list with the indices of endpoints. Node and edge attributes are considered to be discrete and are encoded in
a one-hot format as X ∈ {0, 1}n×a and Y ∈ {0, 1}m×b, where a and b are the number of classes, respectively.
In particular, non-existing edges are considered an additional edge type, while edges in E are referred to as
existing edges. This sparse representation is widely supported by standard graph processing packages such
as Pytorch Geometric (Fey & Lenssen, 2019).

This work focuses solely on undirected graphs with discrete attributes, although continuous labels can be
integrated, in a similar way to Vignac et al. (2023b). All considered graphs are free of self-loops. Figure 1
provides an overview of SparseDiff framework. Further details on the training and sampling processes are
provided in Algorithms 1 and 2, respectively. In the following parts, we specifically focus on three critical
components of the diffusion model as detailed in Section 2.1: the noise model, the denoising network, and
the sampling algorithm. Appendix A summarizes the notation used throughout the paper, and Appendix
A.1 further provides a detailed breakdown of the space efficiency for each component.

3.1 Efficient Noise Model

To improve memory efficiency, SparseDiff employs a dedicated noise model that maintains a similar sparsity
level of the noisy graph Gt throughout the noising trajectory under theoretical guarantee, as detailed in
Section 3.1.1. This model also reduces the space complexity for computing noisy graph distribution as
detailed in Section 3.1.2.

3.1.1 Sparse Trajectory

Given that Gaussian noise applied to the adjacency matrix during diffusion typically results in dense noisy
graphs, where all edge entries in the adjacency matrix acquire continuous values (Niu et al., 2020; Jo et al.,
2022) — we opt for a discrete diffusion framework. In this framework, we sample a graph structure from the
noisy distribution, allowing us to focus only on existing edges within the noisy graph, thereby reducing the
number of edges necessary for computation. In the discrete graph diffusion model, the noisy trajectory at

4

Published in Transactions on Machine Learning Research (07/2025)

each step is defined by q(Gt|Gt−1) = (XQt
X , Y Qt

Y), where Qt represents the Markov transition matrix for
that step t, which transforms Gt−1 into a noisier distribution until reaching GT , which follows a predefined
prior distribution that is easy to sample. Different types of Markov transition matrices are employed to
corrupt the graphs into various prior distributions, including uniform distributions, a special absorbing state
(Austin et al., 2021), or marginal distributions (Vignac et al., 2023a).

In this work, we employ the marginal transition model, which favors transitions towards the dominant class
in the marginal distribution of the data. This strategy is particularly effective for preserving graph sparsity
by naturally biasing toward non-existing edges, which is the dominant edge class for large graphs. Formally,
considering the marginal distribution vectors pX for node types and pE for edge types, and denoting their
transposes by p′, the noise level at each step t is regulated by βt, with αt = 1− βt. Formally, the marginal
transition matrices are defined as follows:

Qt
X = αtI + βt1ap′

X , Qt
Y = αtI + βt1bp′

Y .

Here, 1a and 1b are column vectors of ones with dimensions equal to the number of classes a for nodes and
b for edges. These matrices incorporate a first term, the identity matrix I, to preserve the distribution from
Gt−1, and a second term to introduce noise aligned with the marginal distributions, namely pX and pE .

By employing continuous multiplication, we can derive the distribution at step t directly from the initial
clean graph using q(Gt|G) = (XQ̄t

X , Y Q̄t
Y), facilitating an immediate transition to the noisy state without

the need for iterative step-by-step calculations. For instance, the cumulative transition matrix Q̄t for nodes
X is as follows: Q̄t

X = Q1
XQ2

X . . . Qt
X = ᾱtI + (1 − ᾱt)1ap′

X , where ᾱt = α1α2 . . . αt. The parameter ᾱt

starts very close to 1 at ᾱ1 and approaches 0 at ᾱT , reflecting a gradual increase in noise influence over the
diffusion process.

We note that this choice of marginal noise model does not guarantee that the noisy graph is always sparse.
However, it is the case with high probability, as stated by the following lemma, which is an application of
Desolneux et al. (2008) (detailed in Appendix A.2).

Lemma 3.1. (Probability Bound for Sparsity in Noisy Graphs) Consider an undirected graph with n nodes,
m edges, and no self-loops. If the edge ratio given by m/

(
n
2
)

is denoted as r, and the edge ratio in the noisy
graph sampled from the marginal transition noise model is given by rt, then for n sufficiently large and r < 1

4 ,
for any r < k < 1, we have:

log(P[rt ≥ k]) ∼ −
(

n

2

) (
k log k

r
+ (1− r) log 1− k

1− r

)
(1)

This lemma demonstrates that, in large and sparse graphs, the probability of the edge ratio rt in the noisy
graph exceeding a threshold k (where k > r) declines exponentially with graph size. For instance, in graphs
with a low edge ratio r and setting the edge threshold at k = 2r, the probability that the noisy graph exceeds
k edges is approximately c1e−c2n2r, where c1 and c2 are constants. This probability decreases substantially
as the graph size n grows.

3.1.2 Sparse Computation

The second requirement for the noise model is to reduce the space complexity for computing the noisy
distribution. Standard discrete diffusion models represent all edges using Y ∈ Rn×n×b, with transition
probabilities computed as Y Q̄t

Y ∈ Rn×n×b, resulting in O(n2) space complexity. To address this, we
separate existing edges from non-existing ones, as the latter primarily contribute to quadratic complexity in
sparse graphs. We define the set of indices of non-existing edges as Ene ∈ N2×((n

2)−m), where E ∈ N2×m

represents the set of indices of existing edges. Together, E and Ene form a partition of all node pairs.

Specifically, we compute Y Q̄t
Y ∈ Rm×b for existing edges with space complexity O(m), we then sample

new edge labels directly from this distribution, while removing edges transitioning to non-existing states
to maintain sparsity in Gt. For non-existing edges Ene, which typically drive quadratic complexity, we
introduce a novel three-step approach to sample efficiently without dense adjacency matrices.

5

Published in Transactions on Machine Learning Research (07/2025)

A (0,2) (0,3)

B C

D

(0,1) (0,2) (0,3)

(1,3)

A B C D

A B C D

2. sample A B
(0, 2)

C
(0, 3) D E F

3. insert
existing edges new edges

1. flatten

4. convert back

Figure 2: Efficient sampling of new edge positions among non-existing positions is achieved using only
the edge list, avoiding the quadratic space complexity of an adjacency matrix. The process involves: (1)
Conceptually flattening the pair representations into a linear array, (2) Sampling uniformly 2 positions
from 4 non-occupied positions from Ene, selecting A (1st) and C (3rd), (3) Inserting offsets of 0 and 2 to
the positions of A and C to account for the count of existing edges before the selected positions, resulting in
positions A (1st) and E (5th), and (4) Converting these positions back to index pairs (0, 1) and (1, 3).

1. Sampling new edge count: Let m̄t =
(

n
2
)
− mt denote the number of non-existing edges in

Gt. The number of new edges is sampled as k ∼ B(m̄t, qt), where qt = 1 −Qt[0, 0] represents the
probability of a non-existing edge transitioning to an existing one.

2. Sampling positions: The new edge positions are selected uniformly at random from Ene.

3. Sampling edge attributes: The attribute of each new edge is drawn from the Multinomial distri-
bution Multinomial(Qt[0, 1 : b]), representing the transition probabilities over existing edge types.

In this approach, Step 1 employs a Binomial distribution B(m̄t, qt) to efficiently disregard edges that remain
non-existent, focusing computation solely on newly emerging edges to reduce overhead. Step 2, sampling
new edge positions, presents additional challenges, as it requires efficiently sampling a certain number of
edges from a batch of graphs with varying sizes. Moreover, the sampling must only occur from non-occupied
positions, and we must only rely on the edge list rather than the adjacency matrix to avoid high space
complexity. As illustrated in Figure 2, we propose an algorithm to efficiently handle this sparse sampling. The
method begins by conceptually flattening all vacant positions. Simple random sampling is then performed
on these positions using randint to select 2 elements from 4. Crucially, after sampling, the indices have to
be adjusted by adding offsets to account for existing edges through a specially designed algorithm, before
remapping them back to index pairs. Finally, as the noisy distribution for non-existing edges is uniform,
i.e., Qt[0, 1 : b], Step 3 samples directly from a fixed distribution, avoiding redundant matrix multiplications
required in prior models.

3.2 Efficient Denoising Neural Network

The traditional model for graph diffusion typically outputs the probabilities for all edges and nodes, which
aligns closely with attention layers. These layers explicitly encode edge features with a computational
complexity of O(ln2de), where l is the number of layers and de represents the edge feature dimension. In
contrast, message-passing methods only account for existing edges, significantly reducing the complexity to
O(lmde), where m is the number of existing edges.

However, as discussed in Appendix D.5.1, relying solely on message-passing and link prediction using node
features tends to perform worse on both small and large datasets. This may be due to the inability to capture
long-term and complex interactions between distant nodes, resulting in degraded performance in practice.
To address this, we propose bridging the gap between a fully connected attention layer and message-passing
with a random attention mechanism. Specifically, we first integrate a convolutional transformer layer (Shi
et al., 2020) that restricts attention to existing edges. Additionally, we incorporate random attention by
sampling query edges randomly from all possible node pairs. By expectation, the model learns the full
attention map between nodes, enabling it to capture more complex interactions.

6

Published in Transactions on Machine Learning Research (07/2025)

noisy edge list query edge list message-passing edge list Et Eq Em

Gt

Figure 3: The sparse attention map used in the sparse denoising network is based on the message-passing
edge list Em. This edge list consists of noisy edges for graph attention Et (shown in blue) and uniformly
sampled query edges for random attention Eq (shown in red).

3.2.1 Edge Prediction Module using Sparse Attention

As previously discussed, relying solely on message-passing layers for edge prediction yields limited results.
To enhance performance, we propose a random attention mechanism through a randomly selected subset of
node pairs, referred to as query edges. As shown in Figure 3, the input to the denoising network, referred to
as message-passing edges, is denoted by their indices and categories (Em, Ym). This includes two edge sets:
(1) noisy edges (Et, Y t), representing existing edges in the noisy graph Gt, and (2) query edges (Eq, Yq),
which are randomly selected for attention and loss computation. Formally, the model takes the following
edges as input:

Em = Et ∪Eq, Ym = Y t ∪ Yq. (2)

Noisy edges indexed by Et preserve the topological information of the noisy graph, while query edges
indexed by Eq are uniformly sampled from all node pairs, covering both existing and non-existing edges.
This sampling strategy enables the model to predict arbitrary edge types while ensuring an unbiased loss
estimator relative to dense diffusion models.

Additionally, the query edges in Eq facilitate random attention and serve as implicit shortcuts in the message-
passing network, enabling graph rewiring. As noted in studies such as (Alon & Yahav, 2020; Topping et al.,
2021; Di Giovanni et al., 2023), this mechanism enhances information propagation and helps mitigate over-
squashing issues by introducing additional rewiring edges denoted by Er = Eq \Et.

To control the number of query edges, we define the sparsity parameter λ as λ = |Eq|
n2 . Given that query

edges may overlap with noisy edges and that the number of noisy edges mt approximates the number of
edges m in the clean graph (according to Lemma 3.1), the total number of message-passing edges satisfies
|Em| ≤ |Et| + |Eq| ≤ m + ⌈λn2⌉. Setting λ = m

n2 ensures that the computational complexity of SparseDiff
remains approximately O(|Em|) = O(m), aligning with the number of edges in the clean graph G. In our
experiments, λ is selected to balance computational efficiency and effective batch size, as detailed in Appendix
C.2. This flexibility enables robust performance across different settings, as demonstrated in Table 5.

3.2.2 Model Training

Our sparse denoising network adopts a graph transformer architecture featuring normalization, feed-forward,
and attention layers (Veličković et al., 2017). It incorporates a sparse attention mechanism for handling sparse
data (Shi et al., 2020), and integrates advanced features such as PNA pooling layers (Corso et al., 2020) and
FiLM layers (Perez et al., 2018), which are designed to enhance predictive accuracy and effectively manage
computational complexity. A detailed discussion of the model architecture is provided in Appendix B.

Training of the network ϕθ parameterized by θ involves predicting query edges Eq, and the loss is minimized
using the cross-entropy (CE) loss between the predicted distribution P̂ G

q = (P̂ X , P̂ Y
q) and the clean graph

G. As detailed in Alg. 1, the loss function is computed as follows:∑
1≤i≤n

CE(Xi, P̂ X
i) + c

λ

∑
(i,j)∈Eq

CE(Yij , P̂ Y
ij), (3)

7

Published in Transactions on Machine Learning Research (07/2025)

Algorithm 1 Sparse training at step t with the sparsity parameter λ (Section 3.1 & 3.2)
1: Given the clean graph G = (E0, X0, Y 0);
2: Sample the noisy graph Gt = (Et, Xt, Y t);
3: Sample query edges Eq of size ⌈λn2⌉ ;
4: Em ← Et ∪Eq, Ym ← Y t ∪ Yq; ▷ Construct message-passing edges
5: Gm ← (Em, Xt, Ym); ▷ Construct the message-passing graph
6: (P̂ X , P̂ Y

q) = ϕθ(Gm, Eq); ▷ Predict the distribution of nodes and query edges
7: optimizer. step(CE(X̂0, P̂ X) + CE(Y 0

q , P̂ Y
q)); ▷ Loss calculation

Algorithm 2 Iterative inference at step t with the sparsity parameter λ (Section 3.3)
1: Initialize an empty graph Gt−1 with unlabeled nodes Xt−1 and no edges;
2: Randomly divide all node pairs into K = ⌈ 1

λ⌉ equal-sized chunks {C0, · · · , CK−1};
3: for k in range(K) do
4: Eq ← Ck; ▷ Set query edges
5: Em ← Et ∪Eq; ▷ Construct message-passing edges and its attributes Ym

6: Gm ← (Em, Xt, Ym); ▷ Construct the message-passing graph
7: (P̂ X , P̂ Y

q) = ϕθ(Gm, Eq); ▷ Predict the distribution of nodes and query edges
8: X̂ = Multinomial(P̂ X), Ŷq = Multinomial(P̂ Y

q); ▷ Sample labels
9: Xt−1 ← X̂; ▷ Assign node new labels

10: Y t−1 ← Y t−1 ∪ Ŷq[Ŷq! = 0], Et−1 ← Et−1 ∪ Êq[Ŷq! = 0]; ▷ Add existing edges

Here, the constant c weights nodes and edges in the loss calculation. It is rescaled by dividing by λ to
maintain a consistent edge-to-node weight ratio across different λ values. Conceptually, training SparseDiff
is analogous to using stochastic gradient descent instead of standard gradient descent. Query edges act as
random mini-batches, so SparseDiff’s updates remain aligned with those of dense diffusion models.

3.3 Iterative Inference

SparseDiff also remains memory-efficient during the inference stage, as visualized in Part (3) of Figure 1.
We start by sampling the number of nodes n of the generated graph from the node distribution of the
training set, which remains constant during the reverse process. Next, we sample a random graph from the
prior distribution GT ∼

∏n
i=1 Cate(pX) ×

∏
1≤i<j≤n Cate(pY), where pX and pY represent the marginal

probabilities of node and edge classes, respectively. The categorical distribution Cate(p) is used for both
nodes and edges. The sparse denoising network ϕθ is then recursively applied to predict the clean graph
from the noisy one. The denoising processes of SparseDiff are further visualized in Figure 7.

Directly predicting the entire graph at each diffusion step t is impractical due to quadratic memory re-
quirements. Moreover, using dense graphs during inference could lead to a distribution shift compared to
the training stage, due to changes in the number of edges used for message-passing. To mitigate this, we
implement an iterative procedure to progressively cover all node pairs in Gt−1. As detailed in Algorithm 2
and in Part (3) of Figure 1, we divide all node pairs randomly into K = ⌈ 1

λ⌉ equally-sized sets, representing
the query edges for each prediction step2. During each iteration k, the noisy graph Gt remains identical, and
a message-passing edge list Em is constructed using noisy edges and query edges from the kth set denoted
by Ek

q . SparseDiff then predicts the distributions for these query edges, samples labels, and integrates edges
classified as existing into Gt−1.

2When n(n−1)
2 is not divisible by K, we adjust by slightly overlapping the last set with the previous one.

8

Published in Transactions on Machine Learning Research (07/2025)

(a) (b)

(c) (d)
Figure 4: Samples from SparseDiff trained on large graphs. (a) Ego training set (50 to 399 nodes); (b)
Generated Ego graphs; (c) Protein training set (100 to 500 nodes); (d) Generated Protein graphs.

This iterative approach allows SparseDiff to maintain favorable memory complexity, albeit at the cost of
increased sampling time due to iterations at each diffusion step. However, unlike many scalable models,
SparseDiff does not impose additional assumptions about data distribution, such as clustering or degree
distribution. Despite the increased sampling time, the generation time for SparseDiff remains efficient due
to its ability to utilize larger batch sizes and to accelerate model computations using sparse inputs, as
reported in Table 15 of Appendix D.4.

Finally, drawing inspiration from D3PM (Austin et al., 2021) and DDIM (Song et al., 2020), we propose a
method to accelerate inference by reducing the inference steps by a factor k. In particular, at each step t,
the model predicts q(Gt−k|Gt, G) ∝ Gt(Qt)′ ⊙ GQ̄t−k instead of q(Gt−1|Gt, G) ∝ Gt(Qt)′ ⊙ GQ̄t−1. The
results for acceleration are reported in Table 7.

4 Experiments

We evaluate SparseDiff on diverse graph datasets against a broad range of baselines, including
GraphRNN (You et al., 2018), GRAN (Liao et al., 2019), GraphNVP (Madhawa et al., 2019), SPEC-
TRE (Martinkus et al., 2022), GDSS (Jo et al., 2022), DiGress (Vignac et al., 2023a), DruM (Jo et al.,
2023), and scalable models such as BiGG (Dai et al., 2020), GraphARM (Kong et al., 2023), EDGE (Chen
et al., 2023), HiGen (Karami, 2023), and HGGT (Jang et al., 2023). We refer to the method from Bergmeister
et al. (2023) as GraphLE. We report results as originally published to ensure fair and consistent comparison.
DiGress (Vignac et al., 2023a), as the primary baseline, is reproduced using SparseDiff’s settings due to
missing checkpoints. Training and architectural hyperparameters are detailed in App. D.6.

SparseDiff metrics are reported as mean ± standard deviation, derived from five samples, mitigating variance
of inference. We bold the best-performing method for each metric. The results underscore SparseDiff’s
significant competitive advantage on datasets containing larger graphs, such as Planar and SBM (Martinkus
et al., 2022), Protein (Dobson & Doig, 2003), Ego and CORA (Sen et al., 2008), and Facebook (Mcauley
& Leskovec, 2014) alongside its state-of-the-art performance on datasets with small molecules, including
QM9 (Wu et al., 2018) and MOSES (Polykovskiy et al., 2020). Notably, SparseDiff is the only model that
demonstrates competitive performance across both large and small graphs, handling both attributed and
unattributed graphs effectively.

4.1 Large Graph Generation

Dataset We evaluate SparseDiff on diverse graph datasets to demonstrate its scalability and versatility.
First, we test its ability to generate edge-crossing-free planar graphs with 64 nodes. Next, we assess its
capacity to generate graphs with 2 to 5 communities using Stochastic Block Model (SBM) graphs, scaling up
to 200 nodes — the largest size seen in models like DiGress. We also evaluate Ego and Protein datasets, with
graphs up to 500 nodes, representing citation relationships and amino acid interactions within 6 Angstroms.
The largest edge ratio for these datasets is 8.8%, confirming their sparsity. Detailed dataset statistics are in

9

Published in Transactions on Machine Learning Research (07/2025)

Table 1: Sample quality on large graphs. The mean ratios to the reference of the Degree, Cluster, Orbit,
and Spectre MMD metrics are reported to enable a comprehensive comparison.

Class Model Degree(10−3)↓ Cluster (10−2)↓ Orbit (10−2)↓ Spectre (10−3)↓ Ratio ↓ RBF (10−2)↓

Protein Reference 0.3 0.7 0.3 0.5 1.0 1.4
Dense GRAN 2.0 4.9 13 5.1 17 –

DiGress 5.9±0.1 10±1.4 5.1±1.8 2.9±0.5 14±2.3 7.1±1.5
Sparse DruM 1.9 6.6 3.5 3.0 8.4 –

BiGG 1.0 2.6 2.3 4.5 5.9 –
HiGen 1.2 4.4 2.3 2.5 5.7 –
GraphLE 3.0 3.1 0.5 1.3 4.7 –
SparseDiff 1.5±0.3 3.4±0.3 0.5±0.8 1.4±0.2 3.6±1.1 3.8±0.7

Ego Reference 0.2 0.7 0.7 1.0 1.0 0.9
Dense DiGress 8.9±1.6 5.4±0.4 3.0±0.3 19±3.2 19±3.1 3.4±0.8
Sparse EDGE 58 18 5.2 – 107 6.6

HiGen 47 0.3 3.9 – 81 4.5
SparseDiff 3.7±0.4 3.2±0.1 2.0±0.4 5.6±0.8 7.9±0.9 2.6±0.3

Table 2: Sample quality on synthetic graphs. The mean ratios to the reference of the Degree, Cluster and
Orbit MMD metrics are reported to enable a comprehensive comparison.

Dataset Stochastic block model Planar
Model Degree↓ Cluster↓ Orbit↓ Ratio ↓ V.U.N.↑ Degree ↓ Cluster ↓ Orbit↓ Ratio ↓ V.U.N.↑
Reference 0.9 3.3 2.6 1.0 100% 0.2 3.1 0.1 1.0 100%
GRAN 5.5 5.8 7.9 3.6 25% 0.7 4.3 0.1 2.0 0%
GG-GAN 3.5 7.0 5.9 2.8 25% 63 118 123 528 0%
SPECTRE 1.5 5.2 4.1 1.6 53% 0.5 7.9 0.1 2.0 25%
DruM 0.7 4.9 4.5 3.6 85% 0.5 3.5 0.1 1.5 90%
HiGen 5.5 5.8 7.9 3.6 – – – – – –
GraphLE 12 5.2 6.7 5.8 45% 0.5 6.3 0.2 2.2 95%
DiGress 1.7±0.1 5.0±0.1 3.6±0.4 1.6±0.1 74%±4 0.8±0.0 4.1±0.3 0.5±0.0 1.2±0.4 76%±1
SparseDiff 1.6±0.9 5.0±0.1 4.5±0.9 1.7±0.5 75%±10 0.3±0.0 3.2±0.3 0.1±0.1 1.2±0.4 85%±9

Appendix C.2. To further highlight our model’s scalability, we include the Facebook dataset, which contains
1,045 nodes, in Table 11, and the CORA dataset, which contains 2,485 nodes, in Table 12, respectively.

Metrics For evaluation, we use maximum mean discrepancy (MMD) metrics, standard in graph generation
tasks. We report the validity of SBM graphs as the fraction passing a stochastic block model test, and for
Planar graphs, the fraction that are planar and connected. For larger datasets, we also use the Radial
Basis Function (RBF) MMD metric to assess fidelity and diversity using a randomly parametrized GNN
(Thompson et al., 2022). Since MMD metrics often yield small values that are difficult to compare directly,
we report Degree, Cluster, Orbit, Spectre and RBF MMD metrics in units of 10−3, 10−2, 10−2, 10−3

and 10−2, respectively. The theoretical optimal metrics, computed with MMD(train, test)2, are used as
the reference and represented by a light gray line. Detailed results with higher precision are available in
Appendix C.3 for facilitating comparison. For the Facebook and the CORA dataset, the evaluation follows
the setup of SaGess (Limnios et al., 2023) and EDGE (Chen et al., 2023) for better comparison.

Results Tables 1 and 2 show that SparseDiff tops the aggregated average-ratio metrics, trailing DiGress
by just 0.1 on SBM. SparseDiff matches DiGress’s best score within variance, suggesting it can hit that mark
with an optimal seed. Dense models such as DiGress (Vignac et al., 2023a) excel on SBM and Planar graphs
but falter on larger Ego and Protein datasets because of quadratic memory, failing outright for graphs over
1,000 nodes. SparseDiff, by tuning the sparsity parameter λ, allows larger batches under the same resources,
converges faster, and handles graphs well past this threshold. On mid-sized SBM and Planar graphs it
matches dense and sparse baselines (Table 2); it stays competitive on large Ego and Protein graphs (Table
1) and leads on the 1,000- and 2,000-node benchmarks (Tables 11, 12).

10

Published in Transactions on Machine Learning Research (07/2025)

Table 3: Molecule generation on QM9 with implicit hydrogens.
Dense Models | Sparse Models

Model Valid (%)↑ Unique (%)↑ Conn. (%)↑ FCD ↓ Model Valid (%)↑ Unique (%)↑ Conn. (%)↑ FCD ↓
SPECTRE 87.3 35.7 - - GraphARM 90.3 - - 1.22
GraphNVP 83.1 99.2 - - EDGE 99.1 100 - 0.46
GDSS 95.7 98.5 - 2.9 HGGT 99.2 95.7 - 0.40
DiGress 99.3±0.0 95.9±0.2 99.4±0.2 0.15±0.01 SparseDiff 99.2±0.1 96.4±0.1 99.8±0.1 0.12±0.00

Table 4: Drug-sized molecular generation on the MOSES dataset.
Model Valid (%) ↑ Unique (%) ↑ Novel (%) ↑ Filters (%) ↑ FCD ↓ SNN (%) ↑ Scaf (%) ↑ Frag (%) ↑
GraphINVENT 96.4 99.8 – 95.0 1.22 53.9 12.7 98.6
DiGress 85.7 100.0 95.0 97.1 1.19 52.2 14.8 99.6
SparseDiff 84.7±0.2 100.0±0.0 95.1±0.1 97.0±0.2 1.28±0.01 52.2±.00 15.5±1.3 99.8±0.0

4.2 Molecule Generation

Dataset and metrics Given that our method behaves like dense models in the limit case where λ = 1,
it is expected to align with their performance on small graph datasets. We evaluate our approach using the
QM9 and MOSES molecular datasets, anticipating its performance comparable to that of dense models. The
QM9 dataset (Wu et al., 2018) features molecules with up to 9 heavy atoms, while the MOSES benchmark
(Polykovskiy et al., 2020), derived from ZINC Clean Leads, includes drug-sized molecules with extensive
assessment tools. In QM9, we add formal charges as discrete node features during diffusion, similar to
Vignac et al. (2023b), and apply the same to DiGress for consistency. We assess molecular performance
by the proportion of connected graphs, validity of the largest connected component verified by RDKit, and
uniqueness of over 10,000 molecules. Additionally, we use the Frechet ChemNet Distance (FCD) (Preuer
et al., 2018) to measure molecular similarity, excluding 0.96% of invalid molecules for FCD analysis.

Results Table 3 demonstrates that SparseDiff consistently outperforms other scalable methods on the FCD
metric, highlighting its effectiveness for small, structured graphs even without significant sparsity advantages.
Additionally, SparseDiff achieves results comparable to the state-of-the-art dense model, DiGress, across
other metrics on the QM9 dataset. Furthermore, Table 4 shows that on the drug-sized molecular dataset
MOSES, SparseDiff maintains similar performance to DiGress, further validating its effectiveness.

4.3 Efficiency Analysis

Table 5: Unconditional generation on QM9 under different
sparsity parameters λ.

λ Valid↑ Unique↑ Connected↑ FCD↓

100% 99.2±0.1 96.4±0.1 99.8±0.1 0.12±0.00
50% 99.1±0.1 96.8±0.2 99.6±0.1 0.11±0.01
25% 99.2±0.1 96.5±0.2 99.6±0.1 0.12±0.01
10% 99.1±0.1 96.9±0.2 99.6±0.0 0.11±0.00

Figure 5: Occupied GPU under differ-
ent sparsity parameter λ.

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity Parameter

5000

10000

15000

20000

25000

GP
U

Us
ag

e
(M

B)

DiGress Baseline (--)
SBM
QM9

Impact of the sparsity parameter The sparsity parameter λ plays a crucial role in SparseDiff, but its
impact on performance is minimal. On the QM9 dataset, where λ = 1.0 (dense diffusion) is computationally
feasible, we vary λ from 1.0 to 0.1 (high sparsity) and report results in Table 5. SparseDiff demonstrates
consistent performance across this range, with connectivity, validity, uniqueness, and Frechet ChemNet
Distance (FCD) metrics showing minimal variation. For instance, the validity metric remains between
99.1% and 99.2%, while uniqueness ranges from 96.4% to 96.9%. We note that models trained with λ = 0.1
and λ = 0.25 required twice as many training epochs due to fewer edges being processed per epoch. Despite

11

Published in Transactions on Machine Learning Research (07/2025)

this, all models exhibit consistent performance across different λ values after convergence, which highlights
the robustness and stability of SparseDiff in generating high-quality molecular graphs.

In Figure 5, we present the approximate linear relationship between the sparsity parameter λ and the actual
space complexity on the QM9 and SBM datasets, demonstrating effective control over space complexity
through our proposed method. For example, on the SBM dataset, training with λ = 0.25 reduces memory
usage to only 31.8% of that required by DiGress. At λ = 1.0, where sparsity is maximal, our method further
outperforms DiGress by avoiding the overhead associated with dense models, which enforce a uniform size
of (nmax, nmax) for batched computations, where nmax represents the largest node count within the batch.
Conversely, on the QM9 dataset, where graph sizes are more uniform, our method incurs a slightly higher
space complexity at λ = 1.0 due to the indexing operations inherent to message-passing mechanisms and
the sparse graph representations.

Table 6: Convergence comparison of graph diffusion
models after 24 hours of training.

Model Deg.↓ Clust.↓ Orbit↓ Ratio ↓ RBF↓

EDP-GNN 22 36 9.9 59 -
DiGress 4.0 4.9 3.4 11 5.6
EDGE 46 18 4.5 87 3.6
GraphLE 58 23 4.2 110 -
SparseDiff 2.3 4.7 3.6 7.8 3.5

Figure 6: Convergence comparison between Di-
Gress and SparseDiff.

12 24 36 48
Training Time (h)

0.00

0.02

0.04

0.06

RB
F

M
M

D
(

) SparseDiff
DiGress

Training efficiency We compare SparseDiff’s performance on the Ego dataset against other diffusion
models, including dense models like EDP-GNN and DiGress, and sparse models such as EDGE and GraphLE.
Table 6 shows that after 24 hours of training on a V100-32G machine, SparseDiff outperforms all metrics
except for a minor increase in Orbit MMD compared to DiGress. The comparison of graph diffusion models’
sampling speeds is further presented in Table 15 in Appendix D.4. Figure 6 shows that SparseDiff has a
significantly faster convergence speed compared to DiGress, achieving satisfactory results within two days.
Notably, a SparseDiff model trained for 12 hours demonstrates an RBF MMD comparable to a DiGress
model trained for 48 hours.

Table 7: Inference acceleration results.
Dataset Steps Deg.↓ Clust.↓ Orbit ↓ Ratio ↓ RBF↓

Ego
1000 3.6 3.1 1.5 8.2 2.0
500 2.3 2.9 2.0 6.2 2.1
200 3.7 3.1 1.6 8.4 2.3

Dataset Steps Deg. Clust. Orbit Ratio V.U.N

Planar
1000 0.3 3.2 0.1 1.2 85%
500 0.3 3.4 0.2 1.5 80%
200 0.5 3.7 0.4 2.6 69%

Inference efficiency We test the Ego and Planar
datasets with different numbers of inference steps
(1000, 500, and 200) after training with T = 1, 000
steps. The results, presented in Table 7, sur-
prisingly demonstrate that even with a 5-fold in-
crease in generation speed (down to 200 steps), our
model keeps performing, and consistently outper-
forms most other dense and scalable models, high-
lighting its potential for more efficient generation.

5 Conclusion

In this work, we introduced SparseDiff, a scalable discrete denoising diffusion model for graph generation.
SparseDiff offers precise control over computational resources by predicting only a subset of edges at each
step. Experimental results highlight its superior and robust performance across graphs of varying sizes,
making it applicable to tasks such as generating large molecules and community graphs. Additionally, the
query edge design, sparse transformer architecture, and iterative sampling procedure of SparseDiff can be
extended to other iterative graph generation models. Furthermore, the efficient sampling algorithm for non-
existing edges is applicable for graph rewiring in other domains. While SparseDiff meets the demands of
most scenarios, its scalability and ability to generate graphs with out-of-distribution node counts could be
further enhanced by incorporating a structured hierarchical approach, which is expected for future work.

12

Published in Transactions on Machine Learning Research (07/2025)

References
Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. arXiv

preprint arXiv:2006.05205, 2020.

Rohan Asthana, Joschua Conrad, Youssef Dawoud, Maurits Ortmanns, and Vasileios Belagiannis. Multi-
conditioned graph diffusion for neural architecture search. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=5VotySkajV.

Jacob Austin, Daniel Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured de-
noising diffusion models in discrete state-spaces. In Advances in Neural Information Processing Systems,
volume 34, 2021.

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie Lee, Jue
Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of protein structures and
interactions using a three-track neural network. Science, 373(6557):871–876, 2021.

Albert-László Barabási. Network science. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 371(1987), 2013.

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient and scal-
able graph generation through iterative local expansion. arXiv preprint arXiv:2312.11529, 2023.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation via
discrete diffusion modeling. arXiv preprint arXiv:2305.04111, 2023.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count substructures?
In Advances in neural information processing systems, volume 33, 2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbourhood
aggregation for graph nets. Advances in Neural Information Processing Systems, 2020.

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative modeling for
sparse graphs. In International Conference on Machine Learning. PMLR, 2020.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs. In
ICML Workshop on Theoretical Foundations and Applications of Deep Generative Models, 2018.

Agnés Desolneux, Lionel Moisan, and Jean-Michel Morel. Estimating the binomial tail. From Gestalt Theory
to Image Analysis: A Probabilistic Approach, pp. 47–63, 2008.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In Advances in
Neural Information Processing Systems, 2021.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M. Bronstein.
On over-squashing in message passing neural networks: The impact of width, depth, and topology. In
Proceedings of the 40th International Conference on Machine Learning, 2023.

Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes without align-
ments. Journal of molecular biology, 2003.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci, 1960.

Iakovos Evdaimon, Giannis Nikolentzos, Michail Chatzianastasis, Hadi Abdine, and Michalis Vazirgian-
nis. Neural graph generator: Feature-conditioned graph generation using latent diffusion models. arXiv
preprint arXiv:2403.01535, 2024.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

13

https://openreview.net/forum?id=5VotySkajV

Published in Transactions on Machine Learning Research (07/2025)

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffusion
models for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition video
generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

John Ingraham, Max Baranov, Zak Costello, Vincent Frappier, Ahmed Ismail, Shan Tie, Wujie Wang,
Vincent Xue, Fritz Obermeyer, Andrew Beam, et al. Illuminating protein space with a programmable
generative model. bioRxiv, 2022.

Yunhui Jang, Dongwoo Kim, and Sungsoo Ahn. Hierarchical graph generation with k2-trees. arXiv preprint
arXiv:2305.19125, 2023.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular
graph generation. In International conference on machine learning. PMLR, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs using
structural motifs. In International Conference on Machine Learning. PMLR, 2020.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the system of
stochastic differential equations. arXiv preprint arXiv:2202.02514, 2022.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with destination-predicting diffusion
mixture. arXiv preprint arXiv:2302.03596, 2023.

Mahdi Karami. Higen: Hierarchical graph generative networks. arXiv preprint arXiv:2305.19337, 2023.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B. Aditya Prakash, and Chao Zhang. Autoregres-
sive diffusion model for graph generation, 2023. URL https://openreview.net/forum?id=98J48HZXxd5.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion
model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

Xujia Li, Yuan Li, Xueying Mo, Hebing Xiao, Yanyan Shen, and Lei Chen. Diga: Guided diffusion model
for graph recovery in anti-money laundering. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2023.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David Duvenaud,
Raquel Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
In NeurIPS, 2019.

Stratis Limnios, Praveen Selvaraj, Mihai Cucuringu, Carsten Maple, Gesine Reinert, and Andrew El-
liott. Sagess: Sampling graph denoising diffusion model for scalable graph generation. arXiv preprint
arXiv:2306.16827, 2023.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph variational
autoencoders for molecule design. Advances in neural information processing systems, 31, 2018.

Manuel Madeira, Dorina Thanou, and Pascal Frossard. Tertiary lymphoid structures generation through
graph-based diffusion. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 37–53. Springer, 2023.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invertible flow
model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

14

https://openreview.net/forum?id=98J48HZXxd5

Published in Transactions on Machine Learning Research (07/2025)

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral
conditioning helps to overcome the expressivity limits of one-shot graph generators. arXiv preprint
arXiv:2204.01613, 2022.

Krzysztof Maziarz, Henry Richard Jackson-Flux, Pashmina Cameron, Finton Sirockin, Nadine Schneider,
Nikolaus Stiefl, Marwin Segler, and Marc Brockschmidt. Learning to extend molecular scaffolds with
structural motifs. In International Conference on Learning Representations (ICLR), 2022.

Julian Mcauley and Jure Leskovec. Discovering social circles in ego networks. ACM Transactions on Knowl-
edge Discovery from Data (TKDD), 8(1):1–28, 2014.

Andrew McCallum, Kamal Nigam, Jason D. M. Rennie, and Kristie Seymore. Automating the construction
of internet portals with machine learning. Information Retrieval, 3:127–163, 2000.

Rocío Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming Chen, and
Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning: Science and Technology,
2021.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permutation
invariant graph generation via score-based generative modeling. In International Conference on Artificial
Intelligence and Statistics. PMLR, 2020.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual reasoning
with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai Tatanov,
Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark Veselov, et al. Molec-
ular sets (moses): a benchmarking platform for molecular generation models. In Frontiers in pharmacology.
Frontiers Media SA, 2020.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer. Fréchet
chemnet distance: a metric for generative models for molecules in drug discovery. Journal of chemical
information and modeling, 58(9):1736–1741, 2018.

Can Rong, Jingtao Ding, Zhicheng Liu, and Yong Li. City-wide origin-destination matrix generation via
graph denoising diffusion. arXiv preprint arXiv:2306.04873, 2023.

Christoph Schweimer, Christine Gfrerer, Florian Lugstein, David Pape, Jan A. Velimsky, Robert Elsässer,
and Bernhard C. Geiger. Generating simple directed social network graphs for information spreading. In
Proceedings of the ACM Web Conference 2022. ACM, 2022. URL http://dx.doi.org/10.1145/3485447.
3512194.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad. Col-
lective classification in network data. In The AI Magazine, 2008.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label prediction:
Unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509, 2020.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using variational
autoencoders. In International conference on artificial neural networks. Springer, 2018.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W Taylor. On evaluation
metrics for graph generative models. arXiv preprint arXiv:2201.09871, 2022.

15

http://dx.doi.org/10.1145/3485447.3512194
http://dx.doi.org/10.1145/3485447.3512194

Published in Transactions on Machine Learning Research (07/2025)

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. In The Eleventh International Conference on
Learning Representations, 2023a.

Clément Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d denoising
diffusion for molecule generation. In ECML/PKDD, 2023b.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu,
Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. In Chem.
Sci. The Royal Society of Chemistry, 2018.

Ling Yang, Zhilin Huang, Zhilong Zhang, Zhongyi Liu, Shenda Hong, Wentao Zhang, Wenming Yang,
Bin Cui, and Luxia Zhang. Graphusion: Latent diffusion for graph generation. IEEE Transactions on
Knowledge and Data Engineering, 2024.

Shuai Yang, Xipeng Shen, and Seung-Hwan Lim. Revisit the scalability of deep auto-regressive models for
graph generation. In 2021 International Joint Conference on Neural Networks (IJCNN), 2021.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay, and
Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation. arXiv preprint
arXiv:2302.02277, 2023.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In International conference on machine learning. PMLR, 2018.

16

Published in Transactions on Machine Learning Research (07/2025)

A Theoretical Analysis

The notations used throughout the paper are summarized in Tab. 8.

Notation Explanation
G = (E, X, Y) Graph as (edge list, node attributes, edge attributes)
n Number of nodes
m Number of edges
E ∈ N2×m Edge list (pairs of node indices)
Ene ∈ N2×((n

2)−m) List of non-existing node-pairs
X ∈ {0, 1}n×a One-hot node attribute matrix
Y ∈ {0, 1}m×b One-hot existing-edge attribute matrix
a, b # classes for nodes (a) and edges (b)
Gt Noisy graph at diffusion step t
q(Gt |Gt−1) Markov transition probability from Gt−1 to Gt

Qt
X , Qt

Y Transition matrices for node/edge classes at t
αt, βt αt = 1− βt, noise scheduling scalars
ᾱt

∏t
s=1 αs, cumulative noise schedule

Q̄t
X , Q̄t

Y Cumulative transition matrices
pX , pE Marginal class probabilities (nodes/edges)
m̄t =

(
n
2
)
−mt # non-existing edges in Gt

qt = 1−Qt[0, 0] Probability for non-edge becoming an actual edge at step t
Eq Query edge set
λ Sparsity param. (|Eq|/n2)
Ck k-th chunk of node-pair queries
Em = Et ∪Eq Message-passing edge list for denoising
ϕθ Sparse denoising network ϕ with parameters θ

P̂ G
q = (P̂ X , P̂ Y

q) Predicted node and query-edge distributions
X̂, Ŷq Sampled labels via Multinomial(P̂ X), Multinomial(P̂ Y

q)

Table 8: Main notations used in SparseDiff.

A.1 Space Complexity Analysis

In this section, we provide a comprehensive breakdown of the space complexity of SparseDiff for each com-
ponent, supporting our claim that SparseDiff achieves higher efficiency.

We consider a batch of graphs where each graph i contains ni nodes and mi edges. Let bs denote the batch
size. To analyze worst-case complexity, we define:

nmax = max
0≤i<bs

ni, mmax = max
0≤i<bs

mi. (4)

A.1.1 Efficient Noise Model

Our method explicitly exploits redundancy in the previous computation of Y Q̄t ∈ Rn×n×b. Specifically, for
edges sharing the same type (e.g., non-existing), the resulting noisy probabilities are identical. We leverage
this property to eliminate repeated computations and substantially improve efficiency.

Existing edges For existing edges, computing the noisy distribution involves matrix multiplication with
a cost of O(2mb + b2). Multinomial sampling from this distribution requires further O(mb). Therefore, the
total complexity is O(3mb + b2).

Non-existing edges For non-existing edges, the sparse computation consists of three main steps. Based
on the PyTorch implementation, the space complexity of each step is as follows:

17

Published in Transactions on Machine Learning Research (07/2025)

1. Sampling edge count: O(1).

2. Sampling positions: O(2n2 + m).

3. Sampling edge attributes: O(bm), where b is the number of edge types.

The breakdown of space complexity for sampling positions is:

• Steps 1 and 2: A multinomial distribution is used to sample m̄t positions from the O(n2 −mt)
non-existing edge candidates in Ene. This results in space complexity O(n2 −mt + m̄t). Assuming
m̄t ≈ m and mt ≈ m, this simplifies to O(n2).

• Step 3: Offsets are appended to the candidate edge list using a single pass over the sampled edges.
This step has space complexity O(n2 − mt). The space complexity to take into account existing
edges is O(mt). This results in space complexity O(n2).

• Step 4: Final operation to convert these positions back to index pairs selection involves element-wise
operations over m̄t ∼ m elements. These operations have O(m) memory overhead.

In total, the space complexity for handling non-existing edges is O(2n2 + bm + m + 1). Steps 1 and 2
are detached from the backward computation graph and involve trivial operations that are typically well-
supported by existing frameworks.

Summary By aggregating all edges and adopting the same computation for existing edges as in SparseDiff,
DiGress has a total space complexity ofO(3n2b+b2). In contrast, SparseDiff requiresO(1+m+4mb+b2+2n2).
Given that n is typically large and that m is negligeble compared to n2, we compare the highest-order terms.
Specifically, DiGress has leading complexity O(3n2b), while SparseDiff has O(2n2).

Assuming m is negligible relative to n and taking b = 2 as a concrete example, the leading space complexity
of DiGress becomes O(3n2b) = O(6n2). In contrast, our optimized implementation eliminates redundant
computations across edge types and achieves a total space complexity of O(2n2). This results in a 3×
reduction in memory usage. As b increases when we consider more edge types other than edge existance, the
gap widens further, making our approach increasingly advantageous in such settings.

A.1.2 Efficient Denoising Neural Network

As described in Section 3.2, the space complexity of the denoising neural network for each graph is determined
by the number of edges used in its message-passing process:

|Em,i| ≤ mi + ⌈λn2
i ⌉, (5)

where λ is the tunable sparsity parameter controlling the number of sampled query edges. For a batch, the
total number of edges being considered is dominated by bs|Em,max|, where |Em,max| = mmax + ⌈λn2

max⌉:∑
0≤i<bs

|Em,i| =
∑

0≤i<bs

mi + ⌈λn2
i ⌉ ≤ bs(mmax + ⌈λn2

max⌉) = bs|Em,max|. (6)

Traditional full-attention mechanisms considers all node pairs which incurs as a complexity linear to O(bs ·
n2

max), whereas SparseDiff scales only with a complexity upper-bounded by O(bs · (mmax + λn2
max)).

In practice, for a network with L attention layers and edge activation dimension de, the total space complexity
for a batch of size bs is actually upper-bouned by:

O(bs · L · de · |Em,max|). (7)

Since de is typically large (e.g., 64 or 128) and L often exceeds five layers, this component becomes the
primary memory bottleneck inside the network. In sparse graphs, the number of edges mi is typically much

18

Published in Transactions on Machine Learning Research (07/2025)

smaller than n2
i , making λn2

max the dominant term in |Em,max|. As a result, the space complexity grows as
O(λn2

max) in practice, leading to a near-linear scaling of memory usage with λ. This is further supported by
the observation in Figure 5 that the memory usage scales approximately linearly with λ, as this component
dominates the GPU usage.

A.1.3 Iterative Inference

SparseDiff employs an iterative inference process that aligns with its training procedure, to maintain sparsity
in message-passing edges. This contrasts with previous models that rely on dense attention maps constructed
from all node pairs. The complexity thus remains upper-bounded by O(bs · L · de · |Em,max|).

A.1.4 Summary

We provide a summary of the highest-order complexity for the three components of SparseDiff:

• Efficient Noise Model: SparseDiff reduces noise application complexity to O(2n2) instead of
O(3bn2), b ≥ 2 by avoiding redundant computations and leveraging sparsity in non-existing edge
processing.

• Efficient Denoising Neural Network: SparseDiff’s denoising network operates over a sparse at-
tention map, scaling as O(λn2), unlike dense baselines (e.g., DiGress), which process a full attention
map with O(n2) complexity.

• Iterative Inference: Inference reuses sparsely sampled edges from training, keeping its space
complexity similarly scaling with O(λn2).

Among them, the denoising network is the primary memory bottleneck during training. In contrast to dense
baselines such as DiGress, which scale as O(n2) with a large constant de · L with L as the number of layers
and de as the dimension of edge activations, typically set to 64 or 128, SparseDiff constrains memory usage
by operating on a sparse set of sampled edges scaling with O(λn2). This is further supported by Fig.5 in
the revised manuscript, which shows that GPU memory usage scales approximately linearly with λ.

A.2 Proof of Lemma 3.1

The lemma for a noisy graph with guaranteed sparsity comes directly from the proposition regarding the
tail behavior of a binomial distribution (Desolneux et al., 2008) as follows:
Proposition A.1. (Tail behavior of a binomial distribution)

Let Xi, i = 1, ...l be independent Bernoulli random variables with parameter 0 < p < 1
4 and let Sl =

∑l
i=1 Xi.

Consider a constant p < r < 1 or a real function p < r(l) < 1. Then according to the Hoeffding inequality,
B(l, k, p) = P[Sl ≥ k] satisfies:

−1
l
logP[Sl ≥ rl] ≥ rlog

r

p
+ (1− p)log

1− r

1− p
(8)

For sparse graphs, the edge ratio r is clearly smaller than 1
4 . Consider then Bernoulli random variables with

the parameter r and a noised edge ratio r < k < 1 with l = n(n− 1)/2 (i.e. number of all node pairs in an
undirected graph without self-loops) draws, and note the sampled ‘existing’ edge number Sn(n−1)/2 as mt,
we have:

log(P[rt = mt

n(n− 1)/2 ≥ k]) ≤ −n(n− 1)
2 [k log k

r
+ (1− r) log 1− k

1− r
] (9)

19

Published in Transactions on Machine Learning Research (07/2025)

B Model Architecture

Our sparse denoising network adopts the graph transformer architecture Veličković et al. (2017), featuring
normalization, feed-forward, and attention layers. To handle sparse data, it incorporates the sparse attention
mechanism (Shi et al., 2020) based on weighted message-passing layers and integrates enhancements from
Vignac et al. (2023a), such as PNA pooling layers (Corso et al., 2020) and FiLM layers (Perez et al., 2018).

Precisely, we introduce the FiLM layer and the PNA layer inside the model architecture to enhance its
performance. Precisely, the FiLM layer is used to combine features at different scales, such as node and edge
features. Specifically, given two features M1 and M2, and trainable parameters W1 and W2, the FiLM layer
output is calculated as FiLM(M1, M2) = M1W1+(M1W2)⊙M2+M2. As an illustration, within the convo-
lutional layer, the graph feature M2 is integrated with edge features M1 to enhance predictions. While PNA
layer is used as a specialized pooling layer to obtain information from different dimensions of a specific feature.
Given the feature X and trainable parameter W , PNA(X) = cat(max(X), min(X), mean(X), std(X)) W .
For example, node features X are forwarded to a PNA layer for extracting global information across different
scales, which is subsequently added to the graph feature to enhance its representation.

Finally, we enrich the message-passing graph with additional encodings, such as the graph Laplacian and
cycle counts, to enhance structural and positional information (detailed in Appendix B.1). These encodings
can only be computed effectively when the noisy graphs are sparse, which is another significant advantage
of discrete diffusion models using marginal transitions. It is worth noting that not all these encodings can
be computed in sub-quadratic time. However, in practice, this does not pose an issue as they are not
used for back-propagation, which arises as the primary complexity bottleneck during training. For instance,
for the large Protein dataset, computing these encodings is five times faster than the forward pass itself.
Nevertheless, on very large graphs, these expensive encodings should not be computed.

B.1 Additional Encodings

During training, we augment model expressiveness with additional encodings. To make things clear, we
divide them into encodings for edges, nodes, and for graphs.

Encoding for graphs We first incorporate graph eigenvalues, known for their critical structural insights,
and cycle counts, addressing message-passing neural networks’ inability to detect cycles (Chen et al., 2020).
The first requires n3 operations for matrix decomposition, the second requires n2 for matrix multiplication,
but both are optional in our model and do not significantly limit scalability even with graphs up to size
500. In addition to the previously mentioned structural encodings, we integrate the degree distribution to
enhance the positional information within the graph input, which is particularly advantageous for graphs
with central nodes or multiple communities. Furthermore, for graphs featuring attributed nodes and edges,
the inclusion of node type and edge type distributions also provides valuable benefits.

Encoding for nodes At the node level, we use graph eigenvectors, which are fundamental in graph theory,
offering valuable insights into centrality, connectivity, and diverse graph properties.

Encoding for edges To aid in edge label prediction, we introduce auxiliary structural encodings related
to edges. These include the shortest distance between nodes and the Adamic-Adar index. The former
enhances node interactions, while the latter focuses on local neighborhood information. Due to computational
constraints, we consider information within a 10-hop radius, categorizing it as local positional information.

Molecular information In molecular datasets, we augment node features by incorporating edge valency
and atom weights. Additionally, formal charge information is included as an additional node label for
diffusion and denoising during training, as formal charges have been experimentally validated as valuable
information (Vignac et al., 2023b).

20

Published in Transactions on Machine Learning Research (07/2025)

0 t1000 800 600 400 200

Figure 7: Visualization of iterative generation for Planar and SBM graphs.

C Experimental setup

In our experimental setup, we utilize a single V100-32G GPU machine, which is particularly prone to
scalability issues, to demonstrate that our method allows users with limited GPU resources to effectively
train on larger graphs. Detailed specifications regarding workers, memory allocation, execution time, and
optimizers are meticulously indicated in the configuration details provided in our code.

As for dataset splits, we adhere to the framework established by DiGress. Specifically, for the QM9 dataset,
we implement a split comprising 100k molecules for training, 20k for validation, and 13k for evaluating
likelihood on the test set. For the Planar, SBM, and Protein datasets, employing a seed of 1234, we randomly
assign 20% of the graphs to testing, while 80% of the remaining graphs are utilized for training, and 20%
for validation. For the Ego dataset, to ensure consistency with previous methods and a fair comparison, we
maintain a split of 80% for training and 20% for testing, with 20% of the training set additionally used for
validation purposes. All configuration details are comprehensively documented in the code provided.

C.1 MMD metrics

In our research, we carefully select specific metrics tailored to each dataset, with a primary focus on four
widely recognized Maximum Mean Discrepancy (MMD) metrics. These metrics use the total variation
(TV) distance, as detailed in Martinkus et al. (2022). They encompass node degree (Deg), clustering
coefficient (Clus), orbit count (Orb), and graph spectra (Spec). The first three local metrics compare
the degree distributions, clustering coefficient distributions, and the occurrence of all 4-node orbits within
graphs between the generated and training samples. Additionally, the comparison of graph spectra is realized
by computing the eigenvalues of the normalized graph Laplacian, providing complementary insights into the
global properties of the graphs.

C.2 Statistics of the datasets

Table 9: Statistics for the datasets employed in our experiments.

Name Graph number Node range Edge range Edge Ratio (%) λ (%)
QM9 133,885 [2,9] [2, 28] [20, 56] 100
QM9(H) 133,885 [3, 29] [4, 56] [7.7, 44] 50
MOSES 1,936,962 [8, 27] [14, 62] [8.0, 22] 50
Planar 200 [64, 64] [346, 362] [8.4, 8.8] 50
SBM 200 [44, 187] [258, 2258] [6.0, 17] 25
Ego 757 [50, 399] [112, 2124] [1.2, 11] 10
Protein 918 [100, 500] [372, 3150] [8.9, 6.7] 10

21

Published in Transactions on Machine Learning Research (07/2025)

To provide a more comprehensive overview of the various scales found in ‘existing’ graph datasets, we present
here key statistics for them. These statistics encompass the number of graphs, the range of node numbers,
the range of edge numbers, the edge ratio for ‘existing’ edges, and the sparsity parameter λ used for training,
i.e. the proportion of ‘existing’ edges among all node pairs. In our consideration, we focus on undirected
graphs. Therefore, when counting edges between nodes i and j, we include the edge in both directions.

C.3 Raw results

Table 10: Raw results on the SBM, Planar, Protein, and Ego datasets.

Model Deg. (e-3)↓ Clust. (e-2)↓ Orbit (e-2)↓ Spec. (e-3)↓ FID↓ RBF MMD (e-2)↓
SBM
Training set 0.85 3.32 2.55 2.74 1.37 3.23
SparseDiff 1.57±0.91 5.04±0.06 4.51±0.90 6.68±2.04 4.55±2.01 4.98±0.06
Planar
Training set 0.19 3.10 0.05 3.82 1.57 8.89
SparseDiff 0.32±0.01 3.25±0.35 0.09±0.08 6.99±0.92 2.94±3.15 9.84±0.91
Protein
Training set 0.32 0.68 0.32 0.49 1.36 1.37
SparseDiff 1.45±0.30 3.35±0.33 0.53±0.78 1.35±0.16 5.97±1.07 3.77±0.65
Ego
Training set 0.16 0.71 0.69 0.98 0.07 0.86
SparseDiff 3.70±0.44 3.18±0.10 1.98±0.42 5.63±0.80 4.84±1.56 2.60±0.31

To ease comparison with other methods, Table 10 provides the raw numbers (not presented as ratios) for
the SBM, Planar, Ego, and Protein datasets. Note that this table contains the FID metrics from Thompson
et al. (2022), which we did not include in the main text. The reason is that we found this metric to be very
brittle, with some evaluations giving a very large value that would dominate the mean results. Besides, we
have identified a discrepancy in the Spectre metrics reported in the study by Martinkus et al. (2022) when
computed under non-parallel computation. We thus provide the updated values for reference and use the
updated value for ratio calculation in Table 2 and in Table 1.

D Additional experiments

D.1 Training with larger graphs

However, using the same graph for both training and evaluation poses potential risks, as high performance
metrics could merely reflect overfitting to the training graph. Therefore, we report results on only the two
relevant datasets in the appendix.

Table 11: Large graph generation on the Facebook dataset. Triangles and squares are abbreviated as ‘tri’
and ‘squ’ in the table, while PLE represents power law exp.

Model Num Nodes Num Edges Num Triangles Num Squares Max Deg Clust Assort PLE CPL
Ref 1045 27,755 446,846 34,098,662 1044 0.57579 -0.02543 1.28698 1.94911
SAGESS-Uni 1043 27,758 429,428 35,261,545 999 0.52098 -0.01607 1.29003 2.00800
SAGESS-RW 1009 27,764 490,844 43,006,252 1001 0.56138 -0.02266 1.29398 1.96014
SAGESS-Ego 1005 27,761 515,928 45,421,130 295 0.43074 0.34074 1.29381 2.65926
NetGAN 1045 27,755 262,574 15,635,626 849 0.39773 -0.01821 1.27429 2.13730
CELL 1045 27,755 250,968 14,855,676 474 0.30854 0.12788 1.27490 2.38650
DCSBM 1041 27,092 339,448 26,714,948 733 0.37549 0.07125 1.28845 2.33021
SaGess 1043 27,758 429,428 35,261,545 999 0.52098 -0.01607 1.29003 2.00800
SparseDiff 1045 27,763 446,819 34,095,513 1044 0.43310 -0.02536 1.28687 1.94921

22

Published in Transactions on Machine Learning Research (07/2025)

We first train on the large graph with 1045 nodes from the Facebook dataset, following the SaGess (Limnios
et al., 2023) setting. SparseDiff was evaluated using SaGess metrics as a reference. In the provided table,
we present SaGess-RW, demonstrating the best results among the three proposed SaGess models. Notably,
SaGess generates small graphs and concatenates them to meet the required number of edges, while SparseDiff
generates a single large graph based on the specified node count. This explains SparseDiff’s advantage in
the ‘num nodes’ metric and SaGess’s advantage in the ‘num edges’ metric. Furthermore, SparseDiff closely
aligns with real data statistics, except for the clustering coefficient, showcasing not only its scalability up to
1000 nodes but also its strong performance on such single-graph datasets.

Table 12: Large graph generation on the CORA dataset.

Model EO PLE NTC CC CPL AC
Ref 100 1.885 1 0.090 6.311 -0.071
OPB 10.9 1.852 0.097 0.008 4.476 -0.037
HDOP 0.9 1.849 0.113 0.009 4.770 -0.030
CELL 10.3 1.774 0.009 0.002 5.799 -0.018
CO 9.7 1.776 0.009 0.002 5.653 0.010
TSVD 6.7 1.858 0.349 0.082 4.908 -0.006
VGAE 1.5 1.717 0.120 0.220 4.934 0.002
GRNN 0.4 1.822 0.043 0.011 6.146 0.043
EDGE 1.1 1.755 0.446 0.034 4.995 -0.046
SparseDiff (pos) 0.3 1.896 1.434 0.075 4.747 -0.043

We evaluate our model on the CORA dataset (McCallum et al., 2000), as used in EDGE (Chen et al.,
2023). The CORA graph consists of 2,485 nodes. Our model is trained with positional encoding for a fair
comparison of the edge overlap ratio (EO), with the sparsity parameter set to 0.05. The performance results,
after just one day of training, are presented in the table below. As shown, SparseDiff outperforms EDGE
in 3 out of 5 metrics and remains competitive in the AC metric, further validating the scalability of our
method.

D.2 QM9 with explicit hydrogens

Table 13: Unconditional generation on QM9 with explicit hydrogens. On small graphs such as QM9, sparse
models are not beneficial, but SparseDiff still achieves very good performance.

Model Connected Valid↑ Unique↑ Atom stable↑ Mol stable↑
DiGress – 95.4 97.6 98.1 79.8
DiGress + charges 98.6 97.7 96.9 99.8 97.0
SparseDiff(ours) 98.3±.08 97.9±.13 97.4±.10 - -

We additionally report the results for QM9 with explicit hydrogens in Table 13. Having explicit hydrogens
makes the problem more complex because the resulting graphs are larger. We observe that SparseDiff
achieves better validity than DiGress and has comparable results on other metrics when both are utilizing
charges.

23

Published in Transactions on Machine Learning Research (07/2025)

D.3 MOSES benchmark evaluation

Table 14: Mean and standard deviation across 5 samplings on the MOSES benchmark. SparseDiff has a
similar performance to DiGress, despite a shorter training time.

Model Connected ↑ Valid (%) ↑ Unique (%) ↑ Novel (%) ↑ Filters (%) ↑
GraphINVENT – 96.4 99.8 – 95.0
DiGress – 85.7 100.0 95.0 97.1
SparseDiff 94.8±.1 84.7±.2 100.0±.0 95.1±.1 97.0±.2
Model FCD ↓ SNN (%) ↑ Scaf (%) ↑ Frag (%) ↑ IntDiv (%) ↑
GraphINVENT 1.22 53.9 12.7 98.6 85.7
DiGress 1.19 52.2 14.8 99.6 85.3
SparseDiff 1.28±.01 52.2±.0 15.5±1.3 99.8±.0 85.4±.0
Model IntDiv2 (%) ↑ logP (e−2) ↓ SA(e−2) ↓ QED (e−3) ↓ Weight (%) ↓
GraphINVENT 85.1 0.67 4.5 0.25 16.1
DiGress − 3.4 3.6 2.91 1.42
SparseDiff 84.8±.0 3.0±.3 5.4±.2 1.21±.21 5.58±.15

MOSES is an extensive molecular dataset with larger molecular graphs than QM9, offering a much more com-
prehensive set of metrics. While autoregressive models such as GraphINVENT are recognized for achieving
higher validity on this dataset, both SparseDiff and DiGress exhibit advantages across most other metrics.
Notably, SparseDiff closely aligns with the results achieved by DiGress, affirming the robustness of our
method on complex datasets.

D.4 Sampling Speed Comparison

Table 15: Sampling speed for generating 8 Ego graphs.

Model EDP-GNN DiGress EDGE GraphLE SparseDiff SparseDiff (200 steps)
Time (min) 5 32 2 20 28 5

The speed of generating 8 Ego graphs is demonstrated in Table 15. Notably, for GraphLE, the batch size
is constrained to 2 due to its substantial memory requirements. An additional column labeled “SparseDiff
(200 steps)” represents the sampling time after reducing the inference steps from 1,000 to 200 through
acceleration strategies. The table illustrates that SparseDiff maintains comparable speed to dense models
without significant compromise on space efficiency and can be significantly accelerated during sampling.

D.5 Ablations

This part presents 2 ablation experiments that motivate our approach. SparseDiff builds upon an experimen-
tal observation and a hypothesis. Firstly, our experiments demonstrate that relying solely on node features
for link prediction yields unsatisfactory results. This observation encouraged us to design the message-passing
graph that contains all edges to be predicted (i.e. query edges) as the message-passing graph to directly
obtain their edge features. Secondly, we hypothesized that preserving the same distribution of edge types
as observed in dense graphs for loss calculation is advantageous for training. This hypothesis necessitates
the sampling of query edges within each graph in a batch of graphs with varying sizes, thereby introducing
increased complexity to the algorithm design process.

24

Published in Transactions on Machine Learning Research (07/2025)

D.5.1 Link Prediction

Table 16: Influence of including edges features for edge prediction.

Model Deg ↓ Clus ↓ Orb↓ Spec↓ FID↓ RBF MMD↓
Link Pred 0.0043 0.0721 0.0275 0.0344 1.51e6 0.0315
SparseDiff 0.0019±.00 0.0537±.00 0.0299±.00 0.0050±.00 16.1±12.9 0.0483±.01

Table 17: Influence of including edges features for edge prediction on the QM9 dataset.

Model Valid↑ Unique↑ Connected↑ FCD↓
Link Pred 98.12 96.25 99.58 0.310
SparseDiff 99.23±0.06 96.37±0.13 99.76±0.06 0.117±0.004

In Table 16, the model that does not explicitly incorporate edge features for edge prediction underperforms
across all metrics, except for RBF MMD and orbit. Similarly, in Table 17, the link prediction-based method
fails to achieve comparable validity, even though QM9 is widely recognized as an easy dataset to learn.
Both experiments highlight a subtle yet challenging gap between message-passing and transformer-based
architectures for graph generation, as the latter provides richer topological interactions. While, in our case,
this ablation proves detrimental, developing a more robust link prediction module could simplify the task to
link prediction and significantly reduce space complexity.

D.5.2 Query edges with proper distribution

Table 18: Influence of edge loss distribution on EGO dataset.

Loss based on Deg ↓ Clus ↓ Orb↓ Spec↓ FID↓ RBF MMD↓
Comp graph 0.0021 0.0566 0.0270 0.0100 28.2 0.0396
Query graph 0.0019±.00 0.0537±.00 0.0299±.00 0.0050±.00 16.1±12.9 0.0483±.01

In order to emphasize the importance of preserving the edge distribution when computing losses, we conduct
an experiment where we assess the performance of a model trained using all message-passing edges as opposed
to solely using query edges. The former results in an increased emphasis on ‘existing’ edges during training
compared to SparseDiff. Similarly, we use the Ego dataset for initial experiments. Table 18 shows that using
edges of the message-passing graph Gm results in worse performance on most of the metrics, which indicates
the importance of keeping a balanced edge distribution for loss calculation.

D.6 Hyperparameters

Training setup The model is trained using a diffusion-based framework consisting of 1,000 denoising
steps. To balance the objectives associated with node and edge predictions, fixed loss coefficients of 5 and
2 are applied to edge and node terms, respectively. The learning rate is set to a constant value of 0.0002
across all datasets. All experiments are conducted on a single V100 GPU with 32GB memory. The only
introduced hyperparameter is the sparsity controller λ, which is selected based on graph size according to
Tab. 5.

Model architecture For large graph datasets, the model comprises 8 sparse convolutional attention layers,
following the same setup as the dense attention version proposed by Vignac et al. (2023a). It employs a multi-
head attention mechanism with 8 heads to jointly process 256-dimensional node features, 64-dimensional
edge features, and 128-dimensional graph-level features. Hidden dimensions for the MLP layers before and
after the transformer block are set to 256 for nodes, 64 for edges, and 128 for graphs. For molecular

25

Published in Transactions on Machine Learning Research (07/2025)

and synthetic datasets, we adopt the same architectural configuration as DiGress (Vignac et al., 2023a) to
maintain consistency across experimental settings.

Additional hyperparameters are further available in the shared codebase.

E Comparison to Baseline Methods

E.1 Scalable Methods

EDGE EDGE (Chen et al., 2023) uses absorbing states to construct sparse diffusion by first generating a
node degree distribution d0 and then building the adjacency matrix A based on node degree changes during
inference. While this factorization is broadly applicable, the conditional distribution pθ(A|d0) can yield
degree sequences that are invalid for undirected graphs, creating a mismatch between training and sampling.
EDGE also underperforms compared to SparseDiff on both small and large graphs. In contrast, SparseDiff
only assumes the sparsity of graphs, ensuring alignment between training and generation.

DruM DruM (Jo et al., 2023) predicts a destination graph and mixes several diffusion processes condi-
tioned on that structure, introducing strong topological priors that guide denoising and improve convergence.
However, DruM operates within a continuous diffusion framework. SparseDiff, by contrast, relies entirely on
discrete diffusion, which better aligns with the inherently discrete nature of graph data.

BiGG BiGG (Dai et al., 2020) generates graphs autoregressively by hierarchically decomposing the node-
pair space into a binary tree, achieving O((n+m) log n) sampling complexity. This structure enforces a fixed
generation order. SparseDiff avoids such inductive constraints, reconstructing edge subsets in a single shot
without any imposed ordering, resulting in a simpler and more flexible framework. Furthermore, BiGG is
limited to unattributed graphs, whereas SparseDiff naturally supports diverse edge types and node features.

HiGen HiGen (Karami, 2023) adopts a coarse-to-fine generation scheme, first producing community sub-
graphs and then predicting inter-community edges. This hierarchical design assumes modular graph struc-
ture. SparseDiff makes no such assumptions, treating all edges uniformly through sparse diffusion.

HGGT HGGT (Jang et al., 2023) encodes the adjacency matrix as a K2-tree token sequence and processes
it with a Transformer using tree-based positional encodings. This strategy embeds structural priors of using
a predefined hierarchical data structure (the K2-tree) into the generation process. In contrast, SparseDiff
directly applies sparse diffusion over raw edge lists, avoiding dependence on any hierarchical encoding.

SaGess SaGess (Limnios et al., 2023) is a discrete denoising diffusion model for graph generation that
scales to large networks through a generalized divide-and-conquer strategy. It trains a base diffusion model
(DiGress) on a collection of smaller subgraphs that collectively cover the original input graph. These sub-
graphs are generated independently and subsequently assembled to form a complete synthetic network. In
contrast to SparseDiff, which performs diffusion and precise denoising over the entire graph, SaGess achieves
scalability by generating graph partitions independantly and merging them into a single graph.

GraphLE GraphLE (Bergmeister et al., 2023) grows the graph through local expansion, starting from
a seed node and incrementally adding nodes and edges via multiple diffusion passes. While it avoids full
pairwise modeling, this approach is in practice resource-intensive and requires denoising for each expansion.
SparseDiff instead performs the diffusion in a single process.

E.2 Discrete Graph Diffusion

While several models have emerged using discrete diffusion on graphs (Vignac et al., 2023a; Haefeli et al.,
2022), DiGress remains the most performant and is widely regarded as the benchmark.

Specifically, DiGress extends the discrete diffusion framework D3PM (Austin et al., 2021) to graph data by
modeling both nodes and edges as categorical variables encoded in one-hot format. In contrast to SparseDiff,

26

Published in Transactions on Machine Learning Research (07/2025)

which represents graphs using sparse triplets (E, X, Y), DiGress encodes a graph G = (X, E) with n nodes
using a dense node feature tensor of shape (n× a) and an edge tensor of shape (n× n× b), where the edge
tensor includes an additional category for absent edges.

To process batches of graphs with variable sizes, DiGress zero-pads each graph to the dimensions (bs, nmax, a)
for nodes and (bs, nmax, nmax, b) for edges, where bs is the batch size and nmax is the maximum number of
nodes among all graphs in the batch. This padding strategy introduces substantial memory overhead and fails
to scale for variable-sized graphs, motivating our use of a sparse representation to eliminate this limitation.

Noise Model At each forward step t, DiGress applies categorical noise via transition matrices Qt
X , Qt

E ,
where [Qt

X]ij = P (xt = j | xt−1 = i), [Qt
E]ij = P (et = j | et−1 = i), defining

q(Gt | Gt−1) =
(
Xt−1Qt

X , Et−1Qt
E

)
, q(Gt | G) =

(
X Q̄t

X , E Q̄t
E

)
,

with Q̄t =
∏t

s=1 Qs, as detailed in Section 3.1.1.

DiGress defines the forward process using Q̄t =
∏t

s=1 Qs, and deviates from the uniform prior (Austin et al.,
2021) by aligning the final state with the empirical marginal distribution of node and edge categories. This
results in a better-initialized noisy graph, which leads to consistently improved performance.

In SparseDiff, we prove that the noisy graphs sampled along such trajectory have the same level of sparsity
with the clean graph with high probability and also eliminate redundant computations present in dense
diffusion schemes.

Denoising Network The denoising network of DiGress is a permutation-equivariant full-attention graph
transformer augmented with PNA (Corso et al., 2020) and FiLM (Perez et al., 2018) layers. Since it attends
over all n2 pairs, it captures long-range interactions but scales quadratically in memory.

In SparseDiff, we propose a message-passing based denoising network which adapts better to our sparse rep-
resentation, governed by a sparse attention map that incorporates all existing edges along with a controllable
number of random connections. This enables training on large graphs with no degradation in generation
quality.

Under an independence assumption across node and edge entries, DiGress optimizes the cross-entropy loss

L =
n∑

i=1
CE

(
xi, p̂X

i

)
+ λ

n∑
i,j=1

CE
(
eij , p̂E

ij

)
,

where p̂X , p̂E are the model’s predicted category probabilities.

In SparseDiff, we perform the loss computation only on query edges randomly sampled from all node pairs,
functionning as random batches of the edges considered in DiGress. To ensure stability across different
sparsity levels, we also reweight the edge loss based on the sparsity parameter λ.

Inference DiGress frames graph generation as a discrete diffusion process over nodes and edges indepen-
dently, following the D3PM formalism. At each step t, the model observes a noisy graph Gt = (Xt, Y t) and
samples Gt−1. For each scalar variable (i.e., a single node or edge) with one-hot state xt, D3PM defines the
exact posterior conditioned on the unknown clean label x0 as:

q(xt−1 | xt, x0) = q(xt | xt−1) q(xt−1 | x0)
q(xt | x0) ,

which, in matrix form, becomes:

q(xt−1 | xt, x0) = Cat
(

xt−1; p = xtQt⊤ ⊙ x0Q̄t−1

x0Q̄txt⊤

)
,

where Qt is the one-step transition matrix, Q̄t =
∏t

s=1 Qs, and “⊙” denotes element-wise multiplication.

27

Published in Transactions on Machine Learning Research (07/2025)

DiGress begins its generation by sampling the number of nodes from the training graph size distribution.
Then, at each diffusion step t, it replaces the intractable posterior weights q(x0

i | Gt) and q(e0
ij | Gt) with

predictions from a denoising network, p̂θ(x0
i | Gt) and p̂θ(e0

ij | Gt). These are then used to compute the
reverse transition:

pθ(xt−1 | Gt) =
∑
x0

q(xt−1 | xt, x0) p̂θ(x0 | Gt).

Nodes and edges are evaluated independently, and each categorical variable is sampled accordingly. Iterating
this process from t = T to 1 produces the final generated graph.

In SparseDiff, we modify this sampling process to align with the sparse attention mechanism used during
training, ensuring both structural consistency and computational efficiency at inference time.

Summary In summary, DiGress explicitly addresses the discrete and permutation-equivariant nature of
graph data, outperforming existing one-shot generation methods in molecular graph synthesis. However, its
reliance on dense matrix representations limits scalability to graphs.

F Visualization

(a) Training graphs.

(b) Generated graphs.
Figure 8: Visualization for QM9 dataset with implicit hydrogens.

28

Published in Transactions on Machine Learning Research (07/2025)

(a) Training graphs.

(b) Generated graphs.
Figure 10: Visualization for MOSES dataset.

29

Published in Transactions on Machine Learning Research (07/2025)

(a) Training graphs.

(b) Generated graphs.
Figure 11: Visualization for Planar dataset.

30

Published in Transactions on Machine Learning Research (07/2025)

(a) Training graphs.

(b) Generated graphs.
Figure 12: Visualization for SBM dataset.

31

Published in Transactions on Machine Learning Research (07/2025)

(a) Training graphs.

(b) Generated graphs.
Figure 13: Visualization for Ego dataset.

32

Published in Transactions on Machine Learning Research (07/2025)

(a) Training graphs.

(b) Generated graphs.
Figure 14: Visualization for Protein dataset.

33

	Introduction
	Related Work
	Denoising Diffusion Models for Graphs
	Scalable Graph Generation

	SparseDiff: Sparse Discrete Diffusion for Graph Generation
	Efficient Noise Model
	Sparse Trajectory
	Sparse Computation

	Efficient Denoising Neural Network
	Edge Prediction Module using Sparse Attention
	Model Training

	Iterative Inference

	Experiments
	Large Graph Generation
	Molecule Generation
	Efficiency Analysis

	Conclusion
	Theoretical Analysis
	Space Complexity Analysis
	Efficient Noise Model
	Efficient Denoising Neural Network
	Iterative Inference
	Summary

	Proof of Lemma 3.1

	Model Architecture
	Additional Encodings

	Experimental setup
	MMD metrics
	Statistics of the datasets
	Raw results

	Additional experiments
	Training with larger graphs
	QM9 with explicit hydrogens
	MOSES benchmark evaluation
	Sampling Speed Comparison
	Ablations
	Link Prediction
	Query edges with proper distribution

	Hyperparameters

	Comparison to Baseline Methods
	Scalable Methods
	Discrete Graph Diffusion

	Visualization

