
Failure Prediction Is a Better Performance Proxy
for Early-Exit Networks Than Calibration

Anonymous Author(s)
Affiliation
Address
email

Abstract

Early-exit models speed up inference by attaching internal classifiers to intermedi-1

ate layers of the model and allowing computation to stop once a prediction satisfies2

an exit criterion. Most early-exit methods rely on confidence-based exit strategies,3

which motivated some works to calibrate intermediate classifiers to improve the4

performance of the entire model. In this paper, we show that calibration measures5

can be misleading indicators of the performance of multi-exit models: a well-6

calibrated classifier may still waste computation, and common calibration methods7

do not preserve the sample ranking within a classifier. We demonstrate empirical8

cases where miscalibrated networks outperform calibrated ones. As an alternative,9

we propose to use failure prediction as a more useful proxy for early-exit model10

performance. Unlike calibration, failure prediction accounts for changes in the11

ranking of samples and shows a strong correlation with efficiency improvements,12

making it a more dependable basis for designing and evaluating early-exit models.13

1 Introduction14

The rapid growth of deep learning increases the demand for resource-efficient models. Early-exit15

models address this challenge by attaching classifiers to intermediate model layers and enabling the16

model to save computation by stopping the inference once a prediction satisfies an exit criterion.17

Early-exits were initially introduced for vision models [6, 9, 20, 26], and have since then become a18

natural fit for resource-constrained scenarios [2, 3, 12, 13, 24, 25, 28]. More recently, they also have19

been successfully adopted for natural language processing [7, 14, 23, 29, 35], including reasoning20

models [8, 31] where inference efficiency is critical.21

The most common approach to exiting uses prediction confidence and enables the network to halt22

early if an intermediate classifier produces a sufficiently confident prediction. Consequently, many23

works focused on improving the calibration of the classifiers [15, 17–19, 21], under the assumption24

that better calibration yields better models. We challenge that assumption and argue that calibration25

can be a misleading proxy for early-exit models. We demonstrate cases where miscalibrated networks26

behave counterintuitively and outperform calibrated multi-exit models, as demonstrated in Figure 1.27

Finally, we highlight that calibration methods can introduce unintended side effects, such as altering28

the maximum confidence ranking of samples within the classifier.29

Given the above-mentioned issues, we propose to use failure prediction [1] as a more suitable30

proxy for early-exit network performance. We discuss its desirable properties, showing that, unlike31

calibration, failure prediction measures are sensitive to changes in rankings of samples. Finally,32

we adapt failure prediction measures to the multi-exit setting by defining the Early-Exit Failure33

Prediction score (EEFP score). Notably, our experiments demonstrate that our proposed EEFP score34

shows a strong correlation with early-exit performance in cases where calibration measures do not.35
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Figure 1: Cost-accuracy curves, head calibration errors, and our proposed EEFP scores for one
calibrated model and two decalibrated models with modified temperature values. Calibration fails to
capture the quality of the early-exit model, as an overconfident network with higher ECEs performs
better than the calibrated one. We propose an alternative metric, Early-Exit Failure Prediction
score (EEFP score), which more accurately reflects the quality of the multi-exit model.

We hope that our work advances the discussion on appropriate evaluation metrics for early-exit36

models and helps improve the design of future methods for efficient computation.37

2 Background38

Early-exits We consider the standard early-exit framework used in prior work [6, 9], and start with39

a multi-exit model architecture with J classifiers. Each classifier gj , j ∈ {1, . . . , J} maps an input x40

to a probability vector over C classes: pj = gj(x). The network evaluates classifiers sequentially41

until the confidence of the prediction (usually the maximum probability obtained via softmax) exceeds42

the corresponding exit threshold, that is: cj(x) = maxk pj,k ≥ τj , where k = 1, . . . , C refers to43

class indices [7]. If the exit condition is satisfied, the network outputs pj ; otherwise, evaluation44

continues until another classifier exits or the final classifier gJ is reached. By varying the exit45

thresholds, we obtain a compute–accuracy trade-off curve, where compute is measured as the average46

of floating-point operations per sample [30, 32].47

Calibration Confidence calibration refers to how well a model’s predicted confidence matches48

its actual accuracy [4]. In a well-calibrated model, predictions made with high confidence are more49

likely to be correct. Calibration is a key property of probabilistic models and has been widely studied50

in the context of model reliability and trustworthiness [4, 10, 22, 27]. The calibration of a given51

classifier can be measured via expected calibration error (ECE). To calculate ECE, one partitions52

predictions into M bins B1, . . . , BM and calculates the accuracy acc(Bm) and average confidence53

conf(Bm) in each bin m. Then, ECE can be calculated as:54

ECE =

M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣.

3 Calibration in early-exit models55

In context of early-exiting, prior work [17, 19] linked the calibration of the intermediate classifiers56

with improved performance of the model. Since calibration changes head’s confidence, it can alter57

sample distribution across exit points and thus impact the overall model performance. Meronen et al.58

[17] explicitly focus on improving early-exit performance via calibration, stating that "adequately59

quantifying and accounting for (...) uncertainty improves the predictive performance and aids decision-60

making". Similarly to Pacheco et al. [19] and Wójcik et al. [29], they measure the calibration error61

of each classification head. Despite the existing body of work mentioned above, we hypothesize62
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Figure 2: Performance of models decalibrated using a transformation that preserves the ranking of
samples within each classifier. Despite significantly deteriorated ECE scores, model performance
remains unchanged, with all three models showing almost identical cost–accuracy curves. EESP
score perfectly reflects this behavior, assigning identical score values to all three networks.

that calibration does not correlate with the performance of the early-exit networks, and may63

even hurt it in practice. In the following sections, we provide empirical evidence supporting this64

hypothesis by showing that calibration of early-exit networks can affect performance in unexpected65

ways. To this end, we adopt the setting from Meronen et al. [17] with the MSDNet multi-exit66

architecture [6], and find the per-IC thresholds for every considered budget after the training and67

(de)calibration via the procedure proposed by Huang et al. [6]. We use cost-accuracy curves to68

compare the network performance, and mark the performance of individual classifiers with dots.69

Please refer to Appendix E for the experimental details, and to Appendix C for the additional70

experimental results with alternative calibration methods.71

3.1 Better calibration does not always lead to better performance72

In our first experiment, we calibrate the intermediate classifiers of a trained MSDNet model with73

temperature scaling [4]. Subsequently, we create two decalibrated variants of the same model by74

multiplying the temperature used in each head by 3.0 or 0.3, which results in an underconfident or75

overconfident model, respectively. We evaluate both accuracy and expected calibration error (ECE)76

of the three models across varying computational budgets, and present the results in Figure 1. Our77

experiments reveal that models can achieve a more favorable cost–accuracy trade-off, despite78

exhibiting substantially worse calibration scores. This somewhat counterintuitive finding indicates79

that calibrating intermediate classifiers might not be beneficial for multi-exit models, which is80

contrary to what was suggested in previous studies [17–19, 29].81

3.2 Worse calibration does not always lead to worse performance82

To further analyze the relationship between head calibration and the final performance of the model,83

we devise the following experiment. Instead of manipulating the temperature of each head, we propose84

an even simpler decalibration method, which directly transforms the final confidence estimate of the85

classifier: ĉj(x) = 1
C +

(
1− 1

C

)
·
(

cj(x)−
1
C

1− 1
C

)α
, where α is the decalibration coefficient and C86

refers to the number of classes. Formally, for any classifier j let πj be a permutation of sample indices87

such that: cj(xπ(1)) > cj(xπ(2)) > · · · > cj(xπ(n)) (see Appendix B for a more detailed discussion88

on the design of our function). The ĉj transformation preserves the order of confidences between89

the samples (sample ranking). The same is not true for temperature scaling 1, a fact that we90

describe in detail in Appendix A.91

We perform the alternative decalibration experiment by using ĉj to decalibrate the classifiers. We92

set α to 10 and 0.1, obtaining an underconfident and overconfident model, respectively. The results93

1Consider two sets of logits: l1 = [0.65, 0.34,−1.03], l2 = [−0.06,−0.11, 0.60]. If we compute confi-
dence c with the softmax function, for T1 = 1.0: c1 > c2, a while for T2 = 0.3: c1 < c2.
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are shown in Figure 2. This time, despite decalibrating the model significantly, the overall94

accuracy-cost performance remains the same, even for the underconfident model. This further95

illustrates that calibration metrics do not necessarily reflect actual model performance, and do not96

capture the important aspect of sample rankings.97

4 Early-exit failure prediction98

The ranking-preserving aspect of the calibration methods proved to be essential in our previous99

experiments. We observe that the separability between correctly and incorrectly classified100

samples may be a more reliable indicator of early-exit model performance than calibration measures.101

In the literature, this separability is directly related to failure prediction (or error and success102

prediction) [1, 5]. Crucially, prior work has shown that calibrating classifiers can actually degrade103

failure prediction performance [36].104

To evaluate failure prediction for a single classifier, we record the classifier’s confidence score for105

each sample and label it as y = 1 if the prediction is correct and y = 0 otherwise. We then compute106

the area under the receiver operating characteristic curve (AUROC), which measures the probability107

that a randomly chosen correct prediction (y = 1) receives a higher confidence score than a randomly108

chosen incorrect one (y = 0), thus reflecting how well the classifier’s confidence separates correct109

from incorrect predictions.110

However, this definition of failure prediction was devised for conventional static classifiers, and is
not suitable for early-exit networks, as it does not account for the behavior of deeper classifiers. In
particular, if a sample is incorrectly classified by the current classifier and all of the deeper classifiers,
then it is beneficial to halt computation as early as possible. This crucial observation leads us to
adapt the definition of failure prediction to the multi-exit model setup. We define Early Exit Failure
Prediction score (EEFP score) as:

EEFPj({xi, yj,i}) = AUROC({cj(xi), ȳj,i}),
where:

ȳj,i =

{
1, if yj,i = 1 ∨ (yj,i = 0 ∧ ∀l>jyl,i = 0)

0, otherwise.
In this formulation, a positive yj,i means that either the current head is correct, or all deeper heads111

would also be wrong, and exiting is optimal from the computational point of view.112

We report the EEFP scores for each classifier head alongside the results of our previous experiments113

from Sections 3.1 and 3.2 in Figures 1 and 2. In both cases, the EEFP scores correlate well with the114

overall accuracy-cost performance of the model. When performing temperature decalibration, the115

EESP score is the highest for the overconfident model, which actually performs better but achieves116

worse ECE. In the case of rank-preserving decalibration, EESP scores remain constant and reflect the117

identical performance of all three investigated models. EEFP score better reflects both prediction118

accuracy and the effect of early exits on the model performance, making it more suitable for119

evaluating early-exit models than standard calibration metrics.120

5 Conclusion121

Our work challenges the common assumption about positive effects of calibration of intermediate122

classifiers in the early-exit models. Through a series of controlled experiments, we demonstrated123

that calibration metrics such as ECE can be misleading: well-calibrated models may still waste124

computation, while deliberately miscalibrated models can sometimes achieve better cost–accuracy125

trade-offs. A key factor behind this discrepancy is that calibration metrics fail to capture the126

separability of correctly and incorrectly classified samples, which directly influences the efficiency of127

the early exits.128

To address these limitations, we propose the Early-Exit Failure Prediction Score (EEFP Score), a129

failure prediction metric specifically tailored to the multi-exit setting. Unlike calibration metrics,130

EEFP Score directly measures how well a model distinguishes between samples that benefit from131

further computation and those that do not. EEFP Score better reflects the real goals of efficient132

inference, and we found that it strongly correlates with early-exit performance across the experimental133

settings where calibration metrics fail to accurately capture model quality.134
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Appendix238

A Influence of temperature scaling239

A.1 Probability distribution after temperature scaling240

In a classification problem with C classes, suppose the model outputs logits z1, . . . , zC for a given241

data sample, and let r denote the index of the most probable class. Without temperature scaling, the242

softmax probabilities are243

pk =
ezk∑C
l=1 e

zl
, k = 1, . . . , C.

By introducing244

d := log

(
C∑
l=1

ezl

)
,

we can equivalently write245

pk = ezk−d, and hence zk = log(pk) + d.

When scaling logits by a temperature parameter T > 0, the probabilities become246

p
(T )
k =

ezk/T∑C
l=1 e

zl/T
=

p
1/T
k∑C

l=1 p
1/T
l

, k = 1, . . . , C.

Therefore, the confidence changes from pr to247

p(T )
r =

p
1/T
r∑C

l=1 p
1/T
l

.

Since the denominator
∑C

l=1 p
1/T
l depends on the entire probability distribution (and not solely248

on pr), two samples with the same original confidence pr can yield different scaled confidences p(T )
r249

after temperature scaling.250

A.2 Temperature scaling does not preserve the ranking of samples251

Table 1: Classifier’s logits in a toy problem.
Class 1 Class 2 Class 3 Class 4

Image A -0.7985 -0.9163 -2.3026 -2.9957
Image B -1.6094 -1.6094 -0.9163 -1.6094
Image C -1.2040 -0.9676 -1.3471 -2.8134

Table 2: Classes probability distribution (after softmax) in a toy problem.
Class 1 Class 2 Class 3 Class 4

Image A 0.450 0.400 0.100 0.050
Image B 0.200 0.200 0.400 0.200
Image C 0.300 0.380 0.260 0.060

Consider a toy example with four classes. The j − th classifier’s logit outputs are shown in Table 1,252

while the corresponding softmax probabilities are reported in Table 2. Confidences of the predictions253

are as follows: cj(A) ≈ 0.450, cj(B) ≈ 0.400, cj(C) ≈ 0.380. Therefore the ranking of samples is254

A,B,C (from the most to the least confident ones). However, when temperature changes, the ranking255

does as well. For example for temperature 0.3, cj(A) ≈ 0.594, cj(B) ≈ 0.771, cj(C) ≈ 0.575,256

and the ranking changes to B,A,C. On the other hand, for temperature 3.0, cj(A) ≈ 0.328,257

cj(B) ≈ 0.296, cj(C) ≈ 0.299, and the ranking changes to A,C,B.258
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B Monotonic decalibration function259

We define rank-preserving decalibration transformation from Section 3.2 as:260

fα(c) =
1

C
+
(
1− 1

C

)( c− 1
C

1− 1
C

)α
,

and use it to obtain ĉj(x) = fα(cj(x)). In fα, C is constant, and c 7→ c− 1
C

1− 1
C

increases with261

increasing c. Raising a positive increasing function to the power α > 0 also preserves monotonicity.262

Therefore, fα(c) is strictly increasing with increasing c.263

However, due to numerical reasons, fα may increase so slowly that finite precision arithmetic makes264

it appear non-monotonic. To avoid this, we introduce a slightly modified function:265

f̂α(c) = ϵc + (1− ϵ) fα(c),

where ϵ = 5 · 10−2. This guarantees that, on any sufficiently long interval [c1, c2], the increase of f̂α266

is large enough to remain distinguishable under finite numerical precision.267

Moreover, f̂α( 1
C ) = 1

C and f̂α(1) = 1, which corresponds to the cases where all classes are equally268

probable or where one class has probability one, respectively. Therefore, we ensure that the confidence269

values remain within the range that would also be possible under the standard definition.270
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C Temperature decalibration for models calibrated with alternative methods271

To ensure our findings are not specific to a single training or calibration setup, we analyze the effect272

of temperature decalibration on model accuracy in the setting proposed by [17]. They consider273

two approaches that improve model calibration: last-layer Laplace approximations (LAP) [11] and274

model-internal ensembles (MIE). We test these approaches using three MSDNet variants with 4, 6,275

and 8 blocks (referred to as "Small," "Medium," and "Large" in our plots) trained on CIFAR100, and276

analyze the impact of temperature decalibration on the models in the following subsections.277

C.1 LAP278

We begin with a model calibrated using LAP, where we perform a grid search over the temperature and279

Laplace prior variance to obtain the best-calibrated model. We then decalibrate the model by applying280

temperature modifications to its predictions, as in the main paper. We show the corresponding results281

in Figure 3. Likewise, the performance of the declibrated model does not degrade and is even slightly282

better than the performance of the calibrated one.283

Figure 3: Results for LAP-calibrated MSDNet models.

C.2 LAP+MIE284

Secondly, we combine LAP with MIE following Meronen et al. [17], and apply post-hoc temperature285

decalibration as before. We show the results in Figure 4. The results are consistent with our main286

findings and all other experiments: despite being decalibrated, the overconfident model does not287

suffer and even slightly outperforms the calibrated model. Together with the results from the previous288

section, these findings demonstrate that our conclusions hold beyond a specific training or calibration289

setup and are consistent across both calibration methods and multiple model sizes.290

Figure 4: Results for MIE-calibrated MSDNet models.
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D Alternative measure for early-exit failure prediction291

EEFP Score measures the separability of two subsets (correctly and incorrectly predicted) for every292

possible threshold. However, it is unreasonable to assume that every threshold is equally important293

for early-exit models, and in practice, we care about a subset of thresholds. For example, for294

high computational budgets, the first threshold τ1 tends to be close to 1.0, and separability on low295

thresholds τ1 → 0 is irrelevant. Moreover, EEFP Score is threshold-agnostic and is measured for296

each exit separately.297

In this section we consider an alternative way to estimate failure prediction, the EEF1 score, which298

uses F1 instead of AUROC. EEF1 can be used to compare two multi-exit models for any budget by299

using the actual exit criterion threshold used during inference.300

Let τj denote the threshold of the j-th classifier. We define an exit indicator as:301

hj(x) =

{
1, if cj(x) ≥ τj ,

0, otherwise.

Let Lj be the set of indices for which the model has not exited before the j-th classifier:302

i ∈ Lj ⇐⇒ ∀l∈{1,...,j−1} cl(xi) < τl.

We define the Early Exit F1 Score for the j-th classifier as:303

EEF1j({xi, yj,i}i∈Lj
) = F1({hj(xi), ȳj,i}i∈Lj

).

To obtain a single score for each budget, we compute the arithmetic mean over all classifiers:304

EEF1({xi, yj,i}) =
1

J

J∑
j=1

EEF1j({xi, yj,i}i∈Lj ).

Figure 5: EEF1 scores for CIFAR-100 (left) and Tiny ImageNet (right)

The resulting EEF1 scores for models decalibrated via modified temperature (see Section 3.1) are305

shown in Figure 5. Like the EEFP scores, EEF1 indicates a small advantage for the overconfident306

model compared to the calibrated model. However, EEFP better separates the models’ failure-307

prediction performance and is more straightforward to interpret; for these reasons, we decided to308

focus on EEFP score in the main paper.309
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E Experimental setup details310

In this section, we describe the experimental setup used in our experiments in the main paper.311

E.1 Architecture312

We adopt the MSDNet architecture [6] with 7 blocks. We attach early-exit heads after each block,313

and additionally inside the blocks.314

E.2 Training315

For each experiment, we train three models with independent initializations and report the average316

performance across these three seeds. We train MSDNet models with a batch size of 512, using a317

learning rate of 1e-3 and AdamW optimizer [16] without weight decay. We use a cosine annealing318

scheduler with warm restarts and linear warm-up. As data augmentations, we apply random resizing,319

cropping, rotation, contrast adjustment, random erasing, Mixup [34], and CutMix [33]. All models320

are trained until convergence.321

E.3 Calibration322

To calibrate the early-exit model, we proceed with a gradient-based approach. We extract 2.5% of the323

samples from the training set, which were not used to optimize the model during training, and use324

them for the calibration phase. We then freeze the model’s parameters, attach temperature scaling325

calibrators, and proceed by minimizing NLPD. Each early-exit head is optimized individually and326

has its own temperature.327

E.4 Evaluation328

During evaluation, we begin with the calibrated model and additionally consider two variants: an329

overconfident and an underconfident model. All three models share the same trained parameters and330

differ only in how the logits are transformed.331

For a given data sample x, let332

zj,1, . . . , zj,C

denote the logits of the classifier in the calibrated model. In the temperature scaling experiment 3.1,333

the logits of the models are modified by a temperature parameter T as follows:334

zj,1
T

, . . . ,
zj,C
T

.

Softmax is then applied to each set of logits, and the confidence values are obtained from the335

maximum softmax probability, denoted as cj(x). In Section 3.2, instead of scaling the logits, the336

confidence is derived using the function ĉj(x) in place of the standard cj(x).337

For each model and each exit head, decision thresholds are determined using the validation set. To338

this end, we follow the threshold selection heuristic proposed in Huang et al. [6], Meronen et al. [17],339

which derives appropriate thresholds based on the distribution of confidence scores.340

Given a predefined FLOPs budget, the network is expected to terminate at each exit for a certain341

fraction of the input samples. This allocation of samples across exits is controlled by a parameter q.342

At the j-th exit, the model is required to terminate for a fraction of samples defined as:343

exit-share(j) =
qj∑J−1
l=0 ql

(1)

During inference on the test set, each model computes its own confidence values and applies its own344

set of thresholds to decide when to exit and, therefore, which prediction to make.345
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