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ABSTRACT

Time-series data analysis is important because numerous real-world tasks such as
forecasting weather, electricity consumption, and stock market involve predict-
ing data that vary over time. Time-series data are generally recorded over a long
period of observation with long sequences owing to their periodic characteristics
and long-range dependencies over time. Thus, capturing long-range dependency
is an important factor in time-series data forecasting. To solve these problems,
we proposed two novel modules, Grouped Self-Attention (GSA) and Compressed
Cross-Attention (CCA). With both modules, we achieved a computational space
and time complexity of order O(l) with a sequence length l under small hyper-
parameter limitations, and can capture locality while considering global informa-
tion. The results of experiments conducted on time-series datasets show that our
proposed model efficiently exhibited reduced computational complexity and per-
formance comparable to or better than existing methods.

1 INTRODUCTION

Time-series data forecasting is important because many real-world tasks are formatted as problems
based on time series. For example, both weather forecasting and predicting electricity consumption
involve time-series forecasting. These tasks usually require an output sequence of considerable
length to perform prediction as well as a long input sequence to capture the long-range dependencies
among data, which is an important factor in time-series forecasting.

The Transformer model (Vaswani et al. (2017)) is among the most powerful deep learning architec-
tures, and it has been shown to capture long-range dependencies very well compared to other DNN
methods such as RNN or LSTM-based models (Hua et al. (2019); Yadav et al. (2020)) because
it does not use a recurrent structure and can directly access and refer to past sequence informa-
tion. Therefore, applying Transformer models to time-series forecasting tasks may be considered a
promising approach. Recent studies (Zhou et al. (2021); Wang et al. (2020)) have sought to apply
the Transformer architecture to time-series data forecasting to utilize its powerful performance.

However, two important obstacles to directly applying the Transformer architecture to time-series
forecasting remain to be resolved. First, the order of the computational and space complexity in-
creases quadratically for a sequence of length l in the self-attention module, which is the bottleneck
of the Transformer architecture. This problem particularly affects time-series data application, which
tend to require longer sequences. In the time-series domain, the required sequence length may easily
exceed 500 to 1000 and may require sequences of massive length compared to other domains for
some applications, such as voice or biosignal data with a sampling rate in units of kHz. For exam-
ple, in the natural language domain, the maximum sequence length of BERT (Devlin et al. (2018)),
a frequently used pre-trained NLP model, is 512, and it can handle almost any input sentence.

In addition, the computational complexity of a Transformer model is affected not only by the length
of the input sequence but also by that of the prediction sequence. The cross-attention module pro-
vides encoded information of the input to the decoder layer and the complexity of the cross-attention
module increases with the order of multiplication of the lengths of the input and output sequences.
These problems often cause a memory shortage error on GPU servers, which imposes a limit on
the extent to which the sequence length can be increased to obtain higher performance or longer
predictions.

1



Under review as a conference paper at ICLR 2023

Output feature 𝑶
𝑶 = 𝛼(𝑶𝒋

")#$%& +𝛽𝑶'
×𝛽

𝑸%'

𝑸('
…

𝑲%' 𝑲(
'…

Global Attention
with summarized nodes

𝑸)'

𝑲)
'

Attention Matrix

𝑲*
" 𝑲*'

𝐸+

Linear Projection

×𝛼

𝑔(

𝑔)

𝑔%

…

Input nodes

𝑸%
"

𝑸)
"

𝑸(
"

…

𝑲%
" 𝑲)

" 𝑲(
"…

Local Attention
within the Groups

Linear Projection

…
…

…

𝑙!

𝑙! Local 
Attention

Local 
Attention

Local 
Attention

…
𝑙!

Attention Matrix

𝑨%
"

𝑨)
"

𝑨(
"

𝑶𝒋
" = 𝑨𝒋

"𝑽𝒋
" 𝑶' = 𝑨,-.' 𝑽,-.'

𝑨!"#$
𝑸*
" 𝑸*'

𝐸/

Figure 1: Overall illustration of the Grouped Self-Attention module.

To summarize, The algorithm has an order of O(l2) computational time and space complexity in
the self-attention module, where l denotes the sequence length. Moreover, the complexity of the
cross-attention module is O(lenc × ldec) where lenc and ldec denote the input and output sequence
lengths, respectively.

To address these problems, we propose Grouped Transformer as a memory-efficient, high-
performance transformer. The Grouped Transformer architecture consists of two novel modules,
including Grouped Self-Attention (GSA) and Compressed Cross-Attention (CCA) mechanisms.

GSA module is a type of local attention mechanism that can also reflect global attention features.
First, the input nodes are divided into several groups and attention is calculated only within that local
block. For each group, the summarized queries, keys, and values are generated by linear layers to
form summarized nodes that represents the summarized information of the nodes within the group.
All summarized nodes from every group are concatenated and self-attention is calculated among
those nodes to reflect global features from other groups as well. The outputs of local attention
within the group and global attention output are merged to generate a final output which captures
locality while also reflecting global information. Moreover, by limiting the number of summarized
nodes included in the global attention calculation, the computational complexity can be reduced to
order of O(l).

CCA mechanism can reduce computational complexity while minimizing the loss of information. In
contrast to the encoder distillation in Informer (Zhou et al. (2021)), in which the encoder sequence
length is halved through each encoder layer, CCA compresses the length of the encoder output
to a fixed length in each decoder layer. By using different weights of linear layers in each decoder
layer, the encoded features are compressed with various weights to minimize information loss during
compression.

Our proposed method solves the issues mentions above by applying GSA and CCA modules. We
conducted experiments with the time-series datasets provided by Zhou et al. (2021). The results
were promising because the proposed method used less memory and required less computational
time with performance comparable to or better than that of existing methods. Moreover, the results
of experiments on the computational complexity of our proposed approach show that our method
exhibited a complexity of order O(l) for sequence length l. The results of an ablation study on the
effects of GSA module also demonstrate that the proposed method provides a powerful learning
architecture that can efficiently reflect the global features.

Fig.1 illustrates the overall mechanism of the GSA module and Fig.2 illustrates the computation
held in GSA in detail.
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The contributions of this study are summarized as follows.

• We propose a GSA module designed to efficiently capture locality information with global
features while reducing the computational costs to linear order.

• The CCA module successfully reduces the computational complexity of the proposed ap-
proach with less information loss with separated linear weights in each decoder layer.

• The experiments demonstrated that our proposed method successfully managed to reduce
the memory usage while achieving performance comparable to or better than that of the
baseline methods.

2 RELATED WORKS

Studies have considered the application of Transformer models to long sequence data. Existing
methods to reduce the complexity of the Transformer model may be mainly divided into two cate-
gories, including sparse attention mechanisms and approximation methods, each of which involves
some advantages and disadvantages.

This section introduces the mechanism of the self-attention module in Transformer in detail along
with research focused on the quadratic complexity issue with self-attention.

2.1 TRANSFORMER AND THE SELF-ATTENTION MODULE

Transformer (Vaswani et al. (2017)) is a popular deep learning architecture utilized in many different
applications. Their powerful performance on sequence data has been demonstrated in numerous
domains. They are thus utilized across many domains such as natural language processing (NLP)
and computer vision (CV). Many state-of-the-art methods for various tasks in such domains use
a Transformer architecture, which is an encoder-decoder architecture based on self-attention and
cross-attention modules.

The core mechanism of Transformer is the self-attention module. The self-attention module utilizes
scaled dot-product attention with an input comprising queries and keys, and values of dimension d
generated from each input node of the Transformer model. Scaled dot-product attention is calculated
by dividing dot product results of queries and keys by

√
d and applying a softmax function to obtain

the weights of the values. To compute the attention function on a set of queries simultaneously,
queries, keys, and values are concatenated into a matrix Q,K,V where Q ∈ RlQ×d, K ∈ RlK×d,
and V ∈ RlK×d as given below.

A = softmax(
QKT

√
d

), (1)

Attention(Q,K,V ) = softmax(
QKT

√
d

)V = AV . (2)

However, the self-attention mechanism is also the bottleneck of the Transformer architecture owing
to the quadratic growth of its computational complexity for the sequence length. This is caused by
the calculation of the attention matrix where the dot-product operation is performed lQ × lK times
and occupies memory in proportion to lQ × lK as well.

2.2 EFFICIENT SELF-ATTENTION MECHANISMS

Capturing long-range dependency is a crucial factor in time-series data analysis. Compressive Trans-
former (Rae et al. (2019)) and Transformer-XL (Dai et al. (2019)) reinforced the ability of capturing
long-range dependency by utilizing auxiliary hidden states. However, these approaches could am-
plify the computational order issue mentioned above, especially with longer input sequences.

Recent studies have addressed this issue to apply the Transformer architecture to tasks involving a
long sequence length by creating an efficient way to calculate attention values.
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2.2.1 SPARSE ATTENTION MECHANISMS

Research on sparse attention mechanisms such as Informer (Zhou et al. (2021)), Sparse Transformer
(Child et al. (2019)), Longformer (Beltagy et al. (2020)), and LogSparse Transformer (Li et al.
(2019)) addressed the issue of complexity by calculating the attention matrix sparsely, focusing on
the dominant attention values evaluated with their own heuristic metrics. Our proposed model is
based on the Informer framework, which utilized global time stamp embedding and a generative
style decoder, and a different self-attention module is applied. Moreover, Informer used encoder
distillation to shrink the encoder output length by half for each encoder layer to reduce the com-
putational complexity in the cross-attention module. However, the way they choose the nodes to
calculate attention involved random sampling, which may ignore the calculation of dominant atten-
tion. Other methods such as Sparse Transformer, Longformer, and LogSparse Transformer require
the premise that near nodes or nodes selected with certain rules have dominant attention values,
which may not be compatible with data that correlates with distant nodes.

Local attention is another example of sparse attention mechanisms that can reflect locality while
efficiently calculating attention. However, accessing global information is difficult because dis-
tant nodes are not included in the calculation of local attention. Image Transformer (Parmar et al.
(2018)) utilized local1d attention to generate image pixels with the premise that close nodes gener-
ated from near pixels hold important information. On the other hand, our proposed method not only
focuses on locality with local attention but also reflects global information by calculating attention
for summarized nodes from each group. Moreover, Chu et al. (2021) introduces the locally-grouped
self-attention which does grouped local attention with global attention to learn the image represen-
tations. However, the way of calculating local attention and global attention is different from the
proposed method and it does not suppress the complexity order of the self-attention module for
efficient computation.

2.2.2 APPROXIMATION METHODS

Researchers have introduced approximation methods in self-attention mechanisms to reduce the size
of the attention matrix or the number of calculations required. Linformer (Wang et al. (2020)) uti-
lized a low-rank approximation on the attention matrix and Performer (Choromanski et al. (2020))
used a softmax kernel approximation to reorder the attention calculation and reduce computational
complexity. Research that applied approximation methods successfully achieved a complexity of
order O(l) while reflecting global information. However, information is inevitably lost in approx-
imation, and although this approach can capture global features, it is not guaranteed to preserve
locality information.

3 PROPOSED METHOD

Our proposed model consists of two main contributions, including Grouped Self-Attention (GSA)
and Compressed Cross-Attention (CCA) modules. The GSA module divides the nodes into multiple
groups and constructs blocks of an attention matrix to calculate local attention. Each group’s nodes
are projected to form summarized nodes, and the self-attention is calculated among those summa-
rized nodes to reflect the global features. The outputs from local and summarized node attention are
then merged to form the final output.

The CCA module projects the encoder output into a fixed length in each layer of the decoder to
reduce complexity efficiently. Because the projection is performed separately with different weights
in each layer, the information loss from linear projection is minimized and the decoder layer can
capture variant features and information from the encoder output. Our method successfully achieved
a complexity of order O(l) for a sequence length of l while capturing locality and global information.

The CCA is used instead of encoder distillation as in Informer to reduce computational complexity
in cross-attention while replacing the self-attention mechanism with GSA.

3.1 GROUPED SELF-ATTENTION

In this section, we provide a detailed explanation of the proposed Grouped Self-Attention (GSA)
mechanism. Overall, we utilize the concept that self-attention reflects the interaction among the
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Figure 2: A detailed illustration of the Grouped Self-Attention module.

input nodes into outputs. The input nodes are divided into several groups to calculate the local
attention within the groups, and summarized nodes generated from each groups are concatenated to
compute another self-attention to reflect the information interaction among other groups.

For detailed explanation, first, for each input node ni ∈ Rd (i ∈ {1, ..., l}), query qi ∈ Rd, key ki ∈
Rd, and value vi ∈ Rd are generated by linear projection as in canonical self-attention methods. The
input nodes are divided into several groups within which the local attention is computed to capture
the locality.

To compute the attention function efficiently, all queries, keys, and values are concatenated to form
matrices Q ∈ Rl×d, K ∈ Rl×d and V ∈ Rl×d. Before computing the attention matrix, as shown
in Fig.1 and Fig.2, the input nodes are divided into several groups with a length of lg . We define
these groups of nodes as G = {gj ∈ Rlg×d}mj=1, whereas m is the number of divided groups. If l
cannot be divided by lg , the zero-padded nodes are added to match the length mlg . Queries, keys,
and values are generated by linear projection for each group. For example, queries, keys, and values
of group gj are defined as Qg

j ∈ Rlg×d, Kg
j ∈ Rlg×d, and V g

j ∈ Rlg×d respectively. The attention
output of group gj , Og

j ∈ Rlg×d, is computed as given below in equation 3

Og
j = Attention(Qg

j ,K
g
j ,V

g
j ). (3)

After computing the local attention among these groups, summarized nodes defined as S = {Sj ∈
Rls×d}mj=1 are computed. The queries, keys, and values of summarized nodes Si for group gj are
calculated by applying linear projection matrices Eq,Ek,Ev ∈ Rls×lg as given below in equation
4.

Qs
j = EqQ

g
j ,K

s
j = EkK

g
j ,V

s
j = EvV

g
j . (4)

where Qs
j ,K

s
j ,V

s
j ∈ Rls×d.

Self-attention is again calculated only with these queries, keys, and values of summarized nodes to
reflect the information of other groups. To compute the self-attention among summarized nodes, all
Qs

j ,K
s
j , and V s

j are concatenated to form Qs
cat,K

s
cat,V

s
cat ∈ Rmls×d.

These concatenated queries, keys, and values are used to compute the global self-attention output Os

as illustrated in Fig.1 which represents the projected global features of all input nodes. Os ∈ Rmls×d

of equation 5 reflects the global information by calculating attention with summarized queries and
keys across the groups.
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Os = Attention(Qs
cat,K

s
cat,V

s
cat). (5)

Os is then divided into m segments where each segment Os
j ∈ Rls×d represents the output that

reflects global features with local information in group gj . Os
j is pooled by average pooling to form

Os
j ∈ R1×d, where Os

j =
∑ls

k=1(O
s
j )k, and it is added to the local attention output Og

j to form the

final output of group gj , Õg
j ∈ Rlg×d according to equation 6.

Õg
j = αOg

j + βOs
j . (6)

α and β are learnable parameters for each group that determine the reflection ratio of global output
into local attention. All Õg

j are concatenated to form final output of the GSA layer O ∈ Rmlg×d.
This process allows the local attention to consider the global features while capturing locality.

The computational complexity of our proposed approach increases with the number of dot-
production calculations in the attention, which is given as m × l2g + (m × ls)

2. Because m is
the number of groups and lg is the number of nodes included in one group, m × lg equals the se-
quence length l, and because ls is the length of summarized nodes that qualifies ls << lg < l,
the algorithm has a complexity of order O(lg × l). lg is a fixed length representing the number of
nodes included in a single group, and thus the final complexity order becomes linear with respect to
sequence length l.

To summarize, the GSA module is a linear-order self-attention mechanism based on a local attention
mechanism that considers global features by receiving information from interactions of summarized
nodes.

3.2 COMPRESSED CROSS-ATTENTION

The cross-attention module in the canonical Transformer reflects the encoded input features from
encoder outputs to the decoder layer. The keys and values for cross-attention are generated from the
encoder output, and the queries are generated from the decoder input. The attention is computed
using those queries, keys, and values similar to equation 2. The length of queries lQ, generated
from encoder output is equal to that of the input sequence, and the lengths of keys and values lK
generated from decoder input are equal to that of the prediction sequence. This module thus exhibits
a quadratic computational and space complexity of order O(lQ × lK) when the values of lQ and lK
are similar.

We propose a Compressed Cross-Attention (CCA) module that performs linear projection on en-
coder output across all decoder layers to reduce complexity while minimizing information loss dur-
ing projection. The output of the encoder is compressed by linear projection to a fixed length lcomp

in each cross-attention module in the decoder with separate weights. Information loss is minimized
by compressing the encoder outputs multiple times in each decoder layer because using separate
weights across all layers can extract various different features from the encoder output. Moreover,
the computational complexity is reduced to order O(lQ × lcomp), which is linear because lcomp is a
changeable hyperparameter of fixed length.

4 EXPERIMENTS

In this section, we evaluate the performance, memory efficiency, and computational efficiency of our
proposed method compared with those of other related methods on time-series datasets that require
long sequences. The evaluations were conducted with four baselines utilizing other variations of
self-attention modules including the ProbSparse attention from Informer (Zhou et al. (2021)), low-
rank approximation of attention matrix in Linformer (Wang et al. (2020)), Local1d attention from
Image Transformer (Parmar et al. (2018)), and LSH attention from Reformer (Kitaev et al. (2020)).
The hyperparameter settings for these methods are given in 4.1

The time-series datasets were obtained from Zhou et al. (2021), and three datasets are selected to
perform the experiments. ETT (Electricity Transformer Temperature), which is a crucial indicator in

6



Under review as a conference paper at ICLR 2023

long-term electrical power deployment, includes datasets with two years of information of ETTh1,
ETTh2 recorded with one-hour frequency and an ETTm1 dataset with 15-minute frequency. ECL
(Electricity Consumption Load) contains hourly electricity consumption for 2 years. Finally, the
Weather dataset consisted of local climatological data collected over four years. All datasets in-
cluded features with multiple dimensions for a single period. Target values were selected in each
dataset as “oil temperature” for ETT, “MT 320” for ECL, and “wet bulb” for Weather. Our division
of the dataset into training, validation, and testing sets followed that of Zhou et al. (2021).

4.1 HYPER-PARAMETER SETTINGS

The hyperparameters that need to be set for the proposed model are listed as the group node length
lg , the number of layers in the encoder and decoder el, anddl, the summarized node length ls, and a
fixed length lcomp in CCA module. Other parameters common to the canonical Transformer model
follow Vaswani et al. (2017), such as the dimension of features in the multi-head attention module.
A grid search was conducted for hyperparameter settings, and values of 64, 90 for lg , 1, 3 for el and
dl, and 4, 8 for ls were obtained. The parameters selected according to model performance were 64
for lg , 3 for el and dl, and 4 for ls. The parameters el and dl were shared with the baseline models,
and thus same values were used for other networks. Finally, a fixed compressed length lcomp in the
CCA module is set to 256.

Informer, Linformer, Image Transformer, and Reformer models were used as baselines in the ex-
periments. As we utilized frameworks and code from Informer, the default parameters from Zhou
et al. (2021) were used with the Informer architecture. The projected dimension in the low-rank
approximation of Linformer was set to 256, as in Wang et al. (2020). For local1d attention in Image
Transformer, the block length for each local block was set to 64 as in lg in grouped attention for a
fair comparison with the proposed method. The bucket sizes required in Reformer were set to 48,
42, 72, 42, 42, 60, and 60 for sequence lengths 96, 168, 288, 336, 672, 720, and 1440 respectively
because half of the sequence length should be divisible by the bucket size.

4.2 EXPERIMENTAL SETUP

As mentioned above, ETTh1, ETTh2, ETTm1, ECL, and Weather datasets were used to evaluate the
performance of models. For each model, global time stamp embedding and generative style decoder
structure were applied as in Zhou et al. (2021) to focus on comparing the self-attention modules.
One difference among the networks other than the self-attention module was that Informer used
encoder distillation to reduce the computational complexity of calculating cross-attention, and the
CCA module was applied to reduce the computational complexity of other methods, including the
proposed approach.

In the experiment with multivariate settings, we fed the multi-dimensional features as input to predict
all the features, including not only the target feature but also other features as well. In contrast, in
the experiments following univariate settings, we input the single-dimensional feature of the target
value to predict target features using the output of the models. We focused on comparing the self-
attention modules as much as possible, and we also compared the performance and computational
complexity for all the variations of self-attention.

4.2.1 PERFORMANCE EVALUATION

The results are shown in Table 1, which indicates the results of the experiments with multivariate and
univariate settings. For each setting, the best-performing value is shown in bold, and the difference
between the second-best value is shown in bold as well if it was under 0.01. We used the mean
square error (MSE) loss as an evaluation metric. MSE loss was also used as a loss function to train
all the models and the learning rate was set to 0.0001. The sequence lengths varied from 168 to
1440, as shown in the seq len section of Table 1. ETTm1 was used with a slightly different seq len
range for comparison with the results reported in Zhou et al. (2021). The variable seq len represents
the input sequence length and prediction sequence length, and the length of labels used in generative
style decoder input was set to half of the seq len. The sequence lengths under 64 were removed and
compared to the results shown in Zhou et al. (2021) because the group node length lg was selected
as 64, and if the input sequence length was under 64, it behaved equivalently with self-attention in
canonical transformer.
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Table 1: MSE losses results from experiments with multivariate and univariate settings

Multivariate Univariate
Data(seq len) Grouped (Ours) Informer Linformer Local1d Reformer Grouped (Ours) Informer Linformer Local1d Reformer

ETTh1(1440)
ETTh1(720)
ETTh1(336)
ETTh1(168)

0.8488
1.0624
1.1047
0.8531

1.2791
1.3786
1.0841
1.0538

1.0565
1.3199
1.2129
0.9580

1.0797
1.0716
1.0253
0.8152

1.0394
1.1505
1.1014
0.7699

0.4243
0.2062
0.3001
0.3844

0.3732
0.2627
0.3031
0.1537

0.4818
0.2542
0.4048
0.4034

0.5918
0.2587
0.4048
0.3204

0.7048
0.3505
0.2757
0.3274

ETTh2(1440)
ETTh2(720)
ETTh2(336)
ETTh2(168)

3.0034
2.7107
4.2793
9.9923

4.6793
4.4807
3.3196

10.9307

2.9800
3.5199
5.0038
5.8715

2.5742
2.9131
2.8158
9.8326

2.5441
2.9069
3.0375
8.9058

0.2388
0.2737
0.2555
0.1844

0.2616
0.2920
0.3220
0.2742

0.2440
0.2352
0.2515
0.3066

0.2601
0.2220
0.2697
0.2330

0.2484
0.2619
0.3008
0.2611

ETTm1(1440)
ETTm1(672)
ETTm1(288)
ETTm1(96)

1.0737
0.8121
0.9367
0.5649

1.1128
1.0566
0.8505
0.6190

1.1834
0.8775
0.8644
0.5721

1.0105
0.9359
1.0439
0.5902

1.1913
0.9602
0.8460
0.5813

0.2973
0.3663
0.3285
0.0883

0.2485
0.3457
0.3594
0.1011

0.3165
0.3948
0.3327
0.0511

0.2516
0.3943
0.2811
0.1622

0.3689
0.3508
0.3642
0.1020

ECL(1440)
ECL(720)
ECL(336)
ECL(168)

0.2894
0.2850
0.3122
0.2785

0.3134
0.3089
0.3023
0.2772

0.2915
0.2775
0.3250
0.2619

0.2948
0.2971
0.2944
0.2893

0.3071
0.2895
0.2988
0.2842

0.4474
0.4504
0.3877
0.3371

0.4704
0.4440
0.4073
0.3356

0.5003
0.3524
0.3698
0.3587

0.3052
0.5085
0.4426
0.3643

0.4462
0.4287
0.4059
0.3700

WTH(1440)
WTH(720)
WTH(336)
WTH(168)

0.5769
0.6088
0.6263
0.5848

0.6343
0.6609
0.6273
0.6246

0.6147
0.6329
0.6155
0.5986

0.5983
0.6516
0.6273
0.5685

0.6114
0.6732
0.6414
0.6345

0.2190
0.2830
0.2755
0.2149

0.2475
0.3532
0.2658
0.2587

0.2251
0.2401
0.2635
0.2032

0.2357
0.2572
0.2539
0.2615

0.2150
0.2250
0.2411
0.2160

count 9 1 6 6 3 6 5 6 4 5

0 2000 4000 6000 8000 10000 12000
sequence length

0

10000

20000

30000

40000

50000

60000

70000

80000

M
em

or
y(

M
B)

Grouped (Ours)
ProbSparse(Informer)
Linformer
Local1d
LSH(Reformer)
Canonical

180 360 720 1440 2880 5760 11520
sequence length (log scale)

7

8

9

10

11

lo
g2

(c
om

pu
ta

tio
na

l t
im

e)

Grouped (Ours)
ProbSparse(Informer)
Linformer
Local1d
LSH(Reformer)
Canonical

Figure 3: The figure at left shows the memory usage of the attention mechanisms with respect to
the sequence length. The memory usage of canonical Transformer in sequence length of 11520 was
190341MB. The figure on the right illustrates the average computational time per 1000 iterations of
attention mechanisms with respect to sequence length on a log scale for easier comparison.

Table 1 illustrates that the performance of Grouped Transformer was the best across the experiments,
especially for the experiment with multivariate settings.

Baselines other than Informer performed better compared to the experimental results in Zhou et al.
(2021). However, in our experimental settings, all the baselines shared the global time stamp embed-
ding and generative style decoder structure proposed in Zhou et al. (2021). Moreover, our proposed
method, Linformer, Local1d, and Reformer utilized the CCA mechanism to reduce the computa-
tional cost. Because all the methods shared the Informer framework including global time stamp
embedding and generative style decoder, the only difference was the mechanism of self-attention,
and thus the baselines other than Informer performed better as well.

4.2.2 MEMORY AND COMPUTATIONAL COMPLEXITY EVALUATION

We conducted experiments to evaluate the computational complexity of our proposed approach and
each baseline to analyze the memory usage and computational speed according to the sequence
length fed to the self-attention layers. This experiment was conducted for every model with a varia-
tion of sequence lengths of 180, 360, 720, 1440, 2880, 5760, and 11520 using the Weather dataset.
These sequence lengths indicate the input and prediction sequence lengths. Because the purpose was
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Table 2: MSE results of ablation study on global attention reflection in GSA module with multivari-
ate setting

Data(seq len) Grouped Grouped†

ETTh1(1440)
ETTh1(720)
ETTh1(336)

0.8488
1.0624
1.1047

1.1332
1.1576
1.2464

ETTh2(1440)
ETTh2(720)
ETTh2(336)

3.0034
2.7107
4.2793

3.2622
2.5103
3.6806

ETTm1(1440)
ETTm1(672)
ETTm1(288)

1.0737
0.8121
0.9367

1.1138
0.9268
0.9006

Data(seq len) Grouped Grouped†

ECL(1440)
ECL(720)
ECL(336)

0.2894
0.2850
0.3122

0.2948
0.2980
0.3009

WTH(1440)
WTH(720)
WTH(336)

0.5769
0.6088
0.6263

0.5937
0.6278
0.6240

to check the order of memory usage and computational speed of self-attention modules, the other
parameters were set to small values to exclude any potential confounding effects. el and dl were set
to 3 as in the experiment setup, and the dimension of features d was 256 with four-headed attention,
the hidden dimension in the feed-forward network between attention layers was 256, and the length
of labels used in the generative style decoder input was 0. Moreover, the Weather dataset was used
with a multivariate setting. Memory usage was calculated during the training and backpropagation,
and the computational time per iteration was calculated as the average consumed time per iteration
for one epoch of training. This experiment is conducted on Quadro RTX 8000 GPUs. Fig.3 shows
the results of the experiments on memory usage computational time.

As shown in Fig.3, the proposed method efficiently minimized memory usage and computational
cost. Our proposed method exhibited the lowest value in terms of both memory usage and com-
putational time, especially with a longer sequence length such as 11520. While utilizing the least
computing resources, our model achieved performance comparable to or better than that of the base-
line methods.

4.2.3 ABLATION STUDY

We conducted an ablation study on the GSA module to demonstrate the effect of reflecting global
information on local attention. Table 2 shows the MSE results of the ablation study. The experiment
was conducted in a multivariate setting. Grouped† in Table 2 only utilized Og

j instead of the final

output Õg
j calculated in equation 6 to exclude the effect of global attention. To verify the premise

that reflecting the global information would be beneficial to process the input with a long sequence
length and to capture long-range dependencies, the ablation study was conducted with sequence
lengths over 288.

The results of the ablation study shown in Table 2 indicate that global feature reflection by summa-
rized nodes in GSA was effective to capture long-range dependencies, especially for all the settings
with seq len=1440, Grouped† did not perform as well as the proposed method.

5 CONCLUSION

In this study, we have proposed a GSA module designed to capture locality with local attention
while reflecting global features by calculating attention among summarized nodes. We also have
proposed a CCA module to reduce the computational cost of computing the cross-attention. Our
method successfully reduced computational complexity and memory usage and achieved perfor-
mance comparable to or better than existing methods with time-series data. Our experimental re-
sults demonstrate that the proposed approach can capture long-range dependencies with an efficient
attention mechanism in the Transformer model.

For future work, we would like to apply our proposed modules to other tasks that require long
sequences such as image pixel generation or protein sequence modeling tasks. Moreover, because
each module can be applied independently, GSA module can be applied to encoder-only structure of
Transformer such as BERT Devlin et al. (2018) to testify the performance and enlarge the maximum
length of sequence input with its memory-efficiency.
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