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Abstract
The increasingly widespread adoption of large001
Transformer language models has highlighted002
the need for improving their explainability. We003
present context length probing, a novel expla-004
nation technique for causal language models,005
based on tracking the predictions of a model006
as a function of the length of available context,007
and allowing to assign differential importance008
scores to different contexts. The technique is009
model-agnostic and does not rely on access to010
model internals beyond computing token-level011
probabilities. We apply context length probing012
to large pre-trained language models and offer013
some initial analyses and insights, including the014
potential for studying long-range dependencies.015
The source code1 and an interactive demo2 of016
the method are available.017

1 Introduction018

Large language models, typically based on the019

Transformer architecture (Vaswani et al., 2017),020

have recently seen increasingly widespread adop-021

tion, yet understanding their behaviour remains a022

difficult challenge and an active research topic.023

A popular way to dissect Transformers is by vi-024

sualizing their attention weights (e.g. Vig, 2019;025

Hoover et al., 2020). However, it has been ar-026

gued that this does not provide reliable explana-027

tions and can be misleading (Jain and Wallace,028

2019; Serrano and Smith, 2019). A more re-029

cent line of work (Elhage et al., 2021; Olsson030

et al., 2022) explores “mechanistic explanations”,031

based on reverse-engineering the computations per-032

formed by Transformers. These techniques are tied033

to concrete architectures, which are often “toy” ver-034

sions of those used in real-world applications, e.g.035

attention-only Transformers in Elhage et al..036

Other options include general-purpose meth-037

ods like neuron/activation interpretation (e.g. Geva038

1https://anonymous.4open.science/r/
context-probing-DBEB

2https://context-probing.netlify.app/

Figure 1: A screenshot of an interactive demo2 of the
proposed method. After selecting a target token (here
“birds”), the preceding tokens are highlighted accord-
ing to their (normalized) differential importance scores
(green = positive, red = negative), obtained using our
method. The user can also explore the top predictions
for contexts of different lengths (here the context “house,
shouting about lunatics [. . .] mortally afraid of”).

et al., 2021; Goh et al., 2021; Dai et al., 2022), 039

saliency maps (e.g. Ancona et al., 2019; Fong and 040

Vedaldi, 2017) and influence functions (Koh and 041

Liang, 2017). These require access to internal rep- 042

resentations and/or the ability to backpropagate 043

gradients, and have some caveats of their own (Kin- 044

dermans et al., 2019; Kokhlikyan et al., 2021). 045

In this work, we propose a simple explanation 046

technique for causal LMs, context length probing, 047

based on tracking the predictions of the model as a 048

function of the number of tokens available as con- 049

text. Our proposal has the following advantages: 050

• It is conceptually simple, as it provides an an- 051

swer to a natural question: How does the length 052

of available context impact the prediction? 053

• It can be applied to a pre-trained model without 054

retraining or fine-tuning and without training any 055

auxiliary models. 056

• It does not require access to model weights, in- 057

ternal representations or gradients. 058

• It is model-agnostic: it can be applied to any 059

causal LM, including attentionless architectures 060
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like RNN (Mikolov et al., 2010) and CNN061

(Dauphin et al., 2017). The only requirement for062

the model is to accept arbitrary input segments063

(i.e. not be limited to document prefixes).064

One application of context length probing that we065

explore here lies in assigning what we call differ-066

ential importance scores to contexts of different067

lengths. This can be seen as complementary to068

other techniques like attention or saliency map vi-069

sualization, and has a potential to be applied to070

studying long-range dependencies.071

2 Method072

2.1 Context length probing073

A causal LM estimates the conditional probability074

distribution of a token given its left-hand context075

in a document:076

p(xn | x1, . . . , xn−1). (1)077

We are interested here in computing the probabil-078

ities conditioned on a reduced context of length079

c ∈ {1, . . . , n− 1}:080

p(xn | xn−c, . . . , xn−1), (2)081

so that we may then study the behavior of this082

distribution as a function of c.083

An apparent obstacle in doing so is that ap-084

plying the model to an arbitrary subsequence085

xn−c, . . . , xn−1, instead of the full document086

x1, . . . , xN , may lead to inaccurate estimates of087

the probabilities in Eq. (2). However, we note that088

large LMs are not usually trained on entire docu-089

ments. Instead, the training data is pre-processed090

by shuffling all the documents, concatenating them091

(with a special token as a separator), and splitting092

the resulting sequence into chunks of a fixed length093

(usually 1024 or 2048 tokens) with no particular094

relation to the document length. Thus, the models095

are effectively trained to accept sequences of to-096

kens starting at arbitrary positions in a document097

and it therefore appears correct to employ them as098

such to compute estimates of Eq. (2).3099

It now remains to be detailed how to efficiently100

evaluate the above probabilities for all positions101

n and context lengths c. Specifically, for a given102

document x1, . . . , xN and some maximum context103

length cmax, we are interested in an (N − 1) ×104

3For models trained on data that is pre-processed differ-
ently, (re)training or fine-tuning with data augmentation such
as random shifts may be needed in order to apply our method.

cmax × |V| tensor P , where V =
{
w1, . . . , w|V|

}
105

is the vocabulary, such that: 106

Pn,c,i = p(xn+1 = wi | xn−c+1, . . . , xn), (3) 107

with Pn,c,∗ = Pn,n−1,∗ for n ≤ c. Observe that 108

by running the model on any segment xm, . . . , xn, 109

we obtain all the values Pm+c−1,c,∗ for c ∈ 110

{1, . . . , n−m+ 1}. Therefore, we can fill in the 111

tensor P by applying the model along a sliding win- 112

dow of size cmax, i.e. running it on N (overlapping) 113

segments of length at most cmax. See Appendix A 114

for an illustration and additional remarks. 115

2.2 Metrics 116

Having obtained the tensor P as we have just de- 117

scribed, we use it to study how the predictions 118

evolve as the context length is increased from 1 to 119

cmax. Specifically, our goal is to define a suitable 120

metric that we can compute from Pn,c,∗ and follow 121

it as a function of c (for a specific n or on average). 122

One possibility would be to use the negative log- 123

likelihood (NLL) loss values: 124

− log p(xn+1 | xn−c+1, . . . , xn). (4) 125

However, this may not be a particularly suitable 126

metric for explainability purposes, as it depends on 127

the ground truth xn+1, which is only one of many 128

plausible continuations. For this reason, we pro- 129

pose to instead measure the Kullback-Leibler (KL) 130

divergence to the maximum-context predictions, 131

Dn,c = DKL[Pn,cmax,∗ ∥ Pn,c,∗]

=

|V|∑
i=1

Pn,cmax,i log
Pn,cmax,i

Pn,c,i
,

(5) 132

which expresses the amount of information lost 133

from the maximum-context prediction by limiting 134

the context length to c. 135

2.3 Differential importance scores 136

We are also interested in studying how individual 137

increments in context length affect the predictions. 138

We propose to quantify this as the change in the 139

KL divergence metric (5) when a new token is in- 140

troduced into the context. Specifically, for a pair of 141

tokens xn+1 (the target token) and xm (the context 142

token), we define a differential importance score 143

(∆-score for short) 144

∆Dn,m = Dn,n−m−1 −Dn,n−m. (6) 145
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name #param #layer #head dmodel max len

gpt2 117 M 12 12 768 1024
gpt2-xl 1.5 B 48 25 1600 1024
gpt-j-6B 6.1 B 28 16 4096 2048

Table 1: Hyperparameters of the 3 models used.

We may visualize these scores as a way to explain146

the LM predictions, much like is often done with at-147

tention weights, with two important caveats. First,148

a high ∆Dn,m should not be interpreted as mean-149

ing that xm in isolation is important for predicting150

xn+1, but rather that it is salient given the context151

that follows it (i.e. it disambiguates the following152

context). Second, unlike attention weights, our153

scores need not sum up to one, and can be negative:154

a token may introduce ambiguity. The proposed155

representation is hence more conceptually similar156

to a saliency map than to an attention map.157

3 Results158

We apply the proposed technique to publicly avail-159

able pre-trained large Transformer language mod-160

els, namely GPT-J (Wang and Komatsuzaki, 2021)161

and two GPT-2 (Radford et al., 2019) variants –162

see Table 1 for an overview. We use the validation163

set of the English LinES treebank4 from Universal164

Dependencies (UD; Nivre et al., 2020), containing165

8 documents with a total length of 20 672 tokens5166

and covering fiction, an online manual, and Eu-167

roparl data. We set cmax = 1023. We use the168

Transformers library6 (Wolf et al., 2020) to169

load the pre-trained models and run inference. Fur-170

ther technical details are included in Appendix B.171

3.1 LM loss by context length172

Fig. 2 shows the cross entropy losses (NLL means)173

across the whole validation dataset as a function174

of context length c. Larger models perform better175

as expected, but increased context improves perfor-176

mance in all cases.177

We display in Fig. 3 the same information (loss178

by context length) broken down by part-of-speech179

(POS) tags, for GPT-J only. For most POS tags, the180

behavior is similar to what we observed in Fig. 2181

4https://universaldependencies.org/
treebanks/en_lines/index.html

5After concatenating all sentences and applying the GPT-2
tokenizer, which is used by both GPT-2 and GPT-J.

6https://github.com/huggingface/
transformers
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Figure 2: Mean LM losses by context length.
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Figure 3: Mean GPT-J loss by context length and part-
of-speech (POS) tag of the target token. Only POS tags
with at least 100 occurrences in the dataset are included.
The tags are grouped (arbitrarily) for clarity.

and the loss appears to stabilize around context 182

lengths 16–64. However, we see a distinct be- 183

haviour for proper nouns (PROPN), which are the 184

hardest-to-predict category for short contexts, but 185

whose loss improves steadily with increasing c, sur- 186

passing that of regular nouns (NOUN) at c = 162. 187

3.2 Per-token losses by context length 188

We have also examined token-level losses, as well 189

as the KL divergence metric (see Section 2.2); an 190

example plot is shown in Fig. 4 and more are found 191

in Appendix C.1. In general, we observe that the 192

values tend to change gradually with c; large differ- 193

ences are sparse, especially for large c, and can of- 194

ten be attributed to important pieces of information 195

appearing in the context (e.g. “owl” and “swoop” 196

in the context of “birds” in Fig. 4). This justifies 197

our use of these differences as importance scores. 198

3.3 Differential importance scores 199

To facilitate the exploration of ∆-scores from Sec- 200

tion 2.3, we have created an interactive web demo,2 201

which allows visualizing the scores for any of the 202

3 models on the validation set as shown in Fig. 1. 203

We display in Fig. 5 the magnitudes of the ∆- 204

scores – normalized for each position to sum up 205

3
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Figure 4: NLL (left) and KL divergence (right) as a function of context length for a selected example: “[. . .] mortally
afraid of birds” (same as in Fig. 1). The x axis is reversed for visual correspondence with the left-hand context.
The 5 context tokens causing the largest drops in each metric for GPT-J are marked by red dots.
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Figure 5: Normalized ∆-score log-magnitude (mean
and std. dev.) by context length and by model. Only
positions n ≥ 1024 are included.

to 1 across all context lengths – as a function of206

context length. The plot suggests a power-law-like207

inverse relationship, i.e. increasing context length208

proportionally reduces the average ∆-score mag-209

nitude. We interpret this as far-away tokens being210

less likely to carry information not already covered211

by shorter contexts. Long contexts (see inset in212

Fig. 5) bear less importance for larger models than213

for smaller ones, perhaps because the additional214

capacity allows relying more on shorter contexts.215

See Appendix C.2 for further analysis.216

4 Limitations217

Experiments. We acknowledge the limited scope218

of our experiments, including only 8 (closed-219

domain) documents, 3 models and a single lan-220

guage. This is largely due to the limited availability221

of suitable large LMs and their high computational222

cost. Still, we believe that our experiments are valu-223

able as a case study that already clearly showcases224

some interesting features of our methodology.225

Choice of metrics. The proposed methodology226

allows investigating how any given metric is im-227

pacted by context, yet our study is limited to NLL228

loss and the proposed KL divergence metric (the229

latter for defining importance scores). These may 230

not be optimal for every purpose, and other choices 231

should be explored depending on the application. 232

For example, to study sequences generated (sam- 233

pled) from a LM, one might want to define impor- 234

tance scores using a metric that does depend on the 235

generated token, e.g. its NLL loss or its ranking 236

among all candidates. (Indeed, our web demo also 237

supports ∆-scores defined using NLL loss values.) 238

5 Conclusion and future directions 239

We have presented context length probing, a novel 240

causal LM explanation technique based on tracking 241

the predictions of the LM as a function of context 242

length, and enabling the assignment of differential 243

importance scores (∆-scores). While it has some 244

advantages over existing techniques, it answers 245

different questions, and should thus be thought of 246

as complementary rather than a substitute. 247

A particularly interesting feature of our ∆-scores 248

is their apparent potential for discovering long- 249

range dependencies (LRDs) (as they are expected 250

to highlight information not already covered by 251

shorter contexts, unlike e.g. attention maps). 252

Remarkably, our analysis suggests a power-law- 253

like inverse relationship between context length and 254

importance score, seemingly questioning the impor- 255

tance of LRDs in language modeling. While LRDs 256

clearly appear crucial for applications like long- 257

form text generation, their importance may not be 258

strongly reflected by current LM performance met- 259

rics. We thus believe that there is an opportunity for 260

a specialized benchmark of LRD modeling capa- 261

bilities of different models. This should elucidate 262

questions like to what extent improvements in LM 263

performance are due to better LRD modeling, how 264

LRDs are handled by various Transformer variants 265

(e.g. Kitaev et al., 2020; Katharopoulos et al., 2020; 266

Choromanski et al., 2021), or what their importance 267

is for different tasks. 268
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Figure 6: A step of context length probing with cmax = 10. The input tokens are shown at the top, the target tokens
at the bottom. The effective context length for each target token is equal to its offset from the beginning of the
segment, e.g. the context for predicting “ D” is “ the” (c = 1), the context for “urs” is “ the D” (c = 2), etc.

A Context length probing 427

Fig. 6 illustrates a step of context length probing. We wish to obtain the tensor P from Eq. (3), understood 428

as a table where each cell contains the prediction (next-token logits) for a given position in the text and a 429

given context length. By running our LM on a segment of the text, we get predictions such that for the 430

n-th token in the segment, the effective context length is equal to n, which corresponds to a diagonal 431

in the table. We can thus fill in the whole table by running the LM on all segments of length cmax (plus 432

trailing segments of lengths cmax − 1, . . . , 1). 433

Notice that this process is somewhat similar to (naïvely) running the LM in generation mode, except 434

that at each step, the leading token is removed, preventing the use of caching to speed up the computation. 435

In practice, it is not necessary to explicitly construct the tensor P . Indeed, we find it more efficient 436

to instead store the raw logits obtained by running the model on all the segments, then do the necessary 437

index arithmetics when computing the metrics. 438

B Technical details 439

Data. The LinES treebank is licensed under Creative Commons BY-NC-SA 4.0. We concatenated all 440

tokens from each of the documents from the treebank, then re-tokenized them using the GPT-2 tokenizer. 441

We mapped the original (UD) POS tags to the GPT-tokenized dataset in such a way that every GPT token 442

is assigned the POS tag of the first UD token it overlaps with. 443

Models. We used the models EleutherAI/gpt-j-6B (Apache 2.0 license), and gpt2-xl and 444

gpt2 (MIT license), all from huggingface.co. 445

Computation. We parallelized the inference over 500 jobs on a compute cluster,7 each running on 8 446

CPU cores with at least 8GB of RAM per core, with a batch size of 16. Each job took about 10–20min 447

for GPT-2 and 30–60min for GPT-J. Additionally, computing the metrics from the logits (which take up 448

2TB of disk space in float16) took between 2 and 4 h per model on a single machine with 32 CPU 449

cores. The total computing time was 318 core-days, including debugging runs and runs repeated due to 450

flaws. 451

7[anonymized], the cluster computing infrastructure of [anonymized]

7

https://huggingface.co/EleutherAI/gpt-j-6B
https://huggingface.co/gpt2-xl
https://huggingface.co/gpt2
https://huggingface.co/


C Additional plots452

C.1 Token-wise metrics as a function of context length453

Figs. 7 and 8 show NLL and KL divergence (5), respectively, as a function of context length, for selected454

target tokens (proper nouns) from the validation set.455

C.2 Importance scores456

In Fig. 9, we display the mean importance score received by each POS category, by model. We can see457

that proper nouns (PROPN) are substantially more informative than other categories, but less so for the458

smallest model. This could mean e.g. that larger models are better at memorizing named entities from459

training data and using them to identify the topic of the document.460

8



1416642561024

4

6

8

10

12

14

specifies

Access

application
About

site
Additional
information

Access

XML

Microsoft

gpt2
gpt2-xl
gpt-j-6B

(a) . . . and attribute means (and thus how the data between them will look in a browser), XML uses the tags only to delimit pieces
of data, and leaves the interpretation of the data completely to the application that reads it. Additional information about XML
can be found on the web site. About importing XML data Access

1416642561024
0

2

4

6

8

10

12

likeabout himmost

from

't oul

What

.

Harry

gpt2
gpt2-xl
gpt-j-6B

(b) . . . he felt things were getting too quiet, and small explosions from Fred and George’s bedroom were considered perfectly
normal. What Harry found most unusual about life at Ron’s, however, wasn’t the talking mirror or the clanking ghoul: it was the
fact that everybody there seemed to like him. Mrs Weasley

1416642561024

4

6

8

10

12

And
Andre

the
agree

civilized.

Russians

agrees

Archbishop

Russians

gpt2
gpt2-xl
gpt-j-6B

(c) . . . is a great difference between Napoleon the Emperor and Napoleon the private person. There are raisons d’etat and there
are private crimes. And the talk goes on. What is still being perpetuated in all civilized discussion is the ritual of civilized
discussion itself. Tatu agrees with the Archbishop about the Russians

Figure 7: NLL losses (y axis) for 3 selected target tokens as a function of context length (x axis). Below each plot,
the target token is displayed in bold, along with a context of 60 tokens. The x axis is reversed to correspond visually
to left-hand context. The red dots show the 10 tokens that cause the largest drops in cross entropy when added to the
context.

9



1416642561024
0

1

2

3

4

5

6

you

About

the

importing

specifies
About

Additional
information

site

XML
gpt2
gpt2-xl
gpt-j-6B

(a) . . . and attribute means (and thus how the data between them will look in a browser), XML uses the tags only to delimit pieces
of data, and leaves the interpretation of the data completely to the application that reads it. Additional information about XML
can be found on the web site. About importing XML data Access

1416642561024
0

2

4

6

8

10

leys

about him
't

most

from

oul

What

.

Harry

gpt2
gpt2-xl
gpt-j-6B

(b) . . . he felt things were getting too quiet, and small explosions from Fred and George’s bedroom were considered perfectly
normal. What Harry found most unusual about life at Ron’s, however, wasn’t the talking mirror or the clanking ghoul: it was the
fact that everybody there seemed to like him. Mrs Weasley

1416642561024
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Archbishop

talk

saying

Napoleon uated of .
agrees about

Archbishop

gpt2
gpt2-xl
gpt-j-6B

(c) . . . is a great difference between Napoleon the Emperor and Napoleon the private person. There are raisons d’etat and there
are private crimes. And the talk goes on. What is still being perpetuated in all civilized discussion is the ritual of civilized
discussion itself. Tatu agrees with the Archbishop about the Russians

Figure 8: KL divergences (y axis) from Eq. (5) for 3 selected target tokens as a function of context length (x axis).
Below each plot, the target token is displayed in bold, along with a context of 60 tokens. The x axis is reversed to
correspond visually to left-hand context. The red dots show the 10 tokens that cause the largest drops in the metric
when added to the context.

10



0 0.005

SYM
PART
ADP

CCONJ
PUNCT

ADV
DET

NUM
ADJ
INTJ

PRON
AUX

SCONJ
NOUN

X
VERB

PROPN

gpt-j-6B

0 0.005

gpt2-xl

0 0.005

gpt2

Figure 9: Mean differential importance score by POS tag of the context token and by model.

11


	Introduction
	Method
	Context length probing
	Metrics
	Differential importance scores

	Results
	LM loss by context length
	Per-token losses by context length
	Differential importance scores

	Limitations
	Conclusion and future directions
	Context length probing
	Technical details
	Additional plots
	Token-wise metrics as a function of context length
	Importance scores


