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Abstract

Tensor ring (TR) decomposition has recently re-
ceived increased attention due to its superior ex-
pressive performance for high-order tensors. How-
ever, the applicability of traditional TR decom-
position algorithms to real-world applications is
hindered by prevalent large data sizes, missing en-
tries, and corruption with outliers. In this work, we
propose a scalable and robust TR decomposition al-
gorithm capable of handling large-scale tensor data
with missing entries and gross corruptions. We first
develop a novel auto-weighted steepest descent
method that can adaptively fill the missing entries
and identify the outliers during the decomposition
process. Further, taking advantage of the tensor
ring model, we develop a novel fast Gram matrix
computation (FGMC) approach and a randomized
subtensor sketching (RStS) strategy which yield
significant reduction in storage and computational
complexity. Experimental results demonstrate that
the proposed method outperforms existing TR de-
composition methods in the presence of outliers,
and runs significantly faster than existing robust
tensor completion algorithms.

1 INTRODUCTION

The demand for multi-dimensional data processing has led
to increased attention in multi-way data analysis using ten-
sor representations. Tensors generalize matrices in higher
dimensions and can be expressed in a compressed form
using a sequence of operations on simpler tensors through
tensor decomposition [Kolda and Bader, 2009, Sidiropoulos
et al., 2017]. Tensor decomposition, an extension of ma-
trix factorization [Koren et al., 2009] to higher dimensions,
plays a vital role in tensor analysis, as many real-world
data, such as videos and MRI images, contain latent and

redundant structures [Chen et al., 2013, Li et al., 2017]. Var-
ious tensor decomposition models, such as Tucker [Tucker,
1966], CANDECOMP/PARAFAC (CP) [Carroll and Chang,
1970, Yamaguchi and Hayashi, 2017], tensor train (TT) [Os-
eledets, 2011], and tensor ring (TR) [Zhao et al., 2016],
have been proposed by developing different tensor latent
spaces. The primary focus of this work is the TR decompo-
sition, which can be viewed as a generalization of several
decomposition models, including CP, Tucker, and TT [Zhao
et al., 2016]. The TR decomposition stands out due to its en-
hanced generality and flexibility compared to other models.
It exhibits advantageous features such as high compression
performance for high-order tensors and improved perfor-
mance in completion tasks with high rates of missing data
[Wang et al., 2017, Yu et al., 2020].

Despite its recognized advantages, TR decomposition faces
challenges that limit its usefulness in real-world applica-
tions. One such challenge is scalability, as traditional TR de-
composition methods become computationally and storage-
intensive as tensor size increases. To address this limita-
tion, various algorithms have been developed to improve
efficiency and scalability, including randomized methods
[Malik and Becker, 2021, Yuan et al., 2019, Ahmadi-Asl
et al., 2020].

Another challenge is robustness to missing entries and out-
liers, which requires a robust tensor completion approach.
Existing TR decomposition methods [Zhao et al., 2016, Ma-
lik and Becker, 2021, Yuan et al., 2019, Ahmadi-Asl et al.,
2020] based on second-order error residuals perform poorly
in the presence of outliers. While more robust norms, such
as the ℓ1-norm, are commonly used in machine learning, the
non-smoothness and non-differentiability of the ℓ1-norm at
zero make it difficult to realize scalable versions of existing
algorithms.

The primary focus of this work is to simultaneously ad-
dress the two foregoing challenges by developing a scalable
and robust TR decomposition algorithm. We first develop a
new full-scale robust TR decomposition method. An infor-
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mation theoretic learning-based similarity measure called
correntropy [Liu et al., 2007] is introduced to the TR decom-
position problem and a new differentiable correntropy-based
cost function is proposed. Utilizing a half-quadratic tech-
nique [Nikolova and Ng, 2005], the non-convex problem is
reformulated as an auto-weighted decomposition problem
that adaptively alleviates the effect of outliers. To solve the
problem, we introduce a scaled steepest descent method
[Tanner and Wei, 2016], that lends itself to further accelera-
tion through a scalable scheme. By exploiting the structure
of the TR model, we develop two acceleration methods for
the proposed robust approach, namely, fast Gram matrix
computation (FGMC) and randomized subtensor sketching
(RStS). Utilizing FGMC reduces the complexity of Gram
matrix computation from exponential to linear complexity
in the order of the tensor. With RStS, only a small sketch
of data is used per iteration, which makes the algorithm
scalable to large tensor data. The main contributions of the
paper are summarized as follows:

1) We develop a new scalable and robust TR decomposition
method. Using correntropy error measure and leveraging an
HQ technique, an efficient auto-weighted robust TR decom-
position (AWRTRD) algorithm is proposed.

2) By developing a novel fast Gram matrix computation
(FGMC) method and a randomized subtensor sketching
(RStS) strategy, we develop a more scalable version of
AWRTRD, which significantly reduces both the compu-
tational time and storage requirements.

3) We conduct experiments on image and video data, veri-
fying the robustness of our proposed algorithms compared
with existing TR decomposition algorithms. Moreover, we
perform experiments on completion tasks that demonstrate
that our proposed algorithm can handle large-scale tensor
completion with significantly less time and memory cost
than existing robust tensor completion algorithms.

2 RELATED WORK

Scalable TR decomposition: Scalable TR decomposition
methods are necessary for solving large-scale decomposi-
tion problems. In Malik and Becker [2021], a sampling-
based TR alternating least-squares (TRALS-S) method was
proposed using leverage scores to accelerate the ALS pro-
cedure in TRALS [Zhao et al., 2016]. In Yuan et al. [2019],
a randomized projection-based TRALS (rTRALS) method
was proposed, which uses random projection on every mode
of the tensor. In Ahmadi-Asl et al. [2020], a series of fast
TR decomposition algorithms based on randomized singular
value decomposition (SVD) were developed. Although these
methods have demonstrated desired performance in large-
scale TR decomposition, they are unable to handle cases
where some entries are missing or perturbed by outliers.

Robust tensor completion: To mitigate the impact of out-

liers, various robust tensor completion algorithms have been
developed under different tensor decomposition models
[Jiang and Ng, 2019, Huang et al., 2020, Goldfarb and Qin,
2014, Yang et al., 2015]. For the TR decomposition model,
Huang et al. [2020] proposed a robust ℓ1-regularized tensor
ring nuclear norm (ℓ1-TRNN) completion algorithm, where
the Frobenius norm of the error measure in TRNN [Yu et al.,
2019] is replaced with the robust ℓ1-norm. In Li and So
[2021], the author developed an ℓp,ϵ-regularized tensor ring
completion (ℓp,ϵ-TRC) algorithm. Another robust approach
employs the capped Frobenius norm (CFN) [Li et al., 2023].
However, obtaining scalable versions of these robust tensor
completion algorithms can be challenging due to the use of
non-differentiable ℓ1 or ℓp,ϵ norms, CFN, or optimization
of the nuclear norm on unfolding matrices of the tensor [Li
et al., 2023].

3 PRELIMINARIES

Notation. Uppercase script letters are used to denote ten-
sors (e.g., X ), and boldface letters to denote matrices (e.g.,
X). An N -order tensor is defined as X ∈ RI1×···×IN ,
where Ii, i ∈ [N ] := {1, . . . , N}, is the dimension
of the i-th way of the tensor, and Xi1...iN denotes the
(i1, i2, . . . , iN )-th entry of tensor X . For a 3-rd order ten-
sor (i.e., N = 3), the notation X (:, :, i),X (:, i, :),X (i, :, :)
denotes the frontal, lateral, and horizontal slices of X , re-
spectively. The Frobenius norm of tensor X is defined as
∥X∥F =

√∑
i1...iN

|Xi1...iN |2. Tr(·) is the matrix trace
operator. Next, we provide a brief overview of the definition
of TR decomposition and some results that will be utilized
in this paper.

Definition 1 (TR Decomposition [Zhao et al., 2016]).
Given TR rank [r1, . . . , rN ], in TR decomposition, a high-
order tensor X ∈ RI1×···×IN is represented as a se-
quence of circularly contracted 3-order core tensors Zk ∈
Rrk×Ik×rk+1 , k = 1, . . . , N , with rN+1 = r1. Specifically,
the element-wise relation of tensor X and its TR core tensors
{Zk}Nk=1 is defined as

Xi1...iN = Tr

(
N∏

k=1

Zk (ik)

)
,

where Zk (ik) := Zk(:, ik, :) denotes the ik-th lateral slice
matrix of the latent tensor Zk, which is of size rk × rk+1.

Definition 2 (Tensor core merging [Zhao et al., 2016]). Let
X = ℜ (Z1,Z2, . . . ,ZN ) be a TR representation of an N -
order tensor, where Zk ∈ Rrk×Ik×rk+1 , k = 1, . . . , N , is a
sequence of cores. Since the adjacent cores Zk and Zk+1

have an equivalent mode size rk+1, they can be merged into
a single core by multilinear products, which is defined by
Z(k,k+1) ∈ Rrk×IkIk+1×rk+2 whose lateral slice matrices
are given by

Z(k,k+1)
(
ikik+1

)
= Zk (ik)Zk+1 (ik+1)



where i1i2 . . . iN = i1 + (i2 − 1) I1 + · · · +
(iN − 1) I1I2 . . . IN−1.

Theorem 1 ([Zhao et al., 2016]). Given a TR decomposi-
tion of tensor X = ℜ (Z1, . . . ,ZN ), its mode-k unfolding
matrix X[k] can be written as

X[k] = Zk(2)(Z
̸=k
[2] )

T ,

where Z ̸=k ∈ Rrk+1×
∏N

1,j ̸=k Ij×rk is a subchain obtained
by merging all cores except Zk, whose lateral slice matrices
are defined by

Z ̸=k
(
ik+1· · ·iN i1· · ·ik−1

)
=

N∏
j=k+1

Zj(ij)

k−1∏
j=1

Zj(ij) .

The mode-n unfolding of X is the matrix X[n] ∈
RIn×

∏
j ̸=n Ij defined element-wise via

X[n]

(
in, in+1 · · · iN i1 · · · in−1

) def
= X (i1, . . . , iN ) ,

and X(n) is the classical mode-n unfolding of X , that is,
the matrix X(n) ∈ RIn×

∏
j ̸=n Ij defined element-wise via

X(n)

(
in, i1 · · · in−1in+1 · · · iN

) def
= X (i1, . . . , iN ) .

4 PROPOSED APPROACH

4.1 CORRENTROPY-BASED TR
DECOMPOSITION

As shown in Definition 1, TR decomposition amounts to
finding a set of core tensors {Zk}Nk=1 that can approximate
X given the values of the TR-rank [r1, . . . , rN ]. In practice,
the optimization problem can be formulated as

min
Z1,...,ZN

∥X − ℜ(Z1, . . . ,ZN )∥2F . (1)

A common method for solving (1) is the tensor ring-based
alternating least-squares (TRALS) [Zhao et al., 2016]. When
X is partially observed (i.e., there are missing entries in X ),
the objective function is extended as

min
Z1,...,ZN

∥P ◦ (X − ℜ(Z1, . . . ,ZN ))∥2F (2)

where P ∈ {0, 1}I1×···×IN is a binary mask tensor that
indicates the locations of the observed entries of X (entries
corresponding to the observed entries in X are set to 1, and
the others are set to 0).

In addition to missing entries, real-world data is often cor-
rupted with outliers, which can result in unreliable ob-
servations. This has motivated further research on robust

tensor decomposition and completion methods. The pre-
dominant measure of error in robust tensor decomposi-
tion/completion is the ℓ1-norm of the error residual [Gu
et al., 2014, Huang et al., 2020, Wang et al., 2020]. How-
ever, the non-smoothness and non-differentiability of the
ℓ1-norm at zero presents a challenge in extending this for-
mulation to scalable methods for large-scale data.

To enhance robustness and scalability, we formulate a new
robust TR decomposition optimization problem using the
correntropy measure. Correntropy [Liu et al., 2007] is a
local and nonlinear similarity measure defined by the kernel
width σ. Given two N -dimensional discrete vectors x and
y, the correntropy V (x,y) is defined as

V (x,y) =
1

N

N∑
i=1

κσ(xi − yi) , (3)

where κσ is a kernel function with kernel width σ. It has
been demonstrated that with a proper choice of the kernel
function and kernel width, correntropy-based error measure
is less sensitive to outliers compared to the ℓ2-norm [Liu
et al., 2007, Wang et al., 2016].

In this work, we introduce the correntropy measure in TR
decomposition. Specifically, we replace the second-order er-
ror in (2) with correntropy at the element-wise level and use
the Gaussian kernel as the kernel function. This leads to the
following new optimization problem based on correntropy:

max
Z1,...,ZN

Gσ(P ◦ (X − ℜ(Z1, . . . ,ZN ))) (4)

where Gσ(X ) =
∑

i1...iN
gσ(Xi1...iN ) and gσ(x) =

σ2 exp(− x2

2σ2 ). Note that the objective function is maxi-
mized since the correntropy becomes large when the error
residual is small. Next, we develop a new algorithm to solve
the problem in (4) efficiently, while also leaving room for
further modifications to enhance its scalability.

4.2 AUTO-WEIGHTED SCALED STEEPEST
DESCENT METHOD

To efficiently solve (4), we leverage a half-quadratic (HQ)
technique which has been applied to non-quadratic optimiza-
tion in previous works [He et al., 2011, 2014]. In particular,
according to Proposition 1 in He et al. [2011], there exists a
convex conjugated function φ of gσ(x) such that

max
x

gσ(x) = min
x,w

wx2 + φ(w) , (5)

where the optimal solution of w in the right hand side (RHS)
of (5) is given by w∗ =

g′
σ(x)
x . Thus, maximizing gσ(x)

in terms of x is equivalent to minimizing an augmented
cost function in an enlarged parameter space {x,w}. By
substituting (5) in (4), the complex optimization problem



can be solved as follows

min
Z1,...,ZN ,W

1

2
∥
√
W◦P◦(X −ℜ(Z1, . . . ,ZN ))∥2F +Ψ(W),

(6)
where Ψ(W) =

∑
i1...iN

φ (Wi1...iN ). Problem (6) can be
regarded as an auto-weighted TR decomposition. Specif-
ically, the weighting tensor W automatically assigns dif-
ferent weights to each entry based on the error residual.
According to the property of the Gaussian function, given
a proper kernel width σ, a large error residual caused by
an outlier may result in a small weight, thereby alleviating
the impact of outliers. Further, when σ → ∞, g′

σ(x)
x ap-

proaches 1, thus all the entries of W become 1. In this case,
the optimization problem in (6) reduces to the traditional
TR decomposition problem in (2).

Next, we propose a new scaled steepest descent method to
solve (6). The solution process is summarized next.

1) Updating W: according to (5), each element Wi1...iN

corresponding to its observed entry can be obtained as

Wi1...iN =
g′σ(Ei1...iN )

Ei1...iN
,

for (i1 . . . iN ) ∈ {(i1 . . . iN )|Pi1...iN =1}
(7)

where E = X − ℜ(Z1, . . . ,ZN ). It should be noted that
updating Wi1...iN for unobserved entries does not affect the
results due to multiplication with P in (6). Therefore, in the
following part we update all entries of W .

2) Updating {Zk}Nk=1: According to Theorem 1 and (6), for
Zk with any k ∈ [1, N ], by fixing W and {Zj}Nj=1,j ̸=k, Zk

can be obtained using the following minimization problem

min
Zk(2)

∥∥∥√W[k] ◦P[k] ◦ (X[k]−Zk(2)(Z
̸=k
[2] )

T )
∥∥∥2
F

. (8)

It is difficult to obtain a closed-form solution to (8) due to
the existence of P . Instead, we apply the gradient descent
method. To this end, taking the derivative w.r.t. Zk(2), we
obtain the gradient in terms of Zk(2) as

d(Zk(2)) =
(
W[k] ◦P[k] ◦

(
X[k] − Zk(2)(Z

̸=k
[2] )

T
))

Z̸=k
[2] .

(9)
In general, the above gradient descent method can be di-
rectly applied by cyclically updating the core tensors Zk

using d(Zk(2)). However, the convergence rate of the gradi-
ent descent method could be slow in practice. To improve
convergence, we introduce a scaled steepest descent method
[Tanner and Wei, 2016] to solve (8). In particular, the scaled
gradient in terms of Zk(2) is

h(Zk(2)) = d(Zk(2))
(
(Z ̸=k

[2] )
TZ̸=k

[2] + λI
)−1

. (10)

The regularization parameter λ is utilized to avoid singular-
ity and can be set to a sufficiently small value. Finally, Zk

is updated as

Zk = Zk − ηk fold(h(Zk(2))) , (11)

where the operator fold(. ) tensorizes its matrix argument,
and the step-size ηk is set using exact line-search as

ηk =
⟨d(Zk(2)), h(Zk(2))⟩∥∥∥√W[k] ◦P[k] ◦

(
h(Zk(2))(Z

̸=k
[2] )

T
)∥∥∥2

F

, (12)

where ⟨A,B⟩ is the inner product of matrices A and B.

We name the proposed method auto-weighted robust ten-
sor ring decomposition (AWRTRD). Next, we develop two
novel scalable strategies to accelerate the computation of
AWRTRD.

4.3 SCALABLE STRATEGIES FOR AWRTRD

Although AWRTRD enhances robustness and mitigates the
effect of outliers, several challenges limit its applicabil-
ity to large-scale data. In particular, the matrices X[k] and
Z̸=k

[2] are of size Ik ×
∏

j ̸=k Ij and rkrk+1 ×
∏N

1,j ̸=k Ij , re-
spectively. When the tensor size is large, the matrices X[k]

and Z̸=k
[2] become very large, and the calculations in (9)

and (10) can become computational bottlenecks, making
it difficult to use AWRTRD with large-scale data. More
specifically, one needs to compute two large-scale matrix
multiplications: 1) YZ̸=k

[2] in (9) with Y = W[k] ◦ P[k] ◦(
X[k] − Zk(2)(Z

̸=k
[2] )

T
)

; 2) (Z ̸=k
[2] )

TZ̸=k
[2] in (10). To date,

no prior work has specifically addressed the acceleration
of these operations. Therefore, in this section, leveraging
the TR model structure along with randomized subtensor
sketching, we devise two novel strategies to accelerate the
above two computation operations.

4.3.1 Fast Gram matrix computation (FGMC)

In this section, we develop a fast Gram matrix computation
(FGMC) of Z ̸=k,T

[2] Z̸=k
[2] , by exploiting the structure of the

TR model. For simplicity, in the following we use GZ to
denote ZT

[2]Z[2]. According to tensor core merging of two
core tensors Zk and Zk+1 in Definition 2, we establish the
following result. The proof is provided as supplementary
material.

Proposition 1. Let Zk ∈ Rrk×Ik×rk+1 , k = 1, . . . , N , be
3-rd order tensors. Defining Z≤c ∈ Rr1×

∏c
k=1 Ik×rc+1 as a

subchain obtained by merging c cores {Zk}ck=1, i.e.,

Z≤c
(
i1 · · · ic

)
=

c∏
k=1

Zk (ik) ,



the Gram matrix of Z≤c
[2] can be computed as

GZ≤c = Z≤c,T
[2] Z≤c

[2] = Φ

(
c∏

k=1

Qk

)
, (13)

where Qk(:, i× rk+1+ j) = vec
(
(Zk(:, :, i))Zk(:, :, j)

T
)

for k > 1, where vec(.) is the vectorization operator, and

Q1(:, i×r2+j)=

{
vec
(
(Z1(:, :, i))Z1(:, :, j)

T
)
, c is even

vec
(
(Z1(:, :, j))Z1(:, :, i)

T
)
, c is odd

For a matrix X ∈ Rm2×n2

, Φ(X) is ob-
tained by first dividing X into m × n blocks
{Xij}m,n

i,j=1 ∈ Rm×n and then reshaping it as

Φ(X) =
[
vec{XT

11} vec{XT
21} . . . vec{XT

mn}
]T

.

Proposition 1 allows us to compute GZ ̸=k without explicitly
calculating Z ̸=k

[2] . Further, Qk is only related to Zk, hence
can be updated independently. FGMC yields considerable
computation and storage gains; for the simple case where
r1= · · ·=rN =r and I1= · · ·=IN =I , traditional compu-
tation of GZ ̸=k requires O(INr4 + r6) in time complexity
and O(INr2) in storage complexity, while the proposed
FGMC method requires only O(NIr4 + r6) in time com-
plexity and O(Ir4) in storage complexity, which is linear
in the tensor order N .

4.3.2 Randomized subtensor sketching (RStS)

Unlike GZ ̸=k whose complexity can be reduced by taking
advantage of the TR model, directly accelerating the compu-
tation of (9) is challenging. In Malik and Becker [2021], a
leverage score sampling-based strategy is applied to TRALS.
In each ALS iteration, the leverage score is computed for
each row of Z̸=k

[2] . Then, the rows are sampled with probabil-
ity proportional to the leverage scores. The computation of
X[k]Z

̸=k
[2] is reduced to (X[k])I(Z

̸=k
[2] )I , where I is the index

set of the sampled rows. Although this method reduces the
data used per iteration compared to the traditional TRALS
algorithm, the computation of the leverage scores is costly
as it requires computing an SVD per iteration.

Inspired by the random sampling method [Vervliet and
De Lathauwer, 2015] for CP decomposition, we intro-
duce a randomized subtensor sketching strategy for TR
decomposition. Specifically, given an N th-order tensor
X ∈ RI1×I2×···×IN , defining I as the sample index set,
and Ik as the sample index set of the k-th tensor dimen-
sion, we sample the tensor along each dimension according
to Ik, k = 1, . . . , N , and obtain the sampled subtensor
XI ∈ Rs1×...×sN , where sk = |Ik| is the sample size for
the k-th order. It is not hard to conclude that

XI = ℜ ((Z1)I1
, (Z2)I2

, . . . , (ZN )IN
) , (14)

where (Zk)Ik
∈ Rrk×sk×rk+1 is a sampled core subten-

sor of Zk obtained by sampling lateral slices of Zk with
index set Ik. Compared with directly sampling rows from
Z̸=k

[2] , the proposed method restricts the sampling on a ten-
sor sketch XI and intentionally requires enough sampling
along all dimensions, and also requires fewer core tensors
to construct XI for the same sample size. The superior per-
formance of the proposed sampling method is verified in
the experimental results.

4.4 SCALABLE AWRTRD USING FGMC AND
RSTS

Given the FGMC and RStS methods described above, we
can readily describe our scalable version of the proposed
AWRTRD algorithm. In particular, at each iteration, core
tensors are cyclically updated from Z1 to ZN . Specifically,
by leveraging RStS, the gradient d(Zk(2)) can be approxi-
mated by the gradient using a subtensor XI sampled from
the original tensor X . For k ∈ [1, N ], given a sample param-
eter J , we set sk = Ik and sj = ⌈J

1
N−1 /

∏
i̸=k,j Ii⌉ for

j ∈ [1, . . . , k − 1, k + 1, . . . , N ]. Then, for k = 1, . . . , N ,
we randomly and uniformly select sk lateral slices of Zk

to get the sampled core subtensors {(Zk)Ik
}Nk=1 and corre-

sponding sampled subtensor XI .

The optimization is similar to AWRTRD. First, we compute
the corresponding sampled entries of the weight tensor W
using (7), and get a new sampled weight tensor WI . Then,
the gradient is computed as

dI(Zk(2)) =
(
WI[k] ◦PI[k] ◦

(
XI[k]

−Zk(2)(Z
̸=k
I[2])

T
))

Z ̸=k
I[2]

(15)

where Z ̸=k
I ∈ Rrk+1×

∏N
1,j ̸=k sj×rk is a subchain obtained

by merging all sampled cores except (Zk)Ik
. Subsequently,

the scaled gradient is computed by

hI(Zk(2)) = dI(Zk(2))
(
(Z ̸=k

[2] )
TZ ̸=k

[2] + λI
)−1

. (16)

Note that the term GZ ̸=k = Z̸=k,T
[2] Z ̸=k

[2] is still computed
using the full core tensors, such that the global information
can be preserved. As described in Proposition 2, GZ ̸=k can
be efficiently computed using FGMC. Finally, Zk is updated
as

Zk = Zk − ηk fold(hI(Zk(2))) , (17)

with the step-size set using exact line-search as

ηk =
⟨dI(Zk(2)), hI(Zk(2))⟩∥∥∥√WI[k] ◦PI[k] ◦

(
hI(Zk(2))(Z

̸=k
I[2])

T
)∥∥∥2

F

.

(18)

We term the above algorithm Scalable AWRTRD
(SAWRTRD), and its pseudocode is presented in Algorithm



1. It is worth noting that our proposed method is also ap-
plicable to CP/Tucker/TT-based decomposition problems
since these decomposition models can be seen as special
cases of TR decomposition Zhao et al. [2016].

Algorithm 1 Scalable AWRTRD (SAWRTRD)

Input: Tensor X ∈ RI1×I2×···×IN , TR ranks {rk}Nk=1,
sample parameter J , kernel width σ, maximum iteration
number C, error tolerance ϵ.

1: Initialize Zk ∈ Rrk×Ik×rk+1 and corresponding
Qk, k = 1, . . . , N , t = 0. Set W as the all-one ten-
sor.

2: repeat
3: for k = 1, . . . , N do
4: Randomly generate index set Ii ⊆ {1, ..., Ik} for

i ̸= k with size si = ⌈J
1

N−1 /
∏

j ̸=i,k Ij⌉, set
Ik = {1, . . . , Ik}.

5: Obtain subtensor XI , WI and {(Zk)Ik
}Ni=1.

6: Update corresponding entries of WI using (7).
7: Compute dI(Zk(2)) using (15).
8: Obtain GZ ̸=k with {Qi}Ni=1,i̸=k using (13).
9: Update Zk using (17).

10: Update Qk according to Zk.
11: end for
12: Compute matrixDt=ZN(2)GZ ̸=NZT

N(2)

13: Compute relative error e = ∥Dt−Dt−1∥F /∥Dt∥F
14: t = t+ 1
15: until t = C or e < ϵ.
Output: TR cores Zk, k = 1, . . . , N .

5 COMPUTATIONAL COMPLEXITY

For simplicity, we assume the TR rank r1 = · · ·= rN = r,
and the data size I1= · · ·=IN =I . For AWRTRD, the com-
putations of d(Zk(2)) and GZ ̸=k have complexity O(INr2)
and O(INr4 + r6), respectively. Therefore, the complex-
ity of AWRTRD is O(NINr4 + Nr6). For SAWRTRD
with sample parameter J , the computation of d̂(Zk(2)) has
complexity O(NIJr2). Hence, combining the FMGC ana-
lyzed in the previous section, the complexity of SAWRTRD
is O(NIJr2 +N2Ir4 +Nr6). The time complexities of
different TR decomposition algorithms are shown in Table
1. We assume the projection dimensions of rTRALS are
all K. As shown, the complexity of SAWRTRD is smaller
than AWRTRD. Further, TRALS-S performs SVD on un-
folding matrices Zk(2), k = 1, . . . , N at each iteration, thus
becomes less efficient as I increases.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results to demon-
strate the performance of the proposed methods. The eval-
uation includes two tasks: robust TR decomposition (no

Table 1: Time complexity of TR decomposition algorithms

Algorithms time complexity

TRSVD O(IN+1 + INr3)
TRALS O(NINr4 +Nr6)

TRSVD-R O(INr2)
rTRALS O(NKNr4 +Nr6)

TRALS-S O(NIJr4 +Nr6)
AWRTRD O(NINr4 +Nr6)

SAWRTRD O(NIJr2 +N2Ir4 +Nr6)
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Figure 1: Average PSNR and running times versus sampling
parameter J using different strategies.

missing entries) and robust tensor completion. For TR de-
composition, we compare the performance to the traditional
TR decomposition methods TRALS and TRSVD [Zhao
et al., 2016], and three scalable TR decomposition methods
rTRALS [Yuan et al., 2019], TRALS-S1 [Malik and Becker,
2021] and TRSVD-R [Ahmadi-Asl et al., 2020]. For robust
tensor completion, we compare the performance with ℓ1-
regularized sum of nuclear norm (ℓ1-SNN)2 [Goldfarb and
Qin, 2014], ℓ1-regularized tensor nuclear norm (ℓ1-TNN)
[Jiang and Ng, 2019], ℓ1 regularized tensor ring nuclear
norm (ℓ1-TRNN)3 [Huang et al., 2020], ℓp,ϵ-regularized
tensor ring completion (ℓp,ϵ-TRC) [Li and So, 2021] and
transformed nuclear norm-based total variation (TNTV)4

[Qiu et al., 2021].

Both the decomposition and completion performance are
evaluated using the Peak Signal-to-Noise Ratio (PSNR) be-
tween the original data and the recovered data. For each
experiment, the PSNR value is averaged over 20 Monte
Carlo runs with different noise realizations and missing lo-
cations. For the kernel width σ in the proposed methods, we
apply the adaptive kernel width selection strategy described
in He et al. [2019]. The maximum number of iterations for
all algorithms is set to 30. The error tolerance ϵ of all algo-
rithms is set to 10−3. All other parameters of the algorithms

1https://github.com/OsmanMalik/TRALS-sampled
2https://tonyzqin.wordpress.com/research
3https://github.com/HuyanHuang/Robust-Low-rank-Tensor-

Ring-Completion
4https://github.com/xjzhang008/TNTV



that we compare to are set to achieve their best performance
in our experiments. All experiments were performed using
MATLAB R2021a on a desktop PC with a 2.5-GHz pro-
cessor and 32GB of RAM. Due to space constraints, we
only report results with a designated rank per experiment.
However, we note that the observed outcomes remain con-
sistent across various choices of TR ranks when comparing
the algorithms.

6.1 ABLATION EXPERIMENTS

In this part, we carry out ablation experiments to verify the
feasibility and advantage of the proposed strategies and also
analyze the performance under different sampling sizes. The
experiment is carried out using a color video ‘flamingo’ with
resolution 1920× 1080 chosen from DAVIS 2016 dataset5.
The first 50 frames are selected, so the video data can be
represented as a 4-dimensional tensor with size 1920 ×
1080 × 3 × 50. The data values are rescaled to [0, 1], and
30% of the pixels are randomly and uniformly selected as
the observed pixels. Then salt and pepper noise is added to
the observed entries with probability 0.2.

To demonstrate the advantage of the proposed methods, we
develop four additional algorithms using different strategies.
The first algorithm, referred to as ‘gradient descent’, uses the
traditional gradient dI(Zk(2)) in (15) instead of hI(Zk(2))
in (16). The second algorithm, termed ‘local scaled term’,
applies the local scaled term GZ ̸=k

I
from sampled core ten-

sors {(Zk)Ik
}Nk=1 to (16) instead of the global scaled term

G̸=k
Z . For the third algorithm, termed ‘uniform row sam-

pling’, Z̸=k
I[2] is obtained using uniform row sampling [Malik

and Becker, 2021] instead of RStS. In the fourth algorithm,
referred to as ‘leverage score sampling’, the leverage score
row sampling used in TRALS-S is directly applied. It should
also be noted that SAWRTRD without using FMGC is not
included in the comparison, as it will go out of memory.
Fig. 1 depicts the average PSNR and running times for five
algorithms under different sampling sizes. The TR rank for
all methods is set to [80, 80, 3, 20]. As can be seen, the
values of PSNR for all algorithms are relatively stable for
sample parameter J ≥ 4 × 104. Also, the proposed RStS
sampling strategy yields higher PSNR than the row sam-
pling methods as well as lower computational cost. Further,
the global scaled term outperforms the local scaled term,
especially for small sampling size.

6.2 HIGH-RESOLUTION IMAGE/VIDEO TR
DECOMPOSITION WITH NOISE

In this part, we investigate the performance of TR decom-
position in the presence of outliers. We first compare the
decomposition performance on color image data. Specif-

5https://davischallenge.org/davis2016/code.html
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Figure 2: PSNR (left) for each image using different TR
decomposition algorithms. Right: Average running time
(right) of each algorithm on 10 images.

Original image Noisy image TRSVD TRALS TRSVD-R rTRALS TRALS-S AWRTRD SAWRTRD

Figure 3: Recovered (cropped) images by different TR de-
composition algorithms. Top: Image 2. Bottom: Image 7.

ically, 10 images are randomly selected from the DIV2K
dataset6 [Agustsson and Timofte, 2017]. Two representative
images are shown in Fig. 3. The height and width of the
images are about 1350 pixels and 2000, respectively.

The values of the image data are rescaled to [0, 1], then
two types of noise are added to the 10 images. Specifically,
for the first 5 images, the noise is generated from a two-
component Gaussian mixture model (GMM) with proba-
bility density function (pdf) 0.8N(0, 10−3)+ 0.2N(0, 0.5),
where the latter term denotes the occurrence of outliers. For
the last 5 images, 20% of the pixels are perturbed with salt
and pepper noise. The sampling parameter J for SAWRTRD
is set to 3 × 104. The TR rank for all algorithms is set to
[20, 20, 3]. For TRALS-S, the number of sampling rows for
each mode is set to the same as SAWRTRD. The PSNR
and average running time for different TR decomposition
algorithms are shown in Fig. 2. As shown, the PSNR values
of AWRTRD and SAWRTRD are consistently higher than
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Figure 4: Left: PSNR for each video using different TR
decomposition algorithms. Right: Average running time of
each algorithm on 10 videos.

6https://data.vision.ee.ethz.ch/cvl/DIV2K



Original image Noisy image TRSVD TRSVD-R rTRALS TRALS-S SAWRTRD

Figure 5: Recovered 10th (cropped) frames by different TR
decomposition algorithms. Top: Video 2. Bottom: Video 7.
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Figure 6: PSNR (left) for each image using different robust
tensor completion algorithms. Right: Average running time
(right) of each algorithm on 10 images.

the other algorithms. An example of the recovered images
from the obtained core tensors is shown in Fig. 3. As shown,
the images recovered by AWRTRD and SAWRTRD are
visually better than the other algorithms.

Then, we compare the decomposition performance of the
proposed methods on video data. 10 videos with resolution
1920 × 1080 are randomly chosen from the DAVIS 2016
dataset and the first 50 frames are selected to form the ten-
sor data. Representative frames from two videos are shown
in Fig. 5. The values of the data are rescaled to [0, 1], and
the noises are added with the same distributions as in the
previous experiment. Fig. 4 shows the PSNR and average
running time using different robust tensor completion algo-
rithms. Note that TRALS and AWRTRD go out of memory
in the experiment, so their results are not shown. As can be
seen, the proposed SAWRTRD achieves significantly higher
PSNR than the other algorithms for all videos. Fig. 5 illus-
trates the 10th recovered frame of two videos. As shown,
TRSVD-R and rTRALS fail to recover the frames, and the
frames recovered by SAWRTRD have the clearest textures.

Original image Noisy image l1-SNN l1-TNN TNTV l1-TRNN lp, -TRC AWRTRD SAWRTRD

Figure 7: Recovered (cropped) images by different tensor
completion algorithms. Top: Image 2. Bottom: Image 9.
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Figure 8: Left: PSNR for each video using different robust
tensor completion algorithms. Right: Average running time
of each algorithm on 10 videos.

Original image Noisy image l1-TNN SAWRTRD

Figure 9: Recovered (cropped) 10th frames by different ten-
sor completion algorithms. Top: Video 5. Bottom: Video 10.

6.3 IMAGE/VIDEO COMPLETION WITH NOISE

In this part, we compare the tensor completion performance
of different robust tensor completion algorithms. Similar
to the previous experiment, we randomly select 10 color
images from DIV2K dataset, and 10 videos with the first 50
frames from DAVIS 2016 dataset. We add noise from the
same distributions as in the previous experiment. Further,
for each image and video, 30% of the pixels are randomly
and uniformly selected as observed pixels. The sample pa-
rameter J and the TR rank are set to 3 × 104 and [80, 80,
3, 20], respectively. Fig. 6 and Fig. 8 present the PSNR
and running times of different algorithms on images and
videos, respectively. It should be noted that only SAWRTRD
and ℓ1-TNN are capable of handling the video completion
task, while the other algorithms run out of memory. We ob-
serve that the proposed method achieves comparable robust
completion performance to other algorithms in image com-
pletion while incurring a significantly lower computational
cost. In video completion, both SAWRTRD and ℓ1-TNN
demonstrate similar performance, but SAWRTRD exhibits
considerably shorter execution times. Examples of the com-
pleted images and video frames are also given in Fig. 7 and
Fig. 9, respectively. Lastly, it is worth mentioning that un-
like other robust tensor completion methods, our algorithm
can also provide compact TR representations of the images
and videos.

7 CONCLUSION

We proposed a scalable and robust approach to TR decompo-
sition. By introducing correntropy as the error measure, the
proposed method can alleviate the impact of large outliers.



Then, a simple auto-weighted robust TR decomposition al-
gorithm was developed by leveraging an HQ technique and
a scaled steepest descent method. We developed two strate-
gies, FGMC and RStS, that exploit the special structure of
the TR model to scale AWRTRD to large data. FGMC re-
duces the complexity of the underlying Gram matrix compu-
tation from exponential to linear, while RStS further reduces
complexity by enabling the update of core tenors using a
small sketch of the data. Experimental results demonstrate
the superior performance of the proposed approach com-
pared with existing TR decomposition and robust tensor
completion methods.
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