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Abstract

Traditional (oversensitive) adversarial exam-001
ples involve finding a small perturbation that002
does not change an input’s true label but con-003
fuses the classifier into outputting a different004
prediction. Undersensitive adversarial exam-005
ples are the opposite—the adversary’s goal is to006
find a small perturbation that changes the true007
label of an input while preserving the classi-008
fier’s prediction. Adversarial training and certi-009
fied robust training have shown some effective-010
ness in improving the robustness of machine011
learnt models to oversensitive adversarial exam-012
ples. However, recent work has shown that us-013
ing these techniques to improve robustness for014
image classifiers may make a model more vul-015
nerable to undersensitive adversarial examples.016
We demonstrate the same phenomenon applies017
to NLP models, showing that training methods018
that improve robustness to synonym-based at-019
tacks (oversensitive adversarial examples) tend020
to increase a model’s vulnerability to antonym-021
based attacks (undersensitive adversarial exam-022
ples) for both natural language inference and023
paraphrase identification tasks. To counter this024
phenomenon, we introduce Balanced Adver-025
sarial Training which incorporates contrastive026
learning to increase robustness against both027
over- and undersensitive adversarial examples.028

1 Introduction029

At the broadest level, an adversarial example is030

an input crafted intentionally to confuse a model.031

Most research on adversarial examples, however,032

focuses on a formal definition of an adversarial033

example as an inputs that is constructed by mak-034

ing minimal perturbations to a normal input which035

change the model’s output, assuming that the small036

perturbations preserve the original true label (Good-037

fellow et al., 2015). This happens when the model038

is overly sensitive towards small changes in the039

input, so we refer to these as oversensitive adver-040

sarial examples. In NLP, synonym-based word041

substitution is a common method for constructing042

oversensitive adversarial examples (Alzantot et al., 043

2018; Jin et al., 2020). 044

Attackers can also target the opposite objective— 045

to produce inputs with minimal but meaningful 046

changes that flip the ground truth label but make the 047

model retain its prediction (Jacobsen et al., 2019). 048

This type of attack is known as an undersensitive 049

adversarial example. It targets a model’s weakness 050

of being invariant to certain types of changes which 051

make it insufficiently sensitive to change its predic- 052

tion in response to changes in input. Attacks based 053

on antonyms and negation have been proposed to 054

create undersensitive adversarial examples for dia- 055

logue models (Niu and Bansal, 2018). 056

Recent work in the vision domain demonstrated 057

that increasing adversarial robustness of image 058

classification models by training with oversensi- 059

tive adversarial examples may increase vulnerabil- 060

ity to undersensitive adversarial examples (Tramer 061

et al., 2020). Even in cases where the model cer- 062

tifiably guarantees that no adversarial examples 063

can be found within the Lp-bounded distance, the 064

norm-bounded perturbation does not align with 065

the ground truth decision boundary. This distance- 066

oracle misalginment makes it possible to have un- 067

dersensitive adversarial examples located within 068

the same perturbation distance, as depicted in Fig- 069

ure 1. Similarly, in text, oversensitive examples are 070

usually generated with cosine similarity constraint 071

to encourage the representations of the original and 072

the perturbed sentence to be close in the embedding 073

space. However, this similarity measurement may 074

not preserve the actual semantics (Morris et al., 075

2020) and the model may learn poor representation 076

during adversarial training. 077

Contributions. In this work, we study adversar- 078

ial robustness tradeoffs in NLP models. While it 079

is challenging to construct an automatic undersen- 080

sitivity attack for image classifiers, we show that 081

we are able to automate the process for NLP mod- 082
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Figure 1: Distance-oracle misalignment. While the
model is trained to be robust to ϵ-bounded perturbation,
it becomes too invariant to small changes in the example
(undersensitive example x̃) that actually lie on the other
side of the oracle decision boundary.

els. We evaluate this robustness tradeoff on natural083

language inference and paraphrase identification084

tasks with BERT and RoBERTa models and show085

that while certified robust training increases robust-086

ness against oversensitive adversarial examples, it087

introduces vulnerability towards under-sensitivity088

attacks (Section 3). We use synonym-based attack089

for constructing oversensitive adversarial examples,090

and antonym-based attacks for constructing under-091

sensitive adversarial examples (Figure 2 shows a092

few examples). We show that the antonym attack093

success rate increases as the model becomes more094

robust against synonym based attacks (Section 3.3).095

We also propose a modification to robust training,096

Balanced Adversarial Training (BAT), which uti-097

lizes a contrastive learning objective to help miti-098

gate the distance misalignment problem by learning099

from both oversensitive and undersensitive exam-100

ples (Section 4). We implement with two different101

contrastive learning objectives including pairwise102

and triplet loss and show the effectiveness in im-103

proving both oversensitivity and undersensitivity104

robustness (Section 4.2).105

2 Constructing Adversarial Examples106

We consider a classification task where the goal of107

the model f is to learn to map the textual input x,108

a sequence of words, x1, x2, ..., xL, to its ground109

truth label y ∈ {1, ..., c}. We assume there is a110

labeling oracle O that corresponds to ground truth111

and outputs the true label of the given input. We fo-112

cus on word-level perturbations where the attacker113

substitutes words in the original input x with words114

from a known perturbation set (which we show115

how we construct it in the following sections). The116

goal of the attacker is to find an adversarial exam-117

ple x̃ for input x such that the output of the model 118

is different from what human would interpret, i.e. 119

f(x̃) ̸= O(x̃). 120

2.1 Oversensitive Adversarial Examples 121

For a given input (x, y) correctly classified by 122

model f and a set of allowed perturbed sentences 123

Sx, an oversensitive adversarial example is defined 124

as an input x̃over such that: 125

1. x̃over ∈ Sx 126

2. f(x̃over) ̸= f(x) 127

3. O(x̃over) = O(x) 128

There are many different methods for finding 129

oversensitive adversarial examples. The most com- 130

mon way is to use synonym word substitutions 131

where the target words are replaced with similar 132

words found in the word embedding (Alzantot et al., 133

2018; Jin et al., 2020) or use known synonyms from 134

WordNet (Ren et al., 2019). Recent work have also 135

explored using masked language models to gener- 136

ate word replacements (Li et al., 2020; Garg and 137

Ramakrishnan, 2020; Li et al., 2021). 138

We adopt the similar synonym word substitution 139

method in Ye et al. (2020). For each word xi in an 140

input x, we create a synonym set Sxi containing 141

the synonym words of xi including itself. Sx is 142

then constructed by a set of sentences where each 143

word in x can be replaced by a word in Sxi . We 144

consider the case where the attacker does not have 145

a constraint on the number of words that can be 146

perturbed for each input, meaning the attacker can 147

perturb up to L words which is the length of x. 148

The underlying assumption for oversensitive 149

examples to work is that the perturbed sentence 150

x̃over ∈ Sx should have the same ground truth label 151

as the original input x, i.e. O(x̃over) = O(x) = 152

f(x). However, common practice for construct- 153

ing oversensitive examples does not guarantee this 154

is true. Swapping a word with its synonym may 155

change the semantic meaning of the example since 156

even subtle changes in words can have a big impact 157

on meaning, and a word can have different mean- 158

ings in different context. For instance, “the whole 159

race of human kind” and “the whole competition 160

of human kind” describe different thing. Nonethe- 161

less, previous human evaluation have shown that 162

synonym-based adversarial examples still retain the 163

same semantic meaning and label as the original 164

texts most of the time (Jin et al., 2020; Li et al., 165

2020). 166
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Figure 2: Oversensitive and undersensitive adversarial examples for BERT model fine-tuned on natural language
inference (left) and paraphrase identification (right) tasks.

2.2 Undersensitive Adversarial Examples167

For a given input (x, y) correctly classified by168

model f and a set of allowable perturbed sentences169

Ax, an undersensitive adversarial example is de-170

fined as an input x̃under such that:171

1. x̃under ∈ Ax172

2. f(x̃under) = f(x)173

3. O(x̃under) ̸= O(x)174

We use similar antonym word substitution strat-175

egy proposed by Niu and Bansal (2018) to con-176

struct undersensitive adversarial examples. Similar177

to synonym word substitutions, for each word xi in178

an input x, we construct an antonym set Axi that179

consists of the antonyms of xi. Since we would180

like to change the semantic meaning of the input in181

a way that is likely to flip its label for the task, the182

attacker is only allowed to perturb one word with183

its antonym for each sentence.184

The way we construct undersensitive adversarial185

examples may not always satisfy the assumption186

where the ground truth label of the undersensitive187

example would be different from the original input.188

The substituted word may not affect the semantic189

meaning of the input depending on the task. For190

example, in natural language inference, changing191

“the weather is great, we should go out and have192

fun” to “the weather is bad, ...” does not effect the193

entailment relationship with “we should have some194

outdoor activities” since the main argument is in195

the second part of the sentence. However, we find196

that antonym substitutions are able to change the197

semantic meaning of the text most of the time and198

we choose two tasks that are most likely to change199

the label under antonym-based attack.200

3 Sensitivity Tradeoffs201

Methods for improving robustness aim to train202

models with decision boundaries that correctly clas-203

sify inputs that would be oversensitive adversarial 204

examples for non-robust models. Adversarial train- 205

ing is considered as the most effective defense strat- 206

egy yet found against adversarial examples. It is 207

usually done by augmenting the original training 208

set with generated adversarial examples (Madry 209

et al., 2018). It has also shown successful re- 210

sults in NLP domain (Yoo and Qi, 2021). Recent 211

works have also studied certified robustness train- 212

ing which gives a stronger guarantee that the model 213

is robust to all possible perturbations of a given in- 214

put (Jia et al., 2019; Dong et al., 2021; Ye et al., 215

2020). 216

Normally, these defense methods only target 217

oversensitive adversarial examples, so there is 218

a risk that such methods increase vulnerability 219

to undersensitive adversarial examples. Accord- 220

ing to the distance-oracle misalignment assump- 221

tion (Tramer et al., 2020), the distance measure for 222

finding adversarial examples and labeling oracle O 223

is misaligned if we have O(x̃over) = O(x) = y 224

and O(x̃under) ̸= O(x), but dist(x, x̃over) > 225

dist(x, x̃under) (Figure 1). 226

We explore this in the context of NLP models. 227

Even though synonym word substitutions assume 228

that the perturbed sentence should be semantically 229

closer to the original sentence than any other sen- 230

tence with a different semantic meaning in the em- 231

bedding space, we may be able to find an under- 232

sensitive adversarial example that is closer to the 233

original sentence. 234

3.1 Setup 235

Our experiments are designed to test our hypothesis 236

that optimizing adversarial robustness of NLP mod- 237

els using only oversensitive examples deteriorates 238

the model’s robustness on undersensitive adversar- 239

ial examples. We use the SAFER certified robust 240

training method proposed by Ye et al. (2020). The 241

idea is to train a smoother model by randomly per- 242
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Figure 3: Over-sensitivity and under-sensitivity tradeoff where under-sensitivity attack success rate increases as
over-sensitivity attack success rate decreases. The figure shows the results on MNLI matched validation set. Dash
lines show the synonym/antonym attack success rate on baseline model with normal training.
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Figure 4: The synonym and antonym attack success rate at each SAFER training epoch with varying batch size.
When the model is trained with smaller batch size, the synonym attack success rate is lower and the antonym success
rate is higher.

turbing the sentences with words in the synonym243

substitution set at each training iteration.244

We train BERT (Devlin et al., 2019) and245

RoBERTa (Liu et al., 2019) models on two differ-246

ent tasks with SAFER training for 15 epochs. We247

then test the attack success rate for both oversen-248

sitivity and undersensitivity attacks at each train-249

ing epoch. We use the same perturbation method250

as described in Section 2.1 for both the training251

and the attack. For each word, the synonym per-252

turbation set is constructed by selecting the top253

K nearest neighbors with a cosine similarity con-254

straint of 0.8 in GLOVE embeddings (Pennington255

et al., 2014), and the antonym perturbation set con-256

sists of antonym words found in WordNet (Miller,257

1995). We follow the method of Jin et al. (2020)258

for finding oversensitive adversarial examples by259

using word importance ranking and Part-of-Speech260

(PoS) and sentence semantic similarity constraints261

as the search criteria. We use the same method262

for the undersensitivity attack, but exclude the se- 263

mantic similarity constraint. For comparison, we 264

set up baseline models with normal training on the 265

original training sets. 266

3.2 Tasks 267

We choose two different tasks from the GLUE 268

benchmark (Wang et al., 2018) that are good can- 269

didates for the antonym attack. Antonym-based 270

attack works well on these tasks since both tasks 271

consist of sentence pairs and changing a word to 272

an opposite meaning is very likely to break the 273

relationship between the pairs. 274

Natural Language Inference. We experiment 275

with Multi-Genre Natural Language Inference 276

(MNLI) dataset (Williams et al., 2018) which con- 277

tains a premise-hypothesis pair for each example. 278

The task is to identify the relation between the sen- 279

tences in a premise-hypothesis pair and determine 280

whether the hypothesis is true (entailment), false 281
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(contradiction) or undetermined (neutral) given the282

premise. We consider the case where both premise283

and hypothesis can be perturbed, but only one word284

from either premise or hypothesis can be substi-285

tuted for antonym attack. We do not consider ex-286

amples with a neutral label when constructing un-287

dersensitive adversarial examples since antonym288

word substitutions may not change their label to a289

different class.290

Paraphrase Identification. We use Quora Ques-291

tion Pairs (QQP) (Iyer et al., 2017) which consists292

of questions extracted from Quora. The goal of the293

task is to identify duplicate questions. Each ques-294

tion pair is labeled as duplicate or non-duplicate.295

For our antonym attack strategy, we only target the296

duplicate class since antonym word substitutions297

are unlikely to flip an initially non-duplicate pair298

into a duplicate.299

We also conducted experiments using the Wiki300

Talk Comments (Wulczyn et al., 2017) dataset, a301

dataset for toxicity detection, by adding or remov-302

ing toxic words for creating undersensitive exam-303

ples. However, we found adding toxic words can304

reach almost 100% attack success rate, so there did305

not seem to be an interesting tradeoff to explore for306

available models for this task.307

3.3 Results308

We visualize the attack success rates for over-309

sensitivity (synonym attack) and undersensitivity310

(antonym attack) attacks in Figure 3. The results311

confirm our hypothesis that optimizing adversar-312

ial robustness of NLP models using only oversen-313

sitive examples results in models that are more314

vulnerable to undersensitivity attacks. Robustness315

training for the BERT model on MNLI improves316

oversensitivity robustness, reducing the synonym317

attack success rate from 36% to 11% (a 69% de-318

crease) after training for 15 epochs (Figure 3a), but319

antonym attack success rate increases from 56% to320

64% (a 14% increase). The antonym attack success321

rate increases even more for the RoBERTa model322

(Figure 3b), increasing from 56% to 70% (a 25%323

increase) while the synonym attack success rate de-324

creases from 31.2% to 13% (a 58% decrease). The325

RoBERTa model is pre-trained to be more robust326

than the BERT model, which perhaps explains the327

difference. We observe a sensitivity tradeoff for328

QQP dataset as well (see Appendix A.1).329

Impact of Batch Size. We experiment with dif-330

ferent batch sizes for over-sensitivity based robust331

training. We show the results on MNLI dataset 332

in Figure 4. When the model is trained with a 333

smaller batch size, the synonym attack success rate 334

becomes lower, but the antonym success rate gets 335

higher. This means that the model may overfit on 336

the over-sensitive examples due to smaller train- 337

ing batch size, exacerbating the impact of the un- 338

balanced adversarial training. We found similar 339

evidence on the evaluation accuracy on the origi- 340

nal validation set in Appendix A.2. While models 341

with smaller batch sizes converge faster, they lead 342

to lower performance and poorer generalization. 343

This result suggests that SAFER with smaller batch 344

size may create a larger robustness tradeoff. In the 345

later section, we show that our proposed method 346

would not be affected by the training batch size 347

(Section 4.2). 348

4 Balanced Adversarial Training 349

In previous section, we argued that the oversen- 350

sitivity/undersensitivity tradeoff can be attributed 351

to distance-oracle misalignment. This section pro- 352

poses and evaluates a modification to adversarial 353

training that balances both kinds of adversarial ex- 354

amples. 355

4.1 Approach 356

To make the semantic distance in the representation 357

space align better with human perception, the most 358

intuitive way is to move the oversensitive example 359

closer to the original input and push the original 360

input apart from the undersensitive example in the 361

representation space. 362

This goal matches the objective of contrastive 363

learning, a type of self supervised learning that 364

learns representations with positive (similar) exam- 365

ples close together and negative (dissimlar) exam- 366

ples far apart (Hadsell et al., 2006; Schroff et al., 367

2015). Positive examples are usually generated 368

with data augmentation such as spatial transforma- 369

tion, and negative examples are sampled from other 370

examples (Chen et al., 2020). We adapt contrastive 371

learning to balance adversarial training by treating 372

oversensitive adversarial examples as positive ex- 373

amples and undersensitive adversarial examples as 374

negative examples. 375

We construct the positive pair as the original in- 376

put with a corresponding oversensitive example, 377

and the negative pair as the original input paired 378

with an undersensitive example. We generate over- 379

sensitive and undersensitive examples by apply- 380
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Model Method Eval Acc (%) Antonym ASR (%) Synonym ASR (%)

Normal Training 84.39/84.99 57.47/58.72 36.29/40.52
A2T 84.44/85.00 56.51/57.86 21.67/24.84

BERT SAFER 84.20/84.66 58.36/58.45 14.62/16.61
BAT-Pairwise 84.68/84.44 45.23/46.18 27.12/30.81
BAT-Triplet 84.70/84.97 32.15/32.50 25.83/28.95

Normal Training 87.85/87.42 56.34/58.85 31.20/34.60
A2T 86.98/86.52 56.84/58.19 19.78/21.07

RoBERTa SAFER 87.11/86.65 56.95/58.13 12.82/13.98
BAT-Pairwise 87.57/87.52 39.71/40.12 27.56/30.79
BAT-Triplet 87.61/86.99 32.74/33.57 26.90/28.91

Table 1: Balanced Adversarial Training evaluation results on MNLI matched/mismatched validation set.

ing synonym and antonym transformations respec-381

tively. The idea is to minimize the distance be-382

tween the positive pairs and maximize the distance383

between the negative pairs.384

We combine normal training with a contrastive385

learning objective and experiment with two differ-386

ent approaches for contrastive loss: pairwise and387

triplet loss. While recent contrastive learning in-388

corporates multiple positive and negative examples389

for each input, we use these two methods as they390

consider the simplest case where only a positive391

and a negative example is needed for each input.392

Similarly to SAFER certified robust training, we393

use an augmented approach without querying the394

model to check if the attack succeeds. We choose395

this approach over traditional adversarial training396

since it is computationally less expensive.397

Given an input (x, y), we generate an example398

x̃o by applying synonym perturbations and an ex-399

ample x̃u by applying antonym perturbations. Let400

d(x1, x2) denote the distance measure between x1401

and x2 in the representation space. For the pair-402

wise approach, we optimize the distance for the403

over-sensitive pair (x, x̃o) and the under-sensitive404

pair (x, x̃u) independently:405

LBATpair = LML + Lpair406

LML = log f(y | x)407

Lpair = αd(x, x̃o) + βmax(0,m− d(x, x̃u))408

where the hyperparameters α and β control the409

weighting of the oversensitive and undersensitive410

pairs, and m is the margin. The Lpair loss term is411

designed to minimize the distance to the oversensi-412

tive adversarial example and maximize the distance413

to the undersensitive adversarial example. The mar-414

gin m penalizes the model when the undersensitive415

example is less than m distance away from the 416

original input (d(x, x̃u) < m). We use cosine sim- 417

ilarity for distance measure and set the margin m 418

as 1. For the case where we are unable to find a 419

valid oversensitive or undersensitive adversarial ex- 420

ample, we set either d(x, x̃o) or m − d(x, x̃u) to 421

0. 422

For the triplet approach, the original input x acts 423

as an anchor and a triplet (x, x̃o, x̃u) is considered 424

instead of pairs. The triplet loss aims to make the 425

distance between the undersensitive pair larger than 426

the distance between the oversensitive pair with at 427

least a margin m: d(x, x̃u) > d(x, x̃o) +m. The 428

training loss can be formalized as: 429

LBAT triplet = LML + λLtriplet 430

Ltriplet = max(0, d(x, x̃o) + (m− d(x, x̃u))) 431

where the hyperparameter λ controls the weight of 432

the contrastive loss term. Like the pairwise loss, 433

if no oversensitive or undersensitive example is 434

available, we mask out d(x, x̃o) or m−d(x, x̃u) in 435

Ltriplet . 436

4.2 Results 437

Table 1 shows BAT training results on the MNLI 438

validation sets. We use normal training as the 439

non-robust baseline, and consider certified robust 440

training, SAFER, and traditional adversarial train- 441

ing, A2T (Yoo and Qi, 2021), as the robust base- 442

lines. Balanced Adversarial Training increases 443

the model’s adversarial robustness against both 444

antonym and synonym attacks, while preserving its 445

performance on the original validation set. While 446

both robust baselines that only consider oversensi- 447

tive adversarial examples (SAFER and A2T) per- 448

form best when evaluated solely based on over- 449
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Model Method Eval Acc (%) F1 Antonym ASR (%) Synonym ASR (%)

Normal Training 90.62 87.49 43.61 20.75
SAFER 90.98 87.81 46.00 4.98

BERT BAT-Pairwise 89.99 86.67 21.24 15.81
BAT-Triplet 90.85 87.81 14.26 15.78

Normal Training 91.25 88.38 40.39 18.78
SAFER 91.34 88.47 44.30 4.56

RoBERTa BAT-Pairwise 89.99 86.62 18.29 17.07
BAT-Triplet 91.04 88.21 13.02 16.89

Table 2: Balanced Adversarial Training evaluation results on QQP validation set.

sensitivity robustness, they are more vulnerable to450

undersensitive adversarial examples. We found that451

BAT-Triplet performs better than BAT-Pairwise in452

terms of improving robustness against antonym at-453

tacks. This may due to the fact that triplet loss454

forces the distance to undersensitive examples be-455

comes larger than the distance to oversensitive ex-456

amples.457

With BAT-Triplet, the antonym attack success458

rate on BERT decreases from 57% to 32% (a 44%459

decrease) comparing to normal training, and the460

synonym atack success rate decreases from 36% to461

26% (a 29% decrease). We also show the results462

on QQP dataset in Table 2. While the antonym463

attack success rates drop more than half (around464

67% decrease) after BAT training, the synonym465

attack success rate has a 24% decrease on BERT466

and only 10% on RoBERTa, as the synonym at-467

tack success rate is already low on the model with468

normal training.469

In Section 3.3, we observe that certified robust470

training with smaller batch size would result in471

larger gap in sensitivity tradeoff. We test BAT-472

Triplet with varying batch size when training BERT473

on MNLI task and we find that it gives consistent474

improvement on robustness regardless the batch475

size, as shown in Table 3.476

4.3 Representation Analysis477

We compare the learned representations of models478

trained with BAT to normal training and SAFER.479

We sample 500 examples from MNLI dataset (ex-480

cluding the neutral class) and apply synonym and481

antonym perturbations for each input. We then482

project the model representations before the last483

classification layer to 2 dimensional space with484

t-SNE (van der Maaten and Hinton, 2008) and vi-485

sualize the results in Figure 5.486

Batch Accuracy Antonym Synonym
Size (%) ASR (%) ASR (%)

8 84.45 34.59 25.66
16 84.08 31.05 25.89
32 84.70 32.15 25.83

Table 3: BAT-Triplet with BERT training, varying batch
size, evaluated on MNLI matched validation set.

When training with normal training or SAFER, 487

we can see that both oversensitive and undersen- 488

sitive adversarial examples are fairly close to the 489

original examples. However, with BAT-Pairwise or 490

BAT-Triplet, undersensitive examples are pushed 491

further away from both original and over-sensitive 492

examples. This matches with BAT’s training goal 493

where the distance between undersensitive and orig- 494

inal examples is maximized and the distance be- 495

tween oversensitive and original examples is mini- 496

mized. This also shows how BAT is able to fix the 497

distance-oracle misalignment, making the semantic 498

distance in the representation space aligns better 499

with human perception, and further improve robust- 500

ness against both types of adversarial examples. 501

5 Related Work 502

Compared to oversensitive adversarial examples, 503

undersensitivity has been less studied in NLP as 504

well as other domains. Feng et al. (2018) delete 505

words iteratively from the input to create exam- 506

ples that appear rubbish to human but retain the 507

model’s prediction with high confidence. Welbl 508

et al. (2020) use Part-of-Speech and Name Entity 509

based perturbations against reading comprehension 510

models. Niu and Bansal (2018) study both types of 511

attack strategies for dialogue models. They create 512

undersensitive adversarial examples by substituting 513

7



−60 −30 0 30 60

−40

−20

0

20

40

type

original

over

under

x

y

(a) Normal training

−40 −20 0 20 40

−40

−20

0

20

40

x

y

(b) SAFER

−40 −20 0 20 40

−60

−30

0

30

60

x

y

(c) BAT-Pairwise

−60 −40 −20 0 20 40

−30

0

30

60

x
y

(d) BAT-Triplet

Figure 5: 2D projection of model representation for RoBERTa MNLI models trained with normal training, certified
robust training with over-sensitive examples (SAFER), BAT-Pairwise, and BAT-Triplet.

words with antonyms or adding negation words to514

the input.515

Our work is the first to study tradeoffs between516

oversensitive and undersensitive adversarial exam-517

ples in NLP, but a few previous works have consid-518

ered these tradeoffs in the vision domain. Jacobsen519

et al. (2019) show that adversary can not only target520

the model’s excessive sensitivity but its excessive521

invariance to small changes in the input. They522

propose an alternative training objective based on523

information theory to make the model less invariant524

to semantically meaningful changes. Tramer et al.525

(2020) study the tradeoff between the two types of526

adversarial examples for image classifiers. They527

show that data augmentation can help increase ro-528

bustness against undersensitivity attacks, but is not529

sufficient to impede both types of attacks. Our530

work differs in that we propose a new adversarial531

training method that improves model robustness532

against both types of adversarial examples. In ad-533

dition, unlike images where human inspection is534

usually required to check whether the perturbed535

pixels would change the true label of the image,536

we are able to automate the process of generating537

undersensitive examples for text.538

Recent work introduce contrastive learning for539

image classifiers in the adversarial learning setting 540

where an oversensitive adversarial augmentation 541

is used to generate positive examples and negative 542

examples are sampled from other images. Kim 543

et al. (2020) generate diverse positive examples 544

by launching instance-wise attack on augmented 545

images and show that it improves model’s oversen- 546

sitivity robustness. Ho and Nvasconcelos (2020) 547

create challenging positive pairs by using the gra- 548

dients of the contrastive loss to generate oversen- 549

sitive adversarial examples and they show that it 550

improves model performance. 551

6 Conclusion 552

We demonstrate the tradeoff between vulnerabil- 553

ity to oversensitive and undersensitive adversarial 554

examples for NLP models and show that increas- 555

ing robustness against synonym based attack also 556

increases vulnerability to antonym-based attacks. 557

To manage this tension, we introduce a new ad- 558

versarial training method, BAT, which targets the 559

distance-oracle misalignment problem and can help 560

balance the oversensitivity and undersensitivity in 561

adversarial training. 562
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A Appendix 746

A.1 Over-sensitivity and Undersensitivity Tradeoff on QQP dataset 747
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Figure 6: Over-sensitivity and under-sensitivity tradeoff on QQP dataset.

A.2 Over-sensitivity Robust Training Evaluation Accuracy with Varying Batch Size 748
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Figure 7: The evaluation accuracy on original validation set at each SAFER training epoch with varying batch size.

A.3 Balanced Adversarial Training Details 749

We implement BAT similarly to the SAFER training method as described in Section 3.1 where we 750

randomly perturb the inputs with words from the synonym/antonym substitution sets. We train BERT and 751

RoBERTa models for 2 to 3 epochs with a learning rate of 2× 10−5 or 3× 10−5 and batch size of 32. For 752

BAT-Triplet, we set the contrastive loss weight λ to 0.8 or 1.0. For BAT-Pairwise, we set the the weight of 753

oversensitive pair and undersensitive pair (α, β) to (1.0, 1.0) or (1.0, 1.2). 754

A.4 Dataset Statistics 755

Dataset Type Train Dev

MNLI NLI 393K 20K
QQP paraphrase 364K 391K

Table 4: Number of examples in each dataset split.
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