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Abstract

Traditional (oversensitive) adversarial exam-
ples involve finding a small perturbation that
does not change an input’s true label but con-
fuses the classifier into outputting a different
prediction. Undersensitive adversarial exam-
ples are the opposite—the adversary’s goal is to
find a small perturbation that changes the true
label of an input while preserving the classi-
fier’s prediction. Adversarial training and certi-
fied robust training have shown some effective-
ness in improving the robustness of machine
learnt models to oversensitive adversarial exam-
ples. However, recent work has shown that us-
ing these techniques to improve robustness for
image classifiers may make a model more vul-
nerable to undersensitive adversarial examples.
We demonstrate the same phenomenon applies
to NLP models, showing that training methods
that improve robustness to synonym-based at-
tacks (oversensitive adversarial examples) tend
to increase a model’s vulnerability to antonym-
based attacks (undersensitive adversarial exam-
ples) for both natural language inference and
paraphrase identification tasks. To counter this
phenomenon, we introduce Balanced Adver-
sarial Training which incorporates contrastive
learning to increase robustness against both
over- and undersensitive adversarial examples.

1 Introduction

At the broadest level, an adversarial example is
an input crafted intentionally to confuse a model.
Most research on adversarial examples, however,
focuses on a formal definition of an adversarial
example as an inputs that is constructed by mak-
ing minimal perturbations to a normal input which
change the model’s output, assuming that the small
perturbations preserve the original true label (Good-
fellow et al., 2015). This happens when the model
is overly sensitive towards small changes in the
input, so we refer to these as oversensitive adver-
sarial examples. In NLP, synonym-based word
substitution is a common method for constructing

oversensitive adversarial examples (Alzantot et al.,
2018; Jin et al., 2020).

Attackers can also target the opposite objective—
to produce inputs with minimal but meaningful
changes that flip the ground truth label but make the
model retain its prediction (Jacobsen et al., 2019).
This type of attack is known as an undersensitive
adversarial example. It targets a model’s weakness
of being invariant to certain types of changes which
make it insufficiently sensitive to change its predic-
tion in response to changes in input. Attacks based
on antonyms and negation have been proposed to
create undersensitive adversarial examples for dia-
logue models (Niu and Bansal, 2018).

Recent work in the vision domain demonstrated
that increasing adversarial robustness of image
classification models by training with oversensi-
tive adversarial examples may increase vulnerabil-
ity to undersensitive adversarial examples (Tramer
et al., 2020). Even in cases where the model cer-
tifiably guarantees that no adversarial examples
can be found within the L,-bounded distance, the
norm-bounded perturbation does not align with
the ground truth decision boundary. This distance-
oracle misalginment makes it possible to have un-
dersensitive adversarial examples located within
the same perturbation distance, as depicted in Fig-
ure 1. Similarly, in text, oversensitive examples are
usually generated with cosine similarity constraint
to encourage the representations of the original and
the perturbed sentence to be close in the embedding
space. However, this similarity measurement may
not preserve the actual semantics (Morris et al.,
2020) and the model may learn poor representation
during adversarial training.

Contributions. In this work, we study adversar-
ial robustness tradeoffs in NLP models. While it
is challenging to construct an automatic undersen-
sitivity attack for image classifiers, we show that
we are able to automate the process for NLP mod-
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Figure 1: Distance-oracle misalignment. While the
model is trained to be robust to e-bounded perturbation,
it becomes too invariant to small changes in the example
(undersensitive example ) that actually lie on the other
side of the oracle decision boundary.

els. We evaluate this robustness tradeoff on natural
language inference and paraphrase identification
tasks with BERT and RoBERTa models and show
that while certified robust training increases robust-
ness against oversensitive adversarial examples, it
introduces vulnerability towards under-sensitivity
attacks (Section 3). We use synonym-based attack
for constructing oversensitive adversarial examples,
and antonym-based attacks for constructing under-
sensitive adversarial examples (Figure 2 shows a
few examples). We show that the antonym attack
success rate increases as the model becomes more
robust against synonym based attacks (Section 3.3).
We also propose a modification to robust training,
Balanced Adversarial Training (BAT), which uti-
lizes a contrastive learning objective to help miti-
gate the distance misalignment problem by learning
from both oversensitive and undersensitive exam-
ples (Section 4). We implement with two different
contrastive learning objectives including pairwise
and triplet loss and show the effectiveness in im-
proving both oversensitivity and undersensitivity
robustness (Section 4.2).

2 Constructing Adversarial Examples

We consider a classification task where the goal of
the model f is to learn to map the textual input z,
a sequence of words, =1, T3, ..., XL, to its ground
truth label y € {1,...,c}. We assume there is a
labeling oracle O that corresponds to ground truth
and outputs the true label of the given input. We fo-
cus on word-level perturbations where the attacker
substitutes words in the original input x with words
from a known perturbation set (which we show
how we construct it in the following sections). The
goal of the attacker is to find an adversarial exam-

ple x for input z such that the output of the model
is different from what human would interpret, i.e.

f(x) # 0(x).
2.1 Oversensitive Adversarial Examples

For a given input (z,y) correctly classified by
model f and a set of allowed perturbed sentences
S.., an oversensitive adversarial example is defined
as an input e such that:

1. Zoyer € Sm

2. f(Zover) # f(2)
3. O(Zoper) = O(x)

There are many different methods for finding
oversensitive adversarial examples. The most com-
mon way is to use synonym word substitutions
where the target words are replaced with similar
words found in the word embedding (Alzantot et al.,
2018; Jin et al., 2020) or use known synonyms from
WordNet (Ren et al., 2019). Recent work have also
explored using masked language models to gener-
ate word replacements (Li et al., 2020; Garg and
Ramakrishnan, 2020; Li et al., 2021).

We adopt the similar synonym word substitution
method in Ye et al. (2020). For each word x; in an
input x, we create a synonym set S, containing
the synonym words of z; including itself. S is
then constructed by a set of sentences where each
word in = can be replaced by a word in S;;. We
consider the case where the attacker does not have
a constraint on the number of words that can be
perturbed for each input, meaning the attacker can
perturb up to L words which is the length of x.

The underlying assumption for oversensitive
examples to work is that the perturbed sentence
Zover € Sz should have the same ground truth label
as the original input z, i.e. O(Zoper) = O(z) =
f(x). However, common practice for construct-
ing oversensitive examples does not guarantee this
is true. Swapping a word with its synonym may
change the semantic meaning of the example since
even subtle changes in words can have a big impact
on meaning, and a word can have different mean-
ings in different context. For instance, “the whole
race of human kind” and “the whole competition
of human kind” describe different thing. Nonethe-
less, previous human evaluation have shown that
synonym-based adversarial examples still retain the
same semantic meaning and label as the original
texts most of the time (Jin et al., 2020; Li et al.,
2020).



Original: entailment 99.3%

Premise: But employers are still driving, and that's all that counts.

Original: duplicate 92.2%

Q1: What's the difference between analog and digital system?

Hypothesis: Employers have continued to operate motor vehicles, and that's all that matters.

Oversensitive: neutral 94.7%

Premise: But employer are still driving, and that's all that counts.

Q2: What's the main difference between digital and analog?

Oversensitive: non-duplicate 92.3%

Q1: What's the difference between analog and digitized system?

Hypothesis: Employers have incessant to operate motor vehicles, and that's all that matters.

Undersensitive: entailment 99.5%

Undersensitive: duplicate 97.6%

Q1: What's the sameness between analog and digital system?

Hypothesis: employee have continued to operate motor vehicles, and that's all that matters.

Figure 2: Oversensitive and undersensitive adversarial examples for BERT model fine-tuned on natural language

inference (left) and paraphrase identification (right) tasks.

2.2 Undersensitive Adversarial Examples

For a given input (z,y) correctly classified by
model f and a set of allowable perturbed sentences
A, an undersensitive adversarial example is de-
fined as an input &, 4e, such that:

L. junder € -Ax
2. f(Zunder) = f(x)
3. O(Zynder) # O(x)

We use similar antonym word substitution strat-
egy proposed by Niu and Bansal (2018) to con-
struct undersensitive adversarial examples. Similar
to synonym word substitutions, for each word x; in
an input , we construct an antonym set A, that
consists of the antonyms of x;. Since we would
like to change the semantic meaning of the input in
a way that is likely to flip its label for the task, the
attacker is only allowed to perturb one word with
its antonym for each sentence.

The way we construct undersensitive adversarial
examples may not always satisfy the assumption
where the ground truth label of the undersensitive
example would be different from the original input.
The substituted word may not affect the semantic
meaning of the input depending on the task. For
example, in natural language inference, changing
“the weather is great, we should go out and have
fun” to “the weather is bad, ...” does not effect the
entailment relationship with “we should have some
outdoor activities” since the main argument is in
the second part of the sentence. However, we find
that antonym substitutions are able to change the
semantic meaning of the text most of the time and
we choose two tasks that are most likely to change
the label under antonym-based attack.

3 Sensitivity Tradeoffs

Methods for improving robustness aim to train
models with decision boundaries that correctly clas-

sify inputs that would be oversensitive adversarial
examples for non-robust models. Adversarial train-
ing is considered as the most effective defense strat-
egy yet found against adversarial examples. It is
usually done by augmenting the original training
set with generated adversarial examples (Madry
et al., 2018). It has also shown successful re-
sults in NLP domain (Yoo and Qi, 2021). Recent
works have also studied certified robustness train-
ing which gives a stronger guarantee that the model
is robust to all possible perturbations of a given in-
put (Jia et al., 2019; Dong et al., 2021; Ye et al.,
2020).

Normally, these defense methods only target
oversensitive adversarial examples, so there is
a risk that such methods increase vulnerability
to undersensitive adversarial examples. Accord-
ing to the distance-oracle misalignment assump-
tion (Tramer et al., 2020), the distance measure for
finding adversarial examples and labeling oracle O
is misaligned if we have O(Zoper) = O(z) =y
and O(Zynder) # O(x), but dist(x, Tover) >
dist(z, Tynder) (Figure 1).

We explore this in the context of NLP models.
Even though synonym word substitutions assume
that the perturbed sentence should be semantically
closer to the original sentence than any other sen-
tence with a different semantic meaning in the em-
bedding space, we may be able to find an under-
sensitive adversarial example that is closer to the
original sentence.

3.1 Setup

Our experiments are designed to test our hypothesis
that optimizing adversarial robustness of NLP mod-
els using only oversensitive examples deteriorates
the model’s robustness on undersensitive adversar-
ial examples. We use the SAFER certified robust
training method proposed by Ye et al. (2020). The
idea is to train a smoother model by randomly per-
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Figure 3: Over-sensitivity and under-sensitivity tradeoff where under-sensitivity attack success rate increases as
over-sensitivity attack success rate decreases. The figure shows the results on MNLI matched validation set. Dash
lines show the synonym/antonym attack success rate on baseline model with normal training.
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Figure 4: The synonym and antonym attack success rate at each SAFER training epoch with varying batch size.
When the model is trained with smaller batch size, the synonym attack success rate is lower and the antonym success

rate is higher.

turbing the sentences with words in the synonym
substitution set at each training iteration.

We train BERT (Devlin et al.,, 2019) and
RoBERTa (Liu et al., 2019) models on two differ-
ent tasks with SAFER training for 15 epochs. We
then test the attack success rate for both oversen-
sitivity and undersensitivity attacks at each train-
ing epoch. We use the same perturbation method
as described in Section 2.1 for both the training
and the attack. For each word, the synonym per-
turbation set is constructed by selecting the top
K nearest neighbors with a cosine similarity con-
straint of 0.8 in GLOVE embeddings (Pennington
et al., 2014), and the antonym perturbation set con-
sists of antonym words found in WordNet (Miller,
1995). We follow the method of Jin et al. (2020)
for finding oversensitive adversarial examples by
using word importance ranking and Part-of-Speech
(PoS) and sentence semantic similarity constraints
as the search criteria. We use the same method

for the undersensitivity attack, but exclude the se-
mantic similarity constraint. For comparison, we
set up baseline models with normal training on the
original training sets.

3.2 Tasks

We choose two different tasks from the GLUE
benchmark (Wang et al., 2018) that are good can-
didates for the antonym attack. Antonym-based
attack works well on these tasks since both tasks
consist of sentence pairs and changing a word to
an opposite meaning is very likely to break the
relationship between the pairs.

Natural Language Inference. We experiment
with Multi-Genre Natural Language Inference
(MNLI) dataset (Williams et al., 2018) which con-
tains a premise-hypothesis pair for each example.
The task is to identify the relation between the sen-
tences in a premise-hypothesis pair and determine
whether the hypothesis is true (entailment), false

batch 8

—— batch 16
—— batch 32



(contradiction) or undetermined (neutral) given the
premise. We consider the case where both premise
and hypothesis can be perturbed, but only one word
from either premise or hypothesis can be substi-
tuted for antonym attack. We do not consider ex-
amples with a neutral label when constructing un-
dersensitive adversarial examples since antonym
word substitutions may not change their label to a
different class.

Paraphrase Identification. We use Quora Ques-
tion Pairs (QQP) (Iyer et al., 2017) which consists
of questions extracted from Quora. The goal of the
task is to identify duplicate questions. Each ques-
tion pair is labeled as duplicate or non-duplicate.
For our antonym attack strategy, we only target the
duplicate class since antonym word substitutions
are unlikely to flip an initially non-duplicate pair
into a duplicate.

We also conducted experiments using the Wiki
Talk Comments (Wulczyn et al., 2017) dataset, a
dataset for toxicity detection, by adding or remov-
ing toxic words for creating undersensitive exam-
ples. However, we found adding toxic words can
reach almost 100% attack success rate, so there did
not seem to be an interesting tradeoff to explore for
available models for this task.

3.3 Results

We visualize the attack success rates for over-
sensitivity (synonym attack) and undersensitivity
(antonym attack) attacks in Figure 3. The results
confirm our hypothesis that optimizing adversar-
ial robustness of NLP models using only oversen-
sitive examples results in models that are more
vulnerable to undersensitivity attacks. Robustness
training for the BERT model on MNLI improves
oversensitivity robustness, reducing the synonym
attack success rate from 36% to 11% (a 69% de-
crease) after training for 15 epochs (Figure 3a), but
antonym attack success rate increases from 56% to
64% (a 14% increase). The antonym attack success
rate increases even more for the RoOBERTa model
(Figure 3b), increasing from 56% to 70% (a 25%
increase) while the synonym attack success rate de-
creases from 31.2% to 13% (a 58% decrease). The
RoBERTa model is pre-trained to be more robust
than the BERT model, which perhaps explains the
difference. We observe a sensitivity tradeoff for
QQP dataset as well (see Appendix A.1).

Impact of Batch Size. We experiment with dif-
ferent batch sizes for over-sensitivity based robust

training. We show the results on MNLI dataset
in Figure 4. When the model is trained with a
smaller batch size, the synonym attack success rate
becomes lower, but the antonym success rate gets
higher. This means that the model may overfit on
the over-sensitive examples due to smaller train-
ing batch size, exacerbating the impact of the un-
balanced adversarial training. We found similar
evidence on the evaluation accuracy on the origi-
nal validation set in Appendix A.2. While models
with smaller batch sizes converge faster, they lead
to lower performance and poorer generalization.
This result suggests that SAFER with smaller batch
size may create a larger robustness tradeoff. In the
later section, we show that our proposed method
would not be affected by the training batch size
(Section 4.2).

4 Balanced Adversarial Training

In previous section, we argued that the oversen-
sitivity/undersensitivity tradeoff can be attributed
to distance-oracle misalignment. This section pro-
poses and evaluates a modification to adversarial
training that balances both kinds of adversarial ex-
amples.

4.1 Approach

To make the semantic distance in the representation
space align better with human perception, the most
intuitive way is to move the oversensitive example
closer to the original input and push the original
input apart from the undersensitive example in the
representation space.

This goal matches the objective of contrastive
learning, a type of self supervised learning that
learns representations with positive (similar) exam-
ples close together and negative (dissimlar) exam-
ples far apart (Hadsell et al., 2006; Schroff et al.,
2015). Positive examples are usually generated
with data augmentation such as spatial transforma-
tion, and negative examples are sampled from other
examples (Chen et al., 2020). We adapt contrastive
learning to balance adversarial training by treating
oversensitive adversarial examples as positive ex-
amples and undersensitive adversarial examples as
negative examples.

We construct the positive pair as the original in-
put with a corresponding oversensitive example,
and the negative pair as the original input paired
with an undersensitive example. We generate over-
sensitive and undersensitive examples by apply-



Model Method Eval Acc (%) Antonym ASR (%) Synonym ASR (%)
Normal Training  84.39/84.99 57.47/58.72 36.29/40.52
A2T 84.44/85.00 56.51/57.86 21.67/24.84
BERT SAFER 84.20/84.66 58.36/58.45 14.62/16.61
BAT-Pairwise 84.68/84.44 45.23/46.18 27.12/30.81
BAT-Triplet 84.70/84.97 32.15/32.50 25.83/28.95
Normal Training  87.85/87.42 56.34/58.85 31.20/34.60
A2T 86.98/86.52 56.84/58.19 19.78/21.07
RoBERTa SAFER 87.11/86.65 56.95/58.13 12.82/13.98
BAT-Pairwise 87.57/87.52 39.71/40.12 27.56/30.79
BAT-Triplet 87.61/86.99 32.74/33.57 26.90/28.91

Table 1: Balanced Adversarial Training evaluation results on MNLI matched/mismatched validation set.

ing synonym and antonym transformations respec-
tively. The idea is to minimize the distance be-
tween the positive pairs and maximize the distance
between the negative pairs.

We combine normal training with a contrastive
learning objective and experiment with two differ-
ent approaches for contrastive loss: pairwise and
triplet loss. While recent contrastive learning in-
corporates multiple positive and negative examples
for each input, we use these two methods as they
consider the simplest case where only a positive
and a negative example is needed for each input.
Similarly to SAFER certified robust training, we
use an augmented approach without querying the
model to check if the attack succeeds. We choose
this approach over traditional adversarial training
since it is computationally less expensive.

Given an input (z,y), we generate an example
Z, by applying synonym perturbations and an ex-
ample z,, by applying antonym perturbations. Let
d(x1,x2) denote the distance measure between x;
and x9 in the representation space. For the pair-
wise approach, we optimize the distance for the
over-sensitive pair (x, Z,) and the under-sensitive
pair (z, Z,,) independently:

BAT air —
L P = ['ML + Epair

Ly, =log f(y | z)
Lypgir = ad(x, Z,) + fmax(0,m — d(x, Z,))

where the hyperparameters o and 3 control the
weighting of the oversensitive and undersensitive
pairs, and m is the margin. The L4, loss term is
designed to minimize the distance to the oversensi-
tive adversarial example and maximize the distance
to the undersensitive adversarial example. The mar-
gin m penalizes the model when the undersensitive

example is less than m distance away from the
original input (d(x, Z,,) < m). We use cosine sim-
ilarity for distance measure and set the margin m
as 1. For the case where we are unable to find a
valid oversensitive or undersensitive adversarial ex-
ample, we set either d(x, Z,) or m — d(z, &) to
0.

For the triplet approach, the original input x acts
as an anchor and a triplet (z, Z,, T,,) is considered
instead of pairs. The triplet loss aims to make the
distance between the undersensitive pair larger than
the distance between the oversensitive pair with at
least a margin m: d(x, Z,) > d(z,%,) + m. The
training loss can be formalized as:

BAT tripie
L triplet — EML + )\Etm'plet

ﬁtriplet = maX(O, d(:L', jo) + (m - d(iL', ju)))

where the hyperparameter A controls the weight of
the contrastive loss term. Like the pairwise loss,
if no oversensitive or undersensitive example is
available, we mask out d(z, &,) or m — d(z, Z,,) in
Etriplet-

4.2 Results

Table 1 shows BAT training results on the MNLI
validation sets. We use normal training as the
non-robust baseline, and consider certified robust
training, SAFER, and traditional adversarial train-
ing, A2T (Yoo and Qi, 2021), as the robust base-
lines. Balanced Adversarial Training increases
the model’s adversarial robustness against both
antonym and synonym attacks, while preserving its
performance on the original validation set. While
both robust baselines that only consider oversensi-
tive adversarial examples (SAFER and A2T) per-
form best when evaluated solely based on over-



Model Method Eval Acc (%) F1 Antonym ASR (%) Synonym ASR (%)
Normal Training 90.62 87.49 43.61 20.75
SAFER 90.98 87.81 46.00 4.98
BERT BAT-Pairwise 89.99 86.67 21.24 15.81
BAT-Triplet 90.85 87.81 14.26 15.78
Normal Training 91.25 88.38 40.39 18.78
SAFER 91.34 88.47 44.30 4.56
RoBERTa  BAT-Pairwise 89.99 86.62 18.29 17.07
BAT-Triplet 91.04 88.21 13.02 16.89

Table 2: Balanced Adversarial Training evaluation results on QQP validation set.

sensitivity robustness, they are more vulnerable to
undersensitive adversarial examples. We found that
BAT-Triplet performs better than BAT-Pairwise in
terms of improving robustness against antonym at-
tacks. This may due to the fact that triplet loss
forces the distance to undersensitive examples be-
comes larger than the distance to oversensitive ex-
amples.

With BAT-Triplet, the antonym attack success
rate on BERT decreases from 57% to 32% (a 44%
decrease) comparing to normal training, and the
synonym atack success rate decreases from 36% to
26% (a 29% decrease). We also show the results
on QQP dataset in Table 2. While the antonym
attack success rates drop more than half (around
67% decrease) after BAT training, the synonym
attack success rate has a 24% decrease on BERT
and only 10% on RoBERTa, as the synonym at-
tack success rate is already low on the model with
normal training.

In Section 3.3, we observe that certified robust
training with smaller batch size would result in
larger gap in sensitivity tradeoff. We test BAT-
Triplet with varying batch size when training BERT
on MNLI task and we find that it gives consistent
improvement on robustness regardless the batch
size, as shown in Table 3.

4.3 Representation Analysis

We compare the learned representations of models
trained with BAT to normal training and SAFER.
We sample 500 examples from MNLI dataset (ex-
cluding the neutral class) and apply synonym and
antonym perturbations for each input. We then
project the model representations before the last
classification layer to 2 dimensional space with
t-SNE (van der Maaten and Hinton, 2008) and vi-
sualize the results in Figure 5.

Batch Accuracy Antonym Synonym

Size (%) ASR (%) ASR (%)
8 84.45 34.59 25.66
16 84.08 31.05 25.89
32 84.70 32.15 25.83

Table 3: BAT-Triplet with BERT training, varying batch
size, evaluated on MNLI matched validation set.

When training with normal training or SAFER,
we can see that both oversensitive and undersen-
sitive adversarial examples are fairly close to the
original examples. However, with BAT-Pairwise or
BAT-Triplet, undersensitive examples are pushed
further away from both original and over-sensitive
examples. This matches with BAT’s training goal
where the distance between undersensitive and orig-
inal examples is maximized and the distance be-
tween oversensitive and original examples is mini-
mized. This also shows how BAT is able to fix the
distance-oracle misalignment, making the semantic
distance in the representation space aligns better
with human perception, and further improve robust-
ness against both types of adversarial examples.

5 Related Work

Compared to oversensitive adversarial examples,
undersensitivity has been less studied in NLP as
well as other domains. Feng et al. (2018) delete
words iteratively from the input to create exam-
ples that appear rubbish to human but retain the
model’s prediction with high confidence. Welbl
et al. (2020) use Part-of-Speech and Name Entity
based perturbations against reading comprehension
models. Niu and Bansal (2018) study both types of
attack strategies for dialogue models. They create
undersensitive adversarial examples by substituting
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Figure 5: 2D projection of model representation for RoOBERTa MNLI models trained with normal training, certified
robust training with over-sensitive examples (SAFER), BAT-Pairwise, and BAT-Triplet.

words with antonyms or adding negation words to
the input.

Our work is the first to study tradeoffs between
oversensitive and undersensitive adversarial exam-
ples in NLP, but a few previous works have consid-
ered these tradeoffs in the vision domain. Jacobsen
etal. (2019) show that adversary can not only target
the model’s excessive sensitivity but its excessive
invariance to small changes in the input. They
propose an alternative training objective based on
information theory to make the model less invariant
to semantically meaningful changes. Tramer et al.
(2020) study the tradeoff between the two types of
adversarial examples for image classifiers. They
show that data augmentation can help increase ro-
bustness against undersensitivity attacks, but is not
sufficient to impede both types of attacks. Our
work differs in that we propose a new adversarial
training method that improves model robustness
against both types of adversarial examples. In ad-
dition, unlike images where human inspection is
usually required to check whether the perturbed
pixels would change the true label of the image,
we are able to automate the process of generating
undersensitive examples for text.

Recent work introduce contrastive learning for

image classifiers in the adversarial learning setting
where an oversensitive adversarial augmentation
is used to generate positive examples and negative
examples are sampled from other images. Kim
et al. (2020) generate diverse positive examples
by launching instance-wise attack on augmented
images and show that it improves model’s oversen-
sitivity robustness. Ho and Nvasconcelos (2020)
create challenging positive pairs by using the gra-
dients of the contrastive loss to generate oversen-
sitive adversarial examples and they show that it
improves model performance.

6 Conclusion

We demonstrate the tradeoff between vulnerabil-
ity to oversensitive and undersensitive adversarial
examples for NLP models and show that increas-
ing robustness against synonym based attack also
increases vulnerability to antonym-based attacks.
To manage this tension, we introduce a new ad-
versarial training method, BAT, which targets the
distance-oracle misalignment problem and can help
balance the oversensitivity and undersensitivity in
adversarial training.
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A Appendix

A.1 Over-sensitivity and Undersensitivity Tradeoff on QQP dataset
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Figure 6: Over-sensitivity and under-sensitivity tradeoff on QQP dataset.

A.2 Over-sensitivity Robust Training Evaluation Accuracy with Varying Batch Size
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Figure 7: The evaluation accuracy on original validation set at each SAFER training epoch with varying batch size.

A.3 Balanced Adversarial Training Details

We implement BAT similarly to the SAFER training method as described in Section 3.1 where we
randomly perturb the inputs with words from the synonym/antonym substitution sets. We train BERT and
RoBERTa models for 2 to 3 epochs with a learning rate of 2 x 1075 or 3 x 10~ and batch size of 32. For
BAT-Triplet, we set the contrastive loss weight A to 0.8 or 1.0. For BAT-Pairwise, we set the the weight of
oversensitive pair and undersensitive pair («, 3) to (1.0, 1.0) or (1.0, 1.2).

A.4 Dataset Statistics

Dataset Type Train  Dev

MNLI NLI 393K 20K
QQP  paraphrase 364K 391K

Table 4: Number of examples in each dataset split.
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