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Abstract

Recent advances demonstrate that increasing inference-time computation can signif-
icantly boost the reasoning capabilities of large language models (LLMs). Although
repeated sampling (i.e., generating multiple candidate outputs) is a highly effec-
tive strategy, it does not leverage external feedback signals for refinement, which
are often available in real tasks like coding. In this work, we propose Adaptive
Branching Monte Carlo Tree Search (AB-MCTS), a novel inference-time frame-
work that generalizes repeated sampling with principled multi-turn exploration
and exploitation. At each node in the search tree, AB-MCTS dynamically de-
cides whether to “go wider” by expanding new candidate responses or “go deeper”’
by revisiting existing ones based on external feedback signals. We evaluate our
method on complex coding and engineering tasks using frontier models. Empirical
results show that AB-MCTS outperforms both repeated sampling and standard
MCTS, underscoring the importance of combining the response diversity of LLMs
with multi-turn solution refinement for effective inference-time scaling. Code is
available at: https://github.com/SakanaAl/treequest.

1 Introduction

Recent work has shown that inference-time scaling, namely allocating more computation at inference
time, can markedly boost the performance of large language models (LLMs) on complex tasks. As
outlined in Section 2] existing approaches to inference-time scaling fall into three broad categories:
(1) post-training fine-tuning, (2) reward-guided chain-of-thought (CoT) generation, and (3) multiple
answer generation. In this paper, we focus on the third category. The multiple answer generation
approach repeatedly queries an LLLM at non-zero temperature to produce a set of candidate outputs
and then selects the most promising one. This approach enhances the LLM’s problem-solving abilities
on-the-fly, without further training [[1H11]. Because it is orthogonal to the other two families, it can
be seamlessly combined with them.

The most widely successful approach in this category is repeated sampling, which includes techniques
such as best-of-n sampling, majority voting, and self-consistency [2, 3, [12]. In repeated sampling,
an LLM at non-zero temperature generates multiple candidate outputs independently from the same
initial prompt, and a final solution is selected, typically by a simple heuristic. This paradigm has
proved effective on challenging benchmarks, including coding competitions [[1,13] and ARC-AGI [13]].
The strategy leverages the diverse and vast output space exposed by LLM generation, and sampling
more responses increases the odds that one of them is high-quality. The empirical success of repeated
sampling underscores that harnessing this diversity is central to effective inference-time scaling.

However, repeated sampling focuses exclusively on exploration and lacks an explicit mechanism
for exploitation. In certain real-world scenarios, one can obtain external feedback on a candidate
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Figure 1: Visual comparison of AB-MCTS vs. baselines. Unlike baselines that are purely wide
(repeated sampling), purely deep (sequential refinement), or fixed-width (standard MCTS), AB-
MCTS dynamically decides whether to branch outward or drill down, unifying both search directions.

solution. For instance, in coding tasks, one can run tests to evaluate the correctness of generated
programs and gather feedback on how to improve them [4} 5, [14]. In such settings, it is natural to
select promising solutions and refine them based on available feedback, which repeated sampling
alone cannot accomplish effectively.

Several approaches [0, [7, 9H11} [15] have been proposed for exploration and exploitation in such
multi-turn settings, but the majority were designed before the power of inference-time scaling was
fully recognized. Consequently, these methods use a fixed “width”, i.e., they treat the number of
answers generated from a single prompt as a fixed hyperparameter. For example, methods based
on standard Monte Carlo Tree Search (MCTS) use a fixed branching factor (i.e., the number of
child nodes per state) as a hyperparameter [9-11,[15]. As demonstrated by the success of repeated
sampling, effective inference-time scaling requires leveraging a diverse and vast output space, thus,
providing substantial evidence that a fixed width hinders scaling.

In this work, we propose Adaptive Branching Monte Carlo Tree Search (AB-MCTS), a novel inference-
time framework that generalizes repeated sampling with multi-turn exploration and exploitation
(Figure[T)). The main technical challenge is to introduce unbounded branching into MCTS. Unlike
traditional MCTS, AB-MCTS does not fix the width as a static hyperparameter. Instead, at each node
of the search tree, AB-MCTS adaptively decides whether to explore (“go wider”) by generating new
candidate responses or exploit (“go deeper’) by refining existing ones, leveraging external feedback
signals. Under the hood, we formalize our decision process via Bayesian posterior updates, ensuring
each expansion balances exploration and exploitation in a principled manner. This design naturally
extends repeated sampling, allowing us to harness the diverse and vast output space of LLMs when
necessary. Consequently, our framework provides a powerful mechanism for balancing exploration
and exploitation in the context of LLM inference-time scaling.

We evaluated AB-MCTS on complex coding and machine learning engineering benchmarks [[1, [16]],
as well as ARC-AGI [[17], using frontier models such as GPT-4o [[18] and DeepSeek-V3 [[19], in a
scenario that scales up inference-time compute by allowing multiple generation calls for each task
instance. Under the same computational budget, AB-MCTS achieved better results than previous
approaches, such as repeated sampling and standard MCTS.

Contributions. (D We highlight the challenge of effectively incorporating unbounded branching into
tree search. This is pivotal for combining the power of the diverse and vast output space of LLMs, a
cornerstone of inference-time scaling, with solution refinement. (2) To address this challenge, we
introduce AB-MCTS, which systematically decides whether to “go wider” or “go deeper.” We present
two variants, AB-MCTS-M and AB-MCTS-A, based on different principles, each offering distinct
trade-offs. Q) In a practical setting using frontier models and real-world complex tasks, we show that
AB-MCTS outperforms existing methods.



2 Related Work

Inference-Time Scaling by Post-Training Fine-Tuning. Recent post-training work, exemplified by
OpenAl 01/03 [20} [21]], uses reinforcement learning or supervised CoT fine-tuning to deepen LLM
reasoning and boost single-answer quality [20525]]. Our approach instead generates many candidates
and refines them with external feedback, pursuing a complementary objective.

Inference-Time Scaling via Reward-Guided CoT. Reward-guided CoT scales inference by search-
ing one step (typically a sentence) at a time [26-34]]. Primarily for math tasks, it aims to improve
single-answer quality, making it orthogonal to our multiple-answer generation approach.

Inference-Time Scaling by Multiple Answer Generation. Since the community has come to
appreciate the power of inference-time scaling, the strategy that has been studied widely is repeated
sampling, in which the model generates many candidate answers and selects the best one [1H3]
35]. Although empirically strong and widely used, repeated sampling leaves obvious room for
improvement because it does not refine its candidates using external feedback [4, 5. Before the era of
large-scale inference-time compute, a variety of task-specific strategies were proposed for relatively
small scales; examples include tree expansions directed by LLMs [6] and Bayesian methods [7].
LATS [9]], RAP [15]], SWE-Search [[10], and RepoUnderstander [[11]] combine LL.Ms with MCTS,
primarily targeting sequential decision making. In this context, nodes represent states and edges
represent actions, which may involve interaction with an environment. LATS utilizes API calls and
code execution as actions to solve tasks. RAP addresses the process of solving block-moving puzzles
and mathematical word problems step-by-step. SWE-Search explores sequences of actions such as
searching, editing, and running tests to resolve issues within a software repository. RepoUnderstander
employs MCTS for exploration on a repository knowledge graph. The application of LATS to
coding tasks [9} Section 5.2] aligns with the context of multiple-answer generation in this paper and
corresponds to what we refer to as “standard MCTS” in our experiments.

Progressive Widening in MCTS. Progressive widening (PW) [36, [37] is a classic technique that
gradually increases actions considered per node. It was designed for games with unique actions
and no side information for untried moves, relying on visit-count heuristics. Complementary to PW,
Sokota et al. [38] propose “abstraction refining”, which groups similar successors using a decreasing
similarity threshold and shows advantages over PW under equal simulation budgets in stochastic
domains. Our approach differs as new branches are sampled from the same LLM. This homogeneity
in generation allows a principled statistical rule for choosing between widening and deepening.

3 Method

3.1 Preliminaries

First, we introduce the setup and notation, with detailed elaboration provided in Appendix[A.T] We
consider a setting where an LLLM, represented by a function f 1, receives a textual prompt ¢;,
containing (1) task instructions with optional few-shot examples, and/or (2) previously generated
outputs along with external feedback, and generates an answer ¢, = from(tin). A scoring function
R then evaluates an answer ¢, to produce a score 7 = R(t.ut ), where higher scores indicate better
performance. We typically assume that the score  is normalized to the range [0, 1], but our framework
allows for arbitrary ranges as well. Our goal is to find an output ¢, that attains a high score r under
limited calls to the LLM at inference time. Such tasks arise, for example, in code generation, where
the correctness or quality of the output can be quantified; for instance, R may execute the generated
code and return the fraction of test cases passed. In some cases, the true score evaluator may be
inaccessible (e.g., hidden test cases), so we assume we have access to some surrogate or partial
evaluator R, such as a public test evaluator, during the search. We aim to leverage this evaluator to
guide an efficient search for better solutions.

3.2 Adaptive Branching MCTS

MCTS for LLM-based Answer Generation. We perform the answer search by constructing a
search tree 7', in which each non-root node N is associated with an LLM-generated answer to a given
task. Our goal is to construct 7" so that it contains answers with scores as high as possible.
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Figure 2: Example tree structure and score posterior predictive distributions for AB-MCTS with
mixed models (AB-MCTS-M). Here, a; leads to a set of child nodes with higher scores, causing a
peak at larger r. As more child samples are collected, the variance of the distribution decreases.

Algorithm 1 Adaptive Branching MCTS

: function AB-MCTS(nnodes)
T + INITIALIZETREE( )
forn =1,...,Nnodes do
L N < SELECTEXPANSIONTARGET(T") > Step 1. Select an expansion target

Nhew +— EXPAND(N, T') > Step 2. Expand the selected node to generate a child
SCOREBACKUP(Nyew, 1) > Step 3. Backup the score from the generated node
return SELECTBEST(T")

function SELECTEXPANSIONTARGET(T)

N < GETRoOT(T)

10: while not ISLEAF(NV) do

11: Niext < SELECTCHILD(N, T) > Detailed in S()(‘Ii()lzsmzt/[}z]
12: if ISGENNODE(Nyext) then > If a GEN node is selected, branch off from the node
13: L break

14: N <— Nnext

15: [ return N

For this purpose, we employ MCTS, formulated iteratively as follows. Starting from a single root
node, we perform ny.qes iterations, each adding one new node, resulting in a total of 1 4 7045 NOdes.
Each iteration has three steps: (1) Selection, where we select a node N for expansion; (2) Expansion,
where we expand N by generating a new answer from node N, creating a new child node Ny,
and appending it to N. Specifically, if N is the root, the new answer is directly generated from the
task prompt; if IV is non-root, the new answer refines the answer associated with NV, using external
feedback; and (3) Score backup, where we propagate the score of Ny, up toward the root of the
tree 7. We adopt different backup rules in our proposed methods (see Section [3.3]and [3.4). In our
setting, no separate rollout is needed, since each node’s score r can be evaluated directly once an
output is generated. After npqes iterations, we select the best node based on a chosen criterion.

In standard MCTS, only leaf nodes are selected and expanded, (i.e., each node is expanded at most
once), and the expansion adds a fixed number of child nodes. However, since each query to an LLM
at non-zero temperature can yield different outputs from the same prompt, the branching factor is
theoretically infinite. To accommodate such unbounded branching, we relax the standard MCTS
constraints and allow selection and expansion of non-leaf nodes. Moreover, recent studies [3] suggest
that drawing many outputs from the same prompt at non-zero temperature can improve performance.
Allowing unbounded branching enables us to fully exploit these varied samples, whereas restricting
the branching factor could miss correct answer generations and undermine overall performance.

Adaptive Branching via the GEN Node. To fully leverage the potential performance improvement
from unbounded branching, we allow nodes that have already been expanded once to be expanded
again and further branched, unlike in standard MCTS. To explicitly represent the action of generating
new child nodes, we introduce a GEN node. Every node N (including newly expanded ones during
iterations) has a GEN node as a child. When the GEN node with parent node N is selected during the
selection step, we expand N by adding a new child node. Algorithm [I]outlines this approach, called
Adaptive Branching Monte Carlo Tree Search (AB-MCTS).



The only remaining component we need is a selection policy, including when to select a GEN
node. We propose two algorithms with different selection policies: AB-MCTS-M (Mixed model)
and AB-MCTS-A (node Aggregation). Both follow the overall procedure in Algorithm [T]and use
Thompson sampling to balance exploration and exploitation.

The UCT score is inapplicable to our AB-MCTS because GEN nodes make the problem fundamentally
different from a standard multi-armed bandit problem, for which UCT was designed. In standard
MCTS, the arms (branches) are static. In contrast, the GEN node in AB-MCTS dynamically generates
new arms. This special problem setting, where arms are generated on the fly, prevents the direct
application of UCT. We, therefore, adopt a Bayesian probabilistic model. This enables Thompson
sampling based on the posterior distribution and obviates the need for complex UCB-style confidence
bound analysis.

Thompson Sampling for Node Selection. In our proposed methods, we employ a Bayesian approach
with Thompson sampling for node selection. Here, we employ Thompson sampling because GEN
nodes do not have child nodes, making it impossible to compute their UCT scores. In addition,
Thompson sampling has the advantage of allowing node expansion in parallel. This is particularly
beneficial when evaluating node scores is time-consuming, as in the case of MLE-Bench (See
Appendix [B.T|for MLE-Bench details).

Concretely, during SelectChild step at line[IT]of Algorithm[I] we employ Thompson sampling
to decide between expanding a GEN node or selecting from existing child nodes at node V. Let IV
be a node with potential actions

AN = {G/Oa ala R ] anchud}»

where the action ag corresponds to choosing the GEN node, and aq,...,ay,,, correspond to
choosing the already-existing child nodes. Suppose Py (r | a;) is the posterior predictive distribution
of the score r for an eventually expanded new node (N, at line[5]of Algorithm I]) if we choose the
action a; at node N. Then Thompson sampling proceeds by,

1. Calculate Py (7 | a;) for each action a; at node V.
2. Draw scores rn,,, .o, from Py (r | a;) for each action a.

3. Select @ = argmaXq e Ay T Nyey,a; -

This three-step process corresponds to a single call to SelectChild.

A key question is how to perform step 1, i.e., how to model and calculate Py (r | a;) for all a;, in
particular for 7 = 0 (i.e., GEN node). We address this with two strategies: a mixed Bayesian model
(AB-MCTS-M) and a node aggregation method (AB-MCTS-A). In both cases, we model the score
probability distributions by Bayesian posterior predictives, but with different statistical models.

3.3 AB-MCTS-M: Adaptive Branching MCTS with Mixed Model

To model Py (7 | a;), we employ a node-specific mixed model fitted individually at each node .
That is, we fit a separate model for each N every time SelectChild in Algorithm[I]is invoked.
Denoting 7n,,,,a; ~ Py (r | aj) as a score of an eventually expanded node NV, if we choose an
action a; at IV, our mixed model is given as:

T Npew,a; = O T Oy€N,,, Of = fla + Oa€j,

ENww ~N(0,1), € ~N(0,1),

Here, o is a “group-level” intercept capturing the quality of the base solution at N;, while oyen,
represents per-instance noise. To fit this model, we place priors on the hyperparameters (uq, 0o, 0y)
and employ Markov Chain Monte Carlo (MCMC) to sample from their posterior distribution. The
GEN node (action ag) is treated as a newly introduced group without its own direct observations.
However, its group-level intercept o is inferred not from the prior alone but rather from the posterior
distribution over ., and o, which is informed by the other observed data. We assume that even
after multiple refinement stages, the quality associated with the answer at node IN; continues to be
captured by this shared parameter (see Appendix[A.3.2)for further details).

Algorithm Outline. To model Py (r | a;), AB-MCTS-M assigns each subtree under N;, denoted
as Ty (NN;), as a distinct group j (see Figure 2| for example subtree). The mixed model leverages

ey



observed scores from these groups to compute the posterior predictive distributions of expected scores
for new nodes generated from each group (See Figure[2|for a schematic illustration). We sample the
scores from all the groups (the GEN node and Tsub(Nj)) using calculated posterior predictives. If
the GEN node’s sampled score is highest, we call fiiy to generate a new child node. Otherwise, we
choose the child node N; with the highest score and continue the sampling step.

Score Backup Mechanism. When a new node N is created, its observed score is added to the
histories of NV and its ancestors. This cumulative record is used to update the posterior distributions
in the mixed model. The observed score is not backed up to a GEN node, but it indirectly influences
the GEN node’s score probability distribution through the shared parameters in the mixed model (see
Appendix [A.5]for a detailed walkthrough).

3.4 AB-MCTS-A: Adaptive Branching MCTS with Node Aggregation

In AB-MCTS-M, during the selection step at [NV, we use a mixed model that shares statistical strength
across groups through the shared model parameters. In contrast, AB-MCTS-A is designed in the
same spirit as the standard UCT-based MCTS, and there are no shared model parameters among the
different actions. This design simplifies the statistical modeling and makes the computation more
lightweight compared to AB-MCTS-M.

The major problem is how to back up scores to GEN nodes. Since the generated node is not attached
as a child to a GEN node, it makes the backup of scores difficult to define. Here, we introduce
a CONT node at the same tree level as all the GEN nodes (see Figure[3). Intuitively, the CONT
node represents the action of continuing refinement from the current answer at node NV, rather than
generating a new node. By explicitly separating these two actions—generating new answers (GEN)
and refining existing answers (CONT)-we create a clear path for score propagation. Specifically, the
score of the expanded node is first backed up to the GEN node, and since all ancestors of the GEN
node are either nodes with LLM answers or CONT nodes, the score subsequently does not propagate
through other GEN nodes (see Figure [3|for an example tree).

Algorithm Outline. AB-MCTS-A aggregates

all child nodes under a single CONT node, AB-MCTS-A Example Tree
which represents refinements from existing child
nodes (see Figure 3). We model each node’s %
score probability in a Bayesian framework and
. X GEN CONT
perform Thompson sampling on posterior pre-
dictives to decide between generating a new ,A 16&
child (GEN) or refining an existing one (CONT). r=08 < r=0
In contrast to AB-MCTS-M, we do not use A !
sha}red parameters among different node proba- & ;ONT\ O VA
bility distributions. r=0.8 r=1.0

To model Py(r | a;), we utilize exponential
family distributions with conjugate priors, en- Figure 3: Example tree structure for AB-MCTS-

abling analytical and efficient posterior updates. A. All child nodes are aggregated unde?r a CONT
We employ two variants: node, and a GEN node doesn’t have child nodes.

1. AB-MCTS-A (Gaussian), using a normal-inverse-x? prior for unbounded scores: Py (r |
a;) = p(r | {nS)) = N i, S)x (0 | 9,72), and

2. AB-MCTS-A (Beta), using a Beta prior for scores in [0, 1]: Py (r | a;) = p(r | {rx}5,) =
B(r| & ),

where 7, represents the scores backed up to the node N; (GEN node, CONT node or LLM-generated

child nodes; see Figure |3|for example tree), where m, &, U, 7, &, B are determined from observed
scores 7, and updated as these scores are backed up. The detailed parameter update rules are given in

Appendix[A.4]

Score Backup Mechanism. During score-backup operations, the expanded node score is backed
up to the GEN node which led to the expansion of that node and the GEN node’s ancestors (see
Appendix [A.5|for a detailed walkthrough). As we can see from Figure[3] a GEN node’s ancestors
include only generated nodes and CONT nodes, so the score is backed up to a GEN node only from



Table 1: Performance of AB-MCTS against baselines across benchmarks and models. This table
compares AB-MCTS with the baseline methods. Evaluations were performed on LiveCodeBench,
CodeContest, and ARC-AGI using GPT-40 and DeepSeek-V3 with a maximum generation budget
(27). Each entry provides a performance score (higher values are better) and its corresponding rank
(in parentheses, 1st is best). The “Avg. Rank” column shows the average rank across all settings.

LiveCodeBench CodeContest ARC-AGI

Method GPT-40 DeepSeek-V3 GPT-40 DeepSeek-V3 GPT-40 DeepSeek-V3 Rl:‘lllgl;
Repeated Sampling  37.8 £0.5(4) 40.7 £1.9(6) 379 +03(4) 432 +09(5) 15.0+10(1) 186 +1.0(1) 3.5
Sequential Refinement 37.8 2.4 (4) 41.6 £ 0.6 (5) 30.1 £0.3 (6) 41.6 £09(6) 8.7 £09(6) 10.0+06(6) 5.5
Standard MCTS 36.7 £1.0(6) 43.2 +2.1 (1) 37.5+£00(5) 43.84+09(3) 9.0+£15(5) 140+15(5) 4.2
AB-MCTS-M 389 +£19(2) 43.0+15(2) 40.6 +1.0(1) 44.6+09(2) 123 +12(4) 16.0+10(3) 2.3
AB-MCTS-A (Gaussian) 39.1 £ 1.9 (1) 42.5 +1.5(3) 40.2 £ 1.7 (3) 43.4 £09 (4) 13.0+36(3) 183 +06(2) 2.7
AB-MCTS-A Beta) 38.7 +1.2(3) 42.3 +08 (4) 40.4 +03 (2) 44.8 £ 0.6 (1) 14.0 £2.1(2) 16.6 £06(4) 2.7

the node that is created by choosing that GEN node. The backed-up score is used to update prior
probability distribution parameters.

4 Experiments

4.1 Experimental Setup

Benchmarks. We evaluated AB-MCTS on four diverse benchmarks that require complex problem-
solving: LiveCodeBench [14], CodeContest [1l], ARC-AGI [17], and MLE-Bench [16]. Live-
CodeBench and CodeContest consist of competitive programming problems that demand mathe-
matical and algorithmic reasoning. ARC-AGI involves abstracting a common transformation rule
from visual patterns and implementing it as code. MLE-Bench, derived from Kaggle competitions,
involves constructing and optimizing machine learning models to achieve high scores based on the
evaluation metrics of each competition. For all these benchmarks, LLMs generate Python code to
solve each task, and external feedback (e.g., test case results, validation scores) is available to guide
the search. More details on the benchmarks can be found in Appendix

Models. We perform our experiments using GPT-40 (gpt-40-2024-08-06) [18]], and DeepSeek-
V3 (deepseek-chat) [19]. Each LLM generates a complete solution in a single API call. We
define the generation budget as the maximum number of API calls and set it to 27 = 128. The
temperature was set to 0.6 for GPT-4o following [3] and 1.0 for DeepSeek-V3 following the official
documentation.

Baselines. We benchmark AB-MCTS against three representative approaches. (1) Repeated Sam-
pling (Best-of-n) [1}[3,|39]] independently generates up to n candidate solutions from a single LLM
prompt, a simple yet competitive baseline for coding tasks. (2) Sequential Refinement [4] iteratively
improves each solution by re-prompting the LLM with its own output and feedback. (3) Standard
MCTS follows the configuration from LATS [9] Section 5.2] (See also Appendix [C.§). Each ex-
pansion adds five child nodes, and the search proceeds until it reaches the 27 nodes, with the final
expansion creating only three nodes to meet this limit precisely. Hyper-parameters for AB-MCTS are
summarized in Appendix [B.2}

4.2 Results

As detailed in Tables [T] and 2} our Table 2: Performance on MLE-Bench tasks. AB-MCTS-M
comprehensive evaluations reveal AB- demonstrates robust performance, achieving the best average
MCTS as a consistently superior ap- rank across diverse ML tasks.

proach across diverse benchmarks and Method Nomad2018 Spooky. Pizza. Avg.
LLMs, achieving the top average rank g 4 'sumoling 0.065(3) 047(4) 072(2) 3.0
and outperforming established base-  Sequential Refinement ~ 0.059 (1)  0.46 (3) 0.62(3) 23
lines. This consistent success stems  Standard MCTS 0.076 (4) 045 EZ% 0.60 §4§ 33

AB-MCTS-M 0.060 (2) 0.38(1) 0.72(1) 1.3

from the distinctive ability of AB-
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Figure 4: Performance comparison on LiveCodeBench, CodeContest, and ARC-AGI. We
compare the six methods using GPT-40 by plotting the success rate against the generation budget.
The inset plots provide a detailed view of performance at a maximum generation budget (27); the
mean success rate, its 95% confidence interval, and the results from the individual runs are shown.
Variance at a generation budget of 2° arises from conducting each experiment independently with
nonzero temperature. See Figure |§| for experiments on ARC-AGI with a larger budget.
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Figure 5: Comparing algorithms by search tree shape and performance. Each point shows the
performance against the average tree shape for a given algorithm at a specific generation budget. The
x-axis represents the log-ratio of mean depth to mean width. Mean width is the average number of
nodes per depth. Larger and smaller x-axis values indicate deeper and wider searches, respectively.

MCTS to dynamically adapt its search strategy by precisely balancing exploration and exploitation to
the varying demands of each problem, an adaptability largely absent in baseline methods. We next
detail these results by benchmark, followed by an analysis of the search behavior of AB-MCTS.

LiveCodeBench and CodeContest. Figure E| (left and center) reports the success rate (Pass@1) ver-
sus the generation budget for GPT-40 on LiveCodeBench and CodeContest. As expected, all methods
demonstrate improved performance with increasing computational budget. On both benchmarks,
AB-MCTS algorithms generally outperform the baseline methods. Notably, on LiveCodeBench
(Figure 1eft), AB-MCTS starts to pull ahead of the baselines even with a small budget of 23. On
CodeContest (Figure @ center), AB-MCTS demonstrates superior performance compared to baselines
at larger budgets of 2° and beyond. Appendix Figure|8|shows that while standard MCTS performs
relatively well with DeepSeek-V3 compared to GPT-40, our proposed methods achieve a comparable
success rate on LiveCodeBench and surpass standard MCTS on CodeContest.

ARC-AGL. Figure 4] (right) shows the performance on ARC-AGI, a particularly challenging bench-
mark. Following ARC-AGTI’s official evaluation protocol, we report Pass@2 (Pass@1 is also reported
in Appendix [C.6). Consistent with previous work [13]], repeated sampling proves to be a strong
baseline in our setup, indicating the importance of broad exploration for this task. While standard



Random Acts of Pizza: AB-MCTS-M

Figure 7: Example search tree generated by AB-MCTS-M on Random Acts of Pizza (MLE-
Bench). The figure shows how AB-MCTS-M dynamically balances exploration and exploitation.
Each node represents a solution. Nodes are colored according to their evaluation score used as the
search signal for AB-MCTS-M. The number inside each node indicates the order of generation. Grey
nodes mark candidates whose code failed to execute and therefore received no score.

MCTS yields only marginal improvements with larger budgets, our AB-MCTS framework achieves
performance comparable to repeated sampling. This suggests AB-MCTS’s capability to effectively
explore potentially by dynamically widening its search when beneficial. Similar results were observed
with DeepSeek-V3, as detailed in Appendix Figure|[§]

MLE-Bench. Table[2]and Appendix Figure [I0] present the performance on three competitions from
MLE-Bench using GPT-40. Since MLE-Bench requires substantial GPU resources for training
and evaluating machine learning models, we exclusively used GPT-40 and focused on the baseline
methods and AB-MCTS-M (see also Appendix [B.T). The best-performing baseline method varies
across competitions. This again highlights that different tasks benefit from different exploration-
exploitation trade-offs. In contrast, AB-MCTS-M consistently delivers strong performance in these
tasks. This consistent success across diverse competitions underscores AB-MCTS-M’s inherent
strength in effectively adapting its search strategy to varying problem structures.

4.3 Analysis

. A . ARC-AGI, Accuracy
Analysis of Search Behavior: Width vs. (higher is better)

Depth. To quantitatively analyze how AB-
MCTS balances exploration and exploitation,
we examined the average depth and the average
width at each depth of the generated search trees.
Figure [5] shows that AB-MCTS methods tend
to generate wider trees compared to standard
MCTS. This occurs because AB-MCTS can
adaptively decide to explore wider (select the
GEN node) from any existing node, unlike stan-
dard MCTS. This mechanism allows for more
flexible exploration across various tree depths
(See also Appendix [C.7). In addition to this * Generation Budaet

AT . - . Generation Budget
flexibility in exploring wider, as seen in Table[2] 6: f . A
AB-MCTS also achieves strong performance on Tigure 6: Performance comparison on ARC-

benchmarks where sequential refinement excels, AGTI with increased budget. Scalability of AB-

suggesting that AB-MCTS effectively identifies MCTS was assessed with a generation budget ex-
and exploits promising branches by selecting tended up to 512. Plotted points represent moving

existing child nodes for refinement. This adap- 2VeT38€s to clarify performance trends.
tive nature allows it to combine the strengths of exploration and exploitation, resulting in robust
performance across diverse benchmarks.

0.10
—e— Repeated Sampling
—e— Sequential Refinement
0.05 Standard MCTS

AB-MCTS-M
AB-MCTS-A (Gaussian)
—e— AB-MCTS-A (Beta)

Success Rate (Pass@?2)

°
o
S

Scaling with Increased Budget. Highly complex problems often require a substantial generation
budget to find a correct solution. ARC-AGI is a prime example, where extensive exploration via
repeated sampling is known to improve performance even at large budgets as reported in [13]. To
investigate the scaling properties of our approach, we extended the experiments on ARC-AGI using
DeepSeek-V3 with a larger generation budget up to 22 = 512. As shown in Figure@ the performance



of AB-MCTS continues to improve substantially as the budget increases from 200 to 500, while
the improvement rate of repeated sampling begins to plateau. Standard MCTS also continues to
improve with a larger budget, yet shows a significantly lower success rate compared to the AB-MCTS
methods. This performance gap highlights that AB-MCTS is more effective at directing its search
towards promising branches within the search tree at large computational scales.

Qualitative Analysis of the Search Trees. Figure[7]and Appendix Figure [[T|present example search
trees generated by AB-MCTS-M and standard MCTS. These visualizations illustrate more adaptive
branching by AB-MCTS-M compared to standard MCTS. This adaptive nature reveals that AB-
MCTS-M flexibly balances exploration and exploitation throughout the search process, dynamically
allocating budget to explore diverse new candidates (“going wider”) and refine promising ones
(“going deeper”). Further discussion can be found in Appendix [C.3]

Efficiency and Performance against Repeated Sampling. While repeated sampling benefits from
potential efficiencies such as parallel sampling and no feedback computation costs, our results
demonstrate the significant advantages of AB-MCTS. On ARC-AGI, where repeated sampling is
notably strong, AB-MCTS not only continues to improve with increased budget but also ultimately
achieves performance levels that repeated sampling cannot reach (Figure [6). Furthermore, on
LiveCodeBench and CodeContest, AB-MCTS variants can reach the peak performance of repeated
sampling substantially earlier in many cases (Figure 4] Appendix Figure [8). This indicates that
even when accounting for the inherent advantages of repeated sampling, AB-MCTS emerges as a
promising approach to efficiently use the generation budget to achieve superior results in diverse
scenarios.

5 Conclusions

This paper introduced Adaptive Branching Monte Carlo Tree Search (AB-MCTS), a novel inference-
time framework to enhance LLM performance on complex tasks by effectively integrating multi-turn
exploration and exploitation. Unlike previous methods, AB-MCTS dynamically decides to “go wider”
or “go deeper” based on external feedback, leveraging Bayesian decision-making. Our experimental
results show AB-MCTS outperforms repeated sampling and standard MCTS, demonstrating the value
of adaptively handling the challenge of unbounded branching for effective inference-time scaling.

Limitations. Our approach assumes the existence of a reliable score evaluator, but developing
such an evaluator itself can be challenging depending on the task. Future work could also explore
search strategies that incorporate more fine-grained real-world cost factors beyond API call counts,
potentially enhancing the practical utility of AB-MCTS. We believe that addressing these challenges
will further enhance the applicability of AB-MCTS across a wider range of problems.
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A Method Details

A.1 Extended Preliminaries
A.1.1 Problem Setup

First, we define the problem setting and introduce the mathematical notation.

We consider problems where the input is a natural language prompt ¢, (which may include few-shot
examples, task instructions, etc.). Given t;,, an LLM produces a natural language output ¢4, which
is then scored by a score evaluator to yield a final score r. We assume 0 < r < 1, where higher
values of r correspond to better answers.

This two-stage pipeline can be expressed as:
r = R(tou) = R(from(tin)), )

where the function fi 1, represents an LLM that generates the answer, and R is the score evaluator.
frLwm is stochastic and may produce different outputs ¢, for the same input ¢;,. Here we allow ¢t
to include information beyond the direct answer (e.g., the reasoning steps), and we assume that R
properly performs the parsing of this answer to perform the score evaluation.

Our framework applies to any task whose final answer can be quantitatively scored, such as program-
ming tasks [} [14], math problems [29]], and machine learning competitions [16]. We assume the
score evaluator R is already defined in a task-specific manner, and our goal is to find ¢, that attains
as high an r as possible during the inference-time answer search.

In some tasks that mimic real competitions, the ground-truth score evaluator Ry (reflecting the
correctness of the answer) is not accessible during the answer search stage. For example, in MLE-
Bench [16], the test dataset used for final evaluation is withheld, and in coding competition tasks
[} [14], participants can often only submit their code a limited number of times to obtain the score on
hidden test cases. In such situations, to search for the best answer, one may resort to a different score
evaluator. For instance, in MLE-Bench, this could be the performance on a public dataset, while in
coding competitions, it might be the fraction of solved public test cases. For mathematical tasks, a
separately trained reward model [40] may be used. Throughout this work, we assume there is some
accessible score evaluator at the answer search stage that can assess the quality of ¢,t.

A.1.2 Existing Methods for Inference-Time Answer Search

We now review two standard approaches that focus on exploration or exploitation alone.

Only Go Wide: Repeated Sampling. A straightforward approach to inference-time answer search is
to repeatedly sample an answer from the LLM with a nonzero temperature. We refer to each sampling
step as the direct answer generation process. By performing it n times,

towe = fuom(tin), m e {1,...,n}, 3)

we obtain multiple candidate answers. Then, one can select the best answer based on a predefined
criterion, such as the highest score 7 (best-of-n), majority voting, or self-consistency. Brown et al. [3]]
recently showed that as n increases, the coverage of generated answers improves. A similar approach
was employed by AlphaCode [1] to achieve human-level performance on competitive programming
tasks.

Only Go Deep: Sequential Refinement. Alternatively, we can leverage the answer refinement
process and apply it sequentially to perform the answer search. We consider the situation where we
already let some answer generator solve the problem at hand k times, and collected the input-output

pairs tijn and #7 . where j € {1,...,k} for those answer generations.

We define the answer refinement process as a two-step procedure: (1) creation of a new refinement

input from the existing input-output pairs, and (2) generation of a new answer t’cflftl from tﬁf 1
Symbolically,

thel = from(tETh) = fuom (hreﬁne({tijn;tz)ut}je{l,...,k})) ) 4

where hcfine 18 a refinement input generator that provides all the information necessary for refinement,
such as feedback on each answer (e.g., code execution results or errors for coding tasks).
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Applying this refinement step iteratively yields n answers:

tin = tin, )

tous = frim(tiy), (6)

1 = hrefine ({ts thue bie 1, m—1}) @)

tout = fLm(tin) @

form € {2,...,n}. Finally, one selects the best candidate among {3 }ac{1,...,n} based on a chosen

criterion, similar to the repeated sampling approach.

We can regard the two methods above (pure exploration and pure exploitation) as special cases of a
tree search: the former expands only from the root node, while the latter continues from the most
recently reached leaf node on a single linear path, exploring it in depth without branching outward.
The standard MCTS naturally incorporates the two, while it uses a fixed branching factor, thereby
limiting the performance gain from the repeated sampling when using LLM. Our AB-MCTS employs
a more flexible branching algorithm and effectively leverages performance improvements obtained
by repeated sampling.

A.2 Comparison of AB-MCTS and Standard MCTS with Progressive Widening

The progressive widening has parameters (k, o) which bounds the number of branching factors by
kn® with node visit count n. With these parameters, the rule for whether to branch is pre-determined
as a function of the node’s visit count. Crucially, this decision does not use important information
gathered during the search, namely, the observed rewards of the expanded nodes. The UCT score
is only used to select which child to descend to after the decision has been made not to branch.
Furthermore, defining the branching rule as a function of visit count means that the scaling behavior
of the tree’s shape and node degrees is pre-determined by the choice of hyperparameters.

In contrast, our approach does not restrict the branching rule based solely on visit counts and
hyperparameters. Instead, the branching factor adapts dynamically based on the observed rewards.
This is an important requirement for LLM test-time inference scaling, where a tree search that
purely goes wide is known to be a strong baseline. To demonstrate the robustness of AB-MCTS, we
conducted an experiment to compare AB-MCTS and progressive widening in Appendix [C.4]

A.3 AB-MCTS-M Details
A.3.1 Background on Mixed Models

Mixed linear models are extensions of traditional linear models that explicitly model non-
independence among observations by incorporating both fixed and random effects. Fixed effects
capture consistent, predictable patterns across the entire population or dataset (e.g., treatment effects
common to all groups). In contrast, the random effects model variability arises within or between
specific nested or hierarchical groups (e.g., individual differences among participants, or variations
between schools).

A.3.2 Detailed Mixed Model Formulation and Example Code

In AB-MCTS-M, we fit a separate mixed model at each node IV of the MCTS tree, that is, at each sub-

step within the MCTS selection step. Specifically, let N; (j = 1, ..., ncpilq) denote the direct child

nodes of N, and define T, (IV;) as the subtree under N;, including N; itself. For a newly generated

node N where (i) j = 0 (i.e. for GEN node) and N is a direct child of IV, or (i) j = 1,.. ., Nchila
and N is a node expanded from some node in Ty, (V. j) at that iteration step, we assume:

TN = O+ Oy€x, O = g + 06, )

€N~ N(Oa 1), €~ N(Oa 1), (10)

Here, «; is a “group-level” intercept capturing the quality of the base solution at N;, while o€

represents per-instance noise. The GEN node (action ag) is treated as a newly introduced group

without its own direct observations. However, its group-level intercept « is inferred not from the

prior alone but rather from the posterior distribution over i, and o, which is informed by the other
observed data.
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import pymc as pm

# Child indices use O-based indexing; note the difference from index j in
Equations (9-10)

child_indices = [0, O, 0, 1, 2, 2]
rewards = [0.8, 0.8, 1.0, 0, 0.2, 0.3]
coords = {"child idx": [0, 1, 2]}

with pm.Model (coords=coords) as model:
## Priors
mu_alpha = pm.Normal ("mu_alpha", mu=0.5, sigma=0.2)

sigma_alpha = pm.HalfNormal ("sigma_alpha", sigma=0.2)
sigma_y = pm.HalfNormal ("sigma_y", sigma=0.3)
## Priors END

eps_j = pm.Normal ("eps_7J", mu=0, sigma=1l, dims="child_ idx")
alpha = mu_alpha + eps_j * sigma_alpha

r = pm.Normal ("r", mu=alpha[child_indices], sigma=sigma_y, observed=
rewards)

Listing 1: AB-MCTS-M fitting model example code

eps_j_gen = pm.Normal ("eps_j_gen", mu=0, sigma=1)
alpha_gen = mu_alpha + eps_Jj_gen * sigma_alpha
r_gen = pm.Normal ("r_gen", mu=alpha_gen, sigma=sigma_y)

Listing 2: AB-MCTS-M GEN node reward modeling

We place priors on (ftn, 0q, 0y) and estimate them via MCMC (Markov Chain Monte Carlo), then
perform Thompson Sampling. Because the GEN group (j = 0) has no direct observations, its
posterior remains more uncertain and thus encourages exploration. To illustrate how to estimate
posterior predictives, in Listing[I} we provide PyMC [41] code corresponding to the example tree
shown in Figure 2] Here, we adopted the same priors as in our experimental setting, as noted in

Appendix B2}

o ~ N(0.5,0.2%), 04 ~ Mar(0.2%), o, ~ Npar(0.3%), (11)

In this implementation, the variable alpha is node-specific (indexed by child_idx), yet shares
parameters mu_alpha, representing the overall average answer quality determined by the inherent
difficulty of the task, and sigma_alpha, representing the variability in answer quality arising from
the LLM’s response diversity. Differences in answer quality among nodes are captured by the variable
eps_7J.

To compute the probability distribution for the GEN node, we introduce a slightly modified predictive
model by adding an additional variable representing the GEN node reward, as shown in Listing 2]

Since eps_j_gen has no associated observed data, r_gen typically exhibits higher variance com-
pared to r. Intuitively, r_gen incorporates both the variance arising from the refinement process and
the inherent variability in answer generation at node N. This increased variance encourages greater
exploration during Thompson Sampling.

After model fitting, the posterior predictive distributions of r (existing child nodes) and r_gen (GEN
node) are utilized for Thompson Sampling.
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A4 AB-MCTS-A Details: Parameter Update Rules
A.4.1 AB-MCTS-A (Gaussian) Parameter Update Rules

As for the parameter update rules, for the Gaussian case, we use a normal-inverse-x?2 prior:

~ 0-2 A A
p(r [ {ra}h2y) = N(r | m, 2)x 2 (0® | 0,7%), (12)
o N
= AT (13)
K
R=F+ N, (14)
p=1i+N, (15)
N N#
o A2 v u2 2 P
DFE =0T +nz::1(rn—r) + V—i—N(m_T)’ (16)
1 N
f:NZrm (17)
n=1

where r,, is the observed score.

A4.2 AB-MCTS-A (Beta) Parameter Update Rules

Alternatively, if r € [0, 1], we can use a Beta distribution with the following parameter update rules
after observing {r, },_,

p(r | {ra}31) = B(r | &, ), (18)
N

a=d+Y r, (19)
v

B=B+> (1-r), (20)
n=1

where B(- | «, 8) denotes the Beta distribution. We note that, usually this update rule is used in
conjunction w1th the Bernoulli trial, but here we directly use Beta distribution to model the score
distribution. In practice, this parameter update rule worked well according to our experimental results.

A.5 Walk-through Examples

We walk through an iteration of AB-MCTS-M and AB-MCTS-A on the example trees in Figures 2]
and[3] The process is stochastic due to Thompson sampling; for clarity, we assume specific sampled
outcomes.

A.5.1 AB-MCTS-M

AB-MCTS-M incrementally builds the search tree by adding one node at a time. In this section, we
detail a single iteration of the AB-MCTS-M algorithm, clearly illustrating the sequence of selecting a
node to expand, performing the expansion, and backing up the resulting score. For simplicity and
concreteness, we assume the current search tree structure is as depicted in Figure 2] and we describe
one complete iteration, including selection, expansion, and score backup.

1. (N — Np) At N, we compute posterior distributions for its four children, GEN, N;, N,
and V3 under the mixed model, and draw one score from each. If GEN receives the highest
sample it is expanded and its score is backed up (Algorithm [T} lines 11-13). Here, we
assume that V; attains the highest sampled score, reflecting the exploitation of a child whose
posterior peak is comparatively large.

2. (N1 — Nj) N has two direct children, Ny (r = 0.8) and N}, (r = 1.0). We compute
posteriors for GEN, N7, and N, then sample again. Although the subtree T'(N3) currently
contains nodes with higher score as we can see from Figure 2, the finite variance of its
posterior ensures that N is not always selected, and encourages more exploration for
under-explored tree regions. Suppose N7 is chosen on this iteration.
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3. (Expanding N{) Because Nj is a leaf, we expand it (Algorithm line 10). Assume the
newly generated node receives the score » = 0.5. Since all the leaf nodes have a GEN child,
a GEN node is appended to this expanded node as well.

4. (Score backup) The score is propagated upwards from the expanded node toward the
root, as in standard MCTS. In the current example, the score is backed up through the
node generated at step 3, then through nodes Ni, Ny, and N. Unlike standard MCTS,
AB-MCTS-M maintains individual scores rather than averages. Specifically, the backed-up
scores for nodes N1, Ny, N3 form distinct observation lists corresponding to each group
in the mixed model. Although GEN nodes have no direct observations due to this score
backup rule, their posterior distributions share statistical strength with these groups, allowing
indirect information sharing and improved estimation accuracy for a score obtained by node
expansion. At the next SelectExpansionTarget call, the four posteriors at N have
different shapes; specifically, the peak of IN;’s posterior shifts left due to the lowered
expected value. Other posterior distributions are affected as well, e.g., the right-hand tail
of the GEN posterior contracts. Please note that, in AB-MCTS-M, the change of posterior
distribution shape cannot be analytically written down, and is calculated by MCMC. Thus,
unlike standard MCTS, the score backup step involves appending the new score to a list of
scores.

A.5.2 AB-MCTS-A

AB-MCTS-A works in a similar manner to AB-MCTS-M, except for the introduction of CONT node
and how we perform score backup. To clearly illustrate the algorithm and highlight the difference
from AB-MCTS-M, we describe a complete iteration of selection, expansion, and score backup cycle
for AB-MCTS-A. Since the only difference between Beta and Gaussian variants is how the score
update is reflected in the posterior distribution, here we focus on the qualitative aspect of posterior
update and focus on the details for an example tree, Figure 3.

1. (N — CONT) At the root, we sample from the posteriors of the GEN and CONT children.
As detailed in Section [3.4] the GEN posterior is informed by the CONT children nodes
N; (0.8), N2 (0.0), N3 (0.2), whereas the CONT posterior uses the CONT node’s descen-
dant scores excluding Ny, Ny and N3, i.e., 0.8, 1.0, 0.3. We assume CONT is selected
here.

2. (CONT — Nj) Next we compute posteriors for CONT’s children Ny, N3, and N3. Due to
the score-backup rule, the posterior distributions are computed from previously expanded
nodes; Concretely, the following scores are used for posterior distribution calculation: Nj:
(0.8, 0.8, 1.0), Na: (0.0), and N3: (0.2, 0.3). Here, we assume N; obtains the highest sample
via Thompson sampling.

3. (Expanding N;) Again, we perform Thompson sampling between the GEN and CONT
children of N;. The GEN posterior uses (0.8, 1.0); the CONT posterior falls back to the
prior because no generated descendants exist. Here we assume GEN is selected, leading to
the expansion of a new node under N;’s CONT child. We assume the score = 0.5.

4. (Score backup) We backup the score » = 0.5 as prescribed in Section First, the score
is backed up to the GEN node which generates the node. Second, it propagates to: (i) GEN
node’s ancestor N1, and (ii) the CONT node that is N;’s parent. Because 0.5 is lower than
the existing scores 0.8, 1.0, the posterior peak of IV shifts left, reducing the probability that
N will be chosen again from CONT. Similarly, adding 0.5 to the existing scores (0.8, 1.0,
0.3) lowers the peak of the CONT posterior at NV, thus decreasing the probability that CONT
will be selected at IV in later iterations.

A.6 Hyperparameter Sensitivity of AB-MCTS

This section presents a sensitivity analysis of the hyperparameters used in AB-MCTS. As discussed
in Appendix B.2, the prior parameters were designed to be non-informative to minimize bias.
Since the posterior distributions become increasingly data-driven as the search progresses, we
hypothesized that the influence of the initial priors would be limited. Here, we empirically verify
this hypothesis through an extensive analysis. We evaluated the sensitivity of AB-MCTS variants
to their prior hyperparameters on LiveCodeBench, using GPT-40 with a generation budget of 2%,
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Table 3: Hyperparameter Sensitivity of AB-MCTS. Pass@1 results for each prior setting. All
values are averaged over five runs.

AB-MCTS-M
m 0.0 0.4 0.5 0.6 1.0

Pass@l 384+16 373+£04 368+15 375+£15 37.7+£13

a 0.01 0.1 0.2 0.3 1.0
Pass@l 384 +13 37.7+£09 368+15 382+23 386+£18

T 0.01 0.1 0.2 0.3 1.0
Pass@l 373+£20 382+1.1 371+£12 368+15 395+13

AB-MCTS-A (Gaussian)
™ 0.0 0.1 0.5 1.0

Pass@l 380+16 37014 373+£15 37.7+£07

K 0.001 0.5 1.0 10.0
Pass@l 384+13 373+£15 380+£16 37.7+£07

U 0.001 0.5 1.0 10.0
Pass@l 382+13 37.7+£13 380+£16 389+10

72 0.05 0.1 0.2 0.5 1.0
Pass@l 37.5+09 380+1.6 37.7+13 379+08 37.7+0.7

AB-MCTS-A (Beta)
& 0.1 0.4 0.5 0.6 1.0
Pass@l 373+£15 37015 375+£13 375+£13 37.7+£12

Ié] 0.1 0.4 0.5 0.6 1.0
Pass@l 384 +18 384+1.1 375+£13 379+£05 379+14

Each configuration was run five times (n = 5) to compute mean and standard deviation of Pass@1.
Tables [3| summarize the results for AB-MCTS-M, AB-MCTS-A (Gaussian), and AB-MCTS-A (Beta)
under various prior settings. Across all tested ranges, the performance remains stable, indicating
low sensitivity to the initial hyperparameter values. This confirms that AB-MCTS is robust to the
initialization of prior hyperparameters, and its performance is primarily governed by the data-driven
posterior updates during search.

B Additional Experimental Details

B.1 Tasks and Datasets

We evaluated our approach on four benchmarks: CodeContest [1]], LiveCodeBench [14], the Abstrac-
tion and Reasoning Corpus (ARC) [17]], and MLE-Bench [16]. All of these benchmarks feature tasks
that are often solved via code generation. Each experiment was run multiple times using non-zero
temperature to account for stochasticity (n = 5 for LiveCodeBench, n = 3 for CodeContest and
ARC-AGI). For MLE-Bench, experiments were run with n = 1 due to the significant computational
cost.

CodeContest and LiveCodeBench are well-established competitive programming benchmarks, both
providing public tests and hidden tests. We use the public tests to calculate each node’s score and the
hidden tests for final evaluation. A solution is counted as correct only if it passes all hidden test cases
for a given problem, and the success rate is defined as the fraction of problems for which the chosen
solution is fully correct. The prompt templates we used are based on those from previous work [[14]].
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In LiveCodeBench, we only use problems released between August and November 2024, aligning
with the previous work [[19] to prevent data contamination.

ARC-AGI requires discovering a shared transformation rule from multiple input-output examples,
then using it to predict the output for a test input. Generating code from sample grids is a frequently
used approach for ARC [7, 13, 42]]. We instruct the LLM to infer a transformation rule from the
provided input/output examples and generate corresponding Python code. Each node’s score is
determined by the fraction of examples it correctly transforms. The node that achieves the highest
score is then used to transform the test examples; if the output exactly matches the ground truth, that
node’s score is set to 1. We evaluate our method on the same set of 100 public evaluation problems
and prompts used in prior work [13].

MLE-Bench comprises practical machine learning tasks derived from Kaggle competitions. In
order to enable fair comparisons [16]], we adopt three low-complexity challenges (Nomad2018
Predicting Transparent Conductors, Spooky Author Identification, and Random Acts of Pizza). Each
competition’s training data is randomly split into 80% for training and 20% for validation. The
validation set is used to obtain the scores for each node. We select a node with the highest validation
score at a given inference budget and then evaluate it on the hidden test set to get the final result.
Following previous research [16]], we use the AIDE scaffold for our experiments. Evaluating the
generated machine learning models within these competitions is notably resource-intensive, requiring
substantial GPU power even to process a single solution candidate. In our experiments, each solution
candidate was executed on a single H100 GPU with a time limit of one hour. This computational
demand is still considerably higher than for other benchmarks discussed in this work. Consequently,
due to these significant costs, comprehensive experimentation across all methods and models on
MLE-Bench was prohibitive. We therefore focused our evaluations using GPT-4o for these tasks
specifically on AB-MCTS-M.

B.2 AB-MCTS Parameters

Due to its Bayesian nature, the hyperparameters of AB-MCTS consist only of prior parameters. We
used the same prior parameters for all the tasks without task-specific domain knowledge (except for the
range of the score being approximately [0, 1]), thereby minimizing any potential bias. Consequently,
our priors have the following shared properties:

 The vast majority of the probability mass (or all of it, in the case AB-MCTS-A (Beta)) is
within [0, 1].

» The average value of score is 0.5, reflecting a neutral initial assumption regarding answer
quality (where 0 indicates the worst and 1 the best)

* The probability mass does not concentrate excessively in any particular region, reflecting
our unbiased prior.

We assign the following priors for AB-MCTS-M in Equations [9]and [T0}
fto ~N(0.5,0.2%), 04 ~ Muar(0.2%), oy ~ Nyar(0.3%), (21)

where Ny is the half-normal distribution (please refer to Section and Appendix [A.3). For
AB-MCTS-A (Gaussian), wesetm =0, % =1, =1, and ¥ = 0.1 in Equations-nd for
AB-MCTS-A (Beta), we set & = 0.5 and 3 = 0.5 in Equations[18|-[20l As we noted earlier, we
chose these parameters in a way that imposes as few assumptions as possible to minimize bias.

We expect the dependency on specific initial prior parameter values to be minimal, largely due to
the substantial computational budgets in our evaluations and because posterior distributions become
increasingly data-dominated as the search tree expands with more score observations (up to 27
nodes in most of the experiments and 2° in the extended ARC-AGI experiments). Because our node
selection methods (AB-MCTS-M, with its mixed model, and AB-MCTS-A using conjugate priors)
are fundamentally Bayesian, the priors primarily influence the early stages of the search. Moreover,
the “borrowing strength” mechanism inherent in the mixed model stabilizes posterior estimates and
facilitates convergence. As the search progresses and score observations accumulate, the initial prior
influence naturally diminishes.
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Figure 8: Performance comparison with DeepSeek-V3 on LiveCodeBench, CodeContest, and
ARC-AGI. We compare AB-MCTS methods with the baselines by plotting the success rate against
the generation budget.
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Figure 9: Comparing algorithms by search tree shape and performance Each point shows the
performance against the average tree shape for a given algorithm at a specific generation budget. The
x-axis represents the log-ratio of mean tree depth to mean tree width. Mean width is calculated as

the average number of nodes per depth. Larger x-axis values indicate deeper searches, while smaller
values indicate wider searches.
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Figure 10: Performance comparison on three MLE-Bench tasks using GPT-40. Each plot shows
performance versus the total generation budget. For Nomad2018 Predicting Transparent Conductors
and Spooky Author Identification, lower scores are better (RMSLE and Log Loss, respectively); for
Random Acts of Pizza, higher is better (ROC AUC). At each budget, we choose the single solution
based on validation-set performance and report its test-set score.
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Nomad2018: AB-MCTS-M
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Figure 11: Example search trees generated by AB-MCTS-M and standard MCTS on MLE-
Bench. The example tree for Random Acts of Pizza generated by AB-MCTS-M is the same tree
shown in Figure[7]
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C Additional Experiments and Analysis

C.1 Results with DeepSeek-V3 on Competitive Programming and ARC-AGI

This appendix provides supplementary results using the DeepSeek-V3 model, focusing on both
overall performance and search behavior characteristics.

Figure [§] shows the performance (Pass@1) with DeepSeek-V3 on the Competitive Programming
(LiveCodeBench, CodeContest) and ARC-AGI benchmarks. While the overall performance trends
were similar to those with GPT-4o (Figure[d), the relative strengths of the baseline methods varied with
DeepSeek-V3. For instance, standard MCTS achieved the highest success rate on LiveCodeBench.
On CodeContest, the performance differences between AB-MCTS and the top-performing baselines
were less pronounced than with GPT-40. Despite these variations, AB-MCTS variants consistently
placed among the leading methods across all tasks. This indicates that AB-MCTS reliably delivers
strong performance even when changes in the underlying model alter the effectiveness of different
baseline strategies.

The analysis of search tree shape versus performance with DeepSeek-V3 (Figure ) closely mirrors
the findings from GPT-4o (Figure[5). As expected, repeated sampling forms wide search trees, while
sequential refinement develops deep trees. AB-MCTS methods consistently generated wider trees
compared to standard MCTS. This tendency towards wider exploration is notable even on tasks like
LiveCodeBench with DeepSeek-V3, where sequential refinement outperformed repeated sampling.
The strong performance of AB-MCTS algorithms in such scenarios suggests their ability to not only
explore broadly but also to effectively identify and deepen promising branches through their adaptive
node selection. This highlights the robust nature of AB-MCTS in balancing these competing demands
across different models.

C.2 Results with GPT-40 on three competitions from MLE-Bench

Figure [I0] compares AB-MCTS-M against the baseline methods on the three MLE-Bench com-
petitions using GPT-40, plotting performance scores against the generation budget. Notably, the
most effective baseline varies across these competitions. For instance, on Nomad2018, sequential
refinement ultimately achieves the best score while repeated sampling shows no improvement. On
Spooky Author Identification, standard MCTS exhibits continued improvement throughout the budget
range. Conversely, on Random Acts of Pizza, repeated sampling significantly outperforms other
baselines. Despite this variability in baseline effectiveness, AB-MCTS-M consistently delivers
strong performance across all three competitions. This highlights the robustness and adaptability
of AB-MCTS-M, suggesting its capability to effectively adjust its search approach to the differing
characteristics of each task, especially when the optimal strategy is not apparent beforehand.

C.3 Example search trees generated by each methods on MLE-Bench

Figure[TT|presents example search trees generated by AB-MCTS-M and standard MCTS for the three
MLE-Bench competitions. Across all tasks, the trees generated by AB-MCTS-M visually suggest a
more flexible approach compared to standard MCTS, effectively combining broader exploration with
focused exploitation of promising nodes.

Table 4: Comparison between Progressive Widening and AB-MCTS on LiveCodeBench.

(k, ) =(1,045) (k, @) =(5,0.5) (k,)=(10,0.55) AB-MCTS-A (Gaussian) AB-MCTS-A (Beta) AB-MCTS-M
Pass@1 48.7 0.8 50.7 £1.3 50.5 £3.1 48.9 +2.0 51.8 £14 49.6 £1.6

C.4 Comparison to Progressive Widening on LiveCodeBench

To compare the progressive widening with AB-MCTS, we conducted an experiment on Live-
CodeBench for progressive widening with various parameters. We used deepseek-v3-0324 with
a generation budget 27 (n = 5). The results are shown in Table 4 While an adequate progressive
widening parameter leads to strong performance comparable to AB-MCTS, its effectiveness is highly
sensitive to hyperparameters. For example, it produces the worst result with (k, ) = (1,0.45).
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Table 5: Comparison of Pass@1 and Pass@2 on ARC-AGI with GPT-4o.

Method Pass@1 Pass@2

Repeated Sampling 140£17 150%£1.0
Sequential Refinement 7.7+£0.6 87+09
Standard MCTS 8.0+£1.0 9.0£15
AB-MCTS-M 11.0+1.0 123+12
AB-MCTS-A (Gaussian) 13.0+3.6 13.0£3.6
AB-MCTS-A (Beta) 127+ 0.6 140+2.1

Furthermore, the (k, o) = (10, 0.55) setting shows search instability, leading to the highest variance.
In contrast, AB-MCTS is robust without such tuning, demonstrating its practical advantage.

C.5 AB-MCTS-M vs. AB-MCTS-A: Analysis and Selection

This paper introduces two adaptive branching algorithms: AB-MCTS-M and AB-MCTS-A. This
section offers considerations for selecting between them, drawing upon our experimental findings
and their distinct underlying mechanisms.

When outcome quality is the main priority, AB-MCTS-M is often the preferred choice because of its
consistently strong performance (Table [I|and [2). For node selection, this algorithm uses MCMC, an
iterative procedure that improves effectiveness but incurs some computational cost per selection. For
applications with strict time constraints, AB-MCTS-A offers a lighter alternative, as its Gaussian and
Beta variants employ analytically tractable posterior updates. However, when the LLM-inference
time or the time required to evaluate the generated candidate solutions dominate, the extra time spent
on MCMC has little impact on total runtime.

While both algorithms feature adaptive search, Figures [5] and [0] show that AB-MCTS-A tends to
construct wider search trees. This tendency is attributed to its core design: at each depth, AB-
MCTS-A chooses between selecting a GEN node or a CONT node. Reaching depth d requires d
consecutive CONT choices, so deeper paths become geometrically less likely than wider expansions
(see also Section . Therefore, for tasks such as ARC-AGI where broader exploration is considered
particularly beneficial, AB-MCTS-A can be preferable.

Ultimately, the choice depends on the application’s primary goal: AB-MCTS-M often performs
well when outcome quality is prioritized, whereas AB-MCTS-A offers advantages in computational
efficiency and for tasks that benefit from broader exploration. However, both provide capable adaptive
search strategies.

C.6 Pass@1 vs. Pass@2 on ARC-AGI

In Table [T} we reported Pass@2 scores for ARC-AGI to follow the standard evaluation protocol
defined by the benchmark [[17]]. For completeness and transparency, we also report the corresponding
Pass@1 results in Table[5] As shown in Table[3] the results indicate consistent relative performance
between Pass@1 and Pass@2. In particular, the ranking of methods remains unchanged, confirming
that the conclusions presented in the main text are robust to the evaluation metric.

C.7 Analysis of Adaptive Search Behavior via Node Degree Distribution

To gain a granular view of the adaptive nature of our methods, we analyze the node degree distribution
of the search trees generated on LiveCodeBench with DeepSeek-V3, illustrated in Figure[I2] The
results show two distinct behaviors. AB-MCTS-M clearly favors a depth-focused search, with
around 90% of its non-leaf nodes having a small degree (1-3). However, its long-tail distribution,
with degrees up to 40, confirms that it adaptively broadens the search when required. In contrast,
AB-MCTS-A performs a much wider search. Low-degree nodes (1-3) account for only about 30% of
its non-leaf nodes, and the distribution spreads broadly, with degrees exceeding 100. This adaptive
shaping of the search tree, which differs starkly from the more rigid patterns of baselines, provides
strong evidence for the flexibility of our framework.
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Figure 12: Node-degree distribution reveals the adaptive search nature of our methods. The plot
displays the frequency of nodes (y-axis, log scale) for each degree (x-axis) under a search budget of
N =128.

Table 6: Performance of Standard MCTS with Different Fixed Branching Factors (w) on
LiveCodeBench. Pass@1 scores are reported. The best result is shown in bold.

Metric w =3 w=>5 w = 10
Pass@1 0.429 +0.018 0.432 + 0.021 0.402 + 0.015

C.8 Ablation on the Fixed Branching Factor w in Standard MCTS

We tested standard MCTS with fixed branching factors (w) of 3, 5, and 10 on LiveCodeBench
using DeepSeek-V3. The results are summarized in Table[6] We find that w = 5 achieves the best
performance among the tested values. Crucially, performance degrades with both smaller and larger
widths, highlighting the sensitivity of the baseline to this hyperparameter. This finding underscores
a key advantage of our adaptive method, which dynamically adjusts the effective branching factor
during the search.

C.9 Robustness of AB-MCTS Performance

In other baseline methods, the branching factor is either predetermined or determined by hyperpa-
rameters. For example, we need to predefine the branching factor in standard MCTS. However, the
efficiency of the width vs depth strongly depends on the type of tasks and LLMs. This is reflected in
Table [T] and Table 2] where AB-MCTS shows robust performance across various task types, while
other methods excel for some tasks, but not for others. This is due to the adaptive branching nature
of AB-MCTS, where the algorithm adapts to the wide or deep direction depending on the observed
rewards. This is beneficial in the context of LLM inference-time scaling, since recently LLM has been
used for solving various kinds of tasks, e.g., math tasks, coding tasks, etc., and a search algorithm
that works for various task types out of the box is in high demand.

C.10 Towards Pushing the Pareto Frontier of LLM Inference-Time Scaling

In this section, we propose the following two potential directions for future work aimed at pushing
the Pareto frontier of LLM inference-time scaling:

1. Enhanced Adaptivity via Difficulty Estimation: We propose to enhance our algorithm’s

existing depth-width balancing by explicitly estimating problem difficulty from collected
rewards. For difficult problems (identified by low rewards), the strategy would dynamically
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switch, e.g., from a deep search (AB-MCTS-M) to a wide one (AB-MCTS-A). This is
motivated by findings that optimal search strategies depend on difficulty [27].

2. Collaborative Search with Multiple LLMs: We also propose a method that leverages
the diverse strengths of different LLMs within a single search. This is implemented by
extending AB-MCTS with multiple GEN nodes, one for each LLM.

We elaborate on the specific methodology and preliminary experimental results for the second
direction (Collaborative Search) in Section D]

D Multi-LLM AB-MCTS

Depending on the task, using more than one LLM for answer search [43]] can be advantageous. For
example, if LLM A can generate more diverse initial answers and LLM B excels at refinement,
building the answer tree with both models is expected to improve performance. This section
demonstrates how AB-MCTS can be extended to scenarios in which multiple LLMs are available
for answer generation, and also reports the experimental results for ARC-AGI-2, demonstrating the
effectiveness of the proposed method.

D.1 Method

D.1.1 Multiple LLMs as Answer Generators

Suppose L LLMs are available for answer generation. We denote by f{; , the answer generator
implemented by the I-th LLM, with [ = 1,. .., L, following the notation introduced in Equation 2]
The overall procedure is identical to the single-LLM AB-MCTS (Algorithm|[I), with the addition of
a step to select one of the L available generators for node expansion. This selection occurs at each
expansion phase, utilizing the current state of the answer tree 7. The chosen generator, f}, v, is then
used to expand the selected node. We introduce two distinct algorithms for this generator selection
process.

D.1.2 Generator Selection Algorithm I: Single GEN Node

In this algorithm, node selection proceeds identically to AB-MCTS, followed by an additional
generator selection step. During this step, each node N in the entire answer tree 7' is annotated with
the index [ of the generator that produced it. For every generator, we obtain the set of nodes A} C T,
containing all nodes it has generated; /V; is empty if the generator has not been selected yet. The
scores of the nodes in A are used to calculate the posterior distribution of the expected score of
a new node that will be generated by the generator [. After all L posteriors have been computed,
Thompson sampling is applied: a single sample is drawn from each distribution, and the generator
with the highest sample is selected for the node expansion. These posteriors are modeled in the same
way as the distributions used for node expansion target selection, as detailed below.

Multi-LLM AB-MCTS-M with Generator Selection Algorithm I. In this algorithm, Multi-LLM
AB-MCTS-M treats the generators as groups within the mixed-effects model defined as

TR =0+ Oyeg, Q= [o + Oafl, (22)

ex ~N(0,1), ~N(©0,1), (23)

where the group index j has been replaced by the generator index ! from Equations As for
the prior distributions, we can use the ones in Equation[TT] After calculating the score posterior
distributions using N for all [, we perform Thompson sampling to select one generator.

Multi-LLM AB-MCTS-A with Generator Selection Algorithm I. In this algorithm, Multi-LLM
AB-MCTS-A assigns each [-th generator an independent prior—Gaussian (Equations or Beta
(Equations [T820)—depending on the score metric, and updates these priors to posteriors using the
scores of the nodes in ;. After calculating the posteriors for all [, we perform Thompson sampling
to choose a generator.
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D.1.3 Generator Selection Algorithm II: Multiple GEN Nodes

An alternative approach attaches multiple GEN nodes as children to every node in the tree—one for
each of the L available generators. At each node NV in the expansion target selection process, the
following process occurs:

1. The AB-MCTS selection logic is applied independently within the sub-trees associated with
each generator. This means that for each generator [, we run a selection process considering
its associated GEN node and any child nodes previously generated by it from node N.

2. Thompson sampling is used to identify the best node (either the GEN node or an existing
child node) for each generator .

3. Finally, the scores of the L best nodes selected in the previous step are compared, and the
one with the highest overall score is selected.

This algorithm is designed to better capture the local context of the search tree, allowing for the
adaptive selection of the most suitable generator at each specific stage of the solution process.

D.2 Experiments

In this section, we evaluate the effectiveness of Multi-LLM AB-MCTS by reporting the results and
analysis of ARC-AGI-2 [44]. ARC-AGI-2 is an enhanced benchmark building upon the original
ARC-AGI, specifically designed to assess higher-level cognitive abilities of artificial intelligence
systems rigorously. It maintains the same fundamental principles as ARC-AGI, emphasizing tasks that
require general fluid intelligence rather than extensive prior knowledge or memorization. We selected
this benchmark, which is hard to solve even for frontier LLMs (less than 5% success rate [44]), to
assess whether we can combine multiple frontier reasoning LLMs to obtain better performance for
challenging tasks.

D.2.1 Experimental Setup

In this experiment, we evaluated our approach on the 120 problems comprising the public eval-
uation set of ARC-AGI-2. For each problem, the generation budget was set to 250. The solu-
tion generation and refinement procedures are the same as those of ARC-AGI-1 experiment: The
models were instructed to generate the transformation rule as Python code, and the search was
guided by a reward signal corresponding to the number of demonstration cases correctly solved
by the generated code. For solution generation, we used three frontier reasoning models: Gemini-
2.5Pro (gemini-2.5-pro-preview—05-06) [45], 04-mini (04-mini-2025-04-16) [46],
and DeepSeek-R1-0528 (deepseek-r1-0528) [22]. The temperature is set to be 0.6 for all the
models.

To primarily evaluate the potential of Multi-LLM AB-MCTS, we used the Pass @k metric. This metric
measures whether at least one correct solution is found within k attempts. This differs from the official
ARC-AGI-2 contest standard, which typically uses a Pass@2 criterion (i.e., one of two submitted
final answers must be correct). Evaluating Pass@2 requires an additional selection mechanism to
identify promising candidates from the search history. Therefore, this experiment focuses on the
search capability itself via Pass@k. Due to the significant API costs of the used frontier reasoning
models, we focused on the evaluation of Single-LLM AB-MCTS-A and Multi-LLM AB-MCTS-A
(and repeated sampling for o4-mini), since it worked most efficiently in our experiment on ARC-
AGI-1. Also, we employed the generator selection algorithm II (see Section [D.1.3|for details) for our
experiments.

D.2.2 Results

The performance of our proposed methods was compared against a repeated sampling, which was
the most efficient method for the ARC-AGI-1 experiment, and the result is shown in Fig. As
shown, Repeated Sampling using the 04-mini model achieved a 23% Pass @k success rate on the
public evaluation set, and the single-model AB-MCTS using 04-mini improved the success rate to
27.5%. The performance advantage of AB-MCTS over Repeated Sampling becomes more evident as
the generation budget increases, particularly after approximately 50 budget.
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Figure 13: Pass@k (coverage) of ARC-AGI-2 for each generation budget. The methods tested are

repeated sampling, AB-MCTS, and Multi-LLM AB-MCTS methods.
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Figure 14: Distribution of LLM usage in the 120 ARC-AGI-2 problems with Multi-LLM AB-MCTS-
A. Trials are sorted by the maximum reward obtained from demonstration cases (higher reward to the
left). Starred trials indicate a correct final solution was found.

By employing Multi-LLM AB-MCTS, which integrates Gemini-2.5-Pro and DeepSeek-R1-0528, we
further improved the performance, ultimately finding correct solutions for over 30% of the problems.
Notably, although DeepSeek-R1-0528 exhibited lower individual performance, its integration into
the Multi-LLM framework led to an increase in the number of solved problems.

D.2.3 Analysis

The Multi-LLM AB-MCTS framework demonstrated an ability to effectively allocate different LLMs
to problems based on their characteristics. As illustrated in Figure [I4] the distribution of LLM
usage varied across problems. For trials that quickly achieved a high reward from the demonstration
cases (left side of the figure), the more proficient model tended to be assigned. Conversely, for trials
where obtaining a high reward was more challenging (right side), the models were utilized in a more
balanced manner.

Furthermore, we observed instances where problems unsolvable by any single LLM were solved
through the collaboration of multiple models. This suggests a synergistic interaction that transcends
simply matching the best model to a problem. Figure [I5]and Figure [T6] depict a search process
where an incorrect solution generated by o4-mini served as a useful hint for DeepSeek-R1-0528
and Gemini-2.5-Pro, which then collaboratively produced the correct solution. This result indicates
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Example Search Tree by Multi-LLM AB-MCTS

= 04-mini

= Gemini-2.5-Pro

— R1-0528
Solved

Figure 15: An example search tree from a successful trial on ARC-AGI-2 using Multi-LLM AB-
MCTS-A. The number in each node indicates the generation step, and the color represents the selected
LLM. The yellow node generated the code that correctly solved the test case. This problem was not
solved by any single model in isolation.

Problem: 36a08778

Training set Test set

. ! Analysis of the previous solution by DeepSeek-R1-0528

After analyzing the discrepancies between the current implementation and the expected out-
puts, | identified two main issues:

l 1. Missing Cell Coloring During Horizontal Spread: When the flood function encountered a
gap (a cell below with value 7), it broke the spread without coloring the current cell. This
caused cells that should become water (6) to remain empty (7).
’? 2. Global Visited Sets Causing Skipped Processing: The visited sets were shared across

ail seed processing, preventing multiple seeds from properly interacting with cells processed
by earlier seeds. This disrupted the natural water flow simuiation.

The solution involves:

1. Adding cell coloring at gap locations during horizontal spread before initiating a drop
2. Removing the global visited sets entirely since grid state changes naturally prevent repro-
cessin
l 3. Maintaining recursion limits for deep but finite grids
Solution generated by o4-mini New solution refined by DeepSeek-R1-0528

Test set Test set

Corners are not filled.

Wrong Correct &

The error made by o4-mini has been
Much of the code is shared. - lyzed and d

Figure 16: An illustration of model collaboration. In this example, DeepSeek-R1-0528 refines an
incorrect intermediate solution generated by o4-mini (from the problem shown in Figure [I3]) to
produce the final correct solution.
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that Multi-LLM AB-MCTS can facilitate flexible and effective collaboration among heterogeneous
frontier LLMs.

D.3 Challenges and Future Work

While our primary evaluation focused on search capability using the Pass @k metric, we conducted
a preliminary evaluation based on the Pass@?2 criterion for reference. Using a simple rule-based
method to select two final answers (prioritizing code with a high reward generated later in the search),
the Multi-LLM AB-MCTS achieved a Pass@2 of 19.2%. Although this is a promising result, a
significant gap of over 10 percentage points remains compared to the 30% Pass @250 rate. Future
work should focus on closing this gap by developing more sophisticated final-answer selection
algorithms. Potential directions include building more accurate reward models or integrating an
LLM-as-a-Judge for a more nuanced evaluation of candidate solutions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
its empirical validation, as detailed throughout the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the proposed method are discussed in Section [5}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We focus on an empirical investigation of a novel framework rather than formal
theoretical results or proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a detailed description of the algorithm in Sections [3]and [A]
The experimental setup, including benchmarks, models, and hyperparameters, is detailed in
Sectiond.T|and Appendix Section B}

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the code in the supplementary material for reproduction.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The details can be found in Section[d.T|and Appendix Section [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figure[]and Appendix Figure[§|report mean success rates with 95% confidence
intervals based on multiple runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We wrote the details in Section[4.T]and Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and adhere to it.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work aims to improve the reasoning and problem-solving capabilities of
LLMs in code generation. This may potentially have both positive and negative societal
impacts common to the advancements in LLM technology.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The original publications for all benchmarks and LLMs are cited in Section[4.]

and Appendix [Bl Our use of these resources follows standard academic practices and
complies with each provider’s terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new algorithm. The code for this algorithm will be
released upon publication.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The core methodology leverages LLMs, and the proposed method is specifi-
cally designed to enhance their inference-time performance.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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