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Abstract

The increasingly widespread adoption of large
Transformer language models has highlighted
the need for improving their explainability. We
present context length probing, a novel expla-
nation technique for causal language models,
based on tracking the predictions of a model
as a function of the length of available context,
and allowing to assign differential importance
scores to different contexts. The technique is
model-agnostic and does not rely on access to
model internals beyond computing token-level
probabilities. We apply context length probing
to large pre-trained language models and offer
some initial analyses and insights, including the
potential for studying long-range dependencies.
The source code! and an interactive demo? of
the method are available.

1 Introduction

Large language models, typically based on the
Transformer architecture (Vaswani et al., 2017),
have recently seen increasingly widespread adop-
tion, yet understanding their behaviour remains a
difficult challenge and an active research topic.

A popular way to dissect Transformers is by vi-
sualizing their attention weights (e.g. Vig, 2019;
Hoover et al., 2020). However, it has been ar-
gued that this does not provide reliable explana-
tions and can be misleading (Jain and Wallace,
2019; Serrano and Smith, 2019). A more re-
cent line of work (Elhage et al., 2021; Olsson
et al., 2022) explores “mechanistic explanations”,
based on reverse-engineering the computations per-
formed by Transformers. These techniques are tied
to concrete architectures, which are often “toy” ver-
sions of those used in real-world applications, e.g.
attention-only Transformers in Elhage et al..

Other options include general-purpose meth-
ods like neuron/activation interpretation (e.g. Geva
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Petunia was just handing round a box of after-
dinner mints when a huge barnjowl swooped
through the dining room window, dropped a letter
on Mrs Mason's head and swooped out again. Mrs
Mason screamed like a banshee and ran from the

house, shouting about lunatics. Mr Mason stayed
iust@:nq enough to tell the Dursleys that his wife

was mortally afraid of birds of all shapes and sizes,
and to ask whether this was their idea of a joke.

target:| birds| top:| the| them|| him | Harry|| spiders

Figure 1: A screenshot of an interactive demo? of the
proposed method. After selecting a target token (here
“birds”), the preceding tokens are highlighted accord-
ing to their (normalized) differential importance scores
(green = positive, red = negative), obtained using our
method. The user can also explore the top predictions
for contexts of different lengths (here the context “house,
shouting about lunatics [...] mortally afraid of™).

et al., 2021; Goh et al., 2021; Dai et al., 2022),

saliency maps (e.g. Ancona et al., 2019; Fong and

Vedaldi, 2017) and influence functions (Koh and

Liang, 2017). These require access to internal rep-

resentations and/or the ability to backpropagate

gradients, and have some caveats of their own (Kin-

dermans et al., 2019; Kokhlikyan et al., 2021).

In this work, we propose a simple explanation
technique for causal LMs, context length probing,
based on tracking the predictions of the model as a
function of the number of tokens available as con-
text. Our proposal has the following advantages:

e It is conceptually simple, as it provides an an-
swer to a natural question: How does the length
of available context impact the prediction?

e It can be applied to a pre-trained model without
retraining or fine-tuning and without training any
auxiliary models.

e It does not require access to model weights, in-
ternal representations or gradients.

e [t is model-agnostic: it can be applied to any
causal LM, including attentionless architectures
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like RNN (Mikolov et al., 2010) and CNN
(Dauphin et al., 2017). The only requirement for
the model is to accept arbitrary input segments
(i.e. not be limited to document prefixes).
One application of context length probing that we
explore here lies in assigning what we call differ-
ential importance scores to contexts of different
lengths. This can be seen as complementary to
other techniques like attention or saliency map vi-
sualization, and has a potential to be applied to
studying long-range dependencies.

2 Method
2.1 Context length probing

A causal LM estimates the conditional probability
distribution of a token given its left-hand context
in a document:

p(xn | Z1,. . Tp1). )

We are interested here in computing the probabil-
ities conditioned on a reduced context of length
ce{l,...,n—1}:

p(xn | Tp—cy--- 7xn—1)7 (2)

so that we may then study the behavior of this
distribution as a function of c.

An apparent obstacle in doing so is that ap-
plying the model to an arbitrary subsequence
Tp—cy...,Tn_1, instead of the full document
x1,...,TN, may lead to inaccurate estimates of
the probabilities in Eq. (2). However, we note that
large LMs are not usually trained on entire docu-
ments. Instead, the training data is pre-processed
by shuffling all the documents, concatenating them
(with a special token as a separator), and splitting
the resulting sequence into chunks of a fixed length
(usually 1024 or 2048 tokens) with no particular
relation to the document length. Thus, the models
are effectively trained to accept sequences of to-
kens starting at arbitrary positions in a document
and it therefore appears correct to employ them as
such to compute estimates of Eq. (2).

It now remains to be detailed how to efficiently
evaluate the above probabilities for all positions
n and context lengths c. Specifically, for a given
document z1, ...,z and some maximum context
length cpmax, we are interested in an (IV — 1) x

3For models trained on data that is pre-processed differ-
ently, (re)training or fine-tuning with data augmentation such
as random shifts may be needed in order to apply our method.

Cmax X |V| tensor P, where V = {wl, .. ’le\}
is the vocabulary, such that:

P,ci=pTnt1 =W | Tpoct1s---,Tn), (3)

with P, . = P, ;14 for n < c. Observe that
by running the model on any segment x,,, . .., Ty,
we obtain all the values Py, . 1.« for ¢ €
{1,...,n —m+ 1}. Therefore, we can fill in the
tensor P by applying the model along a sliding win-
dow of size cyay, i.€. running it on N (overlapping)
segments of length at most cyax. See Appendix A
for an illustration and additional remarks.

2.2 Maetrics

Having obtained the tensor P as we have just de-
scribed, we use it to study how the predictions
evolve as the context length is increased from 1 to
cmax- Specifically, our goal is to define a suitable
metric that we can compute from P, .. . and follow
it as a function of ¢ (for a specific n or on average).

One possibility would be to use the negative log-
likelihood (NLL) loss values:

- logp(xn—i-l ‘ Tp—ct+ly--- 73571)- “

However, this may not be a particularly suitable
metric for explainability purposes, as it depends on
the ground truth 1, which is only one of many
plausible continuations. For this reason, we pro-
pose to instead measure the Kullback-Leibler (KL)
divergence to the maximum-context predictions,

Dn,c = DKL[P’WCmaM* H Pnac7*:|
V|

= Z P, ...ilog ©)
i=1

P,

;Cmax ,?

)
Pn,c,i

which expresses the amount of information lost
from the maximum-context prediction by limiting
the context length to c.

2.3 Differential importance scores

We are also interested in studying how individual
increments in context length affect the predictions.
We propose to quantify this as the change in the
KL divergence metric (5) when a new token is in-
troduced into the context. Specifically, for a pair of
tokens x,,+1 (the target token) and x,,, (the context
token), we define a differential importance score
(A-score for short)

AZDn,m = Dn,n—m—l - Dn,n—m- (6)



name #param #layer #head dpoge) max len
gpt2 117M 12 12 768 1024
gpt2-xI 1.5B 48 25 1600 1024
gpt-j-6B 6.1 B 28 16 4096 2048

Table 1: Hyperparameters of the 3 models used.

We may visualize these scores as a way to explain
the LM predictions, much like is often done with at-
tention weights, with two important caveats. First,
a high AD,, ,,, should not be interpreted as mean-
ing that x,,, in isolation is important for predicting
Zn+1, but rather that it is salient given the context
that follows it (i.e. it disambiguates the following
context). Second, unlike attention weights, our
scores need not sum up to one, and can be negative:
a token may introduce ambiguity. The proposed
representation is hence more conceptually similar
to a saliency map than to an attention map.

3 Results

We apply the proposed technique to publicly avail-
able pre-trained large Transformer language mod-
els, namely GPT-J (Wang and Komatsuzaki, 2021)
and two GPT-2 (Radford et al., 2019) variants —
see Table 1 for an overview. We use the validation
set of the English LinES treebank* from Universal
Dependencies (UD; Nivre et al., 2020), containing
8 documents with a total length of 20 672 tokens’
and covering fiction, an online manual, and Eu-
roparl data. We set cpax = 1023. We use the
2 Transformers library® (Wolf et al., 2020) to
load the pre-trained models and run inference. Fur-
ther technical details are included in Appendix B.

3.1 LM loss by context length

Fig. 2 shows the cross entropy losses (NLL means)
across the whole validation dataset as a function
of context length c. Larger models perform better
as expected, but increased context improves perfor-
mance in all cases.

We display in Fig. 3 the same information (loss
by context length) broken down by part-of-speech
(POS) tags, for GPT-J only. For most POS tags, the
behavior is similar to what we observed in Fig. 2

*nttps://universaldependencies.org/
treebanks/en_lines/index.html

3 After concatenating all sentences and applying the GPT-2
tokenizer, which is used by both GPT-2 and GPT-J.

®https://github.com/huggingface/
transformers
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Figure 2: Mean LM losses by context length.

1 4 16 64 256 1024

context length
—— PROPN —— PRON/SCONJ
NOUN —— AUX/CCONJ/ADP
VERB/ADJ/ADV/NUM —— PART/PUNCT/DET

Figure 3: Mean GPT-J loss by context length and part-
of-speech (POS) tag of the target token. Only POS tags
with at least 100 occurrences in the dataset are included.
The tags are grouped (arbitrarily) for clarity.

and the loss appears to stabilize around context
lengths 16-64. However, we see a distinct be-
haviour for proper nouns (PROPN), which are the
hardest-to-predict category for short contexts, but
whose loss improves steadily with increasing c, sur-
passing that of regular nouns (NOUN) at ¢ = 162.

3.2 Per-token losses by context length

We have also examined token-level losses, as well
as the KL divergence metric (see Section 2.2); an
example plot is shown in Fig. 4 and more are found
in Appendix C.1. In general, we observe that the
values tend to change gradually with c; large differ-
ences are sparse, especially for large ¢, and can of-
ten be attributed to important pieces of information
appearing in the context (e.g. “owl” and “swoop’
in the context of “birds” in Fig. 4). This justifies
our use of these differences as importance scores.

>

3.3 Differential importance scores

To facilitate the exploration of A-scores from Sec-
tion 2.3, we have created an interactive web demo,?
which allows visualizing the scores for any of the
3 models on the validation set as shown in Fig. 1.
We display in Fig. 5 the magnitudes of the A-
scores — normalized for each position to sum up
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Figure 4: NLL (left) and KL divergence (right) as a function of context length for a selected example: “[...] mortally

afraid of birds” (same as in Fig. 1). The x axis is reversed for visual correspondence with the left-hand context.
The 5 context tokens causing the largest drops in each metric for GPT-J are marked by red dots.
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Figure 5: Normalized A-score log-magnitude (mean
and std. dev.) by context length and by model. Only
positions n > 1024 are included.

to 1 across all context lengths — as a function of
context length. The plot suggests a power-law-like
inverse relationship, i.e. increasing context length
proportionally reduces the average A-score mag-
nitude. We interpret this as far-away tokens being
less likely to carry information not already covered
by shorter contexts. Long contexts (see inset in
Fig. 5) bear less importance for larger models than
for smaller ones, perhaps because the additional
capacity allows relying more on shorter contexts.
See Appendix C.2 for further analysis.

4 Limitations

Experiments. We acknowledge the limited scope
of our experiments, including only 8 (closed-
domain) documents, 3 models and a single lan-
guage. This is largely due to the limited availability
of suitable large LMs and their high computational
cost. Still, we believe that our experiments are valu-
able as a case study that already clearly showcases
some interesting features of our methodology.

Choice of metrics. The proposed methodology
allows investigating how any given metric is im-
pacted by context, yet our study is limited to NLL
loss and the proposed KL divergence metric (the

latter for defining importance scores). These may
not be optimal for every purpose, and other choices
should be explored depending on the application.
For example, to study sequences generated (sam-
pled) from a LM, one might want to define impor-
tance scores using a metric that does depend on the
generated token, e.g. its NLL loss or its ranking
among all candidates. (Indeed, our web demo also
supports A-scores defined using NLL loss values.)

5 Conclusion and future directions

We have presented context length probing, a novel
causal LM explanation technique based on tracking
the predictions of the LM as a function of context
length, and enabling the assignment of differential
importance scores (A-scores). While it has some
advantages over existing techniques, it answers
different questions, and should thus be thought of
as complementary rather than a substitute.

A particularly interesting feature of our A-scores
is their apparent potential for discovering long-
range dependencies (LRDs) (as they are expected
to highlight information not already covered by
shorter contexts, unlike e.g. attention maps).

Remarkably, our analysis suggests a power-law-
like inverse relationship between context length and
importance score, seemingly questioning the impor-
tance of LRDs in language modeling. While LRDs
clearly appear crucial for applications like long-
form text generation, their importance may not be
strongly reflected by current LM performance met-
rics. We thus believe that there is an opportunity for
a specialized benchmark of LRD modeling capa-
bilities of different models. This should elucidate
questions like to what extent improvements in LM
performance are due to better LRD modeling, how
LRDs are handled by various Transformer variants
(e.g. Kitaev et al., 2020; Katharopoulos et al., 2020;
Choromanski et al., 2021), or what their importance
is for different tasks.
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Figure 6: A step of context length probing with cy.x = 10. The input tokens are shown at the top, the target tokens
at the bottom. The effective context length for each target token is equal to its offset from the beginning of the
segment, e.g. the context for predicting “_D” is “_the” (¢ = 1), the context for “urs” is “_the_D” (¢ = 2), etc.

A Context length probing

Fig. 6 illustrates a step of context length probing. We wish to obtain the tensor P from Eq. (3), understood
as a table where each cell contains the prediction (next-token logits) for a given position in the text and a
given context length. By running our LM on a segment of the text, we get predictions such that for the
n-th token in the segment, the effective context length is equal to n, which corresponds to a diagonal
in the table. We can thus fill in the whole table by running the LM on all segments of length cyax (plus
trailing segments of lengths cpax — 1,..., 1).

Notice that this process is somewhat similar to (naively) running the LM in generation mode, except
that at each step, the leading token is removed, preventing the use of caching to speed up the computation.
In practice, it is not necessary to explicitly construct the tensor P. Indeed, we find it more efficient

to instead store the raw logits obtained by running the model on all the segments, then do the necessary
index arithmetics when computing the metrics.

B Technical details

Data. The LinES treebank is licensed under Creative Commons BY-NC-SA 4.0. We concatenated all
tokens from each of the documents from the treebank, then re-tokenized them using the GPT-2 tokenizer.
We mapped the original (UD) POS tags to the GPT-tokenized dataset in such a way that every GPT token
is assigned the POS tag of the first UD token it overlaps with.

Models. We used the models EleutherAI/gpt—-j-6B (Apache 2.0 license), and gpt2-x1 and
gpt2 (MIT license), all from huggingface. co.

Computation. We parallelized the inference over 500 jobs on a compute cluster,” each running on 8
CPU cores with at least 8 GB of RAM per core, with a batch size of 16. Each job took about 10-20 min
for GPT-2 and 30-60 min for GPT-J. Additionally, computing the metrics from the logits (which take up
2TB of disk space in f1oat16) took between 2 and 4 h per model on a single machine with 32 CPU
cores. The total computing time was 318 core-days, including debugging runs and runs repeated due to
flaws.

7[anonymized], the cluster computing infrastructure of [anonymized]


https://huggingface.co/EleutherAI/gpt-j-6B
https://huggingface.co/gpt2-xl
https://huggingface.co/gpt2
https://huggingface.co/

C Additional plots

C.1 Token-wise metrics as a function of context length

Figs. 7 and 8 show NLL and KL divergence (5), respectively, as a function of context length, for selected
target tokens (proper nouns) from the validation set.

C.2 Importance scores

In Fig. 9, we display the mean importance score received by each POS category, by model. We can see
that proper nouns (PROPN) are substantially more informative than other categories, but less so for the
smallest model. This could mean e.g. that larger models are better at memorizing named entities from
training data and using them to identify the topic of the document.
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(a) ...and attribute means (and thus how the data between them will look in a browser), XML uses the tags only to delimit pieces
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(b) ... he felt things were getting too quiet, and small explosions from Fred and George’s bedroom were considered perfectly
normal. What Harry found most unusual about life at Ron’s, however, wasn’t the talking mirror or the clanking ghoul: it was the
fact that everybody there seemed to like him. Mrs Weasley
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(c) ...is a great difference between Napoleon the Emperor and Napoleon the private person. There are raisons d’etat and there
are private crimes. And the talk goes on. What is still being perpetuated in all civilized discussion is the ritual of civilized
discussion itself. Tatu agrees with the Archbishop about the Russians

Figure 7: NLL losses (y axis) for 3 selected target tokens as a function of context length (z axis). Below each plot,
the target token is displayed in bold, along with a context of 60 tokens. The x axis is reversed to correspond visually
to left-hand context. The red dots show the 10 tokens that cause the largest drops in cross entropy when added to the
context.
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(b) ... he felt things were getting too quiet, and small explosions from Fred and George’s bedroom were considered perfectly
normal. What Harry found most unusual about life at Ron’s, however, wasn’t the talking mirror or the clanking ghoul: it was the
fact that everybody there seemed to like him. Mrs Weasley
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(c) ...1is a great difference between Napoleon the Emperor and Napoleon the private person. There are raisons d’etat and there
are private crimes. And the talk goes on. What is still being perpetuated in all civilized discussion is the ritual of civilized
discussion itself. Tatu agrees with the Archbishop about the Russians

Figure 8: KL divergences (y axis) from Eq. (5) for 3 selected target tokens as a function of context length (z axis).
Below each plot, the target token is displayed in bold, along with a context of 60 tokens. The x axis is reversed to
correspond visually to left-hand context. The red dots show the 10 tokens that cause the largest drops in the metric
when added to the context.
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