Under review as a conference paper at ICLR 2026

GENERALIZING SUBGOALS FROM SINGLE INSTANCES
USING HYPOTHESIS-PRESERVING ENSEMBLES

Anonymous authors
Paper under double-blind review

ABSTRACT

A reinforcement learning agent trained on a single source subgoal has no way
to determine during training which features will be relevant for future instances
of that same subgoal. This creates ambiguity: multiple plausible models of a
subgoal can fit the training data but not all will successfully transfer. Humans
address this ambiguity by maintaining alternative hypotheses until new informa-
tion reveals the most effective one. Drawing inspiration from this, we introduce
a hypothesis-preserving ensemble in which each member is a distinct, plausible
subgoal classifier trained on the same source task. The agent then tests these alter-
native hypotheses in a new task, learning policies for the corresponding subtasks
and uses task reward to select the most effective classifier. Experiments on Mon-
tezuma’s Revenge and MiniGrid DoorMultiKey show that our method recovers
subgoals learned in the source task, successfully adapting them to visually differ-
ent tasks.

1 INTRODUCTION

Humans often solve new problems by identifying familiar structures: a repeated pattern, an interme-
diate milestone, a known bottleneck. Recognizing these elements allows us to adapt prior strategies
instead of starting from scratch, a key driver of efficient generalization (Newell et al., [1972; (Gick
& Holyoakl [1983). Hierarchical reinforcement learning (HRL) (Barto & Mahadevan, |2003) offers a
similar advantage: decomposing a task into subtasks, defined by subgoals, enables subtask recogni-
tion in new settings.

Most prior work on subgoal generalization assumes access to multiple training tasks or predefined
goals (Hutsebaut-Buysse et al.| [2022). We instead consider the case where all training data comes
from a single task—a natural constraint in domains such as robotics and navigation (Nguyen-
Tuong & Peters| [2011; Thrunl [2002). In this regime, multiple subgoal interpretations fit the training
data equally well, yet only some transfer when environments change, an inherent ambiguity that
cannot be resolved from limited data alone. Humans address this ambiguity by maintaining mul-
tiple competing hypotheses, discarding them only when new evidence appears (Anderson et al.,
2015)). Standard machine learning pipelines instead commit to a single model, risking overfitting to
spurious correlations (Dietterich, [2000; De Haan et al., 2019). Rather than aggregating ensemble
predictions to approximate a single correct answer, we preserve multiple distinct interpretations and
defer commitment until future results discriminate among them—a fundamental paradigm shift
from standard machine learning methods.

Our approach uses a hypothesis-preserving ensemble, where each member represents a distinct,
plausible model of the target subgoal. A high-level policy tests these hypotheses in a new task,
learning policies for the corresponding subtasks and using task reward as a guide for identifying
the most effective classifier. This deferred commitment to a model improves generalization and
enables subgoal reuse without retraining. We evaluate on Montezuma’s Revenge and MiniGrid,
showing that our approach improves subgoal generalization in new tasks, allowing for the reuse
of task decompositions from prior experience. By explicitly representing and resolving subgoal
ambiguity, we provide a principled framework for HRL that adapts discovered subgoals to new
tasks without direct supervision.

Under review as a conference paper at ICLR 2026

2 BACKGROUND

We consider a Markov Decision Process M = (S, A, r,p,), where S denotes the state space, A is
the action space, p(s¢+1]|st, a;) the transition dynamics and r (s, a;) a scalar reward function. The
objective in RL is to find a policy 7 (a|s) that maximizes the expected cumulative discounted reward.
A task is an MDP T = (S, A, 71, p,y) where r encodes the task goal G7-. Complex tasks can
be decomposed into subtasks, ¢, each defined by an intermediate subgoal g;. A subgoal induces a
reward function r4, which returns 1 when the subgoal is satisfied and 0 otherwise. Task rewards are
provided by the environment while subgoal rewards are derived from learned classifiers.

We focus on the regime where all training data is collected from a single training task. In this setting,
the agent must learn a subgoal classifier from limited, homogeneous data that must hold in new tasks
with different layouts or visual features. Robust subgoal generalization in this regime is necessary
for the agent to recognize familiar subtasks in future tasks without retraining.

We build on hierarchical RL, where a high-level policy selects among temporally extended actions,
Options (Sutton et al) [1999) in this work, as temporally extended actions defined by the tuple
(Io, 70, Bo). The initiation set, I, : S — {0, 1}, specifies where the option can start. The option
policy 7, : S — A is a controller that transitions the agent from states in I, to states in 3,. The
termination set, 3, : S — {0, 1} is the set of states in which option o successfully terminates;
a subgoal. The termination condition is a learned subgoal classifier. Generalizing this classifier
beyond the training task allows for identifying familiar subtasks in new tasks.

3 RELATED WORK

Subgoal Generalization and Recognition In symbolic Al, goal and plan recognition methods in-
fer an agent’s intent from partial observations (Kautz et al. |1986; Ramirez & Geffner, [2010; Baker
et al., [2009), and hierarchical planners extend these ideas for richer temporal reasoning (Geib &
Goldman, [2009). In RL, goal inference has been explored through universal value function ap-
proximators (Schaul et al.| 2015a)), hindsight experience replay (Andrychowicz et al. 2017) and
unsupervised skill discovery (Eysenbach et al., 2018), as well as subgoal transfer in robotics (Kang
& Kuol [2025) and multi-agent settings (Xu et al.| [2024). These approaches typically assume that
data is available from multiple tasks, explicit goal conditioning or focus on generalization to chang-
ing reward functions. By contrast, we study generalization when all training data is drawn from a
single task, requiring subgoal definitions to extend to unseen portions of the state space. Related
HRL transfer methods such as portable options (Konidaris & Barto), 2007), successor features (Bar-
reto et al.,|2017) and the option keyboard (Barreto et al., 2019) also requires multiple tasks, assume
known goal mappings or focus primarily on reward-function changes.

Subgoal Discovery Early methods identify bottleneck states via diverse density (McGovern &
Barto, [2001)), betweenness centrality (Menache et al., 2002) or novelty measures (Simsek & Barto,
2004). Later work leverages environment dynamics e.g. Laplacian option discovery (Machado et al.,
2017) and successor-representation clustering (Jinnai et al.,2019). These focus on finding subgoals,
not on generalizing them across environments from a single task.

Generalization from Limited Experience Techniques such as auxiliary objectives (Jaderberg
et al.,2016])), contrastive representation learning (Laskin et al., 2020), domain randomization (Tobin
et al.| [2017) and meta-learning (Finn et al., 2017) improve robustness to distribution shifts. While
effective for policy learning, they do not address the ambiguity of subgoal definitions when learning
from limited data. Broader ML work on under-specification (D’ Amour et al., 2022) formalizes this
ambiguity.

Ensemble Methods in RL. Ensembles have been used for variance reduction (Wiering & Van Has-
selt, [2008)), exploration (Osband et al., [2016)), model-based planning (Chua et al., 2018} Janner et al.,
2019) and robustness (Lakshminarayanan et al.| 2017} [Lee et al., [2021). Our use differs in that we
preserve multiple plausible subgoal definitions learned from a single task, deferring selection until
new task data is available.

Under review as a conference paper at ICLR 2026

4 SUBGOAL GENERALIZATION WITH DATA FROM A SINGLE TRAINING TASK

We now consider the central question of this work: how can an agent, trained using data from only a
single task, recognize the same subgoal in a new task which may differ in layout or appearance? This
constraint models many real-world domains where collecting diverse training tasks is impractical,
yet robust subgoal recognition can enable the reuse of learned skills. Limited and homogeneous
data leaves the subgoal definition under-specified and this ambiguity must be resolved to generalize
effectively.

In this regime, the agent observes one task 7y, and a single instance of each discovered subgoal.
Positive examples are states that satisfy the subgoal while negative samples are those that do not.
Because all data comes from this single task, the learned definition must extend beyond the specific
layout and appearance seen in training. At test time, the agent encounters a new task 7 that
may differ substantially, and must decide whether states in this new task satisfy the same subgoal.
Accurate recognition allows the agent to draw on prior information to improve performance without
additional subgoal training.

4.1 UNDER-SPECIFICATION IN SUBGOAL LEARNING

When all training data comes from a single task, many features may consistently co-occur with
a subgoal even if they are irrelevant. Without variation across tasks, the agent never encounters
counter-examples that would separate spurious correlations from genuine defining features. This is
an information-constrained problem: the data simply does not contain enough information to isolate
the true subgoal definition, making it impossible for any one model-—however sophisticated—to
guarantee generalization.

Formally, let S be the state space, C a hypothesis class of binary classifiers ¢ : S — {0,1} and
Diubgoal a finite set of N labeled states drawn i.i.d. from a single training-task distribution P, with
supp(Prrain) & S. We say ¢* € C is identifiable from Dgypgoar if

VeeC, [V(s,y) € Dsubgoal; ¢(s) = y] = c=c". (1)

Since modern classifiers (e.g. deep nets) have VC dimensions > N, it follows that one can construct
two functions in C that both fit all training points in Dgypeoa but differ on at least one unseen state in
S \ Dsubgoal- Lemma 1 formalizes this non-identifiability (see Appendixfor proof).

Lemma 1. Let Dypgoar = {8i)11 and U = S \ Dyungoar- If U # () and there exist c1,co € C such
that c1(s;) = ca(si) = y; for all (5;,Y;) € Dsupgoar but c1(u) # co(u) for some v € U, then no
c* € C is identifiable from Dy goar.

This lemma makes precise that the version space V(Dsubgoal) contains multiple equally consistent
subgoal definitions whenever any state lies outside the training set. A learner in this regime must
commit to one of many plausible classifiers—exactly the ambiguity our hypothesis-preserving en-
semble is designed to avoid.

Consider Figure|[T} the left state satisfies a known subgoal, while the middle state does not. The agent
must infer semantics of objects and their positions through environment interaction and observed
reward. Now consider the state on the right: does it satisfy the subgoal? Several hypotheses are
equally consistent with the training data—for example: (1) the presence of objects in the highlighted
grid spaces (2) the presence of specific shapes (e.g. the circle) anywhere in the environment (3) the
square is in a highlighted grid space. Each fits the training data but predicts differently for the
unlabeled state.

This ambiguity is fundamental to this setting: any feature aligned with the subgoal during training
will appear predictive, even if irrelevant elsewhere. Overcommitting to one hypothesis risks encod-
ing task-specific features that fail to generalize. By maintaining multiple plausible hypotheses, we
avoid prematurely discarding viable classifiers, resolving ambiguity later using information—such
as task reward—from new tasks.

Under review as a conference paper at ICLR 2026

Training task New task
In subgoal Not in subgoal ‘7

FEEHPEEH | P
[t | s

Figure 1: Subgoal recognition from a single training task is inherently under-specified. In the
training task, the first state satisfies the subgoal while the second does not. Faced with the third
state—drawn from a new task—the agent must decide whether it also satisfies the subgoal. With
training data from a single task, multiple equally consistent definitions exist, and without resolving
this ambiguity, subgoal classifiers may fail to generalize.

L]

5 LEARNING GENERALIZING SUBGOAL CLASSIFIERS

Given a subgoal defined by data collected in a single training task, our goal is to determine whether
that subgoal is satisfied in new tasks which may differ in layout or appearance. As shown in Section
[4.1] this setting leaves the subgoal definition under-specified: multiple plausible interpretations fit
the training data and no single model is guaranteed to be correct. To address this, we maintain a set
of competing hypotheses, each representing a distinct, consistent definition of the subgoal’s features.
Preserving these alternatives reduces the risk of overfitting to spurious correlations and increases the
chance that at least one hypothesis will transfer. Detecting previously identified subgoals in new
tasks allows for reusing previously discovered structures without additional training.

Rather than committing to one classifier during training, we maintain an ensemble, deferring select-
ing until task-level information is available. We show

Er [r?éigc Rt (c)} > I?EaCX Er [RT (c)} 2)

where Ry (c) is the cumulative reward earned by running classifier c in task 7. Per-task hypothesis
selection therefore can never underperform a fixed classifier (see Appendix |A|for more details).

5.1 HYPOTHESIS GENERATION

We model each subgoal as a binary classifier mapping states to 1 when the subgoal is satisfied and 0
otherwise. In this regime, the training data supports multiple plausible classifiers—each consistent
with the observed examples but relying on different features. To preserve this ambiguity, we main-
tain a set of hypotheses, modeled as an ensemble of classifiers C = {c1, ¢a, . .., ¢, } where each ¢,
represents a distinct interpretation of the subgoal.

To encourage broader coverage, we promote diversity through one of two mechanisms. First, im-
plicit diversity arises from random initialization. Second, we apply an explicit diversity objective
using the DivDis algorithm (Lee et al.,[2022)), which encourages classifiers to disagree on unlabeled
data by minimizing mutual information between classifiers:

pzy(yuyj)
L (ci, ¢5) Pij (Yi, yj) log ———"— €)]
! Z%: ! ! pi(yi) pi(y;)

while maintaining low cross-entropy loss on labeled examples:

Lyent(¢i) = Eq ye D, [e(e (2),9)] -)

The mutual information term is computed over an unlabeled dataset Dypy,p, gathered through explo-
ration in the environment. Although this data lacks subgoal labels, they provide variation that helps
classifiers develop complementary models and encourages diversity. Other diversity-promoting en-
semble methods (e.g., D-BAT (Pagliardini et al., 2022))) could be used in place of DivDis, as our
framework is agnostic to the specific ensemble learning technique

Under review as a conference paper at ICLR 2026

Algorithm 1 Learning transferable subgoals and hypothesis selection via reward maximization

Input: Dg_, Dyniap, max steps step,,,,, option timeout 77,

Classifier training
randomly initialize all f; € C'
for each classifier f; € C do
train f; minimizing 10ss Lxen: 0N Dg,
For DivDis variant add additional loss term L1 on Dynap
end for
Policy initialization
Initialize 7,, for each f; € C, Initialize 7y,
Policy training

step <— 0
while step < step,,,, do
i+ mh(s) > 7, selects option index
Teurrent < To;» t«0
while f;(s) # 1and t < T, do > execute until subgoal reached or timeout
a < m;(s) > get action from option policy

s <+ execute a in environment and observe s’
steps<— steps + 1, ¢t <t + 1
Update 7,, using subgoal pseudo-reward
end while
Update 7y, using task reward
end while

This ensemble serves as a structured representation of the ambiguity inherent when training data is
limited and homogeneous. Each classifier encodes a distinct, consistent interpretation of the subgoal,
allowing the agent to defer commitment until task-relevant information reveals which definition
generalizes best.

5.2 REWARD-GUIDED HYPOTHESIS SELECTION

Each hypothesis ¢,, € C defines a distinct subgoal and we learn a corresponding option o,, with
policy 7, to achieve the corresponding subtask. Each classifier c,, induces a sparse reward function
and 7,,, is trained to maximize that reward, learning to achieve the hypothesized subgoal c,,.

Because the environment has no direct subgoal supervision—and the task reward, the only available
signal of success, is not guaranteed to align with the learned subgoals—direct evaluation of which
subgoal hypothesis is most appropriate is not possible. Instead, we use task reward as an indirect
signal to assess which subgoal transfers most effectively. We define the most generalizable subgoal
as the one whose associated option yields the highest cumulative reward in the current task—not
because it is universally correct, but because it best aligns with the demands of the new task.

A high-level policy selects among the option policies to maximize task reward. By learning a Q-
function over the option set, the agent implicitly identifies which subgoal hypothesis best supports
task completion. We train both the high-level and option policies jointly (see Algorithm TJ).

6 EXPERIMENTS

Our experiments are designed to evaluate whether preserving multiple plausible subgoal hypotheses
improves an agent’s ability to recognize subgoal states under visual changes and effectively guide
option policies. Specifically, we aim to answer:

1. Data Efficiency: How much labeled data is required for a subgoal classifier to correctly
identify the same subgoal across visually distinct tasks?

2. Hypothesis-Driven policy Learning: Once a subgoal can be identified in a new task, can
the agent learn an effective option policy for it?

Under review as a conference paper at ICLR 2026

3. Task-Level Performance: Does hypothesis-guided option learning improve the agent’s
ability to solve sparse-reward tasks compared to single-model baselines?

4. Reward-Guided Disambiguation: Can task reward reliably select the subgoal hypothesis
that best matches the demands of the current task?

Each experiment isolates one of these questions, progressively building towards a fully integrated
hierarchical agent that uses a hypothesis-preserving ensemble to guide policy learning for subgoals
detected in new tasks.

We use two visually rich domains with pixel-based state spaces. Montezuma’s Revenge (Belle-
mare et al., [2013; Machado et al.| |2018) is used to test hypothesis quality in isolation, focusing on
whether at least one preserved hypothesis correctly identifies the target subgoal in visually distinct
tasks with different layouts. Minigrid DoorMultiKey (Chevalier-Boisvert et al.| 2023)) evaluates the
full pipeline from subgoal recognition to option execution in a sparse-reward setting, reusing the
same task decomposition as in training. To ensure controlled evaluation, all experiments use prede-
fined subgoals, which both isolates subgoal recognition and hypothesis selection from the separate
challenge of subgoal discovery, and enables direct comparison to a known ground-truth definition.
See Appendix |C|for hyperparameters and experiment setup and pseudocode.

6.1 DATA EFFICIENCY

This experiment measures how the amount of labeled subgoal data affects the ability of our
hypothesis-preserving ensemble to correctly identify a target subgoal across visually varied tasks.
We isolate recognition performance from downstream control, focusing solely on whether at least
one ensemble member generalizes beyond the training task.

Montezuma’s Revenge is a visually complex Atari game made up of multiple rooms, each with
distinct objects and layouts, making it an ideal domain for validating subgoal recognition. We
define a ClimbDownLadder subgoal, which is satisfied when the agent is positioned at the base
of a ladder. We incrementally expand the training set by adding labeled examples from additional
rooms containing ladders. After each addition, all models are retrained and evaluated on data from
all ladder rooms, including those not yet represented in the training set (see Algorithm[2]in Appendix
@. Data from unseen rooms, with and without ladders, is used as unlabeled data. This experiment
measures how increasing intra-task variation in the data affects generalization to unseen tasks.

We compare a single convolutional classifier with two hypothesis-preserving ensemble variants:
a standard ensemble, which gains diversity through random initialization, and DivDis which en-
courages diversity explicitly during training. For ensembles, we report the accuracy of the best-
performing member, reflecting the goal of retaining at least one valid hypothesis.

As shown in Figure 2] both ensembles outperform the single classifier when trained on data from a
single room—the setting with highest ambiguity—indicating that maintaining multiple hypotheses
increases the likelihood of capturing generalizing features. Note the CNN—a single model—barely
outperforms random guessing on the binary classification problem. Accuracy improves sharply
when labeled data from a second room is included, showing the benefit of even small increases
in visual diversity. As more varied data is introduced, all methods show the same performance,
validating the earlier theoretical result that deferring selecting is equal to or greater than learning
a single model. The standard and DivDis ensembles achieve similar mean accuracy, with DivDis
showing a slightly lower variance across seeds. These results support the claim that preserving
multiple plausible hypotheses enables data-efficient subgoal identification in new tasks.

6.2 HYPOTHESIS-DRIVEN POLICY LEARNING

We next evaluate whether subgoal hypotheses can support the learning of effective option policies
in new tasks. This step bridges subgoal identification and downstream control, testing whether a
hypothesis learned from only the training task is accurate enough to serve as an effective termination
condition when training a new policy from scratch in a visually different task.

We again use the Montezuma’s Revenge ClimbDownLadder subgoal. As in the previous exper-
iment, we incrementally add training data from each ladder room. After each addition, we train an
option policy in each ladder room for the best performing ensemble member, using only the classifier

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
37
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1.0 250

wawi CNN
s Standard Ensemble
mmr DivDis Ensemble

N
o
=]

150

=
o
=]

—e— CNN
—== Standard Ensemble
------- DivDis Ensemble

Distance from Termination

5
S

0.5

1 2 3 4 1
* Number of Seen Tasks * Number of Seen Tasks

Figure 2: Accuracy of the best performing en- Figure 3: Average Manhattan distance between
semble member as more labeled data is pro- policy termination point and the ground-truth
vided. Results are averaged over 10 seeds and subgoal; bars represent standard deviation over
bands represent standard deviation. Star indi- the last 100 option executions (lower is better)
cates when only one task is provided during averaged over 10 seeds. Star indicates when
training. only one task is provided during training.

CECCECEETRe, TTIT

HRRN RS8N IR

#
o o
™
e
e
gy iy
™
e
My M S ™
S
e
S ™
o o

' OCNN + Standard Ensemble DivDis

Figure 4: Scatter plot of termination locations for 100 skill executions of a single subgoal and policy,
trained on data from two ladders for an unseen task. The agent begins atop the ladder in the middle
room; climbing down leads to the right room, while moving left places the agent in the left room.
Only the best-performing ensemble member is shown.

as the option termination condition. We use Deep Q-Networks 2015) (DQN) with pri-
oritized experience replay (Schaul et al.,[2015b)) for the option policies, trained using a sparse reward
defined by the learned classifier (1 in subgoal states and 0 otherwise), without ground-truth subgoal
data. Each policy is trained for 300000 steps in each room which is sufficient for convergence.

Performance is measured by the average Manhattan distance between the policy termination state
and the true subgoal location, averaged over 100 executions after policy training completes. We
show the performance of each method, averaged over all ladder rooms, in Figure 5] Because this
metric does not provide an intuitive idea of how useful the learned policies are, we focus on relative
performance and provide a scatter plot (Figure) which shows where each policy terminated across
the 100 evaluation executions, providing a qualitative visual analysis of classifier quality.

From Figure[3] both the standard and DivDis ensembles produce option policies whose terminations
are closer to the true subgoal than those trained with a single CNN. When trained on data from
a single task—which is our primary focus—both ensembles outperforming the CNN, with DivDis
almost halving the average Manhattan distance achieved by the CNN. While the classifier accuracies

Under review as a conference paper at ICLR 2026

in Figure E] showed little difference between the standard and DivDis ensembles, we see a clear
performance gain from using explicit diversity for one room of training data during policy learning.
The first room in Montezuma’s Revenge has the largest visual difference to all other ladder rooms
and thus shares the fewest features with the other tasks; in such cases, where visual differences are
substantial, explicit diversity has a measurable effect. This effect diminishes as the training data
better captures the variation present in future tasks.

Figure] shows the termination locations for an unseen task, for option policies trained using classi-
fiers learned from two rooms of labeled data. The agent begins at the top of the ladder in the middle
image and can either move left to reach a ladder base or climb down the ladder to the base shown in
the right image. Only fully terminating ladders are provided during training, so the agent has never
seen labeled examples resembling the right room, where the ladder continues through the floor. Nev-
ertheless, both ensemble methods generalize to this variant, which is a valid ClimbDownLadder
subgoal despite never being observed during training. By contrast, the CNN-based policy never
terminates at this ladder base, failing to generalize to this case. While all classifiers occasionally
misclassify termination states in the center of the ladder in the center figure, from the left image we
see that the CNN is the most inconsistent—sometimes terminating when the agent is not close to the
ladder—whereas both ensemble methods terminate consistently near the base.

These results validate the effectiveness of hypothesis-driven policy learning, reinforcing the claim
that maintaining multiple hypotheses enables better subgoal generalization which can be leveraged
for future policy learning. They also show that encouraging diversity during training improves
subgoal detection, particularly when the training and test tasks differ substantially.

6.3 TASK-LEVEL PERFORMANCE

Having demonstrated that hypothesis-driven subgoal generalization can support learning effective
option policies, we now evaluate whether this task decomposition can be adapted to a new task. We
use the Minigrid DoorMultiKey environment, a modification on the sparse-reward DoorKey task,
where the agent must collect a key to unlock a door to reach the goal location, with additional
distractor keys. This forces the hierarchical agent to distinguish between relevant and irrelevant
subgoals as well as allowing for additional visual variation among tasks.

We define five subgoals for this task: CollectBlueKey, CollectGreenKey,
CollectRedKey, OpenRedDoor and GoToGoal. Two of these subgoals—
CollectBlueKey and CollectGreenKey—are not required to complete the test tasks.
Including non-essential subgoals increases the decision complexity for the high-level policy, which
must learn not only to select the most useful subgoal hypotheses but also to disregard subgoals that
are irrelevant to the current task. Labeled data for all subgoals is collected from a single training
task (seed 0), while unlabeled data is gathered from two additional seeds that are not included in the
test task set.

Our hierarchical agent is trained as described in Algorithm[I} The high-level policy is a PPO agent
(Schulman et al.} 2017), that selects among option policies, each implemented as described in the
previous option policy experiment. The action space consists of three hypotheses per subgoal; 15
available actions for the PPO agent.

We evaluate hierarchical agents using standard and DivDis ensembles, as well as a CNN-based
option agent (five actions, one per subgoal). We no longer use only the best performing ensemble
member and the hierarchical agent must determine which hypothesis best aligns with the current
task. For reference, we include a hierarchical agent with oracle termination classifiers, representing
the best achievable performance for the option-based agents. We also ablate the hierarchy by training
flat DQN and PPO agents with access to only the primitive actions.

Figure[5|shows the average undiscounted episode reward. The PPO and DQN agents fail to complete
the task with distractor keys which substantially enlarge the state space and make exploration diffi-
cult. The CNN-based option agent under-performs both ensemble-based methods, confirming that
maintaining multiple hypotheses improves subgoal generalization. Both ensemble methods achieve
near-optimal performance over time, closely matching the perfect-termination baseline. This con-
firms that we can reuse a previously beneficial task decomposition in new tasks by learning multiple
hypotheses, selecting the best fitting hypothesis at test time.

Under review as a conference paper at ICLR 2026

0.8
)
—— DQN
0.6 PPO
- DivDis
---- Standard
04 | —— CNN /
---— Perfect

02 (a) OPENREDDOOR: (b) OPENREDDOOR:

e the least picked. the most picked.
0.0 S —

0.0 0.2 0.4 0.6 0.8 1.0 12 14
Environment Steps 1le6

Average Undiscounted Episode Reward

Figure 5: Average undiscounted reward for the
modified MINIGRID DOORMULTIKEY envi-
ronment. All results are averaged over 10 seeds
and bands represent standard error. DivDis,
Standard, CNN and Perfect are all option agents

using the corresponding method for option ter- (c) GOTOGOAL: tied (d) GOTOGOAL: tied
mination classifiers. The perfect termination for most picked. for most picked.

agent is the best performance we can expect

from any option agent. Figure 6: Overlaid termination states identified

by members of the DivDis ensemble.

6.4 REWARD-GUIDED DISAMBIGUATION

To assess whether reward maximization can reliably identify the most useful subgoal hypothesis,
we compare the termination sets of the most- and least-selected ensemble members in the MiniGrid
DoorMultiKey environment. Figures |6p) and [p|illustrate two members of the OpenRedDoor sub-
goal. The least-chosen hypothesis (Figure produces termination points scattered throughout the
room, failing to consistently position the agent near the door. By contrast, the most-frequently se-
lected hypothesis (Figure always terminates directly in front of the open door, closely matching
the true subgoal. A similar pattern emerges for the GoToGoal subgoal in Figures|dc|and[fd} highly
selected hypotheses terminate exclusively at the goal position, whereas the least-selected ensemble
member fails to identify any valid subgoal state in the new task and consequently never terminates
its option policy successfully.

Across multiple subgoals, the high-level policy consistently favors hypotheses that lead to higher
cumulative reward. This behavior shows that reward-driven selection acts as an implicit supervision
signal, filtering out ineffective subgoal classifiers and retaining only those that support successful
task completion. This mechanism allows the agent to defer commitment during training, then resolve
subgoal ambiguity by selecting the hypothesis most aligned with the demands of the current task
without requiring any subgoal labels in the target task.

7 CONCLUSION

We studied the problem of subgoal generalization when all available training data is drawn from a
single task, where limited and homogeneous samples result in under-specified subgoals. We formal-
ized this ambiguity and introduced a hypothesis-preserving ensemble that maintains multiple plau-
sible hypotheses of a subgoal’s defining features, deferring commitment until task-level evidence is
available. Across Montezuma’s Revenge and MiniGrid DoorMultiKey, this approach improves sub-
goal recognition, supports effective option learning without direct subgoal supervision and requires
only task-reward to identify the most effective hypothesis. By explicitly representing and resolving
ambiguity, our method provides a principled framework for adapting learned decompositions to new
tasks under severe data constraints.

Under review as a conference paper at ICLR 2026

REFERENCES
John R Anderson et al. Cognitive psychology and its implications. Worth Publishers,, 2015.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding as inverse planning.
Cognition, 113(3):329-349, 20009.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygiin, Philippe Hamel, Daniel
Toyama, Shibl Mourad, David Silver, Doina Precup, et al. The option keyboard: Combining skills
in reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1):41-77, 2003.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279,
jun 2013.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Alexander D’ Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Hoffman, et al. Underspecifica-

tion presents challenges for credibility in modern machine learning. Journal of Machine Learning
Research, 23(226):1-61, 2022.

Pim De Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning. Ad-
vances in neural information processing systems, 32, 2019.

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop on multi-
ple classifier systems, pp. 1-15. Springer, 2000.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126—1135. PMLR, 2017.

Christopher W Geib and Robert P Goldman. A probabilistic plan recognition algorithm based on
plan tree grammars. Artificial Intelligence, 173(11):1101-1132, 2009.

Mary L Gick and Keith J Holyoak. Schema induction and analogical transfer. Cognitive psychology,
15:1-38, 1983.

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement learning:
A survey and open research challenges. Machine Learning and Knowledge Extraction, 4(1):
172-221, 2022.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

10

Under review as a conference paper at ICLR 2026

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Yuu Jinnai, Jee Won Park, David Abel, and George Konidaris. Discovering options for exploration
by minimizing cover time. In International Conference on Machine Learning, pp. 3130-3139.
PMLR, 2019.

Xuhui Kang and Yen-Ling Kuo. Incorporating task progress knowledge for subgoal generation in
robotic manipulation through image edits. In 2025 IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), pp. 7490-7499. 1EEE, 2025.

Henry A Kautz, James F Allen, et al. Generalized plan recognition. In AAAI, volume 86, pp. 5.
Philadelphia, PA, 1986.

George Dimitri Konidaris and Andrew G Barto. Building portable options: Skill transfer in rein-
forcement learning. In Jjcai, volume 7, pp. 895-900, 2007.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International conference on machine learning, pp. 5639—
5650. PMLR, 2020.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified frame-
work for ensemble learning in deep reinforcement learning. In International conference on ma-
chine learning, pp. 6131-6141. PMLR, 2021.

Yoonho Lee, Huaxiu Yao, and Chelsea Finn. Diversify and disambiguate: Out-of-distribution ro-
bustness via disagreement. In The Eleventh International Conference on Learning Representa-
tions, 2022.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. A laplacian framework for op-
tion discovery in reinforcement learning. In International Conference on Machine Learning, pp.
2295-2304. PMLR, 2017.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523-562, 2018.

Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. In ICML, volume 1, pp. 361-368, 2001.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut—dynamic discovery of sub-goals in
reinforcement learning. In European conference on machine learning, pp. 295-306. Springer,
2002.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Allen Newell, Herbert Alexander Simon, et al. Human problem solving, volume 104. Prentice-hall
Englewood Cliffs, NJ, 1972.

Duy Nguyen-Tuong and Jan Peters. Model learning for robot control: a survey. Cognitive process-
ing, 12:319-340, 2011.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

Matteo Pagliardini, Martin Jaggi, Francois Fleuret, and Sai Praneeth Karimireddy. Agree to dis-
agree: Diversity through disagreement for better transferability. arXiv preprint arXiv:2202.04414,
2022.

11

Under review as a conference paper at ICLR 2026

Miguel Ramirez and Hector Geffner. Probabilistic plan recognition using off-the-shelf classical
planners. In Proceedings of the AAAI conference on artificial intelligence, volume 24, pp. 1121—
1126, 2010.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312-1320. PMLR, 2015a.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Ozgiir Simsek and Andrew G Barto. Using relative novelty to identify useful temporal abstractions
in reinforcement learning. In Proceedings of the twenty-first international conference on Machine
learning, pp. 95, 2004.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181—
211, 1999.

Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52-57, 2002.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23-30.
IEEE, 2017.

Marco A Wiering and Hado Van Hasselt. Ensemble algorithms in reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(4):930-936, 2008.

Cheng Xu, Changtian Zhang, Yuchen Shi, Ran Wang, Shihong Duan, Yadong Wan, and Xiaotong
Zhang. Subgoal-based hierarchical reinforcement learning for multi-agent collaboration. arXiv
preprint arXiv:2408.11416, 2024.

A PROOFS FOR IDENTIFIABILITY AND SUBGOAL GENERALIZATION
RESULTS

A.1 NON-IDENTIFIABILITY FROM DATA FROM A SINGLE TASK

Let S be a state space, Py, a distribution on S with supp(Pyain) € SandC C {¢: § — {0,1}}
a hypothesis class. Assume realizability on observed data: labels are generated by some ¢* € C so
y = ¢* for s ~ Pyain. Assume there exist ¢1, co € C such that

Vs € supp(Prain), €1(s) = ca(s), and Ju e S suchthat c¢q(u) # ca(u).
Then for any finite N € N, with probability 1 over D = {(s;,¥i)}}*.; ~ Piain X o+, the identifia-

bility condition
Ve e C, [V(si, yi) €D, c(s;) = yl] =c=c"

fails. Consequently, ¢* is not identifiable from data from a single task supported on supp(Piain)-
Proof. With probability 1, all sampled states lie in the support: {s;}2Y | C supp(Piin). On this

event, for every i, ¢1(s;) = ca(s;) = ¢*(s;) = yi, so both ¢; and ¢y are consistent with D. Since
c1 # co on S, at least one of them, we will call ¢/, differs from ¢* somewhere in S. Thus

V(si,y:) €D, ¢(si)) =y; but ¢ #c”,

which violates the identifiability condition. Because the event holds with probability 1, identifiability
fails almost surely for any finite N. [

12

Under review as a conference paper at ICLR 2026

A.2 LEMMA 1: SUBGOAL UNDER-SPECIFICATION

Let Dybgoat = {8i}Y1 and U = S \ Dypgoar- If U # 0 and there exist ¢1,co € C such that
c1(8;) = c2(s;) = y; for all (s;,y;) € Dsubgoal but ¢1(u) # c2(u) for some u € U, thenno c¢* € C is
identifiable from Dyypgoal-
Proof. Assume there exists some ¢* which is identifiable from Dgypgoal, then by definition:

Ve € C, (c € V(Dsubgoal)) = c=c".

This means V (Dgupgoa) = {¢*}, 1.e. |[V(D)| = 1. Recall that the version space V (Dgupgoa) = {¢ €
¢ ‘ V(Siayi) € Dsubgoal; C(Si) = yi}-

Assume there exists two distinct ¢q, co € C both agreeing on every (s;,y;) € Daubgoal- SO €1,C2 €
V(D) and c; 75 C2, SO |V(Dsubgoal)| > 2.

Contradiction: These two assumptions contradict each other. Therefore no ¢* € C is identifiable
from Dsubgoal-

O
A.3 DEFERRED SELECTION

Let C = {c1,...,ck} be our ensemble of subgoal classifiers, and let Ry (c) be the cumulative
reward obtained by running classifier c on task 7'. Then

el Rr(©)] 2 maxBr{Ar)

Equality holds if and only if there is a single hypothesis ¢* € C that maximizes Ry (c) for almost
every task 7. In that case, per-task selection reduces to always choosing c*.

Proof. Define the random vector X = (X3,...,Xk) by X; = Ryp(¢;) with T ~ T.

For each coordinate i

&=

Taking the maximum over i yields max; E[X;] <

max Er[Rr(c)] < Er [2?5(Rr(c)].

[max; X;], which is exactly

B ENSEMBLE HEAD SALIENCY RESULTS

C EXPERIMENT SETUP

C.1 EXPERIMENT PSEUDOCODE
C.2 COMPUTE RESOURCES

All MONTEZUMASREVENGE experiments were run using 1 Nvidia GTX 4090 GPU and 1 AMD
Ryzen Threadripper PRO 5995WX 64-Cores cpu each, for a total of 64 cores. Each run used 126GB
RAM. A single run takes under 12 hours to run.

All MINIGRID DOORMULTIKEY experiments were run with 2 Nvidia GTX 4090 GPUs and 2
AMD Ryzen Threadriper PRO 5995WX 64-Cores (128 cores) per run. Each run used 252GB RAM.
A single run with an ensemble takes around 24 hours to complete.

All experiments were run on a 10 node cluster, each node has 2 Nvidia GTX 4090 GPUs and 2 AMD
Ryzen Threadriper PRO 5995WX 64-Cores CPUs. All computers run Ubuntu 22.04.3 LTS.

13

Under review as a conference paper at ICLR 2026

True Label: Positive

True Positive

False Negative

True Positive

True Positive

False Negative

True Positive

M Positive
utral
B Negative

Figure 7: Gradient-based saliency maps for six ensemble members for the ClimbDownLadder sub-
goal. Green indicates features increasing predicted subgoal probability with red showing decreasing
probability. Some members focus on features involving the ladder and agent while some focus on
the lava below the floor. These distinct feature attributions confirm that ensemble members represent
different hypotheses about causal structure, consistent with our method’s goal of preserving multiple
plausible interpretations from limited training data.

14

Under review as a conference paper at ICLR 2026

Algorithm 2 MONTEZUMASREVENGE classifier experiment pseudocode
Input: room_datasets

train_data < []
test_performance + [|
for room_dataset in room_datasets do
classifiers < initialize new classifiers
train_data.append(room_dataset)
Train classifiers using train_data
eval_performance < []
for each room_dataset in room_datasets do
room _eval < classifiers accuracy on room_dataset
eval_performance.append(room_eval)
end for
test_performance.append(max(ave(eval_performance))) > Record best classifier
end for

Algorithm 3 MONTEZUMASREVENGE policy experiment pseudocode
Input: room_datasets, max_steps_per_room, classifiers, rooms

train_data < []
test_performance +— [|
for room_dataset in room_datasets do
classifiers < initialize new classifiers
train_data.append(room_dataset)
Train classifiers using train_data
room_eval < []
for each room in rooms do > Room is initiation state for policy training
class_eval < []
for each classifier in classifiers do
policy ¢ initialize new policy
steps <— 0
while steps | max_steps_per_room do
steps_taken <— train policy for one episode
steps <— steps + steps_taken
end while
success_rate < [|
for episode in 100 do
Get Manhattan distance between termination state from classifier and closest
ground truth termination
Man_dist < run policy for one episode
success_rate.append(Man_dist)
end for
class_eval.append(ave(success_rate))
end for
room_eval.append(min(class_eval)) > Record best member performance
end for
test_performance.append(ave(room_eval))
end for

C.3 CLASSIFIER SETUP

We use the PyTorch library for the classifier models. We use the PyTorch
nn.CrossEntropyLoss () for our cross entropy loss and use the DivDis loss function from the
original authors (available at https://github.com/yoonholee/DivDis/tree/main).
There are more states outside the subgoal than inside so we use weight rescaling to balance weight
updates. We do this using the nn.CrossEntropyLoss () weights parameter for this rebal-
ancing. The Adam optimizer PyTorch implementation (optim.Adam ()) and add L2 regulariza-

15

https://github.com/yoonholee/DivDis/tree/main

Under review as a conference paper at ICLR 2026

tion using the weight _decay parameter. We have included pseudocode for training the DivDis
classifier in Algorithm[d} Training for the standard ensemble is the standard classifier training loop.

Algorithm 4 Divdis classifier training pseudocode
Input: dataset, max_epochs, classifiers

epoch < 0
while epoch<max_epochs do
for batch in dataset do
z,u,y <batch > x :labeled classifier input, v : unlabeled classifier input, y : true label
unlabeled_pred < []
batch_labeled_loss«— 0
for each classifier f; in classifiers do
1y <—classifier(x)
labeled_loss = labeled_loss + nn.CrossEntropyLoss(y, y)
u <—classifier(u)
unlabeled_pred.append(ii)
end for
divdis_loss<—DivDis_criterion(unlabeled_pred)
loss<—batch_labeled_loss+divdis_loss
optimizer.step(loss) > Update weights with respect to loss
end for
epoch<«—epoch+1
end while

C.3.1 MONTEZUMASREVENGE

The classifier architecture for each ensemble member and the single CNN is shown in Figure [§] (it
is the same architecture for all models). The hyperparameters for MONTEZUMASREVENGE can be
seen in Table|l| For Montezuma’s Revenge, the state is a framestack of 4 timesteps and each frame
is grayscale and resized to 84 x 84 as is consistent in the original Atari DQN experiments.

Labeled training data is collected by a human who moves the agent to different areas of each room
in the MONTEZUMASREVENGE game for level 1. Because the data comprises of expert trajectories
and the state consists of the previous four frames our labeled data set does not fully encompass the
entire state space and it is very likely that a policy will encounter states that are not in this dataset
during training. We use this labeled data as unlabeled data in our experiments, discarding the labels
during training and use this data for evaluation during the classifier experiment. Note that while we
evaluate and train on labeled data from all rooms that contain a ladder, we have data collected from
rooms without a ladder so we can still provide the DivDis ensemble with unseen unlabeled data even
when training on all ladder rooms.

C.3.2 MINIGRID DOORMULTIKEY

The classifier architecture for each ensemble member and the single CNN is shown in Figure 9] (it
is the same architecture for all models). The hyperparameters for MINIGRID DOORMULTIKEY can
be seen in Table [2} The state is the fully observable, top-down RGB view of the grid resized to
84 x 84.

Labeled data collection is done in two ways for MINIGRID DOORMULTIKEY. First we move the
agent to each accessible grid space (i.e. if the door is locked only grid spaces in the first room
otherwise all grid spaces in both rooms), rotating to face each direction. The agent then collects the
relevant key (e.g. if we are collecting data for COLLECTREDKEY we collect the red key) and again
visits each accessible grid space. The agent unlocks the door and again visits each grid space. Data
was also collected by randomly placing the agent and the available keys in different grid spaces as
well as randomly setting the state of the door (open, unlocked and closed, locked and closed). We
use labeled data as unlabeled data by discarding the labels during training.

16

Under review as a conference paper at ICLR 2026

C.4 OPTION POLICY SETUP

We use the same DQN architecture for both MINIGRID and MONTEZUMASREVENGE,
differing only in the number of actions. We use the Adam optimizer as imple-
mented in PyTorch (optim.Adam()). Exploration is carried out using the pfrl library
LinearDecayEpsilonGreedy (), a linearly decaying epsilon greedy explorer. We use the
pfrl replay buffer implementation PrioritizedReplayBuffer () and model updates are
carried out using the ReplayUpdater () also from pfrl. The DQN architecture is shown in
Figure [I0] and hyperparameters are displayed in Tables [3] and] for MONTEZUMASREVENGE and
MINIGRID respectively. Our DQN model is implemented in PyTorch with a pfrl policy head.
All experiments use v = 0.9.

C.5 HIGH-LEVEL POLICY SETUP

We use the PPO agent from the pfrl library. We use observation normalization, using
EmpiricalMormalization() from pfrl. Optimization is done using the PyTorch
optim.Adam () optimizer. The policy and value networks are shown in Figure[TT} implemented in
PyTorch with a pfrl policy head. Hyperparameters for DOORMULTIKEY MINIGRID are shown
in Table[5] All experiments use v = 0.9.

17

Under review as a conference paper at ICLR 2026

C.6 MODEL ARCHITECTURES

2D CNN Layer
output channels = 32, kernel size = (8,8), stride = (4.4)

v

| 2D Batch Normalization |

v

| ReLU Activation |

v

2D CHNN Layer
output channels = 64, kernel size = (4, 4), stride = (2.2)

v

| 20 Batch Normalization |

v

| ReLU Activation |

v

2D CNN Layer
output channels = 64, kernel size = (4,4), stride = (2.2)

v

| 2D Batch Normalization |

v

| ReLU Activation |

v

| Flatten |

v

Linear Layer
Qutput = 512

v

| ReLU Activation |

v

Linear Layer
Output = 2

v

| Softmax Activation |

Figure 8: MONTEZUMASREVENGE classifier architecture.

18

Under review as a conference paper at ICLR 2026

2D CNN Layer
output channels = 32, kernel size = (5,5), stride = (2.2)

v

2D Batch Normalization

v

ReLU Activation

v

2D Max Pool
kemel size = (3,3), stride = (2,2)

v

2D CNN Layer
output channels = 64, kernel size = (3,3), stride = (2,2)

v

| 20 Batch Normalization |

v

| ReLU Activation |

v

2D Max Pool
kemel size = (4,4), stride = (2,2)

v

Flatten

v

Linear Layer
Output = 750

v

ReLU Activation

v

Dropout
Probability = 0.1

v

Linear Layer
Qutput = 100

v

| ReLU Activation |

v

Linear Layer
Output = 2

v

| Softmax Activation |

Figure 9: DOORMULTIKEY MINIGRID classifier architecture.

19

Under review as a conference paper at ICLR 2026

2D CNN Layer
output channels = 16, kernel size = (3,3), stride = (1,1)

v

| 2D Batch Normalization

v

| ReLU Activation

v

2D Max Pool
kernel size = (2,2)

v

20 CHNN Layer
output channels = 32, kernel size = (3,3), stride = (1,1)

v

| 20 Batch Normalization

v

| ReLU Activation

v

2D Max Pool
kernel size = (2,2)

v

2D CNN Layer
output channels = 64, kernel size = (3,3), stride = (1.1)

v

| 2D Batch Normalization

v

| ReLU Activation

v

nn.Gru()
hidden size = 512

v

Flatten

v

Linear Layer
OQutput = 128

v

Linear Layer
Qutput = action number

v

pfrl DiscreteActionValueHead()

Figure 10: DQN architecture.

20

Under review as a conference paper at ICLR 2026

Policy Network

Value Network

2D CNN Layer
output channels = 16, kemnel size = (2,2), stride = {1,1)

2D CNN Layer
output channels = 16, kernel size = (2,2), stride = (1,1)

ReLU Activation |

v

2D CNN Layer
output channels = 32, kernel size = (2,2), stride =(1,1)

v

!

RelLU Activation

!

2D CNN Layer
output channels = 32, kernel size = (2,2), stride = (1,1)

ReLU Activation |

v

v

RelU Activation

2D CNN Layer
output channels = 64, kernel size = (2,2), stride = (1,1)

v

v

2D CNN Layer
output channels = 64, kernel size = (2,2), stride = (1.1)

| ReLU Activation |
\L RelU Activation
| Flatten | l
Linear Layer Flatten
Oufput = 128
Limear Layer
| ReLU Activation | Ouiput = 128
: ReLU Activation

Linear Layer
Qutput = 64

Linear Layer

| Tanh Activation | Output = 64
i Tanh Activation
Linear Layer
‘ Qutput = 64 ‘
Limear Layer
| Tanh Activation | Output = 64
Tanh Activation

Linear Layer
Quiput = action number

‘ pirl GaussianHeadWithStatelndependentCovariance() ‘

Linear Layer
Output = 1

1

e

pirl Branched()

Figure 11: PPO architecture.

21

Under review as a conference paper at ICLR 2026

C.7 HYPERPARAMETERS

Table 1: MONTEZUMASREVENGE classifier hyperparameters.

Hyperparameter DivDis Standard CNN
Learning Rate 5x1074 5x1074 5x1074
Diversity Weight 3x1074 0.0 3x1074
Ensemble Size 6 6 1
L2 Regularization Weight 5 x 1074 5x1074 5x1074
Batchsize 64 64 64

Table 2: MINIGRID DOORMULTIKEY classifier hyperparameters.

Hyperparameter DivDis Standard CNN
Learning rate 2x1074 2x1074 2x1074
Diversity weight 1x1074 0 1x1074
Ensemble size 3 3 1
L2 regularization weight 1 x 1074 1x1074 1x1074
Batchsize 64 64 64

Table 3: MONTEZUMASREVENGE DQN hyperparameters.

Hyperparameter Value

Replay buffer length 1 x10°

Update interval 4

Q-target update interval 10

Final Exploration frame 4 x 10° decaying from 1 to 0.01
Learning rate 2.5 x1074

Batchsize 32

22

Under review as a conference paper at ICLR 2026

Table 4: MINIGRID DOORMULTIKEY DQN Hyperparameters.

Hyperparameter Value

Replay buffer length 1x 10°

Update interval 4

Q-target update interval 10

Final Exploration frame 8 x 10 decaying from 1 to 0.01
Learning rate 2.5x 1074

Batchsize 32

Table 5: MINIGRID DOORMULTIKEY PPO Hyperparameters.

Hyperparameter Value
Replay buffer length 1 x10°
Update interval 100
Entropy coefficient 0.01
A 0.97
Batchsize 64
Epochs per update 10
Maximum L2 norm 1
Observation normalizer clip threshold 5
Standardize advantages True

23

	Introduction
	Background
	Related Work
	Subgoal Generalization with Data from a Single Training Task
	Under-Specification in Subgoal Learning

	Learning Generalizing Subgoal Classifiers
	Hypothesis Generation
	Reward-Guided Hypothesis Selection

	Experiments
	Data Efficiency
	Hypothesis-Driven Policy Learning
	Task-Level Performance
	Reward-Guided Disambiguation

	Conclusion
	Proofs for Identifiability and Subgoal Generalization Results
	Non-identifiability from Data from a Single Task
	Lemma 1: Subgoal Under-Specification
	Deferred Selection

	Ensemble Head Saliency Results
	Experiment setup
	Experiment pseudocode
	Compute resources
	Classifier setup
	MontezumasRevenge
	Minigrid DoorMultiKey

	Option policy setup
	High-level policy setup
	Model architectures
	Hyperparameters

