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ABSTRACT

A reinforcement learning agent trained on a single source subgoal has no way
to determine during training which features will be relevant for future instances
of that same subgoal. This creates ambiguity: multiple plausible models of a
subgoal can fit the training data but not all will successfully transfer. Humans
address this ambiguity by maintaining alternative hypotheses until new informa-
tion reveals the most effective one. Drawing inspiration from this, we introduce
a hypothesis-preserving ensemble in which each member is a distinct, plausible
subgoal classifier trained on the same source task. The agent then tests these alter-
native hypotheses in a new task, learning policies for the corresponding subtasks
and uses task reward to select the most effective classifier. Experiments on Mon-
tezuma’s Revenge and MiniGrid DoorMultiKey show that our method recovers
subgoals learned in the source task, successfully adapting them to visually differ-
ent tasks.

1 INTRODUCTION

Humans often solve new problems by identifying familiar structures: a repeated pattern, an interme-
diate milestone, a known bottleneck. Recognizing these elements allows us to adapt prior strategies
instead of starting from scratch, a key driver of efficient generalization (Newell et al., 1972; Gick
& Holyoak, 1983). Hierarchical reinforcement learning (HRL) (Barto & Mahadevan, 2003) offers a
similar advantage: decomposing a task into subtasks, defined by subgoals, enables subtask recogni-
tion in new settings.

Most prior work on subgoal generalization assumes access to multiple training tasks or predefined
goals (Hutsebaut-Buysse et al., 2022). We instead consider the case where all training data comes
from a single task–—a natural constraint in domains such as robotics and navigation (Nguyen-
Tuong & Peters, 2011; Thrun, 2002). In this regime, the information that will matter for success in
future tasks is unknown and under-specified during training. As a result, many different models of
a subgoal can fit the observed data, but only some will transfer effectively when the environment
changes in layout or visual appearance. Humans address this ambiguity by maintaining multiple
competing hypotheses, discarding them only when new evidence appears (Anderson et al., 2015).
Standard machine learning pipelines instead commit to a single model, risking overfitting to spurious
correlations (Dietterich, 2000). We extend the human strategy to HRL: rather than converging on
one model, we preserve multiple plausible subgoal classifiers learned from the same training data.

Our approach uses a hypothesis-preserving ensemble, where each member represents a distinct,
plausible model of the target subgoal. A high-level policy tests these hypotheses in a new task,
learning policies for the corresponding subtasks and using task reward as a guide for identifying
the most effective classifier. This deferred commitment to a model improves generalization and
enables subgoal reuse without retraining. We evaluate on Montezuma’s Revenge and MiniGrid,
showing that our approach improves subgoal generalization in new tasks, allowing for the reuse
of task decompositions from prior experience. By explicitly representing and resolving subgoal
ambiguity, we provide a principled framework for HRL that adapts discovered subgoals to new
tasks without direct supervision.
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2 BACKGROUND

We consider a Markov Decision Process M = (S,A, r, p, γ), where S denotes the state space, A is
the action space, p(st+1|st, at) the transition dynamics and r(st, at) a scalar reward function. The
objective in RL is to find a policy π(a|s) that maximizes the expected cumulative discounted reward.
A task is an MDP T = (S,A, rT , p, γ) where rT encodes the task goal GT . Complex tasks can
be decomposed into subtasks, t, each defined by an intermediate subgoal gt. A subgoal induces a
reward function rg , which returns 1 when the subgoal is satisfied and 0 otherwise. Task rewards are
provided by the environment while subgoal rewards are derived from learned classifiers.

We focus on the regime where all training data is collected from a single training task. In this setting,
the agent must learn a subgoal classifier from limited, homogeneous data that must hold in new tasks
with different layouts or visual features. Robust subgoal generalization in this regime is necessary
for the agent to recognize familiar subtasks in future tasks without retraining.

We build on hierarchical RL, where a high-level policy selects among temporally extended actions,
Options (Sutton et al., 1999) in this work, as temporally extended actions defined by the tuple
(Io, πo, βo). The initiation set, Io : S → {0, 1}, specifies where the option can start. The option
policy πo : S → A is a controller that transitions the agent from states in Io to states in βo. The
termination set, βo : S → {0, 1} is the set of states in which option o successfully terminates;
a subgoal. The termination condition is a learned subgoal classifier. Generalizing this classifier
beyond the training task allows for identifying familiar subtasks in new tasks.

3 RELATED WORK

Subgoal Generalization and Recognition In symbolic AI, goal and plan recognition methods in-
fer an agent’s intent from partial observations (Kautz et al., 1986; Ramı́rez & Geffner, 2010; Baker
et al., 2009), and hierarchical planners extend these ideas for richer temporal reasoning (Geib &
Goldman, 2009). In RL, goal inference has been explored through universal value function ap-
proximators (Schaul et al., 2015a), hindsight experience replay (Andrychowicz et al., 2017) and
unsupervised skill discovery (Eysenbach et al., 2018), as well as subgoal transfer in robotics (Kang
& Kuo, 2025) and multi-agent settings (Xu et al., 2024). These approaches typically assume that
data is available from multiple tasks, explicit goal conditioning or focus on generalization to chang-
ing reward functions. By contrast, we study generalization when all training data is drawn from a
single task, requiring subgoal definitions to extend to unseen portions of the state space. Related
HRL transfer methods such as portable options (Konidaris & Barto, 2007), successor features (Bar-
reto et al., 2017) and the option keyboard (Barreto et al., 2019) also requires multiple tasks, assume
known goal mappings or focus primarily on reward-function changes.

Subgoal Discovery Early methods identify bottleneck states via diverse density (McGovern &
Barto, 2001), betweenness centrality (Menache et al., 2002) or novelty measures (Şimşek & Barto,
2004). Later work leverages environment dynamics e.g. Laplacian option discovery (Machado et al.,
2017) and successor-representation clustering (Jinnai et al., 2019). These focus on finding subgoals,
not on generalizing them across environments from a single task.

Generalization from Limited Experience Techniques such as auxiliary objectives (Jaderberg
et al., 2016), contrastive representation learning (Laskin et al., 2020), domain randomization (Tobin
et al., 2017) and meta-learning (Finn et al., 2017) improve robustness to distribution shifts. While
effective for policy learning, they do not address the ambiguity of subgoal definitions when learning
from limited data. Broader ML work on under-specification (D’Amour et al., 2022) formalizes this
ambiguity.

Ensemble Methods in RL Ensembles have been used for variance reduction (Wiering & Van Has-
selt, 2008), exploration (Osband et al., 2016), model-based planning (Chua et al., 2018; Janner et al.,
2019) and robustness (Lakshminarayanan et al., 2017; Lee et al., 2021). Our use differs in that we
preserve multiple plausible subgoal definitions learned from a single task, deferring selection until
new task data is available.
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4 SUBGOAL GENERALIZATION WITH DATA FROM A SINGLE TRAINING TASK

We now consider the central question of this work: how can an agent, trained using data from only a
single task, recognize the same subgoal in a new task which may differ in layout or appearance? This
constraint models many real-world domains where collecting diverse training tasks is impractical,
yet robust subgoal recognition can enable the reuse of learned skills. Limited and homogeneous
data leaves the subgoal definition under-specified and this ambiguity must be resolved to generalize
effectively.

In this regime, the agent observes one task Ttrain and a single instance of each discovered subgoal.
Positive examples are states that satisfy the subgoal while negative samples are those that do not.
Because all data comes from this single task, the learned definition must extend beyond the specific
layout and appearance seen in training. At test time, the agent encounters a new task Ttest that
may differ substantially, and must decide whether states in this new task satisfy the same subgoal.
Accurate recognition allows the agent to draw on prior information to improve performance without
additional subgoal training.

4.1 UNDER-SPECIFICATION IN SUBGOAL LEARNING

When all training data comes from a single task, many features may consistently co-occur with
a subgoal even if they are irrelevant. Without variation across tasks, the agent never encounters
counter-examples that would separate spurious correlations from genuine defining features. This is
an information-constrained problem: the data simply does not contain enough information to isolate
the true subgoal definition, making it impossible for any one model—however sophisticated—to
guarantee generalization.

Formally, let S be the state space, C a hypothesis class of binary classifiers c : S → {0, 1} and
Dsubgoal a finite set of N labeled states drawn i.i.d. from a single training-task distribution Ptrain with
supp(Ptrain) ⊊ S. We say c⋆ ∈ C is identifiable from Dsubgoal if

∀c ∈ C,
[
∀(s, y) ∈ Dsubgoal, c(s) = y

]
⇒ c = c⋆. (1)

Since modern classifiers (e.g. deep nets) have VC dimensions≫ N , it follows that one can construct
two functions in C that both fit all training points in Dsubgoal but differ on at least one unseen state in
S \ Dsubgoal. Lemma 1 formalizes this non-identifiability (see Appendix A for proof).

Lemma 1. Let Dsubgoal = {si}Ni=1 and U = S \ Dsubgoal. If U ̸= ∅ and there exist c1, c2 ∈ C such
that c1(si) = c2(si) = yi for all (si, yi) ∈ Dsubgoal but c1(u) ̸= c2(u) for some u ∈ U , then no
c⋆ ∈ C is identifiable from Dsubgoal.

This lemma makes precise that the version space V (Dsubgoal) contains multiple equally consistent
subgoal definitions whenever any state lies outside the training set. A learner in this regime must
commit to one of many plausible classifiers—–exactly the ambiguity our hypothesis-preserving en-
semble is designed to avoid.

Consider Figure 1: the left state satisfies a known subgoal, while the middle state does not. The agent
must infer semantics of objects and their positions through environment interaction and observed
reward. Now consider the state on the right: does it satisfy the subgoal? Several hypotheses are
equally consistent with the training data—for example: (1) the presence of objects in the highlighted
grid spaces (2) the presence of specific shapes (e.g. the circle) anywhere in the environment (3) the
square is in a highlighted grid space. Each fits the training data but predicts differently for the
unlabeled state.

This ambiguity is fundamental to this setting: any feature aligned with the subgoal during training
will appear predictive, even if irrelevant elsewhere. Overcommitting to one hypothesis risks encod-
ing task-specific features that fail to generalize. By maintaining multiple plausible hypotheses, we
avoid prematurely discarding viable classifiers, resolving ambiguity later using information—such
as task reward—from new tasks.
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Figure 1: Subgoal recognition from a single training task is inherently under-specified. In the
training task, the first state satisfies the subgoal while the second does not. Faced with the third
state—drawn from a new task—the agent must decide whether it also satisfies the subgoal. With
training data from a single task, multiple equally consistent definitions exist, and without resolving
this ambiguity, subgoal classifiers may fail to generalize.

5 LEARNING GENERALIZING SUBGOAL CLASSIFIERS

Given a subgoal defined by data collected in a single training task, our goal is to determine whether
that subgoal is satisfied in new tasks which may differ in layout or appearance. As shown in Section
4.1, this setting leaves the subgoal definition under-specified: multiple plausible interpretations fit
the training data and no single model is guaranteed to be correct. To address this, we maintain a set
of competing hypotheses, each representing a distinct, consistent definition of the subgoal’s features.
Preserving these alternatives reduces the risk of overfitting to spurious correlations and increases the
chance that at least one hypothesis will transfer. Detecting previously identified subgoals in new
tasks allows for reusing previously discovered structures without additional training.

Rather than committing to one classifier during training, we maintain an ensemble, deferring select-
ing until task-level information is available. We show

ET

[
max
c∈C

RT (c)
]
≥ max

c∈C
ET

[
RT (c)

]
(2)

where RT (c) is the cumulative reward earned by running classifier c in task T . Per-task hypothesis
selection therefore can never underperform a fixed classifier (see Appendix A for more details).

5.1 HYPOTHESIS GENERATION

We model each subgoal as a binary classifier mapping states to 1 when the subgoal is satisfied and 0
otherwise. In this regime, the training data supports multiple plausible classifiers—each consistent
with the observed examples but relying on different features. To preserve this ambiguity, we main-
tain a set of hypotheses, modeled as an ensemble of classifiers C = {c1, c2, . . . , ck} where each cn
represents a distinct interpretation of the subgoal.

To encourage broader coverage, we promote diversity through one of two mechanisms. First, im-
plicit diversity arises from random initialization. Second, we apply an explicit diversity objective
using the DivDis algorithm (Lee et al., 2022), which encourages classifiers to disagree on unlabeled
data by minimizing mutual information between classifiers:

LMI(ci, cj) =
∑
yi

∑
yj

pij(yi, yj) log
pij(yi, yj)

pi(yi) pj(yj)
(3)

while maintaining low cross-entropy loss on labeled examples:

Lxent(ci) = Ex,y∈Di[ℓ(ci(x),y)]. (4)

The mutual information term is computed over an unlabeled dataset Dunlab, gathered through explo-
ration in the environment. Although this data lacks subgoal labels, they provide variation that helps
classifiers develop complementary models and encourages diversity. Other diversity-promoting en-
semble methods (e.g., D-BAT (Pagliardini et al., 2022)) could be used in place of DivDis, as our
framework is agnostic to the specific ensemble learning technique
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Algorithm 1 Learning transferable subgoals and hypothesis selection via reward maximization
Input: DGs , Dunlab, max steps stepmax, option timeout To

Classifier training
randomly initialize all fi ∈ C
for each classifier fi ∈ C do

train fi minimizing loss Lxent on DGs

For DivDis variant add additional loss term LMI on Dunlab
end for
Policy initialization
Initialize πoi for each fi ∈ C, Initialize πh

Policy training
step← 0
while step < stepmax do

i← πh(s) ▷ πh selects option index
πcurrent ← πoi , t← 0
while fi(s) ̸= 1 and t < To do ▷ execute until subgoal reached or timeout

a← πi(s) ▷ get action from option policy
s← execute a in environment and observe s′

steps← steps + 1, t← t+ 1
Update πoi using subgoal pseudo-reward

end while
Update πh using task reward

end while

This ensemble serves as a structured representation of the ambiguity inherent when training data is
limited and homogeneous. Each classifier encodes a distinct, consistent interpretation of the subgoal,
allowing the agent to defer commitment until task-relevant information reveals which definition
generalizes best.

5.2 REWARD-GUIDED HYPOTHESIS SELECTION

Each hypothesis cn ∈ C defines a distinct subgoal and we learn a corresponding option on with
policy πon to achieve the corresponding subtask. Each classifier cn induces a sparse reward function
and πon is trained to maximize that reward, learning to achieve the hypothesized subgoal cn.

Because the environment has no direct subgoal supervision—and the task reward, the only available
signal of success, is not guaranteed to align with the learned subgoals—direct evaluation of which
subgoal hypothesis is most appropriate is not possible. Instead, we use task reward as an indirect
signal to assess which subgoal transfers most effectively. We define the most generalizable subgoal
as the one whose associated option yields the highest cumulative reward in the current task—not
because it is universally correct, but because it best aligns with the demands of the new task.

A high-level policy selects among the option policies to maximize task reward. By learning a Q-
function over the option set, the agent implicitly identifies which subgoal hypothesis best supports
task completion. We train both the high-level and option policies jointly (see Algorithm 1).

6 EXPERIMENTS

Our experiments are designed to evaluate whether preserving multiple plausible subgoal hypotheses
improves an agent’s ability to recognize subgoal states under visual changes and effectively guide
option policies. Specifically, we aim to answer:

1. Data Efficiency: How much labeled data is required for a subgoal classifier to correctly
identify the same subgoal across visually distinct tasks?

2. Hypothesis-Driven policy Learning: Once a subgoal can be identified in a new task, can
the agent learn an effective option policy for it?

5
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3. Task-Level Performance: Does hypothesis-guided option learning improve the agent’s
ability to solve sparse-reward tasks compared to single-model baselines?

4. Reward-Guided Disambiguation: Can task reward reliably select the subgoal hypothesis
that best matches the demands of the current task?

Each experiment isolates one of these questions, progressively building towards a fully integrated
hierarchical agent that uses a hypothesis-preserving ensemble to guide policy learning for subgoals
detected in new tasks.

We use two visually rich domains with pixel-based state spaces. Montezuma’s Revenge (Belle-
mare et al., 2013; Machado et al., 2018) is used to test hypothesis quality in isolation, focusing on
whether at least one preserved hypothesis correctly identifies the target subgoal in visually distinct
tasks with different layouts. Minigrid DoorMultiKey (Chevalier-Boisvert et al., 2023) evaluates the
full pipeline from subgoal recognition to option execution in a sparse-reward setting, reusing the
same task decomposition as in training. To ensure controlled evaluation, all experiments use prede-
fined subgoals, which both isolates subgoal recognition and hypothesis selection from the separate
challenge of subgoal discovery, and enables direct comparison to a known ground-truth definition.
See Appendix B for hyperparameters and experiment setup and pseudocode.

6.1 DATA EFFICIENCY

This experiment measures how the amount of labeled subgoal data affects the ability of our
hypothesis-preserving ensemble to correctly identify a target subgoal across visually varied tasks.
We isolate recognition performance from downstream control, focusing solely on whether at least
one ensemble member generalizes beyond the training task.

Montezuma’s Revenge is a visually complex Atari game made up of multiple rooms, each with
distinct objects and layouts, making it an ideal domain for validating subgoal recognition. We
define a ClimbDownLadder subgoal, which is satisfied when the agent is positioned at the base
of a ladder. We incrementally expand the training set by adding labeled examples from additional
rooms containing ladders. After each addition, all models are retrained and evaluated on data from
all ladder rooms, including those not yet represented in the training set (see Algorithm 2 in Appendix
B). This experiment measures how increasing intra-task variation in the data affects generalization
to unseen tasks.

We compare a single convolutional classifier with two hypothesis-preserving ensemble variants:
a standard ensemble, which gains diversity through random initialization, and DivDis which en-
courages diversity explicitly during training. For ensembles, we report the accuracy of the best-
performing member, reflecting the goal of retaining at least one valid hypothesis.

As shown in Figure 2, both ensembles outperform the single classifier when trained on data from a
single room—the setting with highest ambiguity—indicating that maintaining multiple hypotheses
increases the likelihood of capturing generalizing features. Note the CNN—a single model—barely
outperforms random guessing on the binary classification problem. Accuracy improves sharply
when labeled data from a second room is included, showing the benefit of even small increases
in visual diversity. As more varied data is introduced, all methods show the same performance,
validating the earlier theoretical result that deferring selecting is equal to or greater than learning
a single model. The standard and DivDis ensembles achieve similar mean accuracy, with DivDis
showing a slightly lower variance across seeds. These results support the claim that preserving
multiple plausible hypotheses enables data-efficient subgoal identification in new tasks.

6.2 HYPOTHESIS-DRIVEN POLICY LEARNING

We next evaluate whether subgoal hypotheses can support the learning of effective option policies
in new tasks. This step bridges subgoal identification and downstream control, testing whether a
hypothesis learned from only the training task is accurate enough to serve as an effective termination
condition when training a new policy from scratch in a visually different task.

We again use the Montezuma’s Revenge ClimbDownLadder subgoal. As in the previous exper-
iment, we incrementally add training data from each ladder room. After each addition, we train an
option policy in each ladder room for the best performing ensemble member, using only the classifier

6
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Figure 2: Accuracy of the best performing en-
semble member as more labeled data is pro-
vided. Results are averaged over 10 seeds and
bands represent standard deviation. Star indi-
cates when only one task is provided during
training.

Figure 3: Average Manhattan distance between
policy termination point and the ground-truth
subgoal; bars represent standard deviation over
the last 100 option executions (lower is better)
averaged over 10 seeds. Star indicates when
only one task is provided during training.

CNN             Standard Ensemble         DivDis

Figure 4: Scatter plot of termination locations for 100 skill executions of a single subgoal and policy,
trained on data from two ladders for an unseen task. The agent begins atop the ladder in the middle
room; climbing down leads to the right room, while moving left places the agent in the left room.
Only the best-performing ensemble member is shown.

as the option termination condition. We use Deep Q-Networks (Mnih et al., 2015) (DQN) with pri-
oritized experience replay (Schaul et al., 2015b) for the option policies, trained using a sparse reward
defined by the learned classifier (1 in subgoal states and 0 otherwise), without ground-truth subgoal
data. Each policy is trained for 300000 steps in each room which is sufficient for convergence.

Performance is measured by the average Manhattan distance between the policy termination state
and the true subgoal location, averaged over 100 executions after policy training completes. We
show the performance of each method, averaged over all ladder rooms, in Figure 3. Because this
metric does not provide an intuitive idea of how useful the learned policies are, we focus on relative
performance and provide a scatter plot (Figure 4) which shows where each policy terminated across
the 100 evaluation executions, providing a qualitative visual analysis of classifier quality.

From Figure 3, both the standard and DivDis ensembles produce option policies whose terminations
are closer to the true subgoal than those trained with a single CNN. When trained on data from
a single task—which is our primary focus—both ensembles outperforming the CNN, with DivDis
almost halving the average Manhattan distance achieved by the CNN. While the classifier accuracies

7
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in Figure 2 showed little difference between the standard and DivDis ensembles, we see a clear
performance gain from using explicit diversity for one room of training data during policy learning.
The first room in Montezuma’s Revenge has the largest visual difference to all other ladder rooms
and thus shares the fewest features with the other tasks; in such cases, where visual differences are
substantial, explicit diversity has a measurable effect. This effect diminishes as the training data
better captures the variation present in future tasks.

Figure 4 shows the termination locations for an unseen task, for option policies trained using classi-
fiers learned from two rooms of labeled data. The agent begins at the top of the ladder in the middle
image and can either move left to reach a ladder base or climb down the ladder to the base shown in
the right image. Only fully terminating ladders are provided during training, so the agent has never
seen labeled examples resembling the right room, where the ladder continues through the floor. Nev-
ertheless, both ensemble methods generalize to this variant, which is a valid ClimbDownLadder
subgoal despite never being observed during training. By contrast, the CNN-based policy never
terminates at this ladder base, failing to generalize to this case. While all classifiers occasionally
misclassify termination states in the center of the ladder in the center figure, from the left image we
see that the CNN is the most inconsistent—sometimes terminating when the agent is not close to the
ladder—whereas both ensemble methods terminate consistently near the base.

These results validate the effectiveness of hypothesis-driven policy learning, reinforcing the claim
that maintaining multiple hypotheses enables better subgoal generalization which can be leveraged
for future policy learning. They also show that encouraging diversity during training improves
subgoal detection, particularly when the training and test tasks differ substantially.

6.3 TASK-LEVEL PERFORMANCE

Having demonstrated that hypothesis-driven subgoal generalization can support learning effective
option policies, we now evaluate whether this task decomposition can be adapted to a new task. We
use the Minigrid DoorMultiKey environment, a modification on the sparse-reward DoorKey task,
where the agent must collect a key to unlock a door to reach the goal location, with additional
distractor keys. This forces the hierarchical agent to distinguish between relevant and irrelevant
subgoals as well as allowing for additional visual variation among tasks.

We define five subgoals for this task: CollectBlueKey, CollectGreenKey,
CollectRedKey, OpenRedDoor and GoToGoal. Two of these subgoals—
CollectBlueKey and CollectGreenKey—are not required to complete the test tasks.
Including non-essential subgoals increases the decision complexity for the high-level policy, which
must learn not only to select the most useful subgoal hypotheses but also to disregard subgoals that
are irrelevant to the current task. Labeled data for all subgoals is collected from a single training
task (seed 0), while unlabeled data is gathered from two additional seeds that are not included in the
test task set.

Our hierarchical agent is trained as described in Algorithm 1. The high-level policy is a PPO agent
(Schulman et al., 2017), that selects among option policies, each implemented as described in the
previous option policy experiment. The action space consists of three hypotheses per subgoal; 15
available actions for the PPO agent.

We evaluate hierarchical agents using standard and DivDis ensembles, as well as a CNN-based
option agent (five actions, one per subgoal). We no longer use only the best performing ensemble
member and the hierarchical agent must determine which hypothesis best aligns with the current
task. For reference, we include a hierarchical agent with oracle termination classifiers, representing
the best achievable performance for the option-based agents. We also ablate the hierarchy by training
flat DQN and PPO agents with access to only the primitive actions.

Figure 5 shows the average undiscounted episode reward. The PPO and DQN agents fail to complete
the task with distractor keys which substantially enlarge the state space and make exploration diffi-
cult. The CNN-based option agent under-performs both ensemble-based methods, confirming that
maintaining multiple hypotheses improves subgoal generalization. Both ensemble methods achieve
near-optimal performance over time, closely matching the perfect-termination baseline. This con-
firms that we can reuse a previously beneficial task decomposition in new tasks by learning multiple
hypotheses, selecting the best fitting hypothesis at test time.
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Figure 5: Average undiscounted reward for the
modified MINIGRID DOORMULTIKEY envi-
ronment. All results are averaged over 10 seeds
and bands represent standard error. DivDis,
Standard, CNN and Perfect are all option agents
using the corresponding method for option ter-
mination classifiers. The perfect termination
agent is the best performance we can expect
from any option agent.

(a) OPENREDDOOR:
the least picked.

(b) OPENREDDOOR:
the most picked.

(c) GOTOGOAL: tied
for most picked.

(d) GOTOGOAL: tied
for most picked.

Figure 6: Overlaid termination states identified
by members of the DivDis ensemble.

6.4 REWARD-GUIDED DISAMBIGUATION

To assess whether reward maximization can reliably identify the most useful subgoal hypothesis,
we compare the termination sets of the most- and least-selected ensemble members in the MiniGrid
DoorMultiKey environment. Figures 6a and 6b illustrate two members of the OpenRedDoor sub-
goal. The least-chosen hypothesis (Figure 6a) produces termination points scattered throughout the
room, failing to consistently position the agent near the door. By contrast, the most-frequently se-
lected hypothesis (Figure 6b) always terminates directly in front of the open door, closely matching
the true subgoal. A similar pattern emerges for the GoToGoal subgoal in Figures 6c and 6d: highly
selected hypotheses terminate exclusively at the goal position, whereas the least-selected ensemble
member fails to identify any valid subgoal state in the new task and consequently never terminates
its option policy successfully.

Across multiple subgoals, the high-level policy consistently favors hypotheses that lead to higher
cumulative reward. This behavior shows that reward-driven selection acts as an implicit supervision
signal, filtering out ineffective subgoal classifiers and retaining only those that support successful
task completion. This mechanism allows the agent to defer commitment during training, then resolve
subgoal ambiguity by selecting the hypothesis most aligned with the demands of the current task
without requiring any subgoal labels in the target task.

7 CONCLUSION

We studied the problem of subgoal generalization when all available training data is drawn from a
single task, where limited and homogeneous samples result in under-specified subgoals. We formal-
ized this ambiguity and introduced a hypothesis-preserving ensemble that maintains multiple plau-
sible hypotheses of a subgoal’s defining features, deferring commitment until task-level evidence is
available. Across Montezuma’s Revenge and MiniGrid DoorMultiKey, this approach improves sub-
goal recognition, supports effective option learning without direct subgoal supervision and requires
only task-reward to identify the most effective hypothesis. By explicitly representing and resolving
ambiguity, our method provides a principled framework for adapting learned decompositions to new
tasks under severe data constraints.
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A PROOFS FOR IDENTIFIABILITY AND SUBGOAL GENERALIZATION
RESULTS

A.1 NON-IDENTIFIABILITY FROM DATA FROM A SINGLE TASK

Let S be a state space, Ptrain a distribution on S with supp(Ptrain) ⊊ S and C ⊆ {c : S → {0, 1}}
a hypothesis class. Assume realizability on observed data: labels are generated by some c⋆ ∈ C so
y = c⋆ for s ∼ Ptrain. Assume there exist c1, c2 ∈ C such that

∀s ∈ supp(Ptrain), c1(s) = c2(s), and ∃u ∈ S such that c1(u) ̸= c2(u).

Then for any finite N ∈ N, with probability 1 over D = {(si, yi)}Ni=1 ∼ Ptrain × δc⋆ , the identifia-
bility condition

∀c ∈ C,
[
∀(si, yi) ∈ D, c(si) = yi

]
⇒ c = c⋆

fails. Consequently, c⋆ is not identifiable from data from a single task supported on supp(Ptrain).

Proof. With probability 1, all sampled states lie in the support: {si}Ni=1 ⊆ supp(Ptrain). On this
event, for every i, c1(si) = c2(si) = c⋆(si) = yi, so both c1 and c2 are consistent with D. Since
c1 ̸= c2 on S, at least one of them, we will call c′, differs from c⋆ somewhere in S. Thus

∀(si, yi) ∈ D, c′(si) = yi but c′ ̸= c⋆,

which violates the identifiability condition. Because the event holds with probability 1, identifiability
fails almost surely for any finite N.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 LEMMA 1: SUBGOAL UNDER-SPECIFICATION

Let Dsubgoal = {si}Ni=1 and U = S \ Dsubgoal. If U ̸= ∅ and there exist c1, c2 ∈ C such that
c1(si) = c2(si) = yi for all (si, yi) ∈ Dsubgoal but c1(u) ̸= c2(u) for some u ∈ U , then no c⋆ ∈ C is
identifiable from Dsubgoal.

Proof. Assume there exists some c⋆ which is identifiable from Dsubgoal, then by definition:

∀c ∈ C,
(
c ∈ V (Dsubgoal)

)
=⇒ c = c⋆.

This means V (Dsubgoal) = {c⋆}, i.e. |V (D)| = 1. Recall that the version space V (Dsubgoal) = {c ∈
C | ∀(si, yi) ∈ Dsubgoal, c(si) = yi}.
Assume there exists two distinct c1, c2 ∈ C both agreeing on every (si, yi) ∈ Dsubgoal. So c1, c2 ∈
V (D) and c1 ̸= c2, so |V (Dsubgoal)| ≥ 2.

Contradiction: These two assumptions contradict each other. Therefore no c⋆ ∈ C is identifiable
from Dsubgoal.

A.3 DEFERRED SELECTION

Let C = {c1, . . . , cK} be our ensemble of subgoal classifiers, and let RT (c) be the cumulative
reward obtained by running classifier c on task T . Then

ET

[
max
c∈C

RT (c)
]
≥ max

c∈C
ET

[
RT (c)

]
.

Equality holds if and only if there is a single hypothesis c⋆ ∈ C that maximizes RT (c) for almost
every task T . In that case, per-task selection reduces to always choosing c⋆.

Proof. Define the random vector X = (X1, . . . , XK) by Xi = RT (ci) with T ∼ T .

For each coordinate i

Xi ≤ max
1≤j≤K

Xj =⇒ E[Xi] ≤ E[max
j

Xj ].

Taking the maximum over i yields maxi E[Xi] ≤ E[maxj Xj ], which is exactly

max
c∈C

ET [RT (c)] ≤ ET

[
max
c∈C

RT (c)
]
.

B EXPERIMENT SETUP

B.1 EXPERIMENT PSEUDOCODE

B.2 COMPUTE RESOURCES

All MONTEZUMASREVENGE experiments were run using 1 Nvidia GTX 4090 GPU and 1 AMD
Ryzen Threadripper PRO 5995WX 64-Cores cpu each, for a total of 64 cores. Each run used 126GB
RAM. A single run takes under 12 hours to run.

All MINIGRID DOORMULTIKEY experiments were run with 2 Nvidia GTX 4090 GPUs and 2
AMD Ryzen Threadriper PRO 5995WX 64-Cores (128 cores) per run. Each run used 252GB RAM.
A single run with an ensemble takes around 24 hours to complete.

All experiments were run on a 10 node cluster, each node has 2 Nvidia GTX 4090 GPUs and 2 AMD
Ryzen Threadriper PRO 5995WX 64-Cores CPUs. All computers run Ubuntu 22.04.3 LTS.
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Algorithm 2 MONTEZUMASREVENGE classifier experiment pseudocode
Input: room datasets

train data← [ ]
test performance← [ ]
for room dataset in room datasets do

classifiers← initialize new classifiers
train data.append(room dataset)
Train classifiers using train data
eval performance← [ ]
for each room dataset in room datasets do

room eval← classifiers accuracy on room dataset
eval performance.append(room eval)

end for
test performance.append(max(ave(eval performance))) ▷ Record best classifier

end for

Algorithm 3 MONTEZUMASREVENGE policy experiment pseudocode
Input: room datasets, max steps per room, classifiers, rooms

train data← [ ]
test performance← [ ]
for room dataset in room datasets do

classifiers← initialize new classifiers
train data.append(room dataset)
Train classifiers using train data
room eval← [ ]
for each room in rooms do ▷ Room is initiation state for policy training

class eval← [ ]
for each classifier in classifiers do

policy← initialize new policy
steps← 0
while steps ¡ max steps per room do

steps taken← train policy for one episode
steps← steps + steps taken

end while
success rate← [ ]
for episode in 100 do

Get Manhattan distance between termination state from classifier and closest
ground truth termination
Man dist← run policy for one episode
success rate.append(Man dist)

end for
class eval.append(ave(success rate))

end for
room eval.append(min(class eval)) ▷ Record best member performance

end for
test performance.append(ave(room eval))

end for

B.3 CLASSIFIER SETUP

We use the PyTorch library for the classifier models. We use the PyTorch
nn.CrossEntropyLoss() for our cross entropy loss and use the DivDis loss function from the
original authors (available at https://github.com/yoonholee/DivDis/tree/main).
There are more states outside the subgoal than inside so we use weight rescaling to balance weight
updates. We do this using the nn.CrossEntropyLoss() weights parameter for this rebal-
ancing. The Adam optimizer PyTorch implementation (optim.Adam()) and add L2 regulariza-
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tion using the weight decay parameter. We have included pseudocode for training the DivDis
classifier in Algorithm 4. Training for the standard ensemble is the standard classifier training loop.

Algorithm 4 Divdis classifier training pseudocode
Input: dataset, max epochs, classifiers

epoch← 0
while epoch<max epochs do

for batch in dataset do
x, u, y ←batch ▷ x : labeled classifier input, u : unlabeled classifier input, y : true label
unlabeled pred← [ ]
batch labeled loss← 0
for each classifier fi in classifiers do

ŷ ←classifier(x)
labeled loss = labeled loss + nn.CrossEntropyLoss(ŷ, y)
û←classifier(u)
unlabeled pred.append(û)

end for
divdis loss←DivDis criterion(unlabeled pred)
loss←batch labeled loss+divdis loss
optimizer.step(loss) ▷ Update weights with respect to loss

end for
epoch←epoch+1

end while

B.3.1 MONTEZUMASREVENGE

The classifier architecture for each ensemble member and the single CNN is shown in Figure 7 (it
is the same architecture for all models). The hyperparameters for MONTEZUMASREVENGE can be
seen in Table 1. For Montezuma’s Revenge, the state is a framestack of 4 timesteps and each frame
is grayscale and resized to 84× 84 as is consistent in the original Atari DQN experiments.

Labeled training data is collected by a human who moves the agent to different areas of each room
in the MONTEZUMASREVENGE game for level 1. Because the data comprises of expert trajectories
and the state consists of the previous four frames our labeled data set does not fully encompass the
entire state space and it is very likely that a policy will encounter states that are not in this dataset
during training. We use this labeled data as unlabeled data in our experiments, discarding the labels
during training and use this data for evaluation during the classifier experiment. Note that while we
evaluate and train on labeled data from all rooms that contain a ladder, we have data collected from
rooms without a ladder so we can still provide the DivDis ensemble with unseen unlabeled data even
when training on all ladder rooms.

B.3.2 MINIGRID DOORMULTIKEY

The classifier architecture for each ensemble member and the single CNN is shown in Figure 8 (it
is the same architecture for all models). The hyperparameters for MINIGRID DOORMULTIKEY can
be seen in Table 2. The state is the fully observable, top-down RGB view of the grid resized to
84× 84.

Labeled data collection is done in two ways for MINIGRID DOORMULTIKEY. First we move the
agent to each accessible grid space (i.e. if the door is locked only grid spaces in the first room
otherwise all grid spaces in both rooms), rotating to face each direction. The agent then collects the
relevant key (e.g. if we are collecting data for COLLECTREDKEY we collect the red key) and again
visits each accessible grid space. The agent unlocks the door and again visits each grid space. Data
was also collected by randomly placing the agent and the available keys in different grid spaces as
well as randomly setting the state of the door (open, unlocked and closed, locked and closed). We
use labeled data as unlabeled data by discarding the labels during training.
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B.4 OPTION POLICY SETUP

We use the same DQN architecture for both MINIGRID and MONTEZUMASREVENGE,
differing only in the number of actions. We use the Adam optimizer as imple-
mented in PyTorch (optim.Adam()). Exploration is carried out using the pfrl library
LinearDecayEpsilonGreedy(), a linearly decaying epsilon greedy explorer. We use the
pfrl replay buffer implementation PrioritizedReplayBuffer() and model updates are
carried out using the ReplayUpdater() also from pfrl. The DQN architecture is shown in
Figure 9 and hyperparameters are displayed in Tables 3 and 4 for MONTEZUMASREVENGE and
MINIGRID respectively. Our DQN model is implemented in PyTorch with a pfrl policy head.
All experiments use γ = 0.9.

B.5 HIGH-LEVEL POLICY SETUP

We use the PPO agent from the pfrl library. We use observation normalization, using
EmpiricalMormalization() from pfrl. Optimization is done using the PyTorch
optim.Adam() optimizer. The policy and value networks are shown in Figure 10, implemented in
PyTorch with a pfrl policy head. Hyperparameters for DOORMULTIKEY MINIGRID are shown
in Table 5. All experiments use γ = 0.9.
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B.6 MODEL ARCHITECTURES

Figure 7: MONTEZUMASREVENGE classifier architecture.
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Figure 8: DOORMULTIKEY MINIGRID classifier architecture.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 9: DQN architecture.
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Figure 10: PPO architecture.
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B.7 HYPERPARAMETERS

Table 1: MONTEZUMASREVENGE classifier hyperparameters.

Hyperparameter DivDis Standard CNN

Learning Rate 5× 10−4 5× 10−4 5× 10−4
Diversity Weight 3× 10−4 0.0 3× 10−4
Ensemble Size 6 6 1
L2 Regularization Weight 5× 10−4 5× 10−4 5× 10−4
Batchsize 64 64 64

Table 2: MINIGRID DOORMULTIKEY classifier hyperparameters.

Hyperparameter DivDis Standard CNN

Learning rate 2× 10−4 2× 10−4 2× 10−4
Diversity weight 1× 10−4 0 1× 10−4
Ensemble size 3 3 1
L2 regularization weight 1× 10−4 1× 10−4 1× 10−4
Batchsize 64 64 64

Table 3: MONTEZUMASREVENGE DQN hyperparameters.

Hyperparameter Value

Replay buffer length 1× 105

Update interval 4
Q-target update interval 10
Final Exploration frame 4× 105 decaying from 1 to 0.01
Learning rate 2.5× 10−4
Batchsize 32
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Table 4: MINIGRID DOORMULTIKEY DQN Hyperparameters.

Hyperparameter Value

Replay buffer length 1× 105

Update interval 4
Q-target update interval 10
Final Exploration frame 8× 103 decaying from 1 to 0.01
Learning rate 2.5× 10−4
Batchsize 32

Table 5: MINIGRID DOORMULTIKEY PPO Hyperparameters.

Hyperparameter Value

Replay buffer length 1× 105

Update interval 100
Entropy coefficient 0.01
λ 0.97
Batchsize 64
Epochs per update 10
Maximum L2 norm 1
Observation normalizer clip threshold 5
Standardize advantages True
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