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Abstract

A long-term goal of AI research is to build001
intelligent agents that can communicate with002
humans in natural language, perceive the envi-003
ronment, and perform real-world tasks. Vision-004
and-Language Navigation (VLN) is a funda-005
mental and interdisciplinary research topic to-006
wards this goal, and receives increasing atten-007
tion from the natural language processing, com-008
puter vision, and machine learning communi-009
ties. In this paper, we review contemporary010
studies in the emerging field of VLN, cov-011
ering tasks, evaluation metrics, methods, etc.012
Through structured analysis of current progress013
and challenges, we also highlight the limita-014
tions of current VLN and opportunities for fu-015
ture work. This paper serves as a thorough016
reference for the VLN research community.017

1 Introduction018

Humans communicate with each other using nat-019

ural language to issue tasks and request help. A020

robot that can understand human language and navi-021

gate intelligently would significantly benefit human022

society, both personally and professionally. Such023

a robot can be spoken to in natural language, and024

would autonomously execute tasks such as house-025

hold chores indoors, repetitive delivery work out-026

doors, or work in hazardous conditions following027

human commands (bridge inspection; fire-fighting).028

Scientifically, developing such a robot explores029

how an artificial agent interprets natural language030

from humans, perceives its visual environment, and031

utilizes that information to execute a sequence of032

actions to complete a task successfully.033

Vision-and-Language Navigation (VLN) (An-034

derson et al., 2018b; Chen et al., 2019; Thoma-035

son et al., 2019b) is an emerging research field036

that aims to build such an embodied agent that can037

communicate with humans in natural language and038

navigate in real 3D environments. VLN extends vi-039

sual navigation in both simulated (Zhu et al., 2017;040

Natural Language 
Communication

Obse
rva

tio
n

Acti
on

ObservationAction

Agent Oracle

Environment

Figure 1: Relation between environment, agent, and
oracle (human) in VLN. The agent and oracle discuss
the task in natural language. Both the oracle and agent
observe and interact with the navigable environment to
accomplish a task (although current benchmarks usually
do not involve human interaction).

Mirowski, 2019) and real environments (Mirowski 041

et al., 2018) with natural language communica- 042

tion. As illustrated in Figure 1, VLN is a task 043

that involves the oracle (frequently a human), the 044

robot agent, and the environment. The agent and 045

the oracle communicate in natural language. The 046

agent may ask for guidance and the oracle could 047

respond. The agent navigates and interacts with 048

the environment to complete the task according 049

to the instructions received and the environment 050

observed. Meanwhile, the oracle observes the en- 051

vironment and agent status, and may interact with 052

the environment to help the agent. 053

Since the development and release of Room- 054

to-Room (R2R) (Anderson et al., 2018b), many 055

VLN datasets have been introduced. Regarding 056

the degree of communication, researchers create 057

benchmarks where the agent is required to pas- 058

sively understand one instruction before naviga- 059

tion, to benchmarks where agents converse with 060

the oracle in free-form dialog. Regarding the task 061

objective, the requirements for the agent range from 062

strictly following the route described in the initial 063
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instruction, to actively exploring the environment064

and interacting with objects.065

Many challenges exist in VLN tasks. First, VLN066

faces a complex environment and requires effective067

understanding and alignment of information from068

different modalities. Second, VLN agents require a069

reasoning strategy for the navigation process. Data070

scarcity is also an obstacle. Lastly, the general-071

ization of a model trained in seen environments072

to unseen environments is also essential. We cat-073

egorize the solutions according to the respective074

challenges. (1) Representation learning methods075

help understand information from different modal-076

ities. (2) Action strategy learning aims to make077

reasonable decisions based on gathered informa-078

tion. (3) Data-centric learning methods effectively079

utilize the data and address data challenges such080

as data scarcity. (4) Prior exploration helps the081

model familiarize itself with the test environment,082

improving its ability to generalize.083

We make three primary contributions. (1) We084

systematically categorize current VLN benchmarks085

from communication complexity and task objective086

perspectives, with each category focusing on a dif-087

ferent type of VLN task. (2) We hierarchically088

classify current solutions and the papers within the089

scope. (3) We discuss potential opportunities and090

identify future directions.091

2 Tasks and Datasets092

093

The ability for an agent to interpret natural lan-094

guage instructions (and in some instances, request095

feedback during navigation) is what makes VLN096

unique from visual navigation (Bonin-Font et al.,097

2008). In Table 2, we mainly categorize current098

datasets on two axes, Communication Complexity099

and Task Objective.100

Communication Complexity defines the level101

at which the agent may converse with the oracle,102

and we differentiate three levels: In the first level,103

the agent is only required to understand an Initial104

Instruction before navigation starts. In the second105

level, the agent sends a signal for help whenever it106

is unsure, utilizing the Guidance from the oracle.107

In the third level, the agent with Dialog ability asks108

questions in the form of natural language during the109

navigation and understands further oracle guidance.110

Task Objective defines how the agent attains111

its goal. In the first objective type, Fine-grained112

Navigation, the agent can find the target accord-113

ing to a detailed step-by-step route description. In 114

the second type, Course-grained Navigation, the 115

agent is required to find a distant target goal with a 116

coarse navigation description, requiring the agent 117

to reason a path in an unseen environment. Tasks 118

in the previous two types only require the agent 119

to navigate to complete the mission. In the third 120

type, Navigation and Object Interaction, besides 121

reasoning a path, the agent also needs to interact 122

with objects in the environment to achieve the goal 123

since the object might be hidden or need to change 124

physical states.1 125

2.1 Initial Instruction 126

Currently, in the setting of many benchmarks, the 127

agent is given a natural language instruction for 128

the whole navigation process, such as “Go upstairs 129

and pass the table in the living room. Turn left and 130

go through the door in the middle.” 131

Fine-grained Navigation An agent needs to 132

strictly follow the natural language instruction to 133

reach the target goal. Anderson et al. (2018b) cre- 134

ate R2R dataset and build the Matterport3D simu- 135

lator. An embodied agent in R2R moves through a 136

house in the simulator traversing edges on a navi- 137

gation graph, jumping to adjacent nodes containing 138

panoramic views. R2R is extended to create other 139

VLN benchmarks. Room-for-Room joins paths 140

in R2R to longer trajectories (Jain et al., 2019). 141

Yan et al. (2020) collect XL-R2R to extend R2R 142

with Chinese instructions. RxR (Ku et al., 2020) 143

contains instructions from English, Hindi, Telegu. 144

The dataset has more samples and the instructions 145

in it are time-aligned to the virtual poses of the 146

instruction. The English split of RxR is further 147

extended to build Landmark-RxR (He et al., 2021) 148

by incorporating landmark information. 149

In most current datasets, agents traverse a nav- 150

igation graph at predefined viewpoints. To facil- 151

itate transfer learning to real robots, VLN tasks 152

should provide a continuous action space and a 153

freely navigable environment. To this end, Krantz 154

et al. (2020) reconstruct the navigation graph based 155

R2R trajectories in continuous environments and 156

create VLNCE. Irshad et al. (2021) propose Robo- 157

VLN task where the agent operates in a continuous 158

action space over long-horizon trajectories. 159

Outdoor environments are usually more com- 160

1Navigation and Object Interaction includes both fine-
grained and coarse-grained instructions, which ideally should
be split further. But given that there are only few datasets in
this category, we keep the current categorization in Table 2.
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Comms
Obj

Fine-grained Navigation Coarse-grained Navigation Navigation +
Object Interaction

Initial
Instruction

Room-to-Room (Anderson et al.,
2018b), Room-for-Room (Jain et al.,
2019), Room-Across-Room (Ku
et al., 2020), XL-R2R (Yan et al.,
2020), Landmark-RxR (He et al.,
2021), VLNCE (Krantz et al., 2020),
TOUCHDOWN (Chen et al., 2019),
StreetLearn (Mirowski et al., 2019),
StreetNav (Hermann et al., 2020),
Talk2Nav (Vasudevan et al., 2021),
LANI (Misra et al., 2018)

RoomNav (Wu et al., 2018),
REVERIE (Qi et al., 2020b),

SOON (Zhu et al., 2021a)

ALFRED (Shridhar et al., 2020)

Guidance Just Ask (Chi et al., 2020)
VNLA (Nguyen et al., 2019),
HANNA (Nguyen and Daumé III,
2019)

None

Dialog None
CVDN (Thomason et al., 2019b),
RobotSlang (Banerjee et al.,
2020), Talk the Walk (de Vries
et al., 2018), CEREALBAR (Suhr
et al., 2019)

TEACh (Padmakumar et al.,
2021), Minecraft Collaborative
Building (Narayan-Chen et al.,
2019)

Table 1: Vision-and-Language Navigation datasets organized by Communication Complexity versus Task Objec-
tive. Please refer to Appendix for more details about the datasets and the commonly used underlying simulators.

plex and contain more objects than indoor environ-161

ments. In TOUCHDOWN (Chen et al., 2019), an162

agent follows instructions to navigate a streetview163

rendered simulation of New York City to find a164

hidden object. Most photo-realistic outdoor VLN165

datasets including TOUCHDOWN (Chen et al.,166

2019), StreetLearn (Mirowski et al., 2019; Mehta167

et al., 2020), StreetNav(Hermann et al., 2020), and168

Talk2Nav (Vasudevan et al., 2021) are proposed169

based on Google Street View.170

Research is exploring the use of natural language171

to guide drones. LANI (Misra et al., 2018) is a 3D172

synthetic navigation environment, where an agent173

navigates between landmarks following natural lan-174

guage instructions. Current datasets on drone navi-175

gation usually fall in a synthetic environment such176

as Unity3D (Blukis et al., 2018, 2019).177

Coarse-grained Navigation In real life, detailed178

information about the route may not be available179

since it may be unknown to the human instructor180

(oracle). Usually, instructions are more concise and181

contain merely information of the target goal.182

RoomNav (Wu et al., 2018) requires agent nav-183

igate according to instruction “go to X”, where X184

is a predefined room or object. The instructions185

in REVERIE (Qi et al., 2020b) are annotated by186

humans, and thus more complicated and diverse.187

The agent navigates through the rooms and dif-188

ferentiates the object against multiple competing189

candidates. In SOON (Zhu et al., 2021a), an agent190

receives a long complex coarse-to-fine instruction191

which gradually narrows down the search scope.192

Navigation+Object Interaction For some tasks, 193

the target object might be hidden (e.g., the spoon in 194

a drawer), or need to change status (e.g., a sliced ap- 195

ple is requested but only a whole apple is available). 196

In these scenarios, it is necessary to interact with 197

the objects to accomplish the task (e.g., opening 198

the drawer or cutting the apple). Based on indoor 199

scenes in AI2-THOR (Kolve et al., 2017), Shridhar 200

et al. (2020) propose the ALFRED dataset, where 201

agents provided with both coarse-grained and fine- 202

grained instructions complete household tasks in 203

an interactive visual environment. 204

2.2 Guidance 205

Agents in Guidance VLN tasks may receive further 206

natural language guidance from the oracle during 207

navigation. For example, if the agent is unsure 208

of the next step (e.g., entering the kitchen), it can 209

send a [help] signal, and the oracle would assist by 210

responding “go left”. 211

Fine-grained Navigation The initial fine-grained 212

navigation instruction may still be ambiguous in a 213

complex environment. Guidance from the oracle 214

could clarify possible confusion. Chi et al. (2020) 215

introduce Just Ask—a task where an agent could 216

ask oracle for help during navigation. 217

Coarse-grained Navigation With only a coarse- 218

grained instruction, the agent tends to be more con- 219

fused and spends more time exploring. Further 220

guidance resolves this ambiguity. VNLA (Nguyen 221

et al., 2019) and HANNA (Nguyen and Daumé III, 222

2019) both train an agent to navigate indoors to 223
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find objects. The agent could request help from224

the oracle, which responds by providing a subtask225

which helps the agent make progress. While oracle226

in VNLA uses predefined script to respond, the or-227

acle in HANNA uses a neural network to generate228

natural language responses.229

Navigation+Object Interaction While VLN is230

still in its youth, there are no VLN datasets in sup-231

port of Guidance and Object Interaction.232

2.3 Dialog233

It is human-friendly to use natural language to re-234

quest help (Banerjee et al., 2020; Thomason et al.,235

2019b). For example, when agent is not sure about236

what fruit the human wants, it could ask “What237

fruit do you want, the banana in the refrigerator or238

the apple on the table?”, and the human response239

would provide clear navigation direction.240

Fine-grained Navigation No datasets are in the241

scope of this category. Currently, route-detailed242

instruction with possible guidance could help the243

agent achieve relatively good performance in most244

simulated environments. We expect datasets to be245

developed for this category for complex environ-246

ments especially with rich dynamics where dialog247

is necessary to clear confusions.248

Coarse-grained Navigation CVDN (Thomason249

et al., 2019b) is a dataset of human-human dia-250

logues. Besides interpreting a natural language in-251

struction and deciding on the following action, the252

VLN agent also needs to ask questions in natural253

language for guidance. The oracle, with knowledge254

of the best next steps, needs to understand and cor-255

rectly answer said questions. CEREALBAR (Suhr256

et al., 2019) is a collaborative task between a leader257

and a follower. Both agents move in a virtual game258

environment to collect valid sets of cards.259

Dialog is important in complex outdoor environ-260

ments. de Vries et al. (2018) introduce the Talk261

the Walk dataset, where the guide has knowledge262

from a map and guides the tourist to a destination,263

but does not know the tourist’s location; while the264

tourist navigates a 2D grid via discrete actions.265

Navigation+Object Interaction Minecraft Col-266

laborative Building (Narayan-Chen et al., 2019)267

studies how an agent places blocks into a building268

by communicating with the oracle. TEACh (Pad-269

makumar et al., 2021) is a dataset that studies object270

interaction and navigation with free-form dialog.271

The follower converses with the commander and272

interacts with the environment to complete various273

house tasks such as making coffee. 274

3 Evaluation 275

Goal-oriented Metrics mainly consider the 276

agent’s proximity to the goal. The most intuitive 277

is Success Rate (SR), which measures how fre- 278

quently an agent completes the task within a certain 279

distance of the goal. Goal Progress (Thomason 280

et al., 2019b) measures the reduction in remain- 281

ing distance to the target goal. Path Length (PL) 282

measures the total length of the navigation path. 283

Shortest-Path Distance (SPD) measures the mean 284

distance between the agent’s final location and the 285

goal. Since a longer path length is undesirable 286

(increases duration and wear-and-tear on actual 287

robots), Success weighted by Path Length (SPL) 288

(Anderson et al., 2018a) balances both Success 289

Rate and Path Length. Similarly, Success weighted 290

by Edit Distance (SED) (Chen et al., 2019) com- 291

pares the expert’s actions/trajectory to the agent’s 292

actions/trajectory, also balancing SR and PL. Ora- 293

cle Navigation Error (ONE) takes the shortest dis- 294

tance from any node in the path rather than just the 295

last node, and Oracle Success Rate (OSR) measures 296

whether any node in the path is within a threshold 297

from the target location. 298

Path-fidelity Metrics evaluate to what extent an 299

agent follows the desired path. The fidelity between 300

the instruction and the path is important when eval- 301

uating an agent’s performance. Coverage weighted 302

by LS (CLS) (Jain et al., 2019) is the product of 303

the Path Coverage (PC) and Length Score (LS) 304

with respect to the reference path. It measures 305

how closely an agent’s trajectory follows the ref- 306

erence path. Normalized Dynamic Time Warping 307

(nDTW) (Ilharco et al., 2019) softly penalizes devia- 308

tions from the reference path to calculate the match 309

between two paths. Success weighted by normal- 310

ized Dynamic Time Warping (SDTW) (Ilharco et al., 311

2019) further constrains nDTW to only successful 312

episodes to capture both success and fidelity. 313

4 VLN Methods 314

As shown in Figure 2, we categorize existing meth- 315

ods into Representation Learning, Action Strategy 316

Learning, Data-centric Learning, and Prior Ex- 317

ploration. Representation learning methods help 318

agent understand relations between these modal- 319

ities since VLN involves multiple modalities, in- 320

cluding vision, language, and action. Moreover, 321

VLN is a complex reasoning task where mission re- 322
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Figure 2: Categories of VLN methods. Methods may
not be mutually exclusive to an individual category.

sults depend on the accumulating steps, and better323

action strategies help the decision-making process.324

Additionally, VLN tasks face challenges within325

their training data. One severe problem is scarcity.326

Collecting training data for VLN is expensive and327

time-consuming, and the existing VLN datasets are328

relatively small with respect to the complexity of329

VLN tasks. Therefore, data-centric methods help330

to utilize the existing data and create more train-331

ing data. Prior exploration helps adapt agents to332

previously unseen environments, improving their333

ability to generalize, decreasing the performance334

gap between seen versus unseen environments.335

4.1 Representation Learning336

Representation learning helps the agent understand337

how the words in the instruction relate to the per-338

ceived features in the environment.339

4.1.1 Pretraining340

Vision or Language Using a pretrained model to341

initialize a vision or text encoder provides agents342

with single-modality knowledge. pretrained vi-343

sion models may use a ResNet (He et al., 2016)344

or Vision Transformers (Dosovitskiy et al., 2020).345

Other navigation tasks (Wijmans et al., 2019b)346

may also provide visual initialization (Krantz et al.,347

2020). Large pretrained language models such as348

BERT (Devlin et al., 2019) and GPT (Radford et al.,349

2019) can encode language and improve instruction350

understanding (Li et al., 2019), which can be fur- 351

ther pretrained with VLN instructions (Pashevich 352

et al., 2021) before fine-tuning in VLN task. 353

Vision and Language Vision-and-language pre- 354

trained models provide good joint representation 355

for text and vision. A common practice is to ini- 356

tialize the VLN agent with a pretrained model such 357

as ViLBERT (Lu et al., 2019). The agent may be 358

further trained with VLN-specific features such as 359

objects and rooms (Qi et al., 2021). 360

VLN Downstream tasks benefit from being closely 361

related to the pretraining task. Researchers also 362

explored pretraining on the VLN domain directly. 363

VLN-BERT (Majumdar et al., 2020) pretrains nav- 364

igation models to measure the compatibility be- 365

tween paths and instructions. PREVALENT (Hao 366

et al., 2020) is trained from scratch on image-text- 367

action triplets to learn textual representations in 368

VLN tasks. The [CLS] token in BERT-based pre- 369

training models could be leveraged in a recurrent 370

fashion to represent history state (Hong et al., 2021; 371

Moudgil et al., 2021). Airbert (Guhur et al., 2021) 372

achieve good performance on few-shot setting after 373

pretraining on a large-scale in-domain dataset. 374

4.1.2 Semantic Understanding 375

Semantic understanding of VLN tasks incorporates 376

knowledge about important features in VLN. In 377

addition to the raw features, high-level semantic 378

representations also improve performance. 379

Intra-Modality Visual or textual modalities can 380

be decomposed into many features, which matter 381

differently in VLN. The overall visual features ex- 382

tracted by a neural model may actually hurt the per- 383

formance in some cases (Thomason et al., 2019a; 384

Hu et al., 2019; Zhang et al., 2020b). Therefore, it 385

is important to find the feature(s) that best improve 386

performance. High-level features such as visual 387

appearance, route structure, and detected objects 388

outperform the low level visual features extracted 389

by CNN (Hu et al., 2019). Different types of tokens 390

within the instruction also function differently (Zhu 391

et al., 2021b). Extracting these tokens and encod- 392

ing the object tokens and directions tokens are cru- 393

cial (Qi et al., 2020a; Zhu et al., 2021b). 394

Inter-Modality Semantic connections between 395

different modalities: actions, scenes, observed ob- 396

jects, direction clues, and objects mentioned in in- 397

structions can be extracted and then softly aligned 398

with attention mechanism (Qi et al., 2020a; Gao 399

et al., 2021). The soft alignment also highlights rel- 400

evant parts of the instruction with respect to the cur- 401
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rent step (Landi et al., 2019; Zhang et al., 2020a).402

4.1.3 Graph Representation403

Graph has been widely applied to model relation-404

ships. Building graph to incorporate structured405

information from instruction and observation pro-406

vides explicit semantic relation to guide the navi-407

gation. The graph neural network may encode the408

relation between text and vision to better interpret409

the context information (Hong et al., 2020a). The410

graph could record the location information during411

the navigation, which can used to predict the most412

likely trajectory (Anderson et al., 2019a) or prob-413

ability distribution over action space (Deng et al.,414

2020). When connected with prior exploration,415

an overview graph about the navigable environ-416

ment (Chen et al., 2021a) can be built to improve417

navigation interpretation.418

4.1.4 Memory-augmented Model419

Information accumulates as the agent navigates,420

which is not efficient to utilize directly. Memory421

structure helps the agent effectively leverage the422

navigation history. Some solutions leverage mem-423

ory modules such as LSTMs or recurrently utilize424

informative states (Hong et al., 2021), which can be425

relatively easily implemented, but may struggle to426

remember features at the beginning of the path as427

path length increases. Another solution is to build a428

separate memory model to store the relevant infor-429

mation (Zhu et al., 2020c; Lin et al., 2021; Nguyen430

and Daumé III, 2019). Notably, by hierarchically431

encoding a single view, a panorama, and then all432

panoramas in history, HAMT (Chen et al., 2021b)433

successfully utilized the full navigation history for434

decision-making.435

4.1.5 Auxiliary Tasks436

Auxiliary tasks help the agent better understand437

the environment and its own status without extra438

labels. From the machine learning perspective, an439

auxiliary task is usually achieved in the form of an440

additional loss function. The auxiliary task could,441

for example, explain its previous actions, or pre-442

dict information about future decisions (Zhu et al.,443

2020a). Auxiliary tasks could also involve the cur-444

rent mission such as current task accomplishment,445

and vision instruction alignment (Ma et al., 2019a;446

Zhu et al., 2020a). Notably, auxiliary tasks are ef-447

fective when adapting pretrained representations448

into the VLN domain (Huang et al., 2019).449

4.2 Action Strategy Learning 450

With a variety of possible action sequences, action 451

strategy learning provides a variety of methods to 452

help the agent decide on those best actions. 453

4.2.1 Reinforcement Learning 454

VLN is a sequential decision-making problem and 455

can naturally be modeled as a Markov decision 456

process. So Reinforcement Learning (RL) meth- 457

ods are proposed to learn better policy for VLN 458

tasks. A critical challenge for RL methods is that 459

VLN agents only receive the success signal at the 460

end of the episode, so it is difficult to know which 461

actions to attribute success to, and which to pe- 462

nalize. To address the ill-posed feedback issue, 463

Wang et al. (2019) propose RCM model to enforces 464

cross-modal grounding both locally and globally, 465

with goal-oriented extrinsic reward and instruction- 466

fidelity intrinsic reward. He et al. (2021) propose to 467

utilize the local alignment between the instruction 468

and critical landmarks as the reward. Evaluation 469

metrics such as CLS (Jain et al., 2019) or nDTW (Il- 470

harco et al., 2019) can also provide informative 471

reward signal (Landi et al., 2020). 472

To model rich dynamics in the environment, 473

Wang et al. (2018) leverage model-based reinforce- 474

ment learning to predict the next state and improve 475

the generalization in unseen environment. Zhang 476

et al. (2020a) find recursively alternating the learn- 477

ing schemes of imitation and reinforcement learn- 478

ing improve the performance. 479

4.2.2 Exploration during Navigation 480

Exploring and gathering environmental informa- 481

tion while navigating provides a better understand- 482

ing of the state space. Student-forcing is a fre- 483

quently used strategy, where the agent keeps nav- 484

igating based on sampled actions and is super- 485

vised by the shortest-path action (Anderson et al., 486

2018b). 487

There is a tradeoff between exploration versus 488

exploitation: with more exploration, the agent sees 489

better performance at the cost of a longer path and 490

longer duration, so the model needs to determine 491

when and how deep to explore (Wang et al., 2020a). 492

After having gathered the local information, the 493

agent needs to decide which step to choose, or 494

whether to backtrack (Ke et al., 2019). Notably, 495

Koh et al. (2021) designed Pathdreamer, a visual 496

world model to synthesize visual observation future 497

viewpoints without actually looking ahead. 498
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4.2.3 Navigation Planning499

Planing future navigation steps leads to a better500

action strategy. From the visual side, predicting501

the waypoints (Krantz et al., 2021), next state and502

reward (Wang et al., 2018), generate future obser-503

vation (Koh et al., 2021) or incorporating neigh-504

bor views (An et al., 2021) has proven effective.505

The natural language instruction also contains land-506

marks and direction clues to plan detailed steps.507

Anderson et al. (2019b) predict the forthcoming508

events based on the instruction, which is used to509

predict actions with a semantic spatial map.510

4.2.4 Asking for Help511

An intelligent agent asks for help when uncertain512

about the next action. Action probabilities or a513

separately trained model (Chi et al., 2020; Zhu514

et al., 2021c; Nguyen et al., 2021) can be leveraged515

to decide whether to ask for help. Using natu-516

ral language to converse with the oracle covers a517

wider problem scope than sending a signal. Both518

rule-based methods (Padmakumar et al., 2021) and519

neural-based methods (Roman et al., 2020; Nguyen520

et al., 2021) have been developed to build naviga-521

tion agents with dialog ability. Meanwhile, for522

tasks (Thomason et al., 2019b; Padmakumar et al.,523

2021) that do not provide an oracle agent to answer524

question in natural language, researchers also needs525

to build a rule-based (Padmakumar et al., 2021) or526

neural-based (Roman et al., 2020) oracle.527

4.3 Data-centric Learning528

Compared with previously discussed works that529

focus on building a better VLN agent structure,530

data-centric methods most effectively utilize the531

existing data, or create synthetic data.532

4.3.1 Data Augmentation533

Trajectory-Instruction Augmentation Aug-534

mented path-instruction pairs could be used in VLN535

directly. Currently the common practice is to train536

a speaker module to generate instructions given a537

navigation path (Fried et al., 2018). This generated538

data could have varying quality (Zhao et al., 2021).539

Therefore an alignment scorer (Huang et al., 2019)540

or adversarial discriminator (Fu et al., 2020) can541

select high-quality pairs for augmentation.542

Environment Augmentation Generating more en-543

vironment data not only helps generate more trajec-544

tories, but also alleviates the problem of overfitting545

in seen environments. Randomly masking the same546

visual feature across different viewpoints (Tan et al.,547

2019) or simply splitting the house scenes and re- 548

mixing them (Liu et al., 2021) could create new 549

environments, which could further be used to gen- 550

erate more trajectory-instruction pairs (Fried et al., 551

2018). Training data may also be augmented by 552

replacing some visual features with counterfactual 553

ones (Parvaneh et al., 2020). 554

4.3.2 Curriculum Learning 555

Curriculum learning (Bengio et al., 2009) gradually 556

increases the task’s difficulty during the training 557

process. The instruction length could be a metric 558

for task difficulty. BabyWalk (Zhu et al., 2020b) 559

keep increasing training samples’ instruction length 560

during the training process. Attributes from the 561

trajectory may also be used to rank task difficulty. 562

Zhang et al. (2021) rearrange the R2R dataset using 563

the number of rooms each path traverses. They 564

found curriculum learning helps smooth the loss 565

landscape and find a better local optima. 566

4.3.3 Multitask Learning 567

Different VLN tasks can learn from each other by 568

cross-task knowledge transfer. Wang et al. (2020c) 569

propose an environment-agnostic multitask naviga- 570

tion model for both VLN and Navigation from Di- 571

alog History tasks (Thomason et al., 2019b). Chap- 572

lot et al. (2020) propose an attention module to train 573

a multitask navigation agent to follow instructions 574

and answer questions (Wijmans et al., 2019a). 575

4.3.4 Instruction Interpretation 576

A trajectory instruction phrased multiple times in 577

different ways may help the agent better under- 578

stand its objective. LEO (Xia et al., 2020) leverages 579

and encodes all the instructions with a shared set 580

of parameters to enhance the textual understand- 581

ing. Shorter, and more concise instructions pro- 582

vide clearer guidance for the agent compared to 583

longer, semantically entangled instructions, thus 584

Hong et al. (2020b) breaks long instructions into 585

shorter ones, allowing the agent to track progress 586

and focus on each atomic instruction individually. 587

4.4 Prior Exploration 588

Good performance in seen environments often can- 589

not generalize to unseen environments (Parvaneh 590

et al., 2020; Tan et al., 2019). Prior exploration 591

methods allow the agent to observe and adapt to 592

unseen environments2, bridging the performance 593

2Thus prior exploration methods are not directly compara-
ble with other VLN methods.
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gap between seen and unseen environments.594

Wang et al. (2019) introduce a self-supervised595

imitation learning to learn from the agent’s own596

past, good behaviors. The best navigation path597

determined to align the instruction the best by a598

matching critic will be used to update the agent.599

Tan et al. (2019) leverage the testing environments600

to sample and augment paths for adaptation. Fu601

et al. (2020) propose environment-based prior ex-602

ploration, where the agent can only explore a partic-603

ular environment where it is deployed. When con-604

necting with graph, prior exploration may construct605

a map or overview about the unseen environment,606

providing explicit guidance for navigation (Chen607

et al., 2021a; Zhou et al., 2021).608

5 Conclusion and Future Directions609

In this paper, we discuss the importance of VLN610

agents as a part of society, how their tasks vary as611

a function of communication level versus task ob-612

jective, and how different agents may be evaluated.613

We broadly review VLN methodologies and cate-614

gorize them. This paper only discusses these issues615

broadly at an introductory level. In reviewing these616

papers, we can see the immense progress that has617

already been made, as well as directions that this618

research topic can be expanded on.619

Current methods usually do not explicitly uti-620

lize external knowledge such as objects and house621

descriptions in Wikipedia. Incorporating knowl-622

edge also improves the interpretability and trust of623

embodied AI. Moreover, currently several naviga-624

tion agents learn which direction to move and with625

what to interact, but there is a last-mile problem626

of VLN—how to interact with objects. Anderson627

et al. (2018b) asked whether a robot could learn to628

“Bring me a spoon”; new research may ask how a629

robot can learn to “Pick up a spoon”. The environ-630

ments also lack diversity: most interior terrestrial631

VLN data consists of American houses, but never632

warehouses or hospitals: the places where these633

agents may be of most use.634

Below we detail additional future directions:635

Collaborative VLN Current VLN benchmarks636

and methods predominantly focus on tasks where637

only one agent navigates, yet complicated real-638

world scenarios may require several robots collabo-639

rating. Multi-agent VLN tasks require development640

in swarm intelligence, information communication,641

and performance evaluation. VLN studies the rela-642

tionship between the human and the environment643

in Figure 1, yet here humans are oracles simply 644

observing (but not acting on) the environment. Col- 645

laboration between humans and robots is crucial for 646

them to work together as teams (e.g., as personal 647

assistants or helping in construction). Future work 648

may target at collaborative VLN between multiple 649

agents or between human and agents. 650

Simulation to Reality There is a performance loss 651

when transferred to real-life robot navigation (An- 652

derson et al., 2020). Real robots function in contin- 653

uous space, but most simulators only allow agents 654

to “hop” through a pre-defined navigation graph 655

which is unrealistic for three reasons (Krantz et al., 656

2020). Navigation graphs assume: (1) perfect 657

localization—in the real world is a noisy estimate; 658

(2) oracle navigation—real robots cannot “teleport” 659

to a new node; (3) known topology—in reality an 660

agent may not have access to a preset list of naviga- 661

ble nodes. Continuous implementations of realistic 662

environments may contain patches of the images, 663

be blurred, or have parallax errors, making them 664

unrealistic. A simulation that is based on both 665

a 3D model and realistic imagery could improve 666

the match between virtual sensors (in simulation) 667

and real sensors. Lastly, most simulators assume a 668

static environment only changed by the agent. This 669

does not account for other dynamics such as people 670

walking or objects moving, nor does it account for 671

lighting conditions through the day. VLN environ- 672

ments with probabilistic transition function may 673

also narrow the gap between simulation and reality. 674

Ethics & Privacy During both training and in- 675

ference, VLN agents may observe and store sen- 676

sitive information that can get leaked or misused. 677

Effective navigation with privacy protection is cru- 678

cially important. Relevant areas such as federated 679

learning (Konečnỳ et al., 2016) or differential pri- 680

vacy (Dwork et al., 2006) could also be studied in 681

VLN domain to preserve the privacy of training 682

and inference environments. 683

Multicultural VLN VLN lacks diversity in 684

3D environments: most outdoor VLN datasets 685

use Google Street View recorded in major Amer- 686

ican cities, but lacks data in developing countries. 687

Agents trained on American data face potential 688

generalization problems in other city or housing 689

layouts. Future work should explore more diverse 690

environments across multiple cultures and regions. 691

Multilingual VLN datasets (Ku et al., 2020; Yan 692

et al., 2020) could be good resources to study multi- 693

cultural differences from the linguistic perspective. 694
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A Dataset Details1280

Here in Table 2, we introduce more information1281

about the datasets. Compared with the number1282

of the datasets, the simulators are limited. More1283

specifically, most indoor datasets are based on Mat-1284

terport3D and most outdoor datasets are based on1285

Google Street View. Also, more datasets are about1286

indoor environments rather than outdoor environ-1287

ments. Outdoor environments are usually more1288

complex and contain more objects compared with1289

indoor environments.1290

B Simulator1291

The virtual features of the dataset are deeply con-1292

nected with the simulator in which datasets are1293

built. Here we summarize simulators frequently1294

used during the VLN dataset creation process.1295

House3D (Wu et al., 2018) is a realistic virtual1296

3D environment built based on the SUNCG (Song1297

et al., 2017) dataset. An agent in the environment1298

has access to first-person view RGB images, to-1299

gether with semantic/instance masks and depth in-1300

formation.1301

Matterport3D (Anderson et al., 2018b) simula-1302

tor is a large-scale visual reinforcement learning1303

simulation environment for research on embod-1304

ied AI based on the Matterport3D dataset (Chang1305

et al., 2017). Matterport3D contains various in-1306

door scenes, including houses, apartments, hotels,1307

offices, and churches. An agent can navigate be-1308

tween viewpoints along a pre-defined graph. Most1309

indoors VLN datasets such as R2R and its variants1310

are based on the Matterport3D simulator.1311

Habitat (Manolis Savva* et al., 2019; Szot et al.,1312

2021) is a 3D simulation platform for training em-1313

bodied AI in 3D physics-enabled scenarios. Com-1314

pared with other simulation environments, Habitat1315

2.0 (Szot et al., 2021) shows strength in system1316

response speed. Habitat has the following datasets1317

built-in: Matterport3D (Chang et al., 2017), Gib-1318

son (Xia et al., 2018), and Replica (Straub et al.,1319

2019). AI2-THOR (Kolve et al., 2017) is a near1320

photo-realistic 3D indoor simulation environment,1321

where agents could navigate and interact with ob-1322

jects. Based on the object interaction function, it1323

helps to build a dataset that requires object interac-1324

tion, such as ALFRED (Shridhar et al., 2020).1325

Gibson (Xia et al., 2018) is a real-world percep-1326

tion interactive environment with complex seman-1327

tics. Each viewpoint has a set of RGB panoramas1328

with global camera poses and reconstructed 3D1329

meshes. Matterport3D dataset (Chang et al., 2017) 1330

is also integrated into the Gibson simulator. 1331

House3D (Wu et al., 2018) converts SUNCG’s 1332

static environment into a virtual environment, 1333

where the agent can navigate with physical con- 1334

straints (e.g. it cannot pass through walls or ob- 1335

jects). 1336

LANI (Misra et al., 2018) is a 3D simulator built 1337

in Unity3D platform. The environment in LANI is 1338

a fenced, square, grass field containing randomly 1339

placed landmarks. An agent needs to navigate be- 1340

tween landmarks following the natural language 1341

instruction. Drone navigation tasks (Blukis et al., 1342

2018, 2019) are also built based on LANI. 1343

Currently, most datasets and simulators focus 1344

on indoors navigable scenes partly because of the 1345

difficulty of building an outdoor photo-realistic 3D 1346

simulator out of the increased complexity. Google 1347

Street View 3, an online API that is integrated with 1348

Google Maps, is composed of billions of realistic 1349

street-level panoramas. It has been frequently used 1350

to create outdoor VLN tasks since the development 1351

of TOUCHDOWN (Chen et al., 2019). 1352

C Room-to-Room Leaderboard 1353

Room-to-Room (R2R) (Anderson et al., 2018b) 1354

is the benchmark used most frequently for evalu- 1355

ating different methods. Here we collect all the 1356

reported performance metrics in the corresponding 1357

papers and the official R2R leaderboard4. Since 1358

beam search explores more routes, and since prior 1359

exploration has additional observations in the test 1360

environment, their performance can not be directly 1361

compared with other methods. 1362

3https://developers.google.com/maps/
documentation/streetview/overview

4https://eval.ai/web/challenges/
challenge-page/97/leaderboard/270
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Name Simulator Language-Active Environment

Room-to-Room (Anderson et al., 2018b) Matterport3D ✗ Indoor
Room-for-Room (Jain et al., 2019) Matterport3D ✗ Indoor

Room-Across-Room (Ku et al., 2020) Matterport3D ✗ Indoor
Landmark-RxR (He et al., 2021) Matterport3D ✗ Indoor

XL-R2R (Yan et al., 2020) Matterport3D ✗ Indoor
VLNCE (Krantz et al., 2020) Habitat ✗ Indoor

StreetLearn (Mirowski et al., 2019) Google Street View ✗ Outdoor
StreetNav (Hermann et al., 2020) Google Street View ✗ Outdoor

TOUCHDOWN (Chen et al., 2019) Google Street View ✗ Outdoor
Talk2Nav (Vasudevan et al., 2021) Google Street View ✗ Outdoor

LANI (Misra et al., 2018) - ✗ Outdoor
RoomNav (Wu et al., 2018) House3D ✗ Indoor
REVERIE (Qi et al., 2020b) Matterport3D ✗ Indoor
SOON (Zhu et al., 2021a) Matterport3D ✗ Indoor

ALFRED (Shridhar et al., 2020) AI2-THOR ✗ Indoor
VNLA (Nguyen et al., 2019) Matterport3D ✓ Indoor

HANNA (Nguyen and Daumé III, 2019) Matterport3D ✓ Indoor
CEREALBAR (Suhr et al., 2019) - ✓ Indoor

Just Ask (Chi et al., 2020) Matterport3D ✓ Indoor
CVDN (Thomason et al., 2019b) Matterport3D ✓ Indoor

RobotSlang (Banerjee et al., 2020) - ✓ Indoor
Talk the Walk (de Vries et al., 2018) - ✓ Outdoor

MC Collab (Narayan-Chen et al., 2019) Minecraft ✓ Outdoor
TEACh (Padmakumar et al., 2021) AI2-THOR ✓ Indoor

Table 2: Vision-and-Language Navigation datasets. Language-Active means the agent needs to use natural language
to request help, including both Guidance datasets and Dialog datasets in Table 1.

Simulator Photo-realistic 3D

House3D (Wu et al., 2018) ✓ ✓

Matterport3D (Chang et al., 2017) ✓ ✓

Habitat (Manolis Savva* et al., 2019) ✓ ✓

AI2-THOR (Kolve et al., 2017) ✗ ✓

Gibson (Xia et al., 2018) ✓ ✓

LANI (Misra et al., 2018) ✗ ✓

*Google Street View ✓ ✓

Table 3: Common simulators used to build VLN datasets. *Google Street View is online API, providing similar
functionality as a simulator for building VLN datasets.
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Leader-Board (Test Unseen) Single Run Prior Exploration Beam Search
Models TL↓ NE↓ OSR↑ SR↑ SPL↑ TL↓ NE↓ OSR↑ SR↑ SPL↑ TL↓ NE↓ OSR↑ SR↑ SPL↑
Random 9.89 9.79 0.18 0.13 0.12 - - - - - - - - - -
Human 11.85 1.61 0.90 0.86 0.76 - - - - - - -
Seq-to-Seq (Anderson et al., 2018b) 8.13 20.4 0.27 0.20 0.18 - - - - - - - - - -
RPA (Wang et al., 2018) 9.15 7.53 0.32 0.25 0.23 - - - - - - - - - -
Speaker-Follower (Fried et al., 2018) 14.82 6.62 0.44 0.35 0.28 - - - - - 1257.38 4.87 0.96 0.54 0.01
Chasing Ghosts (Anderson et al., 2019a) 10.03 7.83 0.42 0.33 0.30 - - - - - - - - - -
Self-Monitoring (Ma et al., 2019a) 18.04 5.67 0.59 0.48 0.35 - - - - - 373.1 4.48 0.97 0.61 0.02
RCM !(Wang et al., 2019) 11.97 6.12 0.50 0.43 0.38 9.48 4.21 0.67 0.60 0.59 357.6 4.03 0.96 0.63 0.02
Regretful Agent (Ma et al., 2019b) 13.69 5.69 0.56 0.48 0.40 - - - - - - - - - -
FAST (Ke et al., 2019) 22.08 5.14 0.64 0.54 0.41 - - - - - 196.5 4.29 0.90 0.61 0.03
ALTR (Huang et al., 2019) 10.27 5.49 0.56 0.48 0.45 - - - - - - - - -
EnvDrop (Tan et al., 2019) 11.66 5.23 0.59 0.51 0.47 9.79 3.97 0.70 0.64 0.61 686.8 3.26 0.99 0.69 0.01
PRESS (Li et al., 2019) 10.52 4.53 0.63 0.57 0.53 - - - - - - - - - -
PTA (Landi et al., 2020) 10.17 6.17 0.47 0.40 0.36 - - - - - - -
EGP (Deng et al., 2020) - 5.34 0.61 0.53 0.42 - - - - - - - - - -
SERL (Wang et al., 2020b) 12.13 5.63 0.61 0.53 0.49 - - - - - 690.61 3.21 0.99 0.70 0.01
OAAM (Qi et al., 2020a) 10.40 - 0.61 0.53 0.50 - - - - - - - - - -
CMG-AAL (Zhang et al., 2020a) 12.07 3.41 0.76 0.67 0.60 - - - - - - - - -
AuxRN (Zhu et al., 2020a) - 5.15 0.62 0.55 0.51 10.43 3.69 0.75 0.68 0.65 40.85 3.24 0.81 0.71 0.21
RelGraph (Hong et al., 2020a) 10.29 4.75 0.61 0.55 0.52 - - - - - - - - - -
PRRVALENT (Hao et al., 2020) 10.51 5.30 0.61 0.54 0.51 - - - - - - - - - -
Active Exploration (Wang et al., 2020a) 21.03 4.34 0.71 0.60 0.43 9.85 3.30 0.77 0.70 0.68 176.2 3.07 0.94 0.70 0.05
VLN-BERT (Majumdar et al., 2020) - - - - - - - - - - 686.62 3.09 0.99 0.73 0.01
DASA (Sun et al., 2021) 10.06 5.11 - 0.54 0.52 - - - - - - - - - -
ORIST (Qi et al., 2021) 11.31 5.10 - 0.57 0.52 - - - - - - - - - -
NvEM (An et al., 2021) 12.98 4.37 0.66 0.58 0.54 - - - - - - - - - -
SSM (Wang et al., 2021) 20.39 4.57 0.70 0.61 0.46 - - - - - - - - - -
Recurrent VLN BERT (Hong et al., 2021) 12.35 4.09 0.70 0.63 0.57 - - - - - - - - - -
SOAT (Moudgil et al., 2021) 12.26 - 4.49 58 53
REM (Liu et al., 2021) 13.11 3.87 0.72 0.65 0.59 - - - - - - - - - -
HAMT(Chen et al., 2021b) 12.27 3.93 0.72 0.65 0.60 - - - - - - - - - -
Spatial Route Prior (Zhou et al., 2021) - - - - - - - - - - 625.27 3.55 0.99 0.74 0.01
Airbert (Guhur et al., 2021) - - - - - - - - - - 686.54 2.58 0.99 0.78 0.01

Table 4: Leaderboard of Room-to-Room benchmark as of November, 2021.
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