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Abstract

Data deviations in electronic health records (EHR) refer to discrepancies between
recorded entries and a patient’s actual physiological state, indicating a decline
in EHR data fidelity. Such deviations can result from pre-analytical variability,
documentation errors, or unvalidated data sources. Effectively detecting data
deviations is clinically valuable for identifying erroneous records, excluding them
from downstream clinical workflows, and informing corrective actions. Despite its
importance and practical relevance, this problem remains largely underexplored in
existing research. To bridge this gap, we propose a bi-level knowledge distillation
approach centered on a task-agnostic formulation of EHR data fidelity as an
intrinsic measure of data reliability. Our approach performs layered knowledge
distillation in two levels: from a computation-intensive, task-specific data Shapley
oracle to a neural oracle for individual tasks, and then to a unified EHR data fidelity
predictor. This design enables the integration of task-specific insights into a holistic
assessment of a patient’s EHR data fidelity from a multi-task perspective. By
tracking the outputs of this learned predictor, we detect potential data deviations in
EHR data. Experiments on both real-world EHR data from National University
Hospital in Singapore and the public MIMIC-III dataset consistently validate the
effectiveness of our approach in detecting data deviations in EHR data. Case
studies further demonstrate its practical value in identifying clinically meaningful
data deviations.

1 Introduction
In healthcare data analytics, researchers utilize heterogeneous data sources to support a wide spectrum
of applications, including risk prediction, medication recommendation, and disease progression
modeling [20, 41]. These efforts have yielded tangible benefits for patients, clinicians, and healthcare
institutions, contributing to broader societal impact. Among various data types, electronic health
records (EHR) have emerged as a primary source, with increasing availability in recent years.
EHR data capture longitudinal patient information, including laboratory results, diagnoses, and
prescriptions during their clinical visits. Leveraging EHR data for analytical purposes can enhance
patient management and optimize healthcare resource allocation [67, 87].

Despite the potential of EHR data to reveal valuable insights, the aforementioned success of EHR
data analytics critically depends on sufficiently high data fidelity, which characterizes how accurately
the recorded data capture and reflect the true characteristics of the original EHR data source [89, 79].

However, ensuring high fidelity in EHR data is inherently challenging due to the complexity of
clinical environments. Hospitals and healthcare institutions serve large, heterogeneous populations
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of patients, each generating numerous medical observations that must be accurately documented
for clinical decision-making. The scale and variability of EHR data complicate the maintenance
of consistent and reliable records. Common sources of errors include pre-analytical variability
during specimen collection and handling [16, 46], as well as documentation errors stemming from
human mistakes and complex workflows [80, 3, 14]. The problem is further exacerbated by the
integration of non-validated data sources, particularly behavioral and physiological signals from
wearable devices [18, 27], which are typically collected in non-clinical, home-based settings and
may lack consistency or reliability. These pervasive issues degrade data fidelity and pose substantial
barriers to the integrity of EHR-driven analytics and decision support, ultimately constraining the
performance of downstream learning models.

Addressing this pressing challenge requires the ability to detect data deviations in EHR data—that
is, discrepancies between recorded entries in EHR data and the patient’s actual physiological state.
Detecting such deviations offers two benefits. First, it enables the identification and exclusion of
erroneous records from clinical workflows, reducing the risk of inappropriate decisions and adverse
outcomes. Second, it facilitates targeted data correction strategies, thereby enhancing data quality
and supporting more reliable downstream analysis. More specifically, our primary objective is to
enable pre-hoc detection of potential data deviations at the point of data entry into the EHR system
during clinical practice. The focus is not on post-hoc data cleaning for downstream analytics but
on proactive identification of anomalies at the time of data recording. By flagging entries that may
exhibit deviations as they are being introduced, we aim to enable real-time quality control and reduce
the likelihood of erroneous data entering the system. This proactive mechanism strengthens EHR data
quality, which may subsequently enhance the performance of downstream tasks. Nevertheless, this
improvement remains a secondary effect; the central goal is the reliable assessment of data fidelity in
situ, preventing flawed data from affecting clinical decision-making in real-world settings.

Practically significant as it is, detecting data deviations in EHR data remains a non-trivial and
underexplored problem. Data deviations directly impair data fidelity, necessitating a principled way
to measure data fidelity. The data Shapley value [26], originally derived from the cooperative game
theory [69], offers a well-established approach to quantify the contribution of individual data samples
to a learning model, making it a promising candidate for this purpose. However, these contribution-
based measures—including the data Shapley value and other data valuation techniques [39]—are
typically tailored to specific application tasks, and thus may not capture a comprehensive or intrinsic
notion of fidelity in a patient’s EHR data. In contrast, we aim to develop an application-agnostic
fidelity measure that reflects the inherent reliability of a patient’s data, independent of downstream
tasks, serving as a foundation for more effective detection of data deviations.

Solution. We propose an innovative bi-level knowledge distillation approach [33, 28, 62] for detecting
EHR data deviations—distinguished by its task-agnostic formulation of data fidelity and its layered
transfer of knowledge. As detailed in Section 3, our approach unfolds in three stages. First, we
compute task-specific data Shapley values to serve as a data Shapley oracleOds, encoding fine-grained
contribution information for each sample (Section 3.1). Next, to address the high computational
cost of Ods, we distill its knowledge into a task-specific neural oracle Onn by amortizing per-sample
computation through a neural network [1, 15], enabling efficient approximation (Section 3.2). Finally,
taking a multi-task perspective on data fidelity, we further distill knowledge from all Onn instances
into a unified EHR data fidelity predictor Ψ (Section 3.3). This hierarchical design uniquely enables
the integration of task-specific insights into a general-purpose fidelity estimator, which we use to
detect and respond to EHR data deviations.

Novelty. (i) To the best of our knowledge, this work is the first to address the problem of detecting
data deviations in EHR data, a critical yet underexplored issue with direct implications for clinical
reliability and safety. (ii) In contrast to existing data valuation methods, such as the data Shapley
value, which are inherently task-specific, we propose a multi-task perspective to derive a unified
and comprehensive measure of EHR data fidelity. By tracking changes in this task-agnostic fidelity
predictor, we enable effective detection of potential deviations in EHR data.

Contributions. (i) We address the open problem of measuring EHR data fidelity and detecting
data deviations, filling a critical research gap. (ii) We propose a bi-level knowledge distillation
approach that transfers information from computationally intensive data Shapley values to task-
specific neural oracles, and subsequently to a unified EHR data fidelity predictor, enabling effective
and efficient fidelity estimation (Section 3). (iii) We empirically evaluate our approach on both
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(a) Pre-analytical Variability (b) Documentation Errors (c) Non-validated Data Sources 

Figure 1: Three representative sources of data deviations in EHR data.

EHR data from National University Hospital in Singapore and the MIMIC-III dataset (Section 4).
The results consistently validate the effectiveness of our approach in detecting data deviations, with
representative case studies highlighting its practical utility in identifying specific deviation issues
relevant to clinical practice.

2 Problem and Our Solution

Necessity of EHR data deviation detection. As discussed, data deviations in EHR data reflect a
decline in the fidelity of recorded health data, raising critical concerns about the extent to which such
records accurately represent a patient’s physiological state at the time of entry. These deviations may
arise from various sources, three of which are illustrated in Figure 1. The first is pre-analytical vari-
ability (Figure 1(a)), where deviations are introduced during specimen collection and handling—such
as sampling bias, improper storage, or unrecognized technical artifacts. The second is documentation
errors (Figure 1(b)), which may occur during data entry, labeling, or integration across systems. These
errors, including misclassification, omission, or duplication, typically result from reading mistakes or
workflow complexity in interconnected clinical information systems. The third is non-validated data
sources (Figure 1(c)), such as patient self-reported measurements, consumer-grade wearable devices,
or home-based testing, which lack clinical oversight. These data are prone to inaccuracies due to
improper device use, recall bias, or the absence of device calibration and standardization.

For instance, patients admitted to the nephrology department may be required to perform urine
tests to assess kidney function. Patients may collect the urine samples at the wrong hours of the
day, may contaminate the urine with other body fluids, or healthcare personnel may delay the urine
processing; these lead to distorted laboratory results, which may affect subsequent diagnosis and
clinical decision-making. In addition, patients with kidney disease and diabetes may have to fast
before certain tests for blood glucose, lipids, or parathyroid hormone, for which they may mistakenly
consume food prior to testing. In such cases, recall errors or noncompliance can degrade EHR data
fidelity, resulting in misleading records and potential data deviations.

The ability to detect potential data deviations in EHR data holds substantial clinical importance. An
effective detector can evaluate whether recorded data is trustworthy, thereby improving the accuracy
of downstream medical decisions and interventions. Assessing data fidelity allows clinicians to
determine whether a given measurement accurately reflects the patient’s condition, enabling more
precise clinical management. Additionally, identifying patterns of deviations can further guide
improvements in data acquisition, collection, and recording protocols, laying the groundwork for
future correction and calibration strategies.

Necessity of distilling knowledge from data Shapley oracle Ods to neural oracle Onn. To assess
EHR data fidelity, the data Shapley value [26]—along with other data valuation methods [39]—offers
a promising approach by quantifying the contribution of each data sample. Though inherently tailored
to a particular application, the resulting data Shapley values capture the utility of each sample from
the perspective defined by the given task, providing a task-specific lens for evaluating data fidelity.

Nevertheless, computing data Shapley values is computationally intensive, with brute-force methods
exhibiting exponential complexity. Even with approximation techniques such as Monte Carlo
sampling [9], the computational cost remains prohibitive, particularly when applied to large-scale real-
world healthcare datasets. This limits the feasibility of applying Shapley-based fidelity assessment in
practice, where EHR data fidelity assessment—and thus data deviation detection—requires frequent
“what-if” analysis. For example, each newly generated medical feature for a patient may necessitate
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Figure 2: Model architecture of our proposed bi-level knowledge distillation approach.

re-evaluating data fidelity to determine potential deviations. To address this, it is advantageous to
amortize the computation across samples using a learned model, such as a neural network [1, 15].
Motivated by this need for efficiency, we propose to distill knowledge from the data Shapley oracle
Ods into a task-specific neural oracle Onn, thereby preserving task-relevant valuation insights while
significantly reducing computational overhead.

Necessity of distilling knowledge from neural oracle Onn to EHR data fidelity predictor Ψ. We
posit that a patient’s EHR data fidelity should represent an intrinsic, task-agnostic measure of data
reliability. In contrast, the approximate data valuation produced by the task-specific neural oracle
Onn captures only a partial, task-dependent view. To overcome this limitation, we take a multi-task
perspective to distill the task-specific knowledge into a unified EHR data fidelity predictor Ψ, which
provides a holistic and integrated assessment of a patient’s EHR data fidelity by synthesizing insights
across multiple clinical tasks, thereby yielding a more comprehensive and robust measure.

3 Methodology

Given EHR data K(t) = {k(t)i } for each task t (i.e., specific application), where k
(t)
i denotes the

i-th sample (i.e., patient in our case), with i ∈ {0, . . . , N (t) − 1}, t ∈ {0, . . . , T − 1}, N (t) is
the number of samples for task t, and T is the total number of tasks. Each sample is represented
as k

(t)
i = (xi, y

(t)
i ), where xi denotes the input EHR data and y

(t)
i is the task-specific label. We

focus on clinical settings where EHR data and associated labels are available for multiple tasks. Our
objective is to first quantify data fidelity—the degree to which a patient’s EHR data can be trusted to
be accurate and reliable. Based on this, we then detect potential deviations that indicate anomalies or
inconsistencies in the EHR data. We define EHR data deviations as follows:

Definition 1 (EHR Data Deviations) Let xi denote the original EHR data of patient i, and let Ψ(xi)
represent its data fidelity. Assume xi is perturbed to xi +∆xi. Given a deviation probability Pdev

and a predefined threshold Pµ, a data deviation is detected if the following condition holds:

∃ δ > 0 such that Pdev > Pµ when ∆Ψ = Ψ(x)−Ψ(x+∆x) > δ. (1)

In other words, a substantial decline in data fidelity ∆Ψ beyond a threshold δ is associated with a
high likelihood of deviations in the patient’s EHR data.

To detect EHR data deviations, we propose a bi-level knowledge distillation approach as depicted
in Figure 2. In the first level, we train a set of models to approximate the data Shapley values
efficiently, one for each prediction task. Concretely, knowledge is distilled from the data Shapley
oracle Ods—which provides application-specific data valuation—into a corresponding neural oracle
Onn for each task. These task-specific neural oracles are trained jointly in a multi-task learning
setting. In the second level, knowledge from all neural oracles is further distilled into a unified EHR
data fidelity predictor Ψ, which serves to identify potential data deviations. This approach consists of
three stages: (i) computing data Shapley values per task via Ods, (ii) distilling knowledge from Ods
to Onn, and (iii) distilling knowledge from Onn to Ψ. Each stage is detailed below.
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3.1 Data Shapley Value Computation Per Task in Ods

We begin by quantifying the value of each patient’s EHR data for the available tasks. Data valu-
ation [39] provides a principled framework to assess the contribution of individual data samples
to downstream learning performance. Among various approaches, the data Shapley value [26],
derived from the Shapley value in cooperative game theory [69], is a widely adopted method with
demonstrated effectiveness across multiple domains [65].

Given the task-specific nature of data Shapley values, we compute these values for each sample
within each task, resulting in a task-wise data Shapley oracle, denoted as Ods. For task t, let f (t)

represent the corresponding prediction model, and consider evaluating its performance on a subset
S ⊆ K(t). Given an evaluation metric m, the performance of f (t) on S is denoted by m(S, f (t)).
The data Shapley value of a specific sample k

(t)
i for task t is then defined as:

η
(t)
i = M

∑
S⊆K(t)\{k(t)

i }

m(S ∪ {k(t)i }, f (t))−m(S, f (t))(
N (t) − 1
|S|

) (2)

where the summation considers all subsets of the samples in task t, excluding k
(t)
i , and M is a

normalization constant. Equation 2 can be equivalently reformulated as follows:

η
(t)
i = Eφ∼Φ[m(Sk

(t)
i

φ ∪ {k(t)i }, f
(t))−m(Sk

(t)
i

φ , f (t))] (3)

where Φ denotes a uniform distribution over all permutations of K(t), and Sk
(t)
i

φ is the set of samples
preceding k

(t)
i in the permutation φ. Given the exponential complexity of exact Shapley value com-

putation, we approximate η
(t)
i using Monte Carlo permutation sampling [9] for enhanced efficiency.

3.2 Knowledge Distillation from Ods to Onn

Despite the efficiency gains from approximation methods such as Monte Carlo permutation sampling,
the computational overhead remains prohibitive, particularly for large-scale real-world healthcare
datasets. To address this, we adopt an amortized modeling approach, leveraging neural networks to
approximate per-sample outputs and mitigate the cost of individual computations [1, 15].

Concretely, after obtaining task-specific data valuations from the data Shapley oracle Ods, we distill
the knowledge into a neural oracle Onn for each task t using a neural network g(t)(x, θ

(t)
g ), which is

trained to approximate the data Shapley values η(t)i by minimizing the following loss function, where
l(·, ·) denotes the mean squared error:

L(t)
ds→nn =

∑
k
(t)
i ∈K(t)

l(η
(t)
i , g(t)(xi, θ

(t)
g )) (4)

The neural oracles Onn across all tasks are trained jointly in a multi-task learning fashion. To balance
task-specific contributions, we assign a weight to each loss L(t)

ds→nn for task t, defined as the ratio
between its value at the current iteration s and that at the previous iteration s− 1:

ω(t) = L(t)
ds→nn(s)/L

(t)
ds→nn(s− 1) (5)

This weighting strategy encourages loss terms across tasks to decrease at comparable rates, mitigating
scale discrepancies and promoting balanced multi-task optimization [30, 50]. We further denote the
output of the last hidden layer in Onn for task t as h(t)(xi), representing the task-specific learned
representation of input xi.

3.3 Knowledge Distillation from Onn to Ψ for EHR Data Deviation Detection

In this stage, we aim to learn the final EHR data fidelity predictor Ψ(x, θ) by distilling knowledge
from the task-specific neural oracles Onn trained in the previous stage. We construct Ψ(x, θ) as a
neural network that aggregates and transfers information from all Onn across tasks. We denote the
hidden representation of x learned by Ψ(x, θ) as o(x).
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Knowledge Distillation Loss. To ensure that the learned EHR data fidelity predictor Ψ effectively
aggregates information from all task-specific neural oraclesOnn, we introduce a knowledge distillation
loss Lkd. This loss minimizes the discrepancy—measured by the mean squared error—between the
output of Ψ(xi, θ) and a weighted aggregation of the outputs from the individual Onn oracles:

Lkd =
∑
xi

(Ψ(xi, θ)−
∑
t

α(t)(xi)g
(t)(xi, θ

(t)
g ))2 (6)

The weight α(t)(x) for task t is computed using an attention subnetwork that integrates both h(t)(x),
the task-specific representation of x from Onn, and o(x), the hidden representation of o(x) derived
by Ψ(x, θ). The attention subnetwork first concatenates these representations and applies an affine
transformation, followed by a ReLU activation:

r(t)(x) = ReLU(Wc[o(x);h
(t)(x)] + bc) (7)

The attention weight α(t)(x) is then computed after normalization across tasks:

α̃(t)(x) = wT
αr

(t)(x) + bα, α(t)(x) = exp(α̃(t)(x))/
∑
t′

exp(α̃(t′)(x)) (8)

Relative Entropy Constraint. In addition to the primary Lkd, we introduce a relative entropy-based
regularization term to encourage the EHR data fidelity predictor to leverage information from a
broader range of neural oracles, rather than over-relying on a small subset. Specifically, we minimize
the relative entropy (i.e., Kullback–Leibler divergence) between the learned task-specific attention
weights α(t)(x) and a uniform prior u(t) = 1/T , thereby encouraging a more balanced utilization
of all available neural oracles [76, 60, 59]. This regularization promotes diversity in knowledge
aggregation by favoring higher entropy in the attention distribution. The relative entropy constraint is
defined as:

Lent = DKL(α
(t)(x)∥u(t)) = log T −H(α(t)(x)) (9)

where log T is a constant, andH(α(t)(x)) denotes the entropy of α(t)(x) learned from Equation 8.

Similarity Constraint. Beyond Lkd and Lent above, it is also crucial to account for potential
redundancy among neural oracles. When two task-specific neural oracles Onn produce highly similar
outputs across samples, assigning high weights to both is unnecessary. To mitigate this, we introduce
a similarity constraint to discourage simultaneous high attention weights for such similar oracle pairs:

Lsim =
∑
xi

∑
t<t′

α(t)(xi)α
(t′)(xi)ρt,t′(xi) (10)

where ρt,t′(xi) quantifies the output similarity between the neural oracles for tasks t and t′ as:

ρt,t′(xi) = exp(−E[(g(t)(xi, θ
(t)
g )− g(t

′)(xi, θ
(t′)
g ))2]/τ) (11)

with τ as a temperature parameter controlling sensitivity [33]. A larger ρt,t′(xi) indicates higher
similarity, thus leading to a larger penalty if both tasks are assigned high attention weights.

Overall Objective. We integrate the three loss terms—knowledge distillation, entropy regularization,
and similarity constraint—into a unified loss function:

L = λkdLkd + λentLent + λsimLsim (12)

where the weights λkd, λent, and λsim are dynamically adjusted based on the ratio of the loss values
across successive training iterations:

λkd = Lkd(s)/Lkd(s− 1), λent = Lent(s)/Lent(s− 1), λsim = Lsim(s)/Lsim(s− 1) (13)

We have thus far described the bi-level knowledge distillation process: first, distilling task-specific
data valuation from the data Shapley oracle Ods into neural oracles Onn, and subsequently distilling
this information across tasks into the final EHR data fidelity predictor Ψ. The predictor is trained
using the overall loss L and the parameters θ are optimized iteratively until convergence. Once
trained, the EHR data fidelity predictor is used to assess EHR data fidelity and identify potential data
deviations, enabling EHR systems to issue alerts when anomalies are detected.
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4 Experimental Evaluation
We evaluate the effectiveness of our proposed EHR data fidelity predictor Ψ in detecting data
deviations using real-world EHR data from National University Hospital in Singapore. To demonstrate
its broader applicability, we further assess Ψ on the public MIMIC-III benchmark dataset [40], with
results provided in Appendix F.

4.1 Experimental Set-up

The evaluation cohort includes patients diagnosed with acute kidney injury (AKI) between November
2015 and October 2016, which in total comprises 2,237 patients from the EHR data of National
University Hospital in Singapore. The anonymized dataset contains 43 distinct laboratory tests, result-
ing in 130,755 recorded test entries. AKI, characterized by a sudden decline in kidney function [4],
raises substantial clinical concern regarding long-term prognosis. These patients were subsequently
followed up for five years to track clinically significant outcomes. We focus on post-AKI progression
by using data from the 90-day period following AKI diagnosis (the “observation window”) to predict
the occurrence of four major adverse kidney events [68] below during the subsequent 5-year follow-up
period (the “prediction window”).

• New or Progressive Chronic Kidney Disease (CKD) Prediction: Predict whether the patient
will experience new-onset or progressive CKD, defined as a decline of more than 30% in baseline
estimated glomerular filtration rate (eGFR) after the 90-day observation window.

• Stage 5 CKD Onset Prediction: Predict whether the patient’s eGFR will decline below
15mL/min/1.73m2 after 90 days, indicating progression to near end-stage kidney disease.

• Post-AKI Renal Replacement Therapy (RRT) Dependence Prediction: Predict whether the
patient will require RRT during the follow-up period, indicating persistent loss of kidney function
requiring long-term intervention.

• Mortality Prediction: Predict whether the patient will pass away during the prediction window
following the 90-day observation window.

We partition the cohort into 85% for model development and 15% as a held-out set for computing data
Shapley values. Within the 85%, we further split the data into 80% for training, 10% for validation,
and 10% for testing. Hyperparameters are selected based on the best validation performance,
measured by the minimum loss L (Equation 12), across three independent runs. The final model is
evaluated on the test set using the selected hyperparameter configuration.

4.2 Validation of Ψ’s Detection Effectiveness under Controlled Deviation Injection

To evaluate the effectiveness of our proposed EHR data fidelity predictor Ψ in quantifying data fidelity
and detecting deviations in EHR data, we design a controlled deviation injection experiment. For each
sample in the 10% test set, we identify its most prominent feature, defined as the dimension the value
of which is closest to the 99th percentile of the corresponding distribution in the training set, and apply
a controlled perturbation. The deviation magnitude is scaled by a multiple of the feature’s standard
deviation σ in the training set. This procedure produces paired samples: the original instance (label
= 0) and its perturbed counterpart (label = 1), forming a labeled benchmark for fidelity evaluation
under controlled deviation conditions.

More specifically, this can be conceptually viewed as a “real versus corrupted” classification experi-
ment aimed at distinguishing genuine EHR samples from their perturbed counterparts. Under the
controlled deviation injection setup, we (i) perturb each sample by scaling its most prominent feature
with its standard deviation σ to simulate physiologically plausible deviations, (ii) generate paired
instances—original (label = 0) and perturbed (label = 1), and (iii) construct a labeled benchmark
dataset for fidelity evaluation. We then compute the expected EHR data fidelity decline, ∆Ψ, as
defined in Equation 1, and use its sign to determine whether the proposed approach successfully
detects the introduced deviations.

We compare Ψ against several widely adopted unsupervised anomaly detection baselines:

• One-Class SVM: Constructs a decision boundary in a high-dimensional feature space using a
radial basis function (RBF) kernel. During training, up to 5% of the samples are allowed to be
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Figure 3: Performance comparison between Ψ
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Figure 4: Impact of deviation magnitudes on ∆Ψ
(data fidelity decline) after deviation injection.

treated as outliers. Anomaly scores are derived based on each sample’s distance to the learned
decision boundary.

• Local Outlier Factor: Estimates the local density of each sample based on its 20 nearest neighbors.
Samples exhibiting substantially lower local reachability density are identified as outliers. The
detection threshold is set at the 5th percentile of the Local Outlier Factor scores computed on the
training data.

• Gaussian Mixture Model: Assumes that the samples are generated from a mixture of Gaussian
distributions. Anomaly scores are computed based on the log-likelihood of each sample under the
fitted model. Samples with log-likelihoods below the 5th percentile of the training distribution are
flagged as outliers.

• k-Means Distance: Computes the Euclidean distance between each sample and its assigned cluster
centroid obtained via k-Means clustering. Samples with distances exceeding the 90th percentile of
the training distances are classified as outliers.

• PCA Reconstruction Error: Applies principal component analysis (PCA) to reduce dimensionality
while retaining 60% of the total variance. Anomaly scores are computed as the reconstruction
error for each sample. The 90th percentile of reconstruction errors on the training set is used as the
detection threshold.

The comparative results in terms of the area under the ROC curve (AUC) are shown in Figure 3.
Overall, all evaluated methods exhibit a monotonic increase in AUC as the magnitude of injected
deviation grows, which is consistent with intuition: larger perturbations are easier to detect. However,
our proposed approach, based on the sign of the fidelity decline (∆Ψ), demonstrates significantly
higher sensitivity to small deviations. Remarkably, even with a perturbation as small as 0.1σ, Ψ
detects deviations in the majority of test samples, achieving an AUC of 0.93. As the deviation
magnitude increases, the detection performance improves further, reaching an AUC of 0.95 at 5σ.

In contrast, baseline methods show little to no response at low perturbation levels. At 0.1σ, their AUC
scores remain close to 0.5, indicating no effective discrimination between perturbed and unperturbed
samples. Most baselines only begin to exhibit meaningful detection performance when the deviation
exceeds 1σ, and none approach the accuracy of Ψ until the deviation reaches 5σ.

These results highlight the distinct advantage of our approach in detecting subtle yet clinically
significant deviations. The fidelity predictor Ψ, derived through bi-level knowledge distillation from
task-specific data Shapley oracles, provides a powerful signal for identifying deviations in EHR data.
In practical clinical settings, deviations of several standard deviations are often already identifiable
through conventional rule-based validation. However, it is precisely the small-magnitude deviations—
often overlooked yet potentially impactful—that Ψ excels at detecting. This capability enables timely
intervention and supports more robust data assurance in real-world healthcare applications.

4.3 Validation of Ψ’s Output Sensitivity to Varying Deviation Magnitudes

Next, we conduct the output sensitivity experiment using the same paired samples described in
Section 4.2, while varying the magnitudes of the injected deviations. Specifically, we examine
the fidelity decline, denoted as ∆Ψ, across the perturbed test samples as the deviation magnitude
increases from 0.1σ to 5σ. Figure 4 presents the distribution of ∆Ψ at each deviation level, reporting
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the median, interquartile range (IQR), and full range. As expected, the absolute magnitude of
∆Ψ increases monotonically with larger deviations, in line with our formulation in Definition 1.
Importantly, even when ∆Ψ is close to zero in absolute terms, its sign remains a reliable signal
for identifying deviations. This robustness near the decision boundary is critical, as it ensures Ψ’s
effectiveness in detecting subtle data shifts without being confounded by noise. Together with the
results in Figure 3, this analysis further confirms our approach’s strong performance in identifying
early-stage deviations that conventional approaches often miss, reinforcing its utility in real-world
clinical applications.

4.4 Case Study: Detecting Potential Data Deviations in Real-world Scenarios

To further investigate how our proposal could detect potential data deviation issues in real-world
scenarios, we zoom in on two example patients from the investigated cohort with low data fidelity
values, with their data in the observation window shown.

Case 1 (Figure 5): The patient’s creatinine level showed a steady decline from 231 µmol/L to 100
µmol/L within a short period, indicating either a marked improvement in renal function or the effect
of dialysis to augment renal function [56]. However, the urea level remained elevated—mostly above
10 mmol/L—showing a slight inconsistency with the downward trend of creatinine [35]. Further,
in the context of coexisting acidosis (with carbon dioxide persistently below 19 mmol/L [55]) and
moderate to severe anemia (with haemoglobin as low as 6.0 g/dL [75]), the serum albumin level
paradoxically increased to as high as 48 g/L. This contradicts the fundamental physiological principle
that albumin synthesis is typically suppressed under inflammatory and nutritionally imbalanced
states [61]. In addition, discrepant duplicate haemoglobin records (e.g., 6.6 and 8.8 g/dL on the same
day, highlighted in yellow) were observed, which may suggest the effect of blood transfusion. In a
nutshell, the lack of intrinsic physiological consistency among multiple key laboratory tests reflects
a lack of pathophysiological coupling between data points, hence suggesting the presence of data
deviations in this patient’s EHR data. Such records may fail to accurately reflect the patient’s actual
physiological state at the time and pose a risk of misleading subsequent clinical decisions.

Case 2 (Figure 6): The patient’s creatinine levels remained consistently within the range of 30–70
µmol/L, corresponding to a nearly normal or only mildly reduced glomerular filtration rate. However,
the patient’s urea levels remained persistently elevated, with a peak exceeding 20 mmol/L. Such a
combination is uncommon [35] in the absence of high protein intake [42] or gastrointestinal bleed-
ing [19], indicating a discordance between the two laboratory test results. Moreover, in the context of
hypoalbuminemia (low Albumin [61]), phosphate levels generally below 1.0 mmol/L (with a mini-
mum of 0.6 mmol/L) [58], and development of metabolic acidosis (Bicarbonate, POCT levels [55]
repeatedly exhibited sharp drops highlighted in pink), no corresponding metabolic disturbances were
observed [44]. Additionally, the patterns of phosphate levels showed no clear relationship with renal
function parameters, suggesting the possibility of potential errors or fluctuating nutritional intake.
Furthermore, the point-of-care haemoglobin (Haemoglobin, POCT) [57] readings fluctuated markedly
within the same day (e.g., from 6.9 to 9.9 g/dL highlighted in yellow). Overall, the biochemical
indicators in this patient tend to lack internal physiological consistency, and the dynamic changes in
multiple laboratory tests are at odds with the expected pathophysiological characteristics of renal
disease, suggesting potential deviations in the recorded data.
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5 Related Work

Data valuation provides a principled framework to quantify the contribution of individual data samples
to the performance of downstream analytic models [39, 65, 73]. Various strategies have been proposed
for this purpose. The leave-one-out approach evaluates sample importance by measuring the change
in model performance when a sample is excluded from training. Influence functions [43] assess
importance based on the model’s sensitivity to infinitesimal upweighting of a sample. More recently,
the data Shapley value [26], inspired by the Shapley value from cooperative game theory [69], has
been introduced as an equitable and theoretically grounded data valuation method. Subsequent work
has extended its theoretical foundations [25, 45, 82], improved its computational efficiency [38, 15],
and evaluated its practical utility across diverse applications [86, 77].

Amortized computation (or optimization) [1] leverages learning-based models, such as neural net-
works, to capture shared structure across similar problem instances, enabling efficient prediction
of solutions and reducing per-instance computational cost. Compared to non-amortized methods,
amortized approaches can offer speedups of several orders of magnitude [1]. This paradigm has been
adopted across various domains to improve efficiency, including meta learning [63, 21], explainable
machine learning [88, 37], and reinforcement learning [47, 32]. In the context of feature attribution
and data valuation, amortized computation is advocated in [15] to address scenarios where exact
labels are unavailable or prohibitively costly to obtain. To this end, a stochastic amortization technique
is proposed, which trains neural networks using noisy labels while maintaining strong performance
with theoretical guarantees.

Knowledge distillation [33, 62, 28] is commonly employed for model compression and acceleration,
aiming to transfer knowledge from a large, cumbersome model (“teacher” model) to a smaller, more
efficient model (“student” model). The goals of knowledge distillation are multifaceted [36], with
two particularly relevant objectives: (i) knowledge compression, where the student model is trained
to retain performance comparable to the teacher while being significantly more compact [33, 66, 64];
and (ii) knowledge adaptation, where the student learns to generalize to new or unseen target domains
by leveraging knowledge transferred from teacher models trained on related source domains [34, 54].

6 Conclusion

This paper addresses the underexplored problem of data deviations in EHR data, which undermines
data fidelity in real-world healthcare settings. To detect such deviations, we formulate EHR data
fidelity as an intrinsic, task-agnostic property of the data. We then propose a bi-level knowledge
distillation approach that transfers knowledge from a task-specific data Shapley oracle (Ods) to a
neural oracle (Onn) for each individual task, and subsequently to a unified EHR data fidelity predictor
(Ψ) that integrates information across tasks. By monitoring the outputs of Ψ, our approach enables
effective detection of EHR data deviations and, more specifically, supports pre-hoc identification of
potential data quality issues at the point of data entry, allowing clinicians to recognize and address
erroneous records before they contaminate downstream clinical workflows. Experimental results
on the EHR dataset from National University Hospital in Singapore for post-AKI analysis, and on
the public MIMIC-III benchmark confirm the effectiveness of the proposed approach. Additionally,
representative case studies from the National University Hospital data demonstrate the proposal’s
ability to pinpoint deviation issues, supporting the identification of erroneous records and guiding
correction strategies with practical utility for healthcare practice. Inspired by our case studies, when
data fidelity is low or further declines, the detected data deviations may be closely related to complex
physiological dynamics in clinical settings. This suggests that additional, uncollected EHR data
(even in other data modalities) may need to be gathered and analyzed to fully understand the data
deviations and hence the patient’s physiological state. This remains an open problem and warrants
further in-depth investigation.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We address the underexplored problem of detecting data deviations in EHR
data by proposing a bi-level knowledge distillation approach.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
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model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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• The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present the necessary details in Section 4.1, with additional information
provided in Appendix E. We also include the code in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code in the supplementary materials. Although the EHR
dataset from National University Hospital in Singapore is proprietary, we also evaluate the
proposed approach on the publicly accessible MIMIC-III benchmark, with results reported
in Appendix F ( F.4, F.5, and F.6).
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide implementation details, including data splits and hyperparameter
settings, in Section 4.1 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report detailed statistics on the performance metrics of our proposed
approach.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details on the computational resources used in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We check the NeurIPS Code of Ethics and ensure that this paper complies with
its guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential positive societal impacts and negative societal impacts
of our proposed approach in Appendix G.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

20

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve the release of data or models that pose a high risk
of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We follow the standard procedure for accessing the publicly available MIMIC-
III benchmark dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not involve the release of any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We obtain an IRB approval to conduct research using the EHR dataset from
National University Hospital in Singapore.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notation Table
We adopt the standard convention of using italic symbols (e.g., x) for scalars, bold lowercase (e.g., x)
for vectors, and bold uppercase (e.g., X) for matrices. Table 1 provides a summary of the notations
used throughout the paper. The table is organized into four sections: (i) general notations, (ii)
notations for Data Shapley Value Computation Per Task in Ods (Section 3.1), (iii) notations for
Knowledge Distillation from Ods to Onn (Section 3.2), and (iv) Knowledge Distillation from Onn to
Ψ for EHR Data Deviation Detection (Section 3.3).

Table 1: Summary of notations used.
Notation Description
Ods Data Shapley oracle
Onn Task-specific neural oracle
Ψ EHR data fidelity predictor
t Index of a task or specific application
T Total number of tasks

N (t) Number of samples in task t
K(t) EHR data for task t

k
(t)
i The i-th EHR sample in task t

xi Input features of k(t)i

y
(t)
i Task-specific label of k(t)i for task t

Ψ(xi) Data fidelity of xi

∆Ψ Decline in data fidelity

f (t) Prediction model used in Ods

S A subset of K(t)

m Performance evaluation metric
η
(t)
i Data Shapley value of k(t)i for task t
Φ Uniform distribution over all permutations of K(t)

φ A permutation of K(t)

Sk
(t)
i

φ Samples preceding k
(t)
i in φ

g(t)(x, θ
(t)
g ) Neural oracle Onn for task t

L(t)
ds→nn Knowledge distillation loss from Ods to Onn for task t

ω(t) Weight assigned to L(t)
ds→nn

h(t)(xi) Learned representation of xi in task t

Ψ(x, θ) Final EHR data fidelity predictor as a neural network
o(x) Hidden representation of x learned by Ψ(x, θ)
Lkd Knowledge distillation loss from Onn to Ψ

α(t)(x) Attention weight for task t
Lent Relative entropy constraint from Onn to Ψ
Lsim Similarity constraint from Onn to Ψ

ρt,t′(xi) Output similarity between neural oracles for tasks t and t′

τ Temperature parameter in similarity computation
L Overall loss integrating Lkd, Lent, and Lsim
λkd Weight of Lkd in L
λent Weight of Lent in L
λsim Weight of Lsim in L
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B Extended Related Work

B.1 EHR Data Analytics

In EHR data analytics, heterogeneous EHR data are extensively utilized to support a broad spectrum
of applications, including risk prediction, medication recommendation, clinical trial matching, and
disease progression modeling [20, 22, 41, 90, 24]. To fully exploit the potential of these valuable
data sources, prior studies have investigated multiple methodological directions, such as enhanced
representation learning to improve downstream analytic performance [48, 98, 10, 8, 94, 93, 74],
cohort modeling to uncover shared patterns across patient subgroups [29, 23, 84, 91, 5, 97, 49],
improved explainability and reliability to strengthen clinicians’ trust in model outputs [2, 95, 7, 11,
13, 96, 6, 52], and knowledge-guided decision support to integrate domain expertise into predictive
modeling [12, 53, 92, 51, 70, 81].

Collectively, these methodological advances enhance patient management and optimize healthcare
resource allocation [67, 87], yielding tangible benefits for patients, clinicians, and healthcare institu-
tions. Nevertheless, such progress fundamentally depends on an often implicit assumption—that the
underlying EHR data are of high fidelity. This assumption, though critical, is frequently overlooked
in real-world clinical environments, posing a major challenge for reliable EHR-based analytics.

B.2 Data Valuation and Data Shapley Value

Data valuation provides a principled framework to measure the contribution of individual data
samples to the performance of downstream analytic models [39, 65, 73]. Several strategies have been
developed for this purpose. The leave-one-out approach measures sample importance by evaluating
the change in model performance upon excluding each sample. Influence functions [43] estimate
importance by analyzing the model’s sensitivity to infinitesimal upweighting of a sample.

The data Shapley value [26], inspired by the Shapley value in cooperative game theory [69], has
emerged as a theoretically grounded and equitable method for data valuation. Building on this
foundation, subsequent works have sought to enhance its theoretical and practical properties. For
instance, the distributional Shapley framework [25] generalizes the original formulation by defining
the value of each data point over an underlying data distribution. Beta Shapley [45] introduces a
relaxation of the efficiency axiom of the Shapley value, which is not essential in machine learning
contexts, to achieve desirable statistical properties for efficiency. More recently, a hypothesis testing
framework [82] has been presented to examine the data Shapley value under different utility function
constraints, motivating a class of utility functions that ensure optimal data selection in such scenarios.

Other researchers seek to reduce the computational overhead associated with the data Shapley value.
For example, [38] proposes a suite of techniques to accelerate its computation by introducing specific
assumptions on the utility function, enabling practical estimation algorithms for machine learning
tasks. In contrast, a unified framework called stochastic amortization [15] is introduced to speed
up both feature attribution and data valuation by leveraging amortized computation, which will be
discussed in detail in Appendix B.3.

In addition, the practical utility of the data Shapley value has been evaluated in diverse real-world ap-
plications. For instance, [86] investigates scenarios where a validation set is unavailable and proposes
using the diversity of data samples as an intrinsic property of the dataset, therefore independent of
validation. In another study [77], the data Shapley value is employed to quantify the contribution of
each training sample to the model’s performance in pneumonia detection, using a large chest X-ray
medical imaging dataset.

B.3 Amortized Computation

Amortized computation (or optimization) [1] uses learning-based models, such as neural networks,
to exploit shared structure across similar problem instances, thereby enabling efficient solution
prediction and significantly reducing per-instance computational cost. Compared to non-amortized
methods, amortized approaches can achieve several orders of magnitude in speedup [1], and have
been widely adopted to improve efficiency across various domains.

In meta learning, the Model-Agnostic Meta-Learning (MAML) algorithm [21] is designed to be
compatible with any model trained via gradient descent, enabling the learning of model parameters
that can be easily adaptable. A variant that incorporates implicit differentiation [63] further separates
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the computation of the meta-gradient from the specific choice of the inner-loop optimizer, allowing
the proposal to tackle a greater number of gradient steps without suffering from vanishing gradients
or excessive memory usage.

In explainable machine learning, INVASE [88] performs instance-wise feature selection using a
selector-predictor-baseline architecture trained jointly to identify informative subsets of features,
where the baseline network is devised to train the selector network. FastSHAP [37] further amortizes
the estimation of Shapley values by training an explainer model that approximates them in a single
forward pass, using a stochastic gradient descent objective based on weighted least squares.

In reinforcement learning, guided policy search [47] integrates trajectory optimization to direct policy
learning, mitigating the risk of poor local optima encountered in direct policy search. Similarly,
Stochastic Value Gradients [32] provide a unified framework that leverages backpropagation to learn
continuous control policies more effectively.

Finally, in the context of feature attribution and data valuation, amortized computation is employed
in [15] to address settings where exact labels are unavailable or expensive to obtain. A stochastic
amortization technique is therefore proposed to train neural networks using noisy labels, while still
maintaining strong performance backed by theoretical guarantees.

B.4 Knowledge Distillation

Knowledge distillation [33, 62, 28] is a widely adopted technique for model compression and
acceleration. It facilitates the transfer of knowledge from a large, cumbersome model (“teacher”
model) to a smaller, more efficient model (“student” model). The objectives of knowledge distillation
are multifaceted [36], with two particularly relevant objectives: (i) knowledge compression and (ii)
knowledge adaptation, as described below.

In knowledge compression, the goal is to preserve the predictive performance of the teacher model in
a significantly more compact student model. In [33], for example, the authors distill the knowledge of
an ensemble of models into a single model, achieving competitive performance. In natural language
processing, DistilBERT [66] compresses the BERT model via distillation, resulting in improved
inference efficiency while preserving core language understanding capabilities. FitNets [64] extend
the basic distillation paradigm by training thin and deep student networks using both output predictions
and intermediate representations from wide, shallower teacher networks as additional supervision.

In knowledge adaptation, the student model is trained to generalize to new or unseen target domains
by leveraging knowledge from teacher models trained on related source domains. For instance,
Cycle-Consistent Adversarial Domain Adaptation (CyCADA) [34] enhances domain adaptation by
facilitating the alignment in both the generative image space and that in the latent representation
space while preserving task-relevant semantics. Another example is the Teacher-Student Curriculum
Learning framework [54], where the teacher automatically selects subtasks for the student, enabling
progressive learning through a curriculum-based approach.

C Pseudocode for Core Stages of the Methodology

This section outlines the pseudocode for the three core stages of the proposed bi-level knowledge dis-
tillation approach for detecting data deviations in EHR data. The stages are as follows: (i) computing
task-specific data Shapley values using the data Shapley oracle Ods, (ii) distilling knowledge from
Ods to the corresponding task-specific neural oracle Onn, and (iii) distilling knowledge from Onn to
the unified EHR data fidelity predictor Ψ.

C.1 Algorithm 1: Data Shapley Value Computation Per Task in Ods

Algorithm 1 conceptually describes the computation of data Shapley values, which serve as the
ground truth supervision for the first level of knowledge distillation.

C.2 Algorithm 2: Knowledge Distillation from Ods to Onn

Algorithm 2 details the training procedure for task-specific neural networks g(t)(x, θ(t)g ), which serve
as neural oracles to approximate the data Shapley values produced by Ods.
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Algorithm 1 Data Shapley Value Computation Per Task in Ods

Input:
K(t) = {(xi, y

(t)
i )}N

(t)−1
i=0 : Dataset for task t ∈ {0, . . . , T − 1}

f (t): Prediction model for task t
m(·, f (t)): Performance evaluation metric for task t

Output:
{η(t)i }

N(t)−1
i=0 : Data Shapley values for each task t

1: for each task t ∈ {0, . . . , T − 1} do
2: for each sample k

(t)
i = (xi, y

(t)
i ) ∈ K(t) do

3: Let Sk
(t)
i

φ be the set of data samples in K(t) preceding k
(t)
i in a permutation φ

4: η
(t)
i ← Eφ∼Φ

[
m

(
Sk

(t)
i

φ ∪ {k(t)i }, f (t)

)
−m

(
Sk

(t)
i

φ , f (t)

)]
5: end for
6: end for
7: return {{η(t)i }

N(t)−1
i=0 }T−1

t=0

Algorithm 2 Knowledge Distillation from Ods to Onn

Input:
Dtrain: Training dataloader yielding batches (xbatch, {η(t)batch}

T−1
t=0 )

Dval: Validation dataloader
{g(t)(·, θ(t)g )}T−1

t=0 : Set of task-specific neural oracle models
optg: Optimizer for parameters {θ(t)g }
LMSE: Mean squared error loss function
E1: Max epochs. P1: Early stopping patience. ϵ1: Stability constant for weighting

Output:
Trained models {g(t)(·, θ(t)g )}T−1

t=0

1: Initialize {θ(t)g }T−1
t=0

2: Initialize {L̄(t)
prev ← 1.0}T−1

t=0 (for dynamic per-task loss weighting)
3: for epoch e← 1 to E1 do
4: for all models g(t) do
5: g(t).train()
6: end for
7: for each batch (xbatch, {η(t)batch}

T−1
t=0 ) in Dtrain do

8: optg.zero_grad()
9: Ltotal_w ← 0

10: for all tasks t ∈ {0, . . . , T − 1} do
11: η̂

(t)
batch ← g(t)(xbatch, θ

(t)
g )

12: L(t)
batch ← LMSE(η

(t)
batch, η̂

(t)
batch)

13: Compute dynamic task weight ω(t):
14: ω(t) ← (e = 1)?1.0 : (L(t)

batch/(L̄
(t)
prev + ϵ1))

15: Ltotal_w ← Ltotal_w + ω(t) · L(t)
batch.

16: end for
17: Ltotal_w.backward()
18: optg.step()
19: end for
20: Update {L̄(t)

prev}T−1
t=0 with current epoch’s computed average task losses

21: Perform validation on Dval; if improvement, save {θ(t)g }; check early stopping (P1)
22: end for
23: Load best saved {θ(t)g }T−1

t=0

24: return {g(t)(·, θ(t)g )}T−1
t=0
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C.3 Algorithm 3: Knowledge Distillation from Onn to Ψ

Algorithm 3 describes the training of the final predictor Ψ by aggregating knowledge from the
task-specific neural oracles g(t)(x, θ(t)g ) trained in Algorithm 2.

Algorithm 3 Knowledge Distillation from Onn to Ψ

Input:
Dtrain: Training dataloader yielding batches xbatch
Dval: Validation dataloader
{g(t)(·, θ(t)g )}T−1

t=0 : Trained task-specific neural oracles from Algorithm 2 (frozen)
Ψ(·, θΨ): Unified EHR data fidelity predictor model
A(·, θA): Attention subnetwork
optΨ: Optimizer for θΨ, θA.
τ : Temperature for Lsim. T : Number of tasks
E2: Max epochs. P2: Early stopping patience. ϵ2: Stability constant for weighting

Output:
Trained Ψ(·, θΨ) and A(·, θA)

1: Initialize θΨ, θA
2: Initialize L̄prev,kd, L̄prev,ent, L̄prev,sim ← 1.0 (for dynamic loss term weighting)
3: for epoch e← 1 to E2 do
4: Ψ.train(); A.train()
5: for each batch xbatch in Dtrain do
6: optΨ.zero_grad()
7: Perform model forward propagation:
8: {η̂(t)batch ← g(t)(xbatch, θ

(t)
g )}T−1

t=0

9: {h(t)
batch ← g(t).get_hidden(xbatch)}T−1

t=0

10: Ψ̂batch ← Ψ(xbatch, θΨ); obatch ← Ψ.get_hidden(xbatch)

11: α
(t)
batch ← A(obatch∥h(t)

batch, θA)
12: Compute loss terms:
13: Lkd ← LMSE(Ψ̂batch,

∑
t α

(t)
batch ⊙ detach(η̂(t)batch))

14: Lent ← mean(DKL(αbatch∥Uniform(1/T )))

15: Lsim ← meansamples i∈batch(
∑

0≤t<t′<T α
(t)
i α

(t′)
i exp(−MSE(η̂(t)i , η̂

(t′)
i )/τ))

16: Compute dynamic weights for loss terms:
17: λkd ← (e = 1)?1.0 : (Lkd/(L̄prev,kd + ϵ2)); similar for λent, λsim
18: Ltotal ← λkdLkd + λentLent + λsimLsim
19: Ltotal.backward()
20: optΨ.step()
21: end for
22: Update L̄prev,kd, L̄prev,ent, L̄prev,sim with current epoch’s computed averages
23: Perform validation on Dval; if improvement, save θΨ, θA; check early stopping (P2)
24: end for
25: Load best saved θΨ, θA
26: return Ψ(·, θΨ),A(·, θA)

D Computational Complexity Analysis
The computational complexity of the three proposed algorithms is analyzed below. The following
notations are adopted:

• T : Total number of tasks.

• N (t): Number of data samples for task t.

• M: Number of Monte Carlo permutations for data Shapley value approximation.

• N1 and N2: Total number of training samples in Algorithm 2 and Algorithm 3, respectively.

• E1, E2: Number of training epochs for Algorithm 2 and Algorithm 3, respectively.
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• B1, B2: Batch sizes for Algorithm 2 and Algorithm 3, respectively.

• C
(t)
inf : Computational cost of a single inference (prediction) using the task-specific model

f (t) (Algorithm 1).

• m: Performance evaluation metric. Evaluating m(S, f (t)) on a subset S using a fixed model
f (t) incurs a cost of O(|S| · C(t)

inf ).

• For a generic neural network model Net with parameters θNet:

– Cfwd(Net, batch_size): Cost of a forward pass.
– Cbwd(Net, batch_size): Cost of a backward pass (gradient computation), typically

approximated as Cbwd ≈ β · Cfwd for some constant β ≥ 1.
– Coptim(Net): Cost of updating parameters via an optimizer, typically O(|θNet|).
– Ctrain_step(Net, batch_size): Total cost of a single training step, computed as:

Ctrain_step(Net, batch_size) = Cfwd(Net, batch_size)+Cbwd(Net, batch_size)+Coptim(Net)

• g(t): Task-specific neural oracle.

• Ψ: Unified EHR data fidelity predictor.

• A: Attention subnetwork.

D.1 Computational Complexity Analysis of Algorithm 1

The exact computation of data Shapley values is known to be #P-hard [72, 17]. To address this,
the proposed algorithm adopts a Monte Carlo approximation. For each task t and each of its N (t)

samples k(t)i , the data Shapley value is estimated by averaging the marginal contributions acrossM
random permutations of K(t).

For a given permutation φ, the marginal contribution of k(t)i requires two evaluations of the perfor-

mance metric m: namely, m(Sk
(t)
i

φ ∪ k
(t)
i , f (t)) and m(Sk

(t)
i

φ , f (t)), where Sk
(t)
i

φ denotes the set of
data points preceding k

(t)
i in the permutation, with an expected size of O(N (t)). Hence, computing

one marginal contribution has a time complexity of O(N (t) · C(t)
inf ).

Aggregating across allM permutations and N (t) samples for each task t yields a total complexity of:

O

(
T−1∑
t=0

M ·N (t) · (N (t)C
(t)
inf )

)
= O

(
M

T−1∑
t=0

(N (t))2C
(t)
inf

)

Assuming uniform dataset size and inference cost across tasks, i.e., N (t) ≈ Navg and C
(t)
inf ≈ Cinf_avg,

this simplifies to:

O(T · M ·N2
avg · Cinf_avg)

Moreover, under the high-level asymptotic assumption that the per-sample inference cost is constant,
i.e., Cinf_avg = O(1) +O(logNavg), where the first term arises from the fixed model architecture and
input dimensionality, and the second term accounts for AUC computation, the overall computational
complexity can be expressed as follows:

O(T · M ·N2
avg · logNavg)

D.2 Computational Complexity Analysis of Algorithm 2

In this stage, T task-specific neural oracle models {g(t)}T−1
t=0 are jointly trained for E1 epochs. Each

epoch processes ⌈N1/B1⌉ batches, where N1 is the total number of training samples and B1 is the
batch size. During each batch, a joint training step is performed using a shared loss function Ltotal_w,
involving all T models.
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Let the per-batch training cost for model g(t) be denoted by Ctrain_step(g
(t), B1). The total training

cost across all tasks is given by:

O

(
E1 ·

N1

B1
·
T−1∑
t=0

Ctrain_step(g
(t), B1)

)

Assuming that all task-specific models g(t) have similar computational complexity, we define a
representative per-batch training cost as Cg_train_step(B1), yielding:

O(E1 ·
N1

B1
· T · Cg_train_step(B1))

Further assuming that the per-batch training cost scales linearly with the batch size (i.e.,
Cg_train_step(B1) = O(B1), with a constant factor determined by a fixed model architecture), the
overall time complexity simplifies to:

O(E1 ·N1 · T )

D.3 Computational Complexity Analysis of Algorithm 3

In this algorithm, the unified predictor Ψ and attention subnetwork A are trained for E2 epochs using
⌈N2/B2⌉ batches. The computational cost per batch consists of the following components:

1. Inference from frozen models: Forward passes through the T frozen task-specific models
g(t) to obtain hidden representations h(t), with total cost

∑T−1
t=0 Cfwd(g

(t), B2).

2. Ψ forward pass: Computes the prediction Ψ̂ and hidden representation o, with cost
Cfwd(Ψ, B2).

3. A forward pass: Computes attention scores with cost Cfwd(A, B2).
4. Loss computation:

• Knowledge distillation loss Lkd: O(B2T ).
• Relative entropy constraint Lent: O(B2T ).
• Similarity constraint Lsim: O(B2T

2) (due to pairwise comparisons).
The dominant cost among these is:

Closs_calc = O(B2T
2)

5. Backward pass for Ψ,A: Cbwd(Ψ, B2) + Cbwd(A, B2).
6. Optimizer update for θΨ, θA: Coptim(Ψ) + Coptim(A).

Aggregating these components, the total time is:

O

(
E2 ·

N2

B2
·

[
T−1∑
t=0

Cfwd(g
(t), B2) + Ctrain_step(Ψ, B2) + Ctrain_step(A, B2) + Closs_calc

])
Assuming an average forward pass cost Cg_fwd_avg(B2) for each of the T frozen g(t) models, and
recalling that Closs_calc = O(B2T

2), the total time complexity simplifies to:

O

(
E2 ·

N2

B2
·

[
T · Cg_fwd_avg(B2) + Ctrain_step(Ψ, B2) + Ctrain_step(A, B2) + B2T

2

])

In the high-level asymptotic case where all forward and training step costs scale linearly with batch
size (i.e., Cg_fwd_avg(B2) = O(B2), Ctrain_step(Ψ, B2) = O(B2), and Ctrain_step(A, B2) = O(B2)),
the expression becomes:
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Table 2: Prevalence per task in the original AKI dataset.
Task # Positive %
New or Progressive CKD 941 32.58
Stage 5 CKD Onset 295 10.21
Post-AKI RRT Dependence 118 4.09
Mortality 670 23.20

O

(
E2 ·

N2

B2
· (T ·B2 +B2 +B2 +B2T

2)

)
= O(E2 ·N2(T + T 2))

Therefore, the most simplified dominant time complexity is:

O(E2 ·N2 · T 2)

E Extended Experimental Set-up
This section provides additional details of the experimental set-up for both the AKI (acute kidney
injury) dataset from National University Hospital in Singapore and the publicly available MIMIC-III
benchmark dataset [40].

For both datasets, we partition the extracted samples into 85% for model development and 15% as a
held-out set for computing data Shapley values. Within the development set, we further divide the
data into 80% for training, 10% for validation, and 10% for testing. Model training is performed
using the Adam optimizer. Hyperparameters are selected based on the best validation performance,
measured by the minimum loss L (Equation 12), averaged over three independent runs. The final
model is then evaluated on the test set using the selected hyperparameter configuration. Additional
setup details specific to each dataset are provided in Appendices E.1 and E.2.

The experiments are conducted on a server equipped with two Intel Xeon Gold 6248R CPUs, 768 GB
of memory, and eight NVIDIA V100 GPUs connected via NVLINK. All models are implemented
using PyTorch version 1.12.1.

To evaluate the effectiveness of our proposed bi-level knowledge distillation approach, we compute
the expected EHR data fidelity decline, ∆Ψ, as defined in Equation 1, and use its sign to indicate the
presence or absence of a detected deviation.

E.1 Experimental Set-up on the AKI Dataset

The original cohort from National University Hospital in Singapore comprises 2,888 patients diag-
nosed with AKI (acute kidney injury) [4] between November 2015 and October 2016, with follow-up
data collected over a five-year period to monitor their post-AKI outcomes. We focus on four major
adverse kidney events (MAKE) [68], which serve as four prediction tasks in our setting and reflect
long-term deterioration in kidney function. These events include: (i) the development of new or
progressive CKD (chronic kidney disease), defined as a decline of more than 30% in baseline eGFR;
(ii) the onset of Stage 5 CKD, indicated by eGFR falling below 15mL/min/1.73m2; (iii) dependence
on RRT (renal replacement therapy); and (iv) mortality. The prevalence of each task (i.e., proportion
of positive samples) in the original AKI dataset is summarized in Table 2.

We define a 90-day observation window following the initial AKI diagnosis and use the patients’
laboratory test results within this period as model input. Applying this criterion results in the exclusion
of 651 patients (without laboratory tests in the observation window), yielding a final cohort of 2,237
patients. The objective is to predict the occurrence of the four target events within a subsequent
prediction window. The temporal relationship between the observation and prediction windows is
illustrated in Figure 7. Specifically, we extract 43 distinct types of laboratory tests recorded during
the observation window, comprising a total of 130,755 test entries.

Regarding the hyperparameter settings, the task-specific neural oracle Onn is implemented as a
multilayer perceptron (MLP) with three hidden layers of sizes 32, 16, and 8, respectively. The unified
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Figure 7: Relationship between observation window and prediction window in the AKI dataset.

Table 3: Prevalence per task in the MIMIC-III dataset.
Task # Positive %
Essential hypertension 17573 41.94
Coronary atherosclerosis and other heart disease 13540 32.31
Cardiac dysrhythmias 13458 32.12
Disorders of lipid metabolism 12162 29.02
Fluid and electrolyte disorders 11254 26.86
Congestive heart failure; nonhypertensive 11220 26.78
Acute and unspecified renal failure 8964 21.39
Complications of surgical procedures or medical care 8695 20.75
Diabetes mellitus without complication 8074 19.27
Respiratory failure; insufficiency; arrest (adult) 7566 18.06
Septicemia (except in labor) 5975 14.26
Pneumonia (except that caused by tuberculosis or sexually transmitted disease) 5815 13.88
Chronic kidney disease 5607 13.38
Hypertension with complications and secondary hypertension 5547 13.24
Chronic obstructive pulmonary disease and bronchiectasis 5455 13.02
Acute myocardial infarction 4337 10.35
Diabetes mellitus with complications 3988 9.52
Other liver diseases 3723 8.89
Pleurisy; pneumothorax; pulmonary collapse 3658 8.73
Shock 3291 7.85
Acute cerebrovascular disease 3079 7.35
Gastrointestinal hemorrhage 3067 7.32
Conduction disorders 3011 7.19
Other lower respiratory disease 2168 5.17
Other upper respiratory disease 1702 4.06

EHR data fidelity predictor Ψ is also an MLP, with hidden layers of sizes 64, 32, and 16. The
representation dimension of r(t)(x) in the attention subnetwork (Equation 7) is set to 32. We use a
learning rate of 0.01 for training Onn and 0.0001 for Ψ. The temperature parameter τ in Equation 11
is set to 0.5. Training is conducted for a maximum of 1000 epochs with a batch size of 128. Early
stopping is employed if the validation performance does not improve for 50 consecutive epochs.

E.2 Experimental Set-up on the MIMIC-III Dataset

MIMIC-III [40] (Medical Information Mart for Intensive Care) is a widely used benchmark dataset
in EHR data analytics. It comprises EHR data from over forty thousand patients admitted to intensive
care units (ICUs) between 2001 and 2012. In this study, we adopt the multi-task learning benchmark
established in [31], focusing on the phenotype classification application. This application involves
predicting the presence of 25 distinct acute care conditions (i.e., phenotypes) during a given ICU stay,
formulated as a multilabel classification problem.

In this dataset, a single patient may have multiple hospital admissions, and each admission can
include multiple ICU stays. Following the protocol in [31], we treat each ICU stay as an individual
sample, resulting in a total of 41,902 samples. The goal of phenotype classification is to predict the
presence of specific acute care conditions (phenotypes) for each ICU stay. Detailed descriptions of
the phenotypes and their corresponding prevalences (i.e., the proportion of positive samples) are
provided in Table 3.
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Table 4: Tuning range for hyperparameters on the AKI dataset.
Hyperparameters Tuning Range

Dimensions of g(t)(x, θ(t)g ) [64, 32, 16], [32, 32, 16], [32, 16, 8]
Dimensions of Ψ(x, θ) [128, 64, 32], [64, 32, 16], [32, 16, 8]
Dimension of r(t)(x) {16, 32}
Learning rate of g(t)(x, θ(t)g ) {0.0001, 0.001, 0.01}
Learning rate of Ψ(x, θ) {0.0001, 0.001, 0.01}
Temperature τ {0.5, 1.0, 2.0}
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Figure 8: Hyperparameter sensitivity study results of our proposed bi-level knowledge distillation
approach on the AKI dataset.

For each ICU stay, we extract 17 physiological variables as input features. Each variable is aggregated
across seven predefined time span ranges: the first and last 10%, 25%, and 50% of the stay duration,
as well as the entire time span. Within each time range, we compute six statistical measures per
variable: minimum, maximum, mean, standard deviation, skewness, and the number of recorded
measurements. This preprocessing yields a total of 714 features per sample for subsequent analysis.

The task-specific neural oracle Onn is implemented as an MLP with three hidden layers of dimen-
sions 512, 256, and 128, respectively. The unified EHR data fidelity predictor Ψ shares the same
architecture, also comprising hidden layers of sizes 512, 256, and 128. The representation dimension
of r(t)(x) in the attention subnetwork (Equation 7) is set to 128. We use a learning rate of 0.01 for
training Onn and 0.001 for Ψ. The temperature parameter τ in Equation 11 is fixed at 2.0. Models are
trained for a maximum of 1000 epochs with a batch size of 512. Early stopping is employed based on
validation performance, with a patience of 50 epochs.

F Supplementary Experimental Results

F.1 Hyperparameter Sensitivity Study on the AKI Dataset

We perform a comprehensive hyperparameter sensitivity analysis on the AKI dataset collected from
National University Hospital in Singapore. The tuned hyperparameters and their corresponding
search ranges are summarized in Table 4. The number of training epochs is fixed at 1000, with a
batch size of 128. Early stopping is applied if the validation performance does not improve for 50
consecutive epochs. The sensitivity results are presented in Figure 8. As illustrated, the optimal
validation performance is achieved when the architecture of g(t)(x, θ(t)g ) is configured with layer
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Table 5: Statistical precision of data Shapley value estimates across different Monte Carlo sample
sizes for four prediction tasks on the AKI dataset. Standard Error (SE) measures estimation

uncertainty, while Rolling Variance (RV ) indicates convergence stability.

(a) Mortality and RRT dependence prediction tasks.

Sample Size Mortality Prediction RRT Dependence Prediction

SE (×10−5) RV (×10−9) SE (×10−5) RV (×10−8)

1,000 7.88 3.63 13.57 5.88
2,000 5.56 1.75 10.60 2.85
5,000 3.51 0.69 7.57 1.12
10,000 2.48 0.34 5.79 0.56
20,000 1.76 0.17 4.23 0.28
50,000 1.12 0.07 2.79 0.11
100,000 0.79 0.03 2.01 0.06

(b) New or progressive CKD and Stage 5 CKD onset prediction tasks.

Sample Size New or Progressive CKD Prediction Stage 5 CKD Onset Prediction

SE (×10−5) RV (×10−9) SE (×10−5) RV (×10−8)

1,000 16.19 1.89 24.48 6.42
2,000 11.80 0.91 17.78 3.09
5,000 7.71 0.36 11.83 1.21
10,000 5.51 0.18 8.49 0.60
20,000 3.93 0.09 6.04 0.30
50,000 2.51 0.04 3.83 0.12
100,000 1.78 0.02 2.72 0.06

dimensions [32, 16, 8], and Ψ(x, θ) with [64, 32, 16]. The representation dimension of r(t)(x) is set
to 32. The learning rates for g(t)(x, θ(t)g ) and Ψ(x, θ) are set to 0.01 and 0.0001, respectively. The
temperature parameter τ is fixed at 0.5. This hyperparameter configuration is subsequently applied to
the test dataset for reporting the final evaluation results.

F.2 Evaluation of Ods’s Approximation on the AKI Dataset

Although computing exact data Shapley values would, in principle, yield higher accuracy than
permutation-based approximations, the exact computation is known to be #P-hard [72, 17], rendering
it infeasible for large-scale, real-world datasets such as those used in our experiments. In practice,
permutation sampling remains a widely adopted and theoretically grounded approximation strategy
for data valuation [26, 65].

To assess the influence of this approximation in Ods, we conduct 100,000 independent Monte Carlo
simulations to estimate data Shapley values and evaluate convergence using two complementary
statistical metrics across four post-AKI progression tasks. The results are summarized in Table 5.
Standard Error (SE = σ/

√
n) is used to construct confidence intervals for the estimated values,

following x̄ ± 1.96 · SE for the 95% confidence level. The empirical decay of SE at the rate of
O(n−1/2) is consistent with the Central Limit Theorem, and the final SE falls below one percent
across all tasks. Rolling Variance (RV ) measures temporal stability by computing the variance
of cumulative means over sliding windows of 100 samples, serving as a practical indicator of
when additional samples yield negligible improvements. The observed monotonic decline in RV
demonstrates the statistical stabilization of the data Shapley value estimates.

Collectively, the aforementioned analysis provides both theoretical grounding and empirical evidence
supporting the reliability of the permutation-based data Shapley value approximation employed by
Ods in later stages of this study.
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Table 6: Comparison between our approach and variant teacher fusion strategies.
Fusion Strategy Loss Strategy Description
Our approach 0.008135 Attention-based aggregation as defined in Equation 6
Random weights 0.010720 Fixed random weights across teachers
Simple average 0.028935 Equal-weight aggregation across teachers
Top-2 teachers 0.026531 Aggregation of the two best-performing teachers
Top-1 teacher 0.144956 Use of the single best-performing teacher only

Table 7: Comparison between our approach and variant objective loss functions.
Configuration Loss Modification Details
Our approach 0.008135 Full objective loss as defined in Equation 12
No entropy constraint 0.024595 Lent term removed from objective
No similarity constraint 0.029499 Lsim term removed from objective
Static weighting 0.104307 Fixed λkd, λent, λsim in Equation 12
High temperature 0.017665 Increased temperature for softer distributions (τ = 2.0)
Low temperature 0.109919 Decreased temperature for sharper distributions (τ = 0.1)

F.3 Ablation Study on the AKI Dataset

We first clarify that the knowledge distillation process from Ods to Onn—responsible for deriving
application-specific data valuation for downstream analysis—is an integral component of our approach
and cannot be removed. We then compare our full approach against several weakened variants of
the subsequent distillation step from Onn to Ψ. As summarized in Table 6, our approach, which
integrates an attention-based aggregation strategy, consistently achieves the lowest loss. These results
validate the effectiveness of the proposed teacher fusion mechanism and highlight the necessity of
employing a principled aggregation strategy during knowledge distillation.

We further perform a detailed ablation analysis to examine the contribution of each component in the
overall objective function (Equation 12). In particular, we evaluate the effects of removing individual
loss terms, disabling the dynamic weighting mechanism, and varying the temperature hyperparameter.
As reported in Table 7, our full approach achieves the best performance, while any component’s
removal or alteration results in noticeable degradation. These findings collectively demonstrate that
the interplay among loss terms, dynamic weighting, and appropriate temperature calibration is critical
to achieving optimal knowledge distillation performance.

F.4 Evaluation of Controlled Deviation Injection on the MIMIC-III Dataset

In this section, we evaluate the effectiveness of the proposed Ψ for detecting deviations in EHR data
using the MIMIC-III dataset. We adopt a controlled deviation injection experiment similar to that
conducted on the AKI dataset (Section 4.2), introducing deviations with magnitudes ranging from
0.1σ to 5σ. The comparative results between Ψ and baseline methods are presented in Figure 9.

Consistent with the observations on the AKI dataset (Figure 3), both the baselines and Ψ exhibit
improved AUC performance as the deviation magnitude increases, which aligns with the expectation
that larger perturbations are more easily detectable. However, Ψ demonstrates superior sensitivity
to small deviations. Specifically, it achieves an AUC of 0.91 when the deviation is as small as 0.1σ,
and this performance further improves to 0.94 at 5σ. In contrast, most baseline methods fail to
respond effectively at lower deviation levels and do not reliably distinguish between perturbed and
unperturbed samples.

Among the baselines, One-Class SVM, Local Outlier Factor, and k-Means Distance show negligible
response until the deviation exceeds 3σ, and their performance remains suboptimal even at 5σ. PCA
Reconstruction Error outperforms these methods but only achieves an AUC of 0.8 at 5σ. Gaussian
Mixture Model is the strongest baseline on MIMIC-III, reaching a competitive AUC under 5σ, yet it
remains insensitive to deviations smaller than 1σ, highlighting its limited robustness relative to Ψ.
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Figure 9: Performance comparison between Ψ
and baselines for EHR data deviation detection
on the MIMIC-III dataset.
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Figure 10: Impact of deviation magnitudes on ∆Ψ
(data fidelity decline) after deviation injection on
the MIMIC-III dataset.

Notably, in contrast to the AKI results, the baseline methods on MIMIC-III consistently fall short of
Ψ’s performance, even at higher deviation magnitudes. This suggests that the MIMIC-III dataset,
comprising 25 tasks (phenotypes to classify), poses a more complex deviation detection challenge.
Nevertheless, Ψ maintains high performance across the entire range of deviation magnitudes, demon-
strating the effectiveness of bi-level knowledge distillation from task-specific data Shapley oracles in
enhancing EHR deviation detection.

F.5 Evaluation of Ψ’s Output Sensitivity on the MIMIC-III Dataset

We further assess the output sensitivity of Ψ on the MIMIC-III dataset by measuring the fidelity
decline, denoted as ∆Ψ, under varying magnitudes of injected deviations from 0.1σ to 5σ. The
results are summarized in Figure 10, which reports the median, interquartile range (IQR), and
minimum-maximum range of ∆Ψ.

Consistent with the observations on the AKI dataset (Figure 4), ∆Ψ increases monotonically as the
deviation magnitude grows. Notably, even when ∆Ψ is close to zero, Ψ remains effective at detecting
subtle deviations by leveraging the sign of ∆Ψ as a reliable indicator. This is corroborated by the
high AUC observed in Figure 9 at small deviation levels, reinforcing the ability of Ψ to identify
early-stage deviations that are typically overlooked by baseline methods. This property is particularly
valuable for early warning applications in EHR data analytics.

Additionally, we observe that the absolute values of ∆Ψ on the MIMIC-III dataset are generally
smaller than those on the AKI dataset, suggesting that the output sensitivity of Ψ varies less markedly
with increasing deviation magnitude in this setting. Furthermore, ∆Ψ can be negative under small
deviations, indicating occasional prediction errors by Ψ in extreme cases. These findings underscore
the increased difficulty of the MIMIC-III scenario, consistent with the baseline performance degra-
dation reported in Appendix F.4. Nevertheless, Ψ continues to deliver robust deviation detection
performance, even in this more complex and diverse application context.

F.6 Comparison with Rule-based Methods on the MIMIC-III Dataset

Existing rule-based methods that incorporate domain knowledge—particularly for laboratory test
data—mainly focus on detecting values that fall outside normal physiological ranges [71, 85, 83].
In this study, we refer to a publicly available list of clinically validated variable ranges associated
with the MIMIC-III multi-task learning benchmark. This list, developed in consultation with clinical
experts, reflects their domain understanding of physiologically plausible measurement intervals [83].
Each variable is defined by upper and lower bounds specifying the physiologically acceptable range,
and any observed value that lies outside these thresholds can be flagged as abnormal. This constitutes
a straightforward, domain-informed rule-based detection method.

We summarize key features from our dataset and report their empirical means and standard deviations
(std σ) alongside the corresponding clinically valid ranges in Table 8. It is noteworthy that the
clinically defined ranges typically span more than 10σ, which is substantially broader than the
deviations considered in our experiments (limited to perturbations up to 5σ). Consequently, such
rule-based methods can only identify overt abnormalities and are insufficient for detecting more
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Table 8: Statistics and clinically valid value ranges for key features on the MIMIC-III dataset.
Feature Mean Std Valid Low Valid High Valid Range/Std
Diastolic blood pressure 59.57 15.26 0.00 375.00 24.57
Fraction inspired oxygen 0.47 0.26 0.21 1.00 3.08
Glascow coma scale total 11.44 3.74 3.00 15.00 3.21
Glucose 138.27 67.38 33.00 2000.00 29.19
Heart rate 101.39 32.85 0.00 350.00 10.66
Mean blood pressure 78.37 18.20 14.00 330.00 17.36
Oxygen saturation 96.82 4.25 0.00 100.00 23.55
Respiratory rate 24.65 14.68 0.00 300.00 20.44
Systolic blood pressure 119.65 25.74 0.00 375.00 14.57
Temperature 36.90 0.85 26.00 45.00 22.43

subtle yet clinically meaningful deviations. In contrast, our proposed Ψ is specifically designed to
detect small-magnitude deviations often overlooked yet potentially impactful (see Figures 3 and 9).
This capability enables earlier clinical intervention and supports more reliable data quality assurance
in real-world healthcare settings.

G Broader Impact
The proposed bi-level knowledge distillation approach enables reliable detection of potential data
deviations in EHR data arising from sources such as pre-analytical variability, documentation errors,
or unvalidated data sources. By assessing the EHR data fidelity, the approach enhances the reliability
and accuracy of downstream clinical decisions and interventions. As such, it represents a promising
direction for improving data acquisition, collection, and recording protocols and may serve as a
foundation for future error correction and calibration mechanisms.

Beyond these technical contributions, it is essential to involve clinicians and healthcare professionals
when applying EHR deviation detection in clinical practice. In particular, a decline in data fidelity
may not solely stem from artifacts or errors—it may also reflect meaningful underlying physiological
dynamics related to iatrogenic reasons, or medical interventions, reflecting the complex interplay
of various acute medical conditions that occur concurrently in real-world patients [78]. In such
cases, additional contextual information or multimodal data sources may be required to interpret
these deviations accurately and to understand the patient’s clinical condition. For example, from
a nephrological perspective, acute dialysis introduces substantial fluctuations in renal function
measurements. These fluctuations do not align with the progressive trajectory of worsening or
severe renal failure but instead reflect the treatment-induced modulation of physiological parameters.
Consequently, our approach for detecting EHR data deviations may not be limited to removing
erroneous entries or correcting recording mistakes. Rather, it can facilitate disease-specific analysis
by filtering out concurrent medical noise that arises from complex patient care processes, where
multiple acute diseases, transfusions, infusions, and medications jointly influence observed trends.
Addressing these challenges necessitates collaborative efforts between computational researchers and
domain experts, and highlights an important open area for future investigation.
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