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ABSTRACT

Existing Image Manipulation Localization (IML) methods rely heavily on task-
specific designs, making them perform well only on the target IML task, while
joint training on multiple IML tasks causes significant performance degradation,
hindering real applications. To this end, we propose Omni-IML, the first gener-
alist model designed to unify IML across diverse tasks. Specifically, Omni-IML
achieves generalization through three key components: (1) a Modal Gate En-
coder, which adaptively selects the optimal encoding modality per sample, (2) a
Dynamic Weight Decoder, which dynamically adjusts decoder filters to the task
at hand, and (3) an Anomaly Enhancement module that leverages box supervi-
sion to highlight the tampered regions and facilitate the learning of task-agnostic
features. Beyond localization, to support interpretation of the tampered images,
we construct Omni-273k, a large high-quality dataset that includes natural lan-
guage descriptions of tampered artifacts. It is annotated through our automatic,
chain-of-thoughts annotation technique. We also design a simple-yet-effective in-
terpretation module to better utilize these descriptive annotations. Our extensive
experiments show that our single Omni-IML model achieves state-of-the-art per-
formance across all four major IML tasks, providing a valuable solution for practi-
cal deployment and a promising direction of generalist models in image forensics.
We will release our code and dataset.

1 INTRODUCTION

Manipulated images can pose serious risks to social media security. Despite the progress made in
recent years, existing IML models are designed for individual IML tasks on specific image types
(e.g., natural image or document) and usually fall short on other IML tasks. Consequently, the
maintenance costs are high since every IML task requires an independent, task-specific IML model.

A naive solution is to jointly train an IML model using the data of all available IML tasks. However,
joint training usually leads to an obvious performance degradation on all IML tasks, making the
predictions unreliable. For example, HiFi-Net Guo et al. (2023) suffers from joint training and thus
uses two different sets of model parameters for natural image IML and face IML, respectively. There
are two main reasons why existing IML methods still cannot provide generalization across different
IML tasks after joint training:

First, existing IML methods heavily rely on task-dependent architecture designs, training strategies
etc. to detect tampering clues. These designs work well for the target IML task, but usually fall short
on other IML tasks. For example, edge anomaly enhancement modules Dong et al. (2022); Yu et al.
(2024) and object attention modules Wang et al. (2022a); Li et al. (2024b) have made significant
progress in identifying forged natural objects. However, they can hardly work well on document
images where edge artifacts are less obvious and object features are not distinct. Early frequency-
vision Qu et al. (2023) fusion performs well on document images but has obvious performance
degradation on natural images that cover much more noise and diversity.

Second, existing IML methods lack the design to distinguish diverse tampering features across dif-
ferent IML tasks. The IML task is challenging since the tampering methods are diverse and produce
different subtle tampering cues. It is even harder to handle various IML tasks with a unified model.
Models can be easily confused when learning to distinguish various tampering features.
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Figure 1: The proposed Omni-IML can simultaneously
achieve state-of-the-art on multiple major IML tasks, with-
out task-specific and benchmark-specific fine-tuning.

To address the above issues, we pro-
pose Omni-IML, the first generalist
model that can simultaneously per-
form well on multiple major IML
tasks, as shown in Figure 1. Specif-
ically, a Modal Gate Encoder is pro-
posed to automatically select the op-
timal encoding modality for each in-
put sample, based on the characteris-
tics of the input image. And a Dy-
namic Weight Decoder is proposed to
adaptively select the optimal decoder
filters for each sample, assisting the
generalist model to better cope with
the highly diverse tampering features
from multiple image types. These
sample-adaptive designs can provide flexibility so that the model can adapt to each input sample
and achieve generalization. Further, an Anomaly Enhancement is introduced to enhance the features
of tampered regions with a novel box supervision design.

In addition to merely localizing tampered regions, we also seek to improve model reliability by en-
abling the language description of both visual and semantic artifacts of the tampered image. Despite
the recent progress in interpretable IML on natural images, there still lacks a unified benchmark for
interpretable IML on documents, scene text images and uncut deepfake images. The interpretable
IML annotation generation pipelines with GPT-4o in previous works Xu et al. (2024); Huang et al.
(2024) work well on natural images, but do not work well on documents and scene texts, where a
tampered image usually contains multiple tampered regions and the image artifacts are less obvi-
ous Qu et al. (2023). There are two main reasons behind this gap: First, previous methods obtain the
content, position and artifact descriptions of the tampered object with only a single query to GPT-4o.
When there are multiple tampered objects in one image, GPT-4o is easily distracted and messes up
the descriptions for different targets. Second, when the image artifacts are less obvious, GPT-4o’s
response will be less confident and even incorrect, resulting in low-quality annotations.

To this end, we propose a novel chain-of-thoughts pipeline, which solves the above issues through
step-by-step focused analysis and self-examination. With the proposed method, we generate arti-
fact descriptions for forged images from the natural, document, face, scene text IML domains, and
construct a large-scale, comprehensive, high-quality dataset Omni-273k. A novel structured annota-
tion format is adopted, which enables more reasonable and in-depth evaluation. To make better use
of our Omni-273k, we further introduce a simple-yet-effective interpretation module that improves
model’s artifact description performance through a reference visual prompt.

We validated our methods on hundreds of representative IML tasks (e.g., IML on certificates, prod-
uct photos, artwork, street photos, cards, signs, group photos, receipts, etc.), which can be catego-
rized into four distinct major IML tasks, including natural image IML, document IML, face IML
and scene text IML, covering the vast majority of the recent IML research. Extensive experi-
ments on the four major IML tasks show that joint training the existing IML methods on all tasks
leads to significant performance degradation and the trained IML models are inadequate to handle
multiple IML tasks simultaneously. While our Omni-IML can minimize the performance degrada-
tion and simultaneously achieve state-of-the-art performance across all the four major IML tasks,
demonstrating high scalability and effectiveness. Our main contributions are as follows:

• We propose Omni-IML, the first IML generalist model that unifies interpretable IML
across four major domains, including natural, document, face and scene text IML.

• Unified IML modeling is achieved by multiple novel effective modules, consisting of
Modal Gate Encoder, Anomaly Enhancement, and Dynamic Weight Decoder.

• Further, to interpret image artifacts in natural language, we propose a novel chain-of-
thoughts annotation technique to automatically construct a high-quality dataset Omni-273k.
An effective interpretation module is also proposed to better leverage our data.

• Extensive experiments demonstrate that our single generalist model can simultaneously
achieve state-of-the-art results across different major IML tasks.
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Figure 2: The overall framework of the proposed Omni-IML.
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Figure 3: Modal Gate (left), Anomaly Enhancement (middle) and Dynamic Weight Decoder (right).

2 RELATED WORKS

Natural IML aims to identify the tampered regions in daily-life style images. Existing methods
leverage object-level attention Wang et al. (2022a); Li et al. (2024b), edge artifacts Dong et al.
(2022); Li et al. (2023) or noise-domain filters Guillaro et al. (2023); Li et al. (2024a); Zhang et al.
(2025) for better generalization. These models perform well on natural images, but mostly not well
enough on other image types (e.g. documents), due to the absence of natural objects, edge and
noise artifacts in these scenarios Wong et al. (2025). Although FakeShield Xu et al. (2024) achieves
image-level forensics on both natural and face images, its pixel-level forgery localization ability is
still limited to natural images. Therefore, it is not the first IML generalist. Detailed in Appendix B.

Document IML aims to localize the forged regions in document images Shao et al. (2024); Dong
et al. (2024). Existing methods utilize early fusion of vision and frequency features to spot unobvi-
ous artifacts Qu et al. (2023); Chen et al. (2024b). However, the model will be severely distorted in
many cases of natural and face images where the frequency features are too noisy.

Face IML aims to localize AI-generated fake faces. Existing methods harness metric learning Guo
et al. (2023) or noise filters Liu et al. (2024) for better texture anomaly capturing. MoNFAP Miao
et al. (2024). These methods show generalization on face IML but are suboptimal on natural and
document images, where the tampered regions are small and the texture anomalies are unobvious.

Scene Text IML aims to localize tampered natural scene text in arbitrary styles and complex back-
grounds. Previous works rely on specific noise patterns Wang et al. (2022b) or pre-training on
authentic scene text images Qu et al. (2025), limiting their generalization across other IML tasks.

3 METHODOLOGY

As shown in Figure 2, our Omni-IML has a localization module (left) to identify the tampered
region, and an interpretation module (right) to describe image artifacts in natural language.

The localization module is roughly based on an encoder-decoder architecture. The Modal Gate En-
coder consists of: (1) a Vision Perception Head to extract visual features from the original images;
(2) a Frequency Perception Head to extract frequency features; (3) a Modal Gate to automatically
determine the optimal modality for the following encoding process; (4) a backbone model to extract
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multi-scale high-level features. The Dynamic Weight Decoder adaptively selects the sample-wise
optimal decoder filters and outputs the final mask prediction. We also design an Anomaly Enhance-
ment module between the encoder and decoder, to enhance the features of tampered regions.

The interpretation module is an MLLM. Its input comprises both the original input image and a
reference visual prompt constructed by highlighting the predicted mask on the input image.

3.1 MODAL GATE ENCODER

Key Idea. The frequency feature is a double-edged sword for the IML generalist: it can help to
detect visually consistent tampering in some cases, but it may also degrade the model performance
when the image is highly distorted. As a result, neither pure vision nor vision+frequency modeling
can consistently provide the optimal solution. To achieve general IML through a flexible encoding
modality, we propose the Modal Gate, which automatically determines the optimal encoding modal-
ity (frequency+vision or pure vision) for each input sample. The key idea of our Modal Gate Encoder
is to automatically identify the optimal modality by analyzing whether the frequency features
contain too much noise, and which coarse prediction seems more confident and accurate.

Image Encoding. As shown in Figure 2, we extract vision features Frgb using Vision Perception
Head, extract frequency features using Frequency Perception Head, and obtain the fused features
Ffused by fusing Frgb and Ffreq with a conv-layer. The two perception heads consist of several
conv-layers, with the same structure as those in previous work Qu et al. (2023). Two coarse mask
predictions Prgb and Pfused are obtained from Frgb and Ffused with two conv-layers respectively.

Modal Gate. As shown in the left of Figure 3, Frgb, Ffused, Prgb and Pfused are channel-
concatenated and fed into the Modal Gate for optimal modality prediction. The Modal Gate is a
binary classifier consisting of several conv-layers to determine whether to use Ffused or Frgb as
the encoder input, by observing the noise level and the confidence of Ffused, Frgb, and their corre-
sponding coarse predictions Prgb and Pfused. We present more details in the Appendix C.1

3.2 ANOMALY ENHANCEMENT

Different image types from different IML tasks produce different features, joint training brings much
more noise to the features and confuses the IML model. To tackle this, we propose to enhance the
contrast of forged regions, and improve the feature extraction across diverse image domains through
introducing a novel box supervision, as shown in the middle of Figure 3. This method harnesses
task synergism to advance our IML generalist. We present more details in the Appendix C.2.

3.3 DYNAMIC WEIGHT DECODER

Key Idea. Different types of tampered images result in a wide range of manipulation clues. For
example, forged objects in natural images may have abnormal contrast or edge artifacts Wang et al.
(2022a), tampered text in document images might be visually consistent but has discontinuous DCT
in the frequency domain Qu et al. (2023), fake faces may have unnatural texture Guo et al. (2023).
These wide variations in tampering clues further cause a large variation of the encoded features of
tampered regions. Merely using a fixed set of filters for the decoder causes it to be confused by
the diverse encoded features, especially in the unified training process. To this end, we propose
to adaptively select the optimal decoder filters for each input image based on its characteristics. To
achieve this, we propose the Dynamic Weight Decoder (DWD), as shown in the right of the Figure 3.

Method. In the proposed Dynamic Weight Decoder, the low-level input features are first fused with
the high-level input features in a top-down manner to obtain multi-scale features F1,2,3,4. A global
feature vector Vg is obtained by average pooling F1. The multi-scale features are channel dimension
reduced and processed by a series of Dynamic Weight Filters (DWFs) with different dilation rates.
The output features are further processed by two DWFs to obtain the final prediction mask.

Dynamic Weight Filters. As shown in the top-right of Figure 3, to obtain the dynamic filters,
we first average the input feature to obtain a current global representation Vc (orange box), then
interact Vc with the global image vector Vg (blue box) with a fully connected layer and identify
the optimal dynamic filters Dopt by weighted summation of four common convolutional filters.
Ai = σ(FC(Vc, Vg)), Dopt =

∑4
i=1 Ai ∗ Wi, where σ is the sigmoid function, FC is a linear

layer, Wi is the ith filter in the DWF. Finally, we depthwise convolve the input feature with Dopt

and then perform point-wise convolution with 1× 1 conv-layer to obtain the output.

4
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3.4 INTERPRETATION MODULE

To provide more reliable forgery analysis by describing the image artifacts in natural language, we
introduce a simple-yet-effective interpretation module, as illustrated on the right of Figure 2.

Existing works Xu et al. (2024) directly input the tampered image into an MLLM to describe the im-
age artifacts. However, due to the challenging nature of image forensics, the MLLM often misiden-
tifies the tampered region especially on multi-target and challenging scenarios (e.g. tampered doc-
uments). To address this issue, we propose to draw MLLM’s attention to the suspect regions by
presenting it with the forgery localization mask predicted by the mask decoder. However, directly
inputting the binary mask will lead to considerable ambiguity in dense text and dense face images,
since adjacent instances may have very similar positions.

To minimize the ambiguity and the difficulty in understanding the predicted tampered regions, we
construct a visual reference prompt Iref by highlighting the mask predictions Imask on the tampered
image Iinput by pixel-wise weighting: Iref = (Iinput+Imask)/2. We concatenate Iref with Iinput
along the longest side, and feed it into an MLLM for text prediction. In addition to clearly indicating
the suspected region, our method can also minimize overfitting and forgetting in MLLM, since it
does not change the original MLLM structure.

4 OMNI-273K DATASET

To enable the Omni-IML for high-quality description of the tampered region, we construct the Omni-
273k dataset, by querying GPT-4o to generate textual artifact descriptions for the tampered regions.

4.1 CHAIN-OF-THOUGHTS AUTOMATIC ANNOTATION

Motivation. Existing works generate textual descriptions for forged objects’ content, position and
artifact clues in a forged image via a single prompt Xu et al. (2024); Huang et al. (2024). These
methods make progress on single-target and less challenging scenarios such as natural object images,
but do not work well on tampered documents, scene texts and uncut deepfakes where image artifacts
are less obvious and a tampered image usually contains multiple tampered instances.

There are two main reasons for this: First, given the challenging nature of image forensics, accu-
rately describing the content, location, and artifact of a tampered instance requires focused analysis.
Simultaneous analysis of multiple targets leads to distractions, causing the model to confuse the
artifacts among different objects. Second, for challenging samples such as forged documents, the
response of GPT-4o is often unconfident and partially incorrect. These problems prevent previous
methods from being an adequate solution for unified image forgery analysis.

Tampered image Itamp 

Mask annotation Imask

Tampered object1

Highlight mask1 I1
high

Tampered object2

Highlight mask2  I2
high

• Content: 
“09:55:34”

• Absolute 
Position …

• Relative 
Position …

• Content: “收
款员:40701”

• Absolute 
Position …
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Position …

One-by-one
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• Low-level 
artifacts …

• High-level 
artifacts …

R
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Step 2: Focused 
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Step 3:  Self 
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Step 1: Instance-wise Tampered Object Recognition
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Figure 4: Our Chain-of-Thoughts annotation pipeline.

Method. To solve the above prob-
lems and improve annotation qual-
ity. We propose a novel chain-of-
thoughts pipeline, which consists of
three steps, as shown in Figure 4:

Step 1. Instance-wise Tampered
Object Recognition. In this step,
we accurately recognize the content
and position for each tampered re-
gion. Given the binary mask anno-
tation Imask indicating the tampered
region for a tampered image Itamp,
each of the connected components in Imask is a tampered instance. For text images, the OCR result
for each tampered instance is the content, which is obtained through an OCR engine. For other
images, we highlight the n tampered regions in Itamp respectively to get n highlight masks Inhigh.
We prompt GPT-4o with Itamp and Inhigh sequentially for each tampered instance to get its content
(e.g. ”The rightmost basketball on the floor”, ”The face of the second young man in white shirts”).
Along with recognizing the content, we also obtain the position for each tampered instance.

Step 2. Focused Artifact Description. In this step, we obtain detailed descriptions of image arti-
facts for each tampered instance. For each tampered instance, we prompt GPT-4o with Itamp, Inhigh,
the previously recognized content and position, and an elaborate query (lists the common artifact
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perspectives) to obtain the detailed descriptions Tdes for low-level visual and high-level semantic
artifacts. The full query is shown in the Appendix D.1. During this artifact description process, the
annotator GPT-4o is focused in two aspects: First, GPT-4o only focuses on one single tampered ob-
ject, instead of all objects as in previous works. Second, except for the Itamp, Inhigh, we also provide
the previously recognized contents and positions. GPT-4o can thus focus on the task of describing
image artifacts, rather than also handling multiple recognition tasks at the same time as in previous
works. Consequently, the hallucination is reduced and the annotation quality is improved.

Step 3. Self Examination. In challenging samples where image artifacts are not obvious, the
response of GPT-4o can be unconfident and incorrect, while manual filtering is costly. To this end,
we propose to further improve the annotation quality by guiding GPT-4o to carefully examine and
correct its previous response. For each of the tampered objects, we prompt GPT-4o with its previous
response Tdes, Itamp, Inhigh, and the previously recognized contents and positions, then show GPT-
4o an example containing both an unconfident, incorrect answer and the corresponding manually
corrected one (shown in the Appendix D.1 in detail). With this approach, GPT-4o’s final response
has a considerably improved quality.

Our method differs from previous methods through focused, step-by-step, self-examined analysis
that significantly improves annotation quality to human-level in unified IML analysis.

4.2 STRUCTURED ANNOTATION FORMAT

Unlike previous works that used an unstructured string as the annotation format for the artifact
description, we adopt a structured JSON format, enabling much more reasonable and detailed model
evaluation. Our annotation for each sample is a list of n items, where n is the number of tampered
instances in that image. Each item is a dict with four key-value pairs:

Tampered Region, the value is the OCR of the tampered text or the description of the tampered
object (e.g., ”A sleeping orange cat”).

Absolute Position, the value is the position of the tampered region relative to the entire image (e.g.,
”Top left of the image”).

Relative Position, the value is the OCR of the text line containing the tampered text, or position of
the tampered object relative to other objects (e.g., ”On the leftmost green table”).

Artifacts, the value is the artifact description of the tampered region. It is also a JSON dict, its keys
are the titles for different artifacts (e.g. ”Textural Artifacts”, ”Semantic Artifacts”) and its values are
the detailed descriptions under the titles.

Compared to the unstructured string format used in all previous works Xu et al. (2024); Huang et al.
(2024), our novel structured JSON annotation offers two major advantages:

• Reasonable Evaluation: Different item fields require different appropriate metrics. For example,
tampered text recognition and position description are close-ended tasks. These should be evaluated
using exact-match metrics, such as OCR accuracy or classification accuracy. Conversely, tampered
text artifact descriptions are open-ended. They necessitate evaluation with fuzzy matching metrics,
like cosine similarity or ROUGE. Previous unstructured string annotations, however, only support a
single metric for all item fields. This often leads to unreasonable evaluation results. For instance,
entirely incorrect text recognition or position descriptions might still yield high scores under cosine
similarity or ROUGE. In contrast, our structured annotation allows for the application of distinct
metrics to their respective item fields, thereby producing more accurate and fair evaluation outcomes.

• Finer-Grained Analysis: Prior unstructured string annotations permit only very coarse model
evaluation, assessing the entire output as a single unit. Our structured annotation, conversely, en-
ables much finer-grained analysis across specific components (e.g., content, position, and artifact
descriptions). Consequently, our approach can facilitate more in-depth analyses and provide signif-
icantly greater insights behind the results.

4.3 DATASET CONSTRUCTION AND HIGHLIGHTS

We apply our CoT pipeline on tampered images from the commonly used datasets across the four
IML domains and obtain 273,776 samples. Samples and more details are presented in the Ap-
pendix E.
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Table 1: Dataset comparison with MMTD Xu et al. (2024) and SID Huang et al. (2024). ’CM’, ’SP’,
’PT’ are copy-move, splicing, printing. ’Manual Num.’ is the number of real-world manual forgery.
Dataset Image Types Tampering Methods Target type Forgery Num. Manual Num. Structured Label
MMTD Nat.+Face CM, SP, AIGC Single 21, 101 5, 123 ×

SID Nat. AIGC Single 200, 000 0 ×
Ours Nat.+Face

+Doc.+S.T.
CM, SP

PT, AIGC
Single and
multiple 273, 776 131, 658 ✓

Table 2: Comparison on natural and document IML with pixel-level IoU metric. ’DT’: DocTamper.
Natural IML Task Document IML Task

Methods CASIA1 Coverage NIST16 IMD20 CocoGlide Avg. Methods SACP DT-Test DT-FCD DT-SCD
RRU-Net .330 .165 .080 .169 .223 .206 MVSS-Net .401 - - -

MVSS-Net .403 .389 .243 .243 .276 .299 RRU-Net .517 - - -
PSCC-Net .410 .340 .067 .115 .333 .285 CFL-Net .433 - - -
CAT-Net .684 .238 .238 - - .406 TIFDM .576 - - -
IF-OSN .465 .181 .247 .259 .207 .292 MVSS-Net - .430 .410 .400

EVP .438 .078 .188 .177 .084 .184 PSCC-Net - .170 .160 .190
TruFor .630 .446 .279 - - .408 Swin-UPer - .700 .410 .510

APSC-Net .810 .498 .525 .679 .392 .552 CAT-Net - .710 .600 .540
FakeShield .540 .357 .320 .500 .523 .448 DTD - .828 .749 .691
SparseViT .768 .456 .322 - .327 .468 SparseViT - .644 .411 .466

PIM .512 .188 .225 .340 .327 .398 CAFTB - .617 .402 .435
Ours .800 .538 .540 .662 .538 .612 Ours .664 .859 .863 .676

As shown in Table 1, our Omni-273k is the first one that simultaneously covers all four major
IML domains, significantly outperforming prior works in multiple perspectives:

• Large-Scale: Our Omni-273k has the largest scale and 20× more real-world manual forgeries
than previous works, making it much more effective in evaluating real-world model performance.

• Comprehensive: Ours includes all the four major image domains, the most diverse tampering
methods, and contains both single- and multi-target (> 1 tampered objects in an image) samples.

• High-Quality: Ours is the first to include structured annotation format to enable reasonable, fine-
grained analysis. Ours is initially constructed and cleaned by our CoT pipeline to ensure quality.

5 EXPERIMENTS

The localization and interpretation modules of our Omni-IML are trained totally independently. We
present more implementation details in the Appendix F.

5.1 COMPARISON STUDY ON FORGERY LOCALIZATION

The comparison results on natural IML, document IML, face IML and scene text IML are shown in
Table 2. Evidently, our generalist Omni-IML can simultaneously achieve state-of-the-art average
performance on each individual task, demonstrating the strong generalization ability. This is be-
cause our Omni-IML can adaptively select the optimal input modality and decoder parameters for
each sample, effectively producing the best features for IML on different image types. In addition,
the Anomaly Enhancement module suppresses feature noise and reduces model confusion in joint
training, which further improves our generalist.

To further explore the generalist capability of previous IML methods, we re-train the state-of-the-art
models with their official model code, the same training data and pipeline as ours. The results are
shown in the left of Table 3. In Table 3, the left part is the performance of the models trained on
specific IML tasks. Evidently, all the models perform well on only one task. For example, TruFor
trained on one task (Natural IML) has an IoU score of 0.485 on natural IML task but its IoU score
<0.1 on other IML tasks. The right part of Table 3 is the performance of models jointly trained
on all tasks. The previous IML methods suffer more performance degradation and show a much
worse average performance than our Omni-IML in joint training. For example, for TIFDM, its IoU
on document IML is 0.498 when it’s trained on document IML task only, but its IoU on document
IML is 0.428 when it’s trained on all the four IML tasks, which is a degradation of 7 points. While
for our Omni-IML, the IoU degradation brought by joint training is merely 0.8 points (.774 versus
.766) on document IML task. This is because the previous methods rely heavily on designs and
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Table 3: Comparison study of models trained on a specific task and all tasks. Pixel-level IoU metric.

Method (#Model domain) Trained on one task Trained on all tasks
Natural Document SceneText Face Natural Document SceneText Face Average

CAT-Net (Natural) .462 .089 .097 .112 .437 .501 .530 .874 .583
TruFor (Natural) .485 .054 .079 .098 .453 .485 .542 .898 .595

APSC-Net (Natural) .552 .047 .067 .076 .511 .607 .558 .901 .644
SparseViT (Natural) .483 .042 .081 .080 .450 .499 .529 .886 .591
FakeShield (Natural) .494 .014 .035 .099 .442 .316 .330 .829 .479
TIFDM (Document) .020 .498 .034 .001 .382 .428 .489 .834 .533

DTD (Document) .043 .535 .069 .002 .396 .452 .481 .822 .538
Swin-UPer (SceneText) .045 .033 .586 .037 .425 .477 .525 .850 .569

UPOCR (SceneText) .067 .049 .543 .015 .401 .430 .505 .869 .551
HiFi-Net (Face) .108 .003 .012 .747 .271 .373 .289 .712 .411
MoNFAP (Face) .090 .022 .004 .902 .398 .467 .499 .845 .552
Ours (Natural) .628 .063 .092 .104 - - - - -

Ours (Document) .061 .774 .087 .002 - - - - -
Ours (SceneText) .087 .079 .623 .030 - - - - -

Ours (Face) .058 .006 .008 .932 - - - - -
Ours (All) - - - - .612 .766 .610 .923 .728

Table 4: Comparison on Face and SceneText
IML with IoU metric. ’O.F.’: OpenForensics

Face IML Task Scene Text IML Task
Method O.F Methods T-IC13 OSTF Avg.

ManTraNet .720 DeepLab3 .722 .290 .506
HPFCN .726 HRNetv2 .731 .295 .513

MVSS-Net .701 BEiT-UPer .709 .276 .493
CAT-Net .832 SegFormer .778 .302 .540

DOAGAN .732 Swin-UPer .773 .307 .540
HiFi-Net .749 ConvNeXt .776 .310 .543
MoNFAP .902 UPOCR .716 .281 .499

Ours .923 Ours .763 .458 .610

Table 5: Ablation of the proposed modules on
IML with IoU metric. ’w.o.’: without, ’MG’:
Modal Gate, ’DWD’: Dynamic Weight Decoder,
’AE’: Anomaly Enhancement. ’Avg.’: Average.

Ablation Natural Document SceneText Face Avg.
Baseline .432 .516 .492 .848 .575
w.o. MG .489 .615 .537 .875 .629

w.o. MG* .538 .634 .561 .904 .659
w.o. DWD .463 .589 .515 .867 .608
w.o. DW .542 .728 .568 .912 .688
w.o. AE .548 .707 .570 .916 .682

Ours .612 .766 .610 .923 .728

strategies targeted at one IML task, and such designs and strategies usually do not work as well
on other image types (e.g. noise filters, edge enhancement and object-level attention are beneficial
for natural images but not for document images). Moreover, the tampering features among diverse
image types differ a lot from each other. Without a sample-adaptive and noise-suppression design,
the previous methods are challenged to simultaneously learn them well. In contrast, our Omni-IML
does not rely on task-dependent design and benefits from the adaptive selection of optimal encoding
modality, decoder parameters, and noise-suppression. Consequently, our Omni-IML demonstrates
strong generalization across different image types and has minimal performance degradation during
joint training. Qualitative results for visual comparison are presented in the Appendix Figure 12.

5.2 ABLATION STUDY ON FORGERY LOCALIZATION

The ablation results are shown in Table 5. ’w.o. MG’ denotes the model without the Modal Gate and
using frequency-vision fused features in encoder, it has an average IoU of .629 which is 9.9 points
lower than Omni-IML of .728. This is because the frequency features in some samples are unstable,
and without the Modal Gate to filter them out, these features introduce too much noise to the encoder.
’w.o. MG*’ denotes the model without Modal Gate and using the pure vision modality, it has 6.9
points lower IoU than Omni-IML. This is because frequency domain modeling is also effective in
some cases, especially when the tampered region is visually consistent (e.g. on document images).
’w.o. DWD’ represents the model without the Dynamic Weight Decoder, it has 12.0 points lower
IoU than Omni-IML. This is because the diversity of tampering features is too high for the encoder
to learn them well, thus confusing the model, confirming the necessity of the proposed DWD for
the generalist model. ’w.o. DW’ is the model with the DWD structure but the filter weights in the
decoder keep all the same for each input, it has 4.0 points lower IoU than Omni-IML, this verifies
that the adaptive selection of optimal decoder weights for each sample can reduce confusion in joint
training. ’w.o. AE’ is the model without the proposed Anomaly Enhancement (AE) module, it has
4.6 points lower IoU than Omni-IML. This is because the proposed AE module can enhance the
forged regions and suppress noise in the features. The model without any of the proposed modules
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Table 6: Fine-grained study of image artifacts interpretation ability. ’Text Rec.’: tampered text
recognition, ’Abs. Pos’: absolute position, ’Rel. Pos.’: relative position, ’Obj. Rec.’: tampered
object recognition, ’Desc.’: description, ’OCR’: OCR accuracy. ’Acc’: accuracy, ’MRB’: the mean
score of ROUGE-L and BLEU, ’D.S.’: DeepSeek-VL, ’M.C.’: MiniCPM-V-2.6, ’Int.’: is InternVL3,
’Qw.’: Qwen2.5-VL. ’FS.’: FakeShield Xu et al. (2024), ’SI.’: SIDA Huang et al. (2024).

Document Scene Text Face Natural Image
Text.
Rec.

Abs.
Pos.

Rel.
Pos.

Artifacts
Desc.

Text.
Rec.

Abs.
Pos.

Rel.
Pos.

Artifacts
Desc.

Obj.
Rec.

Abs.
Pos.

Rel.
Pos.

Artifacts
Desc.

Obj.
Rec.

Abs.
Pos.

Rel.
Pos.

Artifacts
Desc.Method

OCR Acc OCRAccMRBOCR Acc OCRAccMRBMRB Acc MRBAccMRBMRB Acc MRBAccMRB
Avg.

Supervised Fine-Tuned Models without our method
D.S.7B .346 .426 .461 .519 .186 .440 .496 .512 .552 .180 .792 .926 .626 .851 .344 .223 .702 .279 .806 .272 .497
M.C.8B .229 .373 .384 .478 .173 .492 .464 .546 .578 .194 .758 .898 .583 .831 .330 .199 .669 .251 .790 .268 .474
Int.2B .276 .379 .389 .480 .172 .421 .449 .473 .530 .178 .757 .896 .591 .828 .331 .197 .643 .239 .778 .266 .464
Qw.3B .292 .348 .419 .539 .197 .489 .451 .553 .572 .202 .738 .801 .599 .775 .340 .241 .694 .310 .771 .298 .481
Qw.7B .312 .381 .429 .521 .202 .580 .536 .640 .614 .217 .768 .879 .630 .794 .342 .270 .752 .342 .749 .301 .512
FS.13B .153 .325 .275 .407 .160 .382 .347 .429 .405 .153 .706 .765 .556 .730 .303 .181 .635 .226 .732 .253 .406
SI.13B .154 .328 .275 .411 .160 .383 .349 .430 .405 .153 .706 .765 .557 .730 .303 .182 .635 .226 .732 .253 .406

Supervised Fine-Tuned Models with our proposed method (+Ours)
Int.2B .610 .595 .654 .648 .233 .615 .586 .639 .693 .226 .770 .938 .587 .847 .339 .241 .746 .292 .807 .275 .567
Qw.3B .645 .566 .696 .675 .247 .721 .619 .768 .681 .243 .815 .941 .668 .843 .366 .282 .763 .343 .772 .310 .598
Qw.7B .653 .576 .698 .689 .254 .716 .612 .740 .744 .252 .817 .946 .669 .862 .381 .265 .760 .328 .788 .305 .603

serves as the ’Baseline’ model, its IoU is 15.3 points lower than Omni-IML. These results have
proven the effectiveness of our proposed methods.

5.3 EXPERIMENTS ON FORGERY INTERPRETATION

The experiments on interpretation task are conducted on our Omni-273k dataset. Unlike previous
works that use one metric to evaluate the entire output string, we use our structured textual labels to
perform fine-grained evaluation. As shown in Table 6, we use OCR accuracy Zhang et al. (2019) to
evaluate the descriptions of tampered content and relative position for text images, and use Mean of
ROUGE-L and BLEU (MRB) for non-text images. The description answers for absolute position
(e.g. ”Top left”) and artifacts title (e.g. ”Edge Artifacts”) are close-ended, they can be regarded
as single-choice and multi-choice tasks respectively, so we use accuracy to evaluate the ratio of
matches. The detailed artifact description are open-ended, and again we use the MRB score.

By comparing the model fine-tuned with and without our method in Table 6, we can learn that our
visual prompt improves model’s forgery interpretation ability via reducing the misidentification of
tampered regions. For example, for the Qwen2.5-VL 7B fine-tuned without our method, its de-
scription scores for tampered text, absolute and relative positions are .312, .381, .429 respectively
on documents. These low scores mean that the models often incorrectly detect the tampered re-
gions. In contrast, the same model fine-tuned with our method gets the three much higher scores
of .653, .576, .698 respectively. This confirms that our visual prompt assists the model in correctly
identifying the tampered region, and consequently the artifact description is much more accurate
(e.g. .689 versus .521). Similar conclusion to other image types such as scene texts and faces.

FakeShield and SIDA are not highly effective. This is because their frozen SAM and LISA Lai et al.
(2024) paradigms are challenged in text and multi-target scenarios Xia et al. (2024). In addition, their
base MLLM LLaVA is relatively outdated with a too-small fixed input resolution of 336 and is poor
at recognizing non-English text. In contrast, our method effectively improves various base MLLMs
and consistently yields high performance, demonstrating high generality. Robustness evaluation and
qualitative comparison are presented in the Appendix Table 13 and Figures 15, 16, 17.

6 CONCLUSION

We propose Omni-IML, the first generalist model for Image Manipulation Localization (IML). Our
generalist model achieves generalizable localization through several novel and effective modules.
These include a Modal Gate Encoder, a Dynamic Weight Decoder, and an Anomaly Enhancement
module. We also introduce an effective interpretation module for a better interpretation of image
artifacts in natural language. Furthermore, we constructed Omni-273k, a large-scale, comprehen-
sive, and high-quality dataset. Its textual annotations are initially curated using a novel Chain-
of-Thoughts automatic pipeline. This significantly improves annotation quality and reduces man-
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ual cleaning costs. The dataset’s structured annotation also enables reasonable evaluation and in-
depth analyses. Extensive experiments on four major IML tasks demonstrate that our single model
achieves state-of-the-art average performance across all tasks simultaneously. We believe that this
work offers valuable insights for real-world application and future research in IML.
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B DETAILED COMPARISON WITH FAKESHIELD

Although FakeShield Xu et al. (2024) also seeks to achieve explainable IML, our work differs
significantly from FakeShield as following:

1. IML Image Domains. Our Omni-IML can effectively localize forged region in pixel-level
across the four major IML domains, including natural IML, document IML, face IML and scene
text IML. In contrast, although FakeShield is designed to identify forged natural and face images at
image-level, its pixel-level forgery localization capability is still limited to a single natural image
domain Xu et al. (2024). In addition, FakeShield cannot identify forged document or scene text
images neither at image-level nor pixel-level. Therefore, FakeShield is not the first pixel-level image
manipulation localization generalist. In contrast, ours is.

2. Multi-target Localization Capability. Our Omni-IML adopts a novel paradigm that prompts
MLLM with the localization model’s mask prediction. Therefore, ours is still effective when mul-
tiple forged regions exist in an image. In contrast, FakeShield adopts the LISA paradigm Lai et al.
(2024), which is well-known to be poor in multi-target scenario Rasheed et al. (2024); Xia et al.
(2024). However, multi-target forgeries scenario is common in real-world, especially for text im-
ages Luo et al. (2025); Qu et al. (2023; 2025). This limits the application value of FakeShield.

3. Generalist Design. Our proposed Modal Gate, Anomaly Enhancement and Dynamic Weight
Decoder are typically designed to alleviate performance degradation in joint task training, demon-
strating high effectiveness for the generalist model (Table 5). In contrast, FakeShield merely mixes
all training data, without any special design for a generalist model.
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4. Performance Gap. Due to the above reasons, our Omni-IML has significantly lower performance
degradation in joint training, and achieves significantly higher performance than FakeShield (e.g.
16.4 higher average IoU on natural IML and 24.9 higher average IoU on all tasks, Table 2, 4, 6).

5. Structural Flexibility. The localization module and interpretation module in our Omni-IML are
relatively independent. They are trained totally independently and are connected only with a mask
prediction during inference. Consequently, in practice, one can change the weights of the localiza-
tion module to quickly adapt to different scenarios. In contrast, the localization and interpretation
functions in FakeShield are highly coupled, limiting its flexibility.

6. Benchmark Difference. As shown in Table 1:

• The MMTD-Set in FakeShield paper contains only natural and face images, and only nat-
ural images have pixel-level annotations. In contrast, our Omni-273k benchmark contains
natural, document, face, scene text images, and all have pixel-level annotations.

• The MMTD-Set contains only single-target scenario, while ours contains both single-target
and multi-target scenarios.

• Our Omni-273k contains 10× more forgeries and 20× more manual (real-world, high-
quality) forgeries than the MMTD-Set, making it more qualified in evaluating real-world
model performance.

• Our Omni-273k adopts structured annotation format to enable reasonable evaluation and
in-depth item-wise analyses. In contrast, the MMTD-Set annotation is unstructured. Only
one metric can be used per evaluation, no item-wise can be produced, and thus cannot
provide enough insights behind the results.

C MORE MODEL DETAILS

C.1 MODAL GATE ENCODER

Image Encoding. Given an input image X ∈ RH×W×3 and its Y-channel quantization table QT ∈
R8×8, we extract vision features Frgb using Vision Perception Head (VPH), Frgb = V PH(X).
We obtain frequency features Ffreq from the DCT coefficients and quantization tables (QT) of the
images using Frequency Perception Head (FPH), Ffreq = FPH(DCT (X), QT ). We use the same
VPH and FPH architectures as those proposed in Document Tampering Detector Qu et al. (2023).
The Ffreq is fused with Frgb by a conv-layer Conv to get the fused features Ffused, Ffused =
Conv(Frgb, Ffreq). Two coarse binary mask predictions Prgb and Pfused are further obtained
from Frgb and Ffused with two auxiliary heads AuxHead respectively, Prgb = AuxHead1(Frgb),
Pfused = AuxHead2(Ffused), each of the auxiliary heads consists of two conv-layers.

Modal Gate. The input of the proposed Modal Gate has four parts: Frgb, Ffused, Prgb and Pfused;
We repeat Prgb, Pfused and concatenate them with Frgb, Ffused to get Fcat, which is then fed into a
binary classifier for optimal modality prediction. Pcls = CLS(Fcat), Pmodal = Round(σ(Pcls)),
where σ is the sigmoid function and Round function rounds up to the nearest integer, which means
a fixed threshold of 0.5 for our modal gate’s binary classification. The classifier CLS consists
of several conv-layers, a global average pooling layer and a linear layer, and is used to determine
whether to use the fused feature Ffused or the pure vision feature as the encoder input Frgb, by
observing the noise level and anomaly significance level of Ffused, Frgb and their coarse predictions
Prgb and Pfused.

Loss Function. The Modal Gate Encoder is optimized with LMG, the sum of two segmentation
losses and one classification loss. CE denotes the cross-entropy loss function, Lm is the ground-
truth mask indicating tampered region and Lc ∈ {0, 1} is the classification label indicating the op-
timal modality. Lc is obtained by choosing the most accurate coarse prediction. IoU(x, y) denotes
the Intersection over Union between inputs x and y.

LMG = CE(Prgb, Lm) + CE(Pfused, Lm) + CE(Pcls, Lc)

Lc =

{
1 IoU(Prgb, Lm) > (IoU(Pfused, Lm) + 0.1)

0 otherwise
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Figure 5: The proposed Anomaly Enhancement.

C.2 ANOMALY ENHANCEMENT

Key Idea. Different image types from different IML tasks produce different features, joint training
brings much more noise to the features and confuses the IML model. To tackle this, we propose to
enhance the contrast of forged regions and improve the feature extraction across diverse image types
through including an extra box supervision during training. However, directly training the model
with the both detection and segmentation frameworks may also cause task competition for model
parameters Heuer et al. (2021) and weaken model performance, while directly scaling up the model
parameters could alleviate the competition but will increase computation burden. To address this,
we propose a novel collaboration module Anomaly Enhancement (AE).

Method. As shown in the Figure 5, for the input features F2 and F3 in 1
8 and 1

16 input image size, we
first extract task-agnostic features Fa and Fb with two attention layers that are used to decouple and
to minimize negative impact from the segmentation supervision. After that, Fa and Fb are processed
by the detection modules, including two Feature Pyramid Networks (FPNs) Lin et al. (2017) and
the Faster R-CNN’s Ren et al. (2015) Region Proposal Network (RPN) and box head. The detection
modules (black arrows in the Figure 5) are only present during training. Including the two cascaded
FPNs reduces parameter competition from the detection framework and discarding them during
inference ensures the computation efficiency, successfully addressing the dilemma. The AE module
is trained in an end-to-end manner with the same four loss functions as the Faster R-CNN, including
the two classification losses and two regression losses for RPN and box head respectively. After
training, the Fa and Fb contain positive features enhanced by the detection supervision, we add
them to the original features F2 and F3 and fuse them with conv-layer to get F2′ and F3′ .

The proposed AE effectively achieves task collaboration while keeping the inference cost almost
unchanged. With the AE module, the tampered regions in features F2 and F3 can be enhanced
and the false-positive noise can be reduced. Consequently, our AE module helps to extract better
common features and thus benefits the generalist model.

Loss Function. The AE module is optimized by bounding box losses as Faster R-CNN Ren et al.
(2015) from the RPN and RoI-Head. LAE = LRPN

cls +LRPN
regression +LRoIHead

cls +LRoIHead
regression. The

ground-truth boxes are the bounding boxes of the mask annotations’ connected regions.

C.3 DYNAMIC WEIGHT DECODER

In the proposed Dynamic Weight Decoder, the low-level input features are fused with high-level
input features by Pyramid Pooling Module Zhao et al. (2017) and Feature Pyramid Network Lin
et al. (2017) to obtain multi scale features F1, F2, F3, F4. A global feature vector Vg is obtained
by average pooling F1. The extracted feature is concatenated to the multi-scale features, Fcat =
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Figure 6: The proposed Dynamic Weight Decoder.

Concat(F1, F2, F3, F4). The concatenated features are channel dimension reduced and processed
by a series of Dynamic Weight Filters with different dilation rates,

Fdec1 = Concat(Avg(Fcat), Fdw, Fcat),

Fdw = Concat([DWFn(Fcat, Vg) for n in (2, 3, 6)]),

DWFn denotes the proposed DWF with dilation rate n. The final prediction PDWD is obtained by

PDWD = Conv(DWD2(DWD2(Conv(Fdec1), Vg), Vg)), where Conv denotes 1× 1 conv-layer.
The DWD is supervised by minimizing the cross-entropy loss between PDWD and the ground-truth
mask Lm. LDWD = CE(PDWD, Lm)

Dynamic Weight Filters. As shown in the top-right of Figure 6, to obtain the dynamic filters, we
first average pool the input feature to obtain a current global representation Vc (orange box in Fig-
ure 6), then interact Vc with the global image vector Vg (blue box in Figure 6) with a fully connected
layer and identify the optimal dynamic filters Dopt by weighted summation of four common con-
volutional filters. Ai = σ(FC(Vc, Vg)), Dopt =

∑4
i=1 Ai ∗ Wi, σ is the sigmoid function, FC

is a linear layer, Wi is the ith filter in the Dynamic Weight Filters (DWF). Finally, we depthwise
convolve the input feature with Dopt and then perform point-wise convolution with 1×1 conv-layer
to obtain the final output.

D DETAILED CHAIN-OF-THOUGHT PIPELINE

D.1 DETAILED CHAIN-OF-THOUGHT

Step 1. Instance-wise Tampered Object Recognition. In this step, we accurately recognize the
content and position for each tampered region. Given the binary mask annotation Imask indicating
the tampered region for a tampered image Itamp, each of the connected components in Imask is a
tampered instance.

Content recognition and absolute position calculation for text images, For text images, the OCR
result for each tampered instance is the content. We cut off the tampered regions of the image Itamp

and recognize the text respectively using commercial OCR engine. The absolute position is the
position relative to the entire image, and is the one selected from the nine options: Top left, Top
center, Top right, Left side, Center, Right side, Bottom left, Bottom center, Bottom right. We
calculate the absolute position for each tampered region based on the position of its centroid.
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Figure 7: The proposed Chain-of-Thoughts Pipeline.

Content recognition and absolute position calculation for non-text images, For face and natural
images, we highlight the m tampered regions in Itamp respectively to get m highlight masks Inhigh,
n ∈ [1,m]. We prompt GPT-4o with Itamp and Inhigh sequentially for each tampered instance to
get its content (e.g. ”The face of a smiling young man with black hair and in blue shirts”). We also
calculate the absolute position for each tampered region based on the position of its centroid. For
natural images in NIST16 Guan et al. (2019), IMD20 Novozamsky et al. (2020) and MIML Qu et al.
(2024) datasets where different tampered regions can belong to the same tampered object, instead
of processing each region respectively, we directly highlight all the n tampered regions in the same
image, and query GPT-4o to sequentially generate the content and absolute position descriptions for
all the objects.

Relative position for text images. The relative position is the text line containing the tampered text
region. We detect and recognize the text lines in the given image Itamp, and determine which text
line a tampered text region belongs based on IoU.

Relative position for non-text images. We query GPT-4o to generate relative position descriptions
for non-text images (e.g., ”Over the brown squirrel eating a nut”).

Step 2. Focused Artifact Description. In this step, we aim to obtain detailed descriptions of image
artifacts for each tampered instance. For each tampered instance, we prompt GPT-4o with Itamp,
Inhigh, the previously recognized content and position, and an elaborate query (listing the common
artifact perspectives) to obtain the detailed descriptions Tdes for low-level visual and high-level
semantic artifacts. The full query (taking document image an example) is shown in Figure 13.

Step 3. Self Examination. In challenging samples where image artifacts are not obvious, the
response of GPT-4o can be unconfident and incorrect, while manual filtering is costly. To this end,
we propose to further improve the annotation quality by guiding GPT-4o to carefully examine and
correct its previous response. For each tampered object, we prompt GPT-4o with Tdes, Itamp, Inhigh,
and the previously recognized contents and positions, then show it an example containing both an
unconfident, incorrect answer and the corresponding manually corrected one. The full query (taking
document image an example) is shown in Figure 14.

D.2 QUALITY EVALUATION

To evaluate the performance of the proposed annotation pipeline. We have volunteers score 500
random samples from each of the four IML image types, with 0 being the lowest quality and 5 be-
ing the highest. The average score for the annotations generated with our method is 4.87, which
is higher than the 2.94 for annotations generated without our method. This validates that our pro-
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Table 7: Statistics of the Omni-273k dataset. ”Image num.” denotes the number of tampered images,
’Target num.’ denotes the average number of tampered instances in each sample. ’Avg. len.’ denotes
the average length of the annotation chars in each sample.

Image Domain Image num. Target num. Avg. len.
Natural images 126366 1.269 1925

Document images 84733 1.481 2131
Face images 60689 2.078 1265

Scene text images 1978 2.533 3379

posed pipeline can significantly improve annotation quality and produce close-to-human annotation
quality.

E MORE DETAILS ABOUT THE OMNI-273K DATASET

Statistics. The statistics of our dataset are shown in Table 7. A representative sample displaying our
Omni-273k’s structured annotation format is illustrated in Figure 18.

Train/Test Split. The Omni-273k dataset is constructed by adding forgery interpretation annotations
to existing high-quality datasets. Therefore, the split of training and test sets of Omni-273k follows
the conventional split in each image domain. To be specific, 217, 907 images from CASIAv2 Dong
et al. (2013), MIML Qu et al. (2024), the training sets of DocTamper Qu et al. (2023), SACP Alibaba
Security (2020), OpenForensics Le et al. (2021), Tampered-IC13 Wang et al. (2022b) and OSTF Qu
et al. (2025) are split as the training set, the rest 55, 869 images are split as the test set.

Manual Cleaning. We manually reviewed and cleaned the forgery interpretation annotations of the
Omni-273k test set. The textual annotations of the training set are the output of our CoT annotation
pipeline and may contain minimal noise. However, this minimal noise better simulates the noisy
real-world scenarios and reflects model robustness.

Effectiveness. Our Omni-273k can help large language models to better interpret image artifacts.
The Omni-IML model trained with our Omni-273k can effectively describe the tampered region
content, the absolute position, relative position and artifact clues of the forgeries from all the four
major image domains (natural image, document, scene text, face), as shown in Figures 15, 16, 17.

F MORE IMPLEMENTATION DETAILS

The localization module and the interpretation module of our Omni-IML are trained totally inde-
pendently, without any effect or involvement to each other in training.

F.1 IMAGE FORGERY LOCALIZATION

Model Training Details. The backbone model of our Omni-IML is ConvNeXt-Base Liu et al.
(2022b) initialized with its official ADE20k Zhou et al. (2017) pre-trained weights, following previ-
ous works Yu et al. (2024); Qu et al. (2024). The Omni-IML is trained with the cross-entropy loss
for 400k iterations, using the AdamW optimizer Loshchilov & Hutter (2017), with a batch size of
16 and an input size of 512 × 512. The initial learning rate is set to 1e-4 and decays to 1e-6 in a
linear schedule. We remove the forgery interpretation module when training the forgery localization
module. A fixed threshold of 0.5 is used to binarize model predictions during inference. Pixel-level
Intersection over Union (IoU) and binary F1 are used to evaluate model performance.

More Details about the Training Data. The natural image part of our training data includes: tam-
perCOCO Kwon et al. (2022), CASIAv2 Dong et al. (2013), MIML Qu et al. (2024) and COCO Lin
et al. (2014). These datasets have 600,000, 5123, 123150 and 118287 images respectively, and the
sampling ratio for these datasets is approximately 2:2:2:1. The document image part of our train-
ing data includes: SACP Alibaba Security (2020) training set, DocTamper Qu et al. (2023) training
set. These datasets have 1604 and 120,000 images respectively, the sampling ratio is approximately
1:2. The face image part of our training data is the training set of OpenForensics Le et al. (2021),
which has 44122 images. The scene text image part of our training data includes the training set of
Tampered-IC 13 Wang et al. (2022b), which has 229 images. The total number of the training data
is 1012515, the sum of the above numbers. The sampling ratio for natural images, documents, face
images, scene text images is approximately 10: 5: 2: 20.
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More Details about the Test Data. The test data for pixel-level IML includes CASIAv1 Dong et al.
(2013) with 921 images, Coverage Wen et al. (2016) with 100 images, NIST16 Guan et al. (2019)
with 582 images, CocoGlide Guillaro et al. (2023) with 512 images, IMD20 Novozamsky et al.
(2020) with 2,010 images, SACP Alibaba Security (2020) test set with 406 images, DocTamper Qu
et al. (2023) test set with 30,000 images and minq=75 (’minq’ is the minimum compression quality
factor), DocTamper-FCD Qu et al. (2023) with 2,000 images and minq=75, DocTamper-SCD Qu
et al. (2023) with 18,000 images and minq=75, OpenForensics Guo et al. (2023) test set with 18,895
images, Tampered-IC13 Wang et al. (2022b) test set with 233 images and OSTF Qu et al. (2025)
test set with 1007 images.

Evaluation Metrics. For the DocTamper benchmark, we use its official scripts to evaluate model
performance. For other benchmarks, we calculate foreground IoU and pixel-level Precision (P),
Recall (R), and F1-score (F) for each sample and then compute the average score following previous
work Ma et al. (2024) for fair comparison.

Compared Methods. In Table 2, the compared methods include RRU-Net Bi et al. (2019), MVSS-
Net Dong et al. (2022), PSCC-Net Liu et al. (2022a), CAT-Net Kwon et al. (2022), IF-OSN Wu
et al. (2022), EVP Liu et al. (2023), TruFor Guillaro et al. (2023), APSC-Net Qu et al. (2024), Spar-
seViT Su et al. (2025) and PIM Kong et al. (2025) for natural IML; CFL-Net Niloy et al. (2023),
TIFDM Dong et al. (2024), Swin-UPer Liu et al. (2021), DTD Qu et al. (2023), CAFTB Song
et al. (2025) for Document IML; MantraNet Wu et al. (2019), HPFCN Li & Huang (2019), DOA-
GAN Islam et al. (2020), HiFi-Net Guo et al. (2023), MoNFAP Miao et al. (2024) for face IML;
DeepLab3 Chen et al. (2018), HRNetv2 Wang et al. (2020), BEiT-UPer Bao et al. (2021), Seg-
Former Xie et al. (2021), UPOCR Peng et al. (2024) for scene text IML.

F.2 IMAGE FORGERY INTERPRETATION

Hyper-parameters. The multimodal large language model in our interpretation module is LoRA Hu
et al. (2022) fine-tuned 60k iterations with a batch-size of 16, a LoRA rank of 64, an AdamW
optimizer with learning rate decayed from 1e-4 to 0. We fine-tune our forgery interpretation module
after the training of localization model is done. During both the fine-tuning and inference stages
of our forgery interpretation module, the input masks are the predictions from the trained forgery
localization module.

LLM Query Details. For the interpretation model fine-tuned with our method, the query prompt
is ”The left half of the input image is a tampered face image. The right half of the input image is
a reference image with the suspected tampered region of the left half image highlighted, and the
suspected authentic region darkened. Please find the tampered region in the left half of the input
image. For each tampered region, please describe its content, absolute position, relative position,
and visible artifacts. The description of the visible artifacts should be in JSON format, where the
keys are the types of visible artifacts and the values are the corresponding detailed analysis. Always
assume that you are observing only the left half of the input image”.

For the interpretation model fine-tuned without our method, the query prompt is ”The input image
is a tampered image. Please find the tampered region in the left half of the input image. For each
tampered region, please describe its content, absolute position, relative position, and visible artifacts.
The description of the visible artifacts should be in JSON format, where the keys are the types of
visible artifacts and the values are the corresponding detailed analysis. Always assume that you are
observing only the left half of the input image”.

For the pre-trained model on zero-shot testing, the query prompt is ”The input image is a tampered
image. Please describe the content, absolute position, relative position, and image artifacts of the
tampered object(s) in this image. Content is the appearance of the tampered object (e.g. ”A white
cat sleeping on the table”) or OCR of the tampered text. Absolute position is the position relative
to the entire image (e.g., ”Top left of the image”). Relative position is the position relative to other
objects (e.g. ”In front of the women in white shirts”) or the text line of the tampered text (e.g. ”In
the text line: 09:34:50”). Image artifacts can include edge artifacts, texture artifacts, font artifacts,
alignment artifacts, lighting anomaly, depth anomaly, color inconsistency, semantic artifacts, etc.
If there are multiple tampered objects in this image, please describe the content, absolute position,
relative position, and image artifacts for each of them”.
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Table 8: Ablation study on whether a soft or hard modality switch is better in the Modal Gate. We
used the hard one.

Ablation
of MG

Natural Document Scene Text Face Average
IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

Soft .479 .600 .628 .731 .536 .696 .878 .925 .630 .738
Hard .612 .678 .766 .813 .610 .749 .923 .957 .728 .799

Table 9: Ablation study on the Modal Gate’s another input modality besides pure vision.
Input

Modality
Natural Document Scene Text Face Average

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1
None .538 .625 .634 .742 .561 .712 .904 .947 .659 .756
SRM .545 .629 .637 .743 .578 .723 .916 .953 .669 .762
Bayar .498 .599 .603 .722 .544 .700 .906 .948 .638 .742
NP++ .540 .626 .611 .727 .560 .712 .925 .958 .659 .756
DCT .612 .678 .766 .813 .610 .749 .923 .957 .728 .799

Table 10: Modal Gate selection rate of pure vision features and frequency+vision fused features
under four IML tasks.

Features Natural IML Document IML Scene Text IML Face IML
Pure vision 0.94 0.02 0.78 0.97

Fused 0.06 0.98 0.22 0.03

DWF1 (Top Left in Fig.3) DWF2 (Middle Left) DWF3 (Bottom Left) DWF4 (Bottom Center) DWF5 (Bottom Right)

Natural

Document

Scene Text

Face

1   2   3   4   5   6   7   8 1   2   3   4   5   6   7   8 1   2   3   4   5   6   7   8 1   2   3   4   5   6   7   8 1   2   3   4   5   6   7   8Weight Index

Filter (Position in Fig.3)

Figure 8: Dynamic Weight Filters have different weight activation values for different tasks. Each
cell is a filter weight activation value.

G MORE EXPERIMENTAL RESULTS

G.1 MORE ABLATION STUDIES ON THE MODAL GATE

Soft or Hard Gate. In our Modal Gate, a soft gate means that we fuse pure vision features Frgb

and vision+frequency features Ffused through adaptive weighting with a channel-spatial attentional
module. A hard gate means that we use Frgb or Ffused. The results in Table 8 show that the hard
gate we used is better. This is because the motivation of our Modal Gate is to thoroughly exclude
the distortion from the frequency features when the frequency features are too noisy. Our hard gate
can achieve this, whereas the soft gate cannot.

Input Modality. We evaluated the performance of our model under different input noise domains of
our modal gate encoder, including SRM Zhou et al. (2018), Bayar Dong et al. (2022), DCT Qu et al.
(2023), and NoisePrint++ (NP++) Guillaro et al. (2023). As shown in Table 9, the DCT auxiliary
modality we adopted is the best.

Modal Gate Activations. Table 10 shows the selection ratio of RGB/fused features in test data from
different image domains. Frequency+vision fused features are typically used in text images and pure
vision features are mostly used in natural and face images.

G.2 DWD FILTER ACTIVATIONS

Figure 8 shows the filter weight activations of the dynamic weight filters in the Dynamic Weight
Decoder (DWD). These values are calculated by averaging the activations of each test sample in
each task. The results demonstrate that the filters have different activation weights for different
tasks. The filter names correspond to Figure 6.
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Table 11: Experiments on the interpretation ability. ’Cos. ’ denotes the cosine similarity of the
paragraph vectors. ’Avg.’ denotes average score.

Method Cos. ROUGE-2 ROUGE-L BLEU Avg.
Pre-trained models (zero-shot).

GPT-4o .975 .112 .201 .074 .341
InternVL3 2B Chen et al. (2024a) .973 .063 .135 .017 .297
Qwen2.5-VL 3B Bai et al. (2025) .964 .077 .151 .020 .303
Qwen2.5-VL 7B Bai et al. (2025) .972 .094 .175 .035 .319

Supervise Fine-Tuned (SFT) models.
DeepSeek-VL 7B Lu et al. (2024) .993 .385 .441 .308 .532

MiniCPM-V-2.6 8B Yao et al. (2024) .992 .378 .439 .287 .524
InternVL3 2B Chen et al. (2024a) .993 .372 .432 .293 .523
Qwen2.5-VL 3B Bai et al. (2025) .994 .403 .456 .316 .542
Qwen2.5-VL 7B Bai et al. (2025) .994 .403 .455 .316 .542

Supervise Fine-Tuned (SFT) models with our method.
Ours+InternVL3 2B .993 .405 .466 .340 .551

Ours+Qwen2.5-VL 3B .995 .424 .489 .363 .568
Ours+Qwen2.5-VL 7B .995 .433 .498 .367 .573

G.3 MORE FORGERY INTERPRETATION RESULTS

In Table 11, we directly evaluate models with their whole output string for each sample using
word-vectors cosine similarity Mikolov et al. (2017), ROUGE and BLEU, following the previous
works Xu et al. (2024); Huang et al. (2024). The compared MLLMs include GPT-4o, DeepSeek-
VL-7B Lu et al. (2024), MiniCPMV2.6-8B Yao et al. (2024), InternVL3-2B Chen et al. (2024a) and
InternVL2-8B, Qwen2.5-VL-3B Bai et al. (2025) and Qwen2.5-VL-7B. All the pre-trained models
(the top group in Table 11) show poor interpretation performance (e.g. all BLEU scores less than
0.1), confirming that the pre-trained LLMs are not naturally adequate to detect and explain image
forgery. Fine-tuning the models with our dataset is necessary for them to achieve forgery interpre-
tation capability. The models fine-tuned with our method (bottom group) consistently outperform
those fine-tuned without our method (middle group) under all metrics, confirming the effectiveness
of the reference visual prompt in our interpretation module. We have presented the coarse-grained
evaluation of our model in Table 11 of our paper, which further validates the conclusion.

G.4 ROBUSTNESS EVALUATION

Forgery Localization. We test the robustness of our localization model by applying image distor-
tion to NIST16 dataset images, following the standard setting in the field of image manipulation
localization Li et al. (2023); Zhou et al. (2023); Li et al. (2024b). We compare the pixel-level AUC
performance with other methods, including Mantra-Net Wu et al. (2019), MVSS-Net Dong et al.
(2022), SPAN Hu et al. (2020), PSCC-Net Liu et al. (2022a), ObjectFormer Wang et al. (2022a),
SAFL-Net Sun et al. (2023), NCL Zhou et al. (2023), ERMPC Li et al. (2023), UnionFormer Li et al.
(2024b). Table 12 shows that our method exhibits strong robustness to various distortion operations,
significantly outperforming previous works.

Forgery Interpretation Robustness. We test the robustness of our localization model by applying
various image distortions to the test set. The results are shown in Table 13, which have confirmed
the robustness of our method.

G.5 EVALUATION ON UNKNOWN IML TASKS

Our method is designed to alleviate performance degradation in multi-task joint training, rather than
generalize to unseen tasks. Nevertheless, we evaluated the joint-task-trained models’ performance
on an unseen IML task, the remote sensing IML Zhang et al. (2024), with its RSCMQA dataset. The
results are shown in Table 14. Our method achieves state-of-the-art performance and demonstrates
great potential for generalization to unseen IML tasks.
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Table 12: Manipulation localization performance on NIST16 dataset under various distortions. AUC
scores are reported, ’Ori’ represents no distortion. ’k’ represents kernel size of the Gaussian blur
and ’q’ represents quality in JPEG compression.

Resize Blur JPEGMethod Ori .78x .25x k=3 k=15 q=100 q=50
ManTra-Net Wu et al. (2019) .795 .774 .755 .774 .746 .779 .744
MVSS-Net Dong et al. (2022) .788 .783 .775 .786 .758 .788 .788

SPAN Hu et al. (2020) .840 .832 .802 .831 .792 .836 .807
PSCC-Net Liu et al. (2022a) .855 .853 .850 .854 .800 .854 .854

ObjectFormer Wang et al. (2022a) .872 .872 .863 .860 .803 .864 .862
SparseViT Su et al. (2025) .888 .884 .869 .881 .877 .886 .881

NCL Zhou et al. (2023) .912 .856 .831 .840 .806 .843 .819
ERMPC Li et al. (2023) .895 .893 .877 .892 .871 .894 .888

UnionFormer Li et al. (2024b) .881 .873 .871 .865 .843 .880 .879
Ours .918 .914 .895 .892 .882 .917 .890

Table 13: Robustness evaluation for the interpretation module. Our model uses Qwen2.5-VL as its
base MLLM. The score in each cell is the average cosine similarity, ROUGE-2, ROUGE-L, and
BLEU scores.

Method Ori Resize Blur JPEG
.78x .25x k=3 k=15 q=100 q=50

DeepSeek-VL 7B Lu et al. (2024) .532 .529 .510 .527 .514 .528 .517
MiniCPM V2.6 8B Yao et al. (2024) .524 .519 .506 .520 .508 .521 .511

InternVL3 2B Chen et al. (2024a) .523 .518 .500 .518 .504 .519 .509
Qwen2.5-VL 3B Bai et al. (2025) .542 .538 .523 .538 .526 .540 .531
Qwen2.5-VL 7B Bai et al. (2025) .542 .539 .526 .539 .530 .541 .533

Ours + Qwen2.5-VL 3B .568 .564 .552 .563 .553 .567 .557
Ours + Qwen2.5-VL 7B .573 .569 .559 .559 .562 .572 .565

Table 14: Image manipulation localization on RSCMQA dataset Zhang et al. (2024) (unknown
remote sensing IML task). Pixel-level binary F1 metric is used. ’Baseline’ is our baseline model.

Method HiFi-Net MVSS-Net CAT-Net TruFor APSC-Net FakeShield SparseViT DTD Baseline Ours
F1 .103 .133 .212 .216 .258 .220 .158 .147 .209 .399

Encoder +
Modal Gate

Input DCT, QT

Input image
(H, W) F1 (H/4, W/4)

F2 (H/8, W/8)

(H/16, W/16)

(H/32, W/32)F4

F3

Conv3x3 + MaxPool2x2

Conv3x3 + MaxPool2x2

Conv1x1 + MaxPool2x2

Global MaxPool + 2FC

C

C

C

Encoder’s output features Binary classifier

Fake / Real 
Prediction

C Channel dimension concatenation

VPH

FPH

Figure 9: The classifier for image-level forgery detection.
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G.6 IMAGE-LEVEL FORGERY DETECTION

The image-level forgery detection is achieved by a binary classifier, as shown in Figure 9. The
classifier extracts features from the encoder’s output features, with alternating conv-layers and max
pooling layers. The classifier performs the final classification with global max pooling and two fully
connected layers. Binary cross entropy loss is used to optimize the classifier. We test the image-level
forgery detection performance of our model with AUC and balanced accuracy, following the same
standard setting in TruFor Guillaro et al. (2023). The results in Table 15 show that the proposed
model is also very good at image-level classification and significantly outperforms previous works.

Table 15: Comparison study on image-level forgery detection. ’Acc’ represents balanced accuracy.
’mAUC’ represents mean AUC, ’mAcc’ represents mean balanced accuracy.

Method CASIA1 Columbia Coverage CocoGlide Average
AUC Acc AUC Acc AUC Acc AUC Acc mAUC mAcc

CR-CNN Liu & Zhao (2020) .670 .535 .755 .628 .553 .510 .589 .533 .642 .552
RRU-Net Bi et al. (2019) .574 .488 .583 .500 .482 .500 .533 .503 .543 .498

ManTraNet Wu et al. (2019) .644 .500 .810 .500 .760 .500 .778 .500 .748 .500
SPAN Hu et al. (2020) .480 .487 .999 .951 .670 .605 .475 .491 .656 .634

CAT-Net Kwon et al. (2022) .942 .838 .977 .803 .680 .635 .667 .580 .817 .714
IF-OSN Wu et al. (2022) .735 .635 .882 .522 .557 .510 .611 .567 .696 .559

MVSS-Net Dong et al. (2022) .932 .808 .984 .667 .733 .545 .654 .536 .826 .639
PSCC-Net Liu et al. (2022a) .869 .683 .300 .508 .657 .550 .777 .661 .651 .601
TruFor Guillaro et al. (2023) .916 .813 .996 .984 .770 .680 .752 .639 .859 .779

Omni-IML (Ours) .950 .891 .996 .967 .800 .750 .890 .785 .909 .848

H MORE ANALYSES

H.1 ABLATION FOR MODEL BACKBONE

We experimented with a lightweight backbone. By replacing ConvNeXt-Base with ConvNeXt-
Small, we created a model that is significantly smaller and faster while achieving comparable per-
formance (Table 17), demonstrating the improved trade-off.

H.2 FEEDBACK FROM EXPLANATION TO LOCALIZATION FOR ERROR CORRECTION

We used the model’s textual output (object content and position) to guide a second-stage refinement.
Specifically, we fed the explanations for natural/face images into an open-vocabulary segmentation
model (DINO-X Ren et al. (2025)) and the explanations for document/scene-text images into an
OCR tool (OCRSpace from GitHub) to generate refined localization masks. The results in Table 18,
show a consistent improvement in localization accuracy. This confirms that feedback from explana-
tion can refine localization.

H.3 ABLATION STUDY OF THE CROSS-DOMAIN SAMPLING RATIO

The sampling ratio represents how many times images from each domain are repeated when con-
structing the online training dataset. During training, each batch is sampled randomly from this
dataset. Our sampling ratio is empirically derived from two principles: task difficulty and image
resolution. First, we assign a higher sampling weight to more challenging domains (e.g., scene-
text). Second, we account for resolution, as larger images (like those in the scene-text domain) yield
more potential training crops. This principled approach, which directly addresses the small dataset
size by considering available training area, is validated by our ablation study. The results in Table 19
confirm our ratio is near-optimal and effectively balances against overfitting and underfitting.

H.4 COMPARISON WITH NON-COT PIPELINE IN ANOMALY DESCRIPTION ANNOTATION

For a fair quantitative comparison, we randomly selected 400 test samples from each domain and
generated tampered-region explanations using the previous non-CoT approach (as in FakeShield Xu
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et al. (2024)). We then compared these non-CoT outputs with our recorded CoT responses, eval-
uating both against our manually cleaned ground-truth using the same accuracy and mean-of-
ROUGEL-BLEU metrics for anomaly description. The results, shown in the Table 20, clearly
demonstrate the advantages of our CoT reasoning, particularly in multi-object scenarios, such as
text and face images.

H.5 ON THE NOVELTY OF THE MODAL GATE

Our Modal Gate is fundamentally different from existing fusion mechanisms in two key aspects:
Binary Hard Gate: Unlike prior work using soft attention for feature fusion, our module employs a
binary hard gate. This decisive mechanism proves significantly more effective, as validated by our
ablation study in Table 8. Prediction-Informed Gating: Conventional gates fuse features directly. In
contrast, our Modal Gate makes its decision by also considering the confidence of coarse predictions
derived from each modality. This allows the gate to assess the reliability of each feature set for the
specific input, leading to a more intelligent and effective fusion. The ablation study in Table 21
confirms this design choice yields superior performance.

H.6 ON THE NOVELTY OF THE DYNAMIC WEIGHT DECODER

Our design overcomes a key limitation of standard dynamic convolutions. While conventional meth-
ods generate weights using only local features from their receptive field, our Dynamic Weight De-
coder incorporates an additional global context vector (Vg in Figure 6). This vector, which sum-
marizes the entire feature map, informs the decoder about the global image type (e.g., natural vs.
document). As confirmed by Table 22 this global awareness enables the generation of more special-
ized and effective dynamic weights, a clear departure from prior methods.

H.7 BEHAVIOR ON MISSED DETECTIONS

The explanation module is not strictly bound by the localization output. It uses the mask as a prompt,
but the MLLM can override or correct this prompt based on the full image context. We provide a
qualitative example of this error-correction capability in Figure 20.

H.8 SPLITTING THE IMAGE INTO TAMPERED OBJECTS FROM THE BINARY MASK

This is mostly achieved by connected-components analysis Bailey & Johnston (2007), as demon-
strated in Figure 19.

I VISUALIZATION

I.1 VISUALIZATION OF THE AE ENHANCED FEATURES

Figure 10 shows that our proposed Anomaly Enhancement module can enhance the feature contrast
between forged region and authentic region.

I.2 VISUALIZATION FOR MODULE ABLATIONS

Figure 11 shows the qualitative ablation of the modules proposed in Omni-IML. ’w.o. MG*’ denotes
the model without Modal Gate and using the pure vision modality; ’w.o. DWD’ represents the
model without the Dynamic Weight Decoder; ’w.o. DW’ is the model with the DWD structure but
the filter weights in the decoder keep all the same for each input; ’w.o. AE’ is the model without the
proposed Anomaly Enhancement module; The model without any of the proposed modules serves
as the ’Baseline’ model.

I.3 QUALITATIVE COMPARISON FOR FORGERY LOCALIZATION

The qualitative comparison between RRU-Net Bi et al. (2019), PSCC-Net Liu et al. (2022a), MVSS-
Net Dong et al. (2022), CAT-Net Kwon et al. (2022), TruFor Guillaro et al. (2023), APSC-Net Qu
et al. (2024) is shown in Figure 12. Our proposed method demonstrates strong generalization.
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Table 16: Model complexity of MVSS-Net Dong et al. (2022), SparseViT Su et al. (2025), PIM Kong
et al. (2025), CAT-Net Kwon et al. (2022), APSC-Net Qu et al. (2024), DTD Qu et al. (2023),
UPOCR Peng et al. (2024), FakeShield Xu et al. (2024). The Frame Per Second (FPS) is evaluated
on 3090 GPU with a batchsize of 1.

Model MVSS-Net SparseViT PIM CAT-Net APSC-Net DTD UPOCR Ours FakeShield
Size 146M 50M 178M 114M 144M 66M 192M 152M 1300M
FPS 20.4 18.7 8.6 9.2 7.8 8.5 7.0 7.1 0.4

I.4 QUALITATIVE COMPARISON FOR FORGERY INTERPRETATION

The model predictions for forgery interpretation are shown in Figures 15, 16, 17. The results validate
that our proposed dataset and method can considerably advance the model’s capability of forgery
interpretation in natural language.

Input
Image

Ground
-truth

Features 
(w.o. AE)

Features 
(w/ AE)

Predictions 
(w.o. AE)

Predictions 
(w/ AE)

Input
Image

Ground
-truth

Features 
(w.o. AE)

Features 
(w/ AE)

Predictions 
(w.o. AE)

Predictions 
(w/ AE)

Figure 10: The proposed Anomaly Enhancement module can enhance the feature contrast between
fake and real regions.

Image Ground-Truth Baseline w.o. MG w.o. MG* w.o. DWD w.o. DWF w.o. AE Ours

Figure 11: Qualitative ablation of the proposed modules.

Table 17: Ablation study demonstrating that a lightweight backbone offers a compelling trade-off
for Omni-IML, achieving comparable performance (Pixel-level IoU) with significantly reduced size
and latency.

Method Size FPS Natural Document SceneText Face Average
ConvNeXt-Base 152M 7.1 .612 .766 .610 .923 .728
ConvNeXt-Small 113M 9.3 .590 .745 .587 .919 .710
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Figure 12: Qualitative comparison between different image manipulation localization models.

Table 18: Ablation study on refining localization predictions using the model’s textual explanation.
Performance is measured in pixel-level IoU.

Method Natural Document Scene Text Face Average
Original Localization .612 .766 .610 .923 .728

+ Explanation Refinement .636 .774 .641 .925 .744

Table 19: Ablation study of the cross-domain sampling ratio. Performance is measured in pixel-
level IoU.

Sampling Ratio (Nat.:Doc.:Face:S.T.) Natural Document Face Scene Text Average
10:5:2:20 (Ours) .612 .766 .923 .610 .728

10:5:10:20 (More face) .603 .754 .925 .596 .719
10:5:2:50 (More scene text) .611 .766 .923 .601 .725
10:5:2:5 (Less scene text) .614 .764 .923 .549 .712

Table 20: Ablation study of the chain-of-thought (CoT) pipeline in anomaly description generation.
’Acc.’ denotes accuracy. ’MRB’ denotes the mean score of ROUGE-L and BLEU.

Ablation Doc.-Acc. Doc.-MRB S.T.-Acc. S.T.-MRB Nat.-Acc. Nat.-MRB Face-Acc. Face-MRB
non-CoT .673 .815 .521 .797 .802 .870 .695 .924

CoT (Ours) .949 .892 .968 .903 .966 .921 .989 .970

Table 21: Ablation study of the involvement of coarse prediction features in our Modal Gate. Per-
formance is measured in pixel-level IoU.

Ablation Natural Document Face Scene Text Average
Without coarse prediction features .560 .742 .602 .915 .705

With coarse prediction features .612 .766 .610 .923 .728

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 22: Ablation study of the global vector Vg in our Dynamic Weight Decoder. Performance is
measured in pixel-level IoU.

Ablation Natural Document Face Scene Text Average
Without global vector Vg .565 .721 .584 .918 .697

With global vector Vg .612 .766 .610 .923 .728

J LIMITATIONS

The recent unified models in most fields are relatively large in size Wang et al. (2023), no exception
to the Omni-IML. The complexity of Omni-IML’s localization module is shown in Table 16. The
complexity of Omni-IML’s interpretation module is the same as its base MLLM (e.g. Qwen2.5-VL-
3B). Our single model can address four IML tasks, and its complexity is significantly lower than that
of maintaining four IML models for the four IML tasks. Moreover, our model’s primary strength is
its performance rather than its speed. Further work will be conducted to reduce the size and improve
computational efficiency.

You are an expert good at analyzing tampered text images. You will be provided with the OCR information of the tampered area and  
two images, the first is the tampered text image A and the second is the reference image B, with the tampered areas highlighted in 
the yellow box and the authentic areas darkened. The tampered text reads “5", and is located at the top right of the images A and B
Your task is to: Describe visible details in the image that have been tampered with. Please consider the visible details caused by 
tampering from these perspectives. You can explain the judgments basis by combining multiple perspectives::

1. Edge artifacts. The background of the tampered text may be inconsistent with the authentic regions. Therefore, the edges around
the tampered text region may be discontinuous and inconsistent with the background.
2. Font inconsistency. The font of the tampered text may be slightly different in color, size, thickness, or style from the surrounding
authentic text.
3. Alignment inconsistency. the tampered text may have inconsistent spacing with the surrounding text or a small offset to the text
line.
4. Inconsistent alignment. The tampered text may have inconsistent spacing with the surrounding text or a small offset to the text line.
5. Semantic artifacts. Tampered text may break the coherence of the sentence. For example, given a tampered text "MEED" in the
sentence "I meat books.", the tampered text "meat" makes the sentence "I meat books." incoherent. The tampered text itself may
appear to be misspelled.
6. Texture anomaly. The texture appearance of the tampered text may be different from the surrounding authentic text. For example
the tampered text region may have different levels of resolution, pixelation, sharpness, or image compression artifacts.input image A.

Please use the numbers to list the points that the tampered text region has. If there are other visible anomalies exist in the 
tampered text region but not included in the above points, you should also describe them. Don't mention the image B or the yellow 
box in your answer, always assume that you are only observing the input image A.

User

User

GPT4o

1. Edge artifacts: The edges of the tampered text "5" appear to have a slight blur or lack of sharpness compared to the surrounding
authentic text. This inconsistency may indicate that the background does not seamlessly blend with the edges of the tampered
area, leading to visible discontinuities.

2. Font inconsistency: The font of the tampered text "5" seems slightly different in color and thickness when compared to the
surrounding numbers. This variation can draw attention to the tampered text, as it does not match the uniformity of the
authentic text in size and style.

3. Alignment inconsistency: The placement of the tampered text "5" seems to be slightly misaligned compared to the authentic text
above and below it. This offset may create an awkward spacing that disrupts the overall flow of the text, making it stand out as an
alteration.

4. Texture anomaly: The texture of the tampered area may exhibit differences in pixelation and resolution when compared to the
adjacent authentic text. This could manifest as a lack of clarity or distinctiveness that is noticeable upon closer inspection,
suggesting it may not be a naturally occurring part of the document.

5. Lighting inconsistency: The lighting and shading on the tampered text "5" do not appear to match the surrounding authentic text.
The illumination may look flat or inconsistent, contributing to the perception that this text has been altered rather than being
part of the original document.

Figure 13: The prompt to query GPT-4o in the step 2.
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You are an expert good at analyzing tampered text images. You will be provided with the OCR information of the tampered area and  
two images, the first is the tampered text image A and the second is the reference image B, with the tampered areas highlighted in 
the yellow box and the authentic areas darkened. The tampered text reads “5", and is located at the top right of the images A and B

You will also be given an analysis of the forged text, which is usually unsatisfactory because of the uncertain tones and possible 
errors. Your task is to examine each item of the provided analysis and find the inconclusive description (e.g. containing the words 
"could", "might" or "may"): For each inconclusive description, please check whether the artifacts described are obvious. If so, please 
rewrite the description to a confident one without the word "could", "might" or "may". If not, please delete the item. Please also 
delete the item if the content violates its title.

For example, given an input analysis as following:  Judgement basis 
1. Edge artifacts: The edges around the tampered text "8X" may exhibit noticeable discontinuity when compared to the surrounding
background. This might appear as a slightly jagged or irregular edge which doesn't seamlessly blend with the rest of the interface
elements, indicating tampering.
2. Texture anomaly: The texture of the tampered text might appear slightly out of focus, overly sharp, or not as smoothly rendered as
authentic text elements. Since these anomalies would contrast with the naturally rendered surrounding text, they can be indicative of
manipulation.
3. Font inconsistency: The font used for "8X" could differ in subtle ways such as color, brightness, or style from the adjacent text. This
inconsistency would suggest that the element does not match the visual identity of the rest of the display, pointing towards it being
tampered.
4. Alignment inconsistency: Tampered text like "8X" might have spacing issues with neighboring text or be slightly misaligned with
other elements on the same plane, deviating from the uniformity expected in a well-designed digital interface.
5. Text incoherence: The tampered word "8X" does not break the coherence of the sentence. However, if the surrounding context
contained a different grammatical structure that rendered the word unnecessary or incorrectly placed, it could create confusion. In
this case, "8X " fits grammatically, but the context of the surrounding text may be examined to determine overall coherence.
6. Lack of integration: The overall lack of integration of "8X" with the rest of the UI elements might be apparent. This could give it an
appearance of being improperly overlaid or pasted onto the image, contrasting against the more naturally flowing and cohesive
design of the authentic text.
The expected response should be:  Judgement basis
2. Texture anomaly: The texture of the tampered text appears slightly out of focus. Since this anomaly would contrast with the 
naturally rendered surrounding text, it can be indicative of manipulation.
3. Font inconsistency: The font used for "8X" differs in subtle ways such as color, brightness, or style from the adjacent text. This 
inconsistency would suggest that the element does not match the visual identity of the rest of the display, pointing towards it being 
tampered.
6. Lack of integration: The overall lack of integration of "8X" with the rest of the UI elements is apparent. This gives it an appearance
of being improperly overlaid or pasted onto the image, contrasting against the more naturally flowing and cohesive design of the
authentic text.

There are the words "could", "might" or "may" in the items titled "Edge Artifacts" and "Alignment Inconsistency", but there are no 
obvious edge artifacts or inconsistent alignment in the tampered text region. Therefore, these two items should be deleted. You 
should not delete the items just because they contain uncertain words such as "could" or "might". You should examine image A 
carefully and delete the uncertain descriptive items if the described anomalies actually do not exist. In addition, the content of the 
item entitled "Text incoherence" states that there is no text incoherence, which violates its title "Text incoherence" and should also 
be deleted.

The input analysis is: (Providing the previous GPT-4o response)

User

User

GPT4o

1. Font inconsistency: The font of the tampered text "5" is different in color and thickness when compared to the surrounding
numbers. This variation draws attention to the tampered text, as it does not match the uniformity of the authentic text in size and
style.

2. Alignment inconsistency: The placement of the tampered text "5" is slightly misaligned compared to the authentic text. This
offset creates an awkward spacing that disrupts the overall flow of the text, making it stand out as an alteration.

3. Texture anomaly: The texture of the tampered area exhibits differences in pixelation and resolution when compared to the
adjacent authentic text. This manifests as a lack of clarity or distinctiveness that is noticeable upon closer inspection, suggesting it
is not a naturally occurring part of the document

Figure 14: The prompt to query GPT-4o in the step 3.
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Tampered Region: the text : 2022-03-14
Absolute Position: Bottom left of the image.
Relative Position: in the text line 时间: 2022-03-14 12:18:05
Edge Artifacts: The edges of the tampered text " 2022-03-14 " appear less defined compared to the surrounding text. There is slight blurriness or 
irregularities at the boundaries, indicating a mismatch with the background texture and color, which suggests tampering.
Font Inconsistency: The font of the tampered text is different in characteristics compared to the authentic text. This is observable in the color and 
thickness of the characters, which do not match the surrounding text, making the tampered text visually distinct.
Alignment Inconsistency: The "2022-03-14" has a vertical direction, which is inconsistent with the surrounding text, which disrupts the 
uniformity of the image style.

Omni-IML (Ours), correct

Tampered Region: the text : 7
Absolute Position: Center of the image.
Relative Position: in the text line 流水号: 220314407**7
Font Inconsistency: The font of the tampered text 7 differs from the original text, particularly in terms of font size and character thickness. This 
suggests that the text 7 in this text line is tampered with.

Qwen2.5VL-7B (Baseline), incorrect

Tampered Region: The orange cartoon fox head with black edges. 

Absolute Position: Center of the image. Qwen2.5VL-7B (Baseline), less comprehensive 
Relative Position: Over the body of the eating brown squirrel.
Texture Inconsistency: The cartoon fox's texture sharply contrasts with that of the brown squirrel and the background. While the fox features a 
smooth, cartoon-like texture, the squirrel exhibits a natural fur texture rich in depth and detail. This disparity creates a visually discordant effect. 
Lighting Inconsistency: The lighting on the cartoon fox is inconsistent with the illumination present in the surrounding scene. The placement of 
shadows and highlights on the fox fails to align with the image's natural light source, resulting in an artificial look. Additionally, the fox lacks the 
realistic shadows that would naturally occur in the ground.
Color Inconsistency: The cartoon fox's colors are far more vibrant and uniform compared to the muted, varied tones of the squirrel and the 
background. This heightened saturation causes the fox to appear unnaturally distinct from the subdued color palette of the background.

Tampered Region: The orange cartoon fox head with pointed ears. 

Absolute Position: Center of the image. Omni-IML (Ours), comprehensive
Relative Position: Over the brown squirrel eating a nut.
Edge Artifacts: The edges of the cartoon fox head are too sharp and lack a smooth transition to the background. These artifacts indicate that the 
cartoon fox head has been tampered with.
Texture Inconsistency: The texture of the cartoon fox is markedly different from that of the brown squirrel and the background. The fox has a flat, 
cartoonish texture, while the squirrel has a natural fur texture that conveys depth and detail. This inconsistency creates a jarring visual effect. 
Lighting Inconsistency: The lighting on the cartoon fox does not match the lighting conditions of the surrounding environment. The shadows and 
highlights on the fox do not align with the natural light source in the image, leading to an unnatural appearance. The fox lacks realistic shadowing 
that would typically occur in relation to the squirrel and the ground.
Color Inconsistency: The color saturation of the cartoon fox is more vibrant and uniform compared to the more subdued and varied colors of the 
squirrel and the background. This difference in saturation makes the fox stand out unnaturally against the more muted tones of the rest of the 
image.
Depth Artifacts: The depth of the cartoon fox is inconsistent with the squirrel. The fox is positioned on top of the squirrel, but the perspective 
and scale do not align properly, creating a sense of disorientation in spatial relationships.

Figure 15: Comparisons in image forgery interpretation.
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Tampered Region 1: The face of the man with short brown hair and a white lab coat
Absolute Position: Right side of the image.
Relative Position: To the right of the center woman with long brown hair and a red shirt
Edge Artifacts: The edges around the hairline and jawline are jagged and do not blend smoothly with the rest of the image. 
Texture Inconsistency: The skin texture is overly smooth and lacks natural pores or blemishes, giving it an artificial appearance.
Lighting Inconsistency: The lighting on the face is inconsistent with the background, creating a stark contrast that highlights the tampering.
High-level Artifacts: The teeth show signs of irregular spacing and size, contributing to the unnatural look of the smile.

Tampered Region 2: The face of the left woman with blonde hair and a white lab coat
Absolute Position: Left side of the image
Relative Position: To the left of the center woman with curly hair wearing a red top
Edge Artifacts: The edges around the face, especially near the hairline, show clear signs of manipulation with jagged and unnatural lines.
Texture Inconsistency: The skin texture is overly smooth and lacks the natural pores, wrinkles, and imperfections typical of real human skin.
Lighting Inconsistency: The lighting on the face is inconsistent, with some areas appearing overly bright while others are unnaturally shadowed.
High-level Artifacts: The teeth show signs of blurring and lack the sharpness and detail expected in a real smile.

Tampered Region 3: The face of the center young woman with long blonde hair and a white lab coat
Absolute Position: Center of the image
Relative Position: Between the woman with short blonde hair and the man with short brown hair
Edge Artifacts: The edges around the face, particularly where the hair meets the skin, show clear signs of manipulation, with unnatural lines and 
discontinuities.
Texture Inconsistency: The skin texture is inconsistent, with some areas appearing overly smooth and others showing unnatural patterns.
Lighting Inconsistency: The lighting on the face does not align with the lighting on the hair, indicating that the face and hair were likely edited 
separately and then combined.
Depth Artifacts: The eyes and mouth appear overly simplified and lack the intricate details and depth that are characteristic of real human 
features.

Omni-IML (Ours), comprehensive

Tampered Region 1: The face of the woman with short brown hair wearing a white lab coat
Absolute Position: Right side of the image.
Relative Position: Adjacent to the woman in the red shirt with long brown hair
Edge Artifacts: The transitions around the hairline and jaw display rough, unnatural edges that fail to seamlessly integrate with the surrounding 
areas.
Texture Inconsistency: The skin appears overly polished, missing the fine details like pores or blemishes, resulting in an artificial, plastic-like 
quality.
Lighting Inconsistency: The lighting on the man's face clashes with the illumination of the overall scene, creating an awkward, unnatural contrast.

Tampered Region 2: The face of the woman with long blonde hair dressed in a white lab coat
Absolute Position: Center of the image
Relative Position: Between the woman with short brown hair and another woman with short blonde hair
Edge Artifacts: The boundary between her hair and skin displays clear evidence of tampering, with visible gaps and abrupt transitions.
Texture Inconsistency: The skin texture alternates between being overly smooth and exhibiting strange, inconsistent patterns in certain spots.
Lighting Inconsistency: The lighting on the face significantly differs from that on the hair, suggesting that these two elements were edited 
independently before being merged.

Qwen2.5VL-7B (Baseline), incomprehensive

Figure 16: Comparisons in image forgery interpretation.
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Tampered Region: the text : 10.50

Absolute Position: Bottom center of the image. Qwen2.5VL-7B (Baseline), less comprehensive
Relative Position: in the text line 1 10.50 10.50
Texture Inconsistency: The tampered "10.50" text has a slightly blurred appearance, lacking the crispness of the other genuine texts nearby. This 
discrepancy suggests that the text was edited, as its texture would typically match the surrounding elements if it were authentic.

Tampered Region: the text : 10.50

Absolute Position: Bottom center of the image. Omni-IML (Ours), comprehensive
Relative Position: in the text line 1 10.50 10.50
Edge Artifacts: The edges of the tampered text "10.50" appear less defined compared to the surrounding text. There is slight blurriness or 
irregularities at the boundaries, indicating a mismatch with the background texture and color, which suggests tampering.
Texture Inconsistency: The texture of the tampered “10.50" text appears somewhat hazy and less sharp than the surrounding authentic texts. 
This indicates manipulation, as the integrated texture should normally appear consistent. 
Font Inconsistency: The "10.50" has an obviously different font than the surrounding text. Its larger font size and thinner stroke indicate that it 
has been tampered with.
Alignment Inconsistency: The "10.50" has a vertical direction, which is inconsistent with the surrounding text. This misalignment means the 
text "10.50" is likely tampered with.

Tampered Region 1: the text: Modem
Absolute Position: Top center of the image.
Relative Position: in the text line: 3/64 Modem
Edge Artifacts: The edges of the tampered text "Modem" show noticeable discrepancies compared to the authentic regions. The background 
around the tampered text appears less uniform, with visible abrupt changes in texture and color, indicating that the tampering has not 
seamlessly blended with the surrounding background.
Font Inconsistency: The font of the tampered text "Modem" displays a variation in color and thickness when compared to the authentic text. 
The letters appear to be bolder or darker than the surrounding text, suggesting that a different font style or weight has been used in the 
tampering process.
Alignment Inconsistency: The positioning of the tampered text "Modem" is misaligned in relation to the text line it belongs to. There is a 
noticeable difference in spacing and alignment with the surrounding text, making it appear somewhat offset and disrupting the visual flow of 
the text line.

Tampered Region 2: the text: Robin
Absolute Position: Right side of the image
Relative Position: in the text line: Robin
Edge Artifacts: The edges surrounding the tampered text "Robin" exhibit irregularities compared to the authentic areas. The background 
immediately adjacent to the text does not blend seamlessly, leading to a noticeable discontinuity that suggests alterations were made. This 
inconsistency in the edges implies a lack of proper integration with the surrounding elements.
Font Inconsistency: The font used for the tampered text "Robin" differs in appearance from the surrounding text. It is slightly lighter in color and
has a different thickness. This discrepancy indicates that the tampered text does not match the style of the authentic text, which is more 
consistent in color and weight.

Omni-IML (Ours), comprehensive

Tampered Region: the text : Modem
Absolute Position: Top center of the image.
Relative Position: in the text line: 3/64 Modem
Font Inconsistency: The tampered text "Modem" shows noticeable differences in both color and thickness compared to the genuine text. The 
letters appear heavier or darker, indicating that a distinct font style or weight may have been applied during the editing process.

Qwen2.5VL-7B (Baseline), incomprehensive

Figure 17: Comparisons in image forgery interpretation.
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[
{
"Tampered Region": "The text: Burlington"
"Absolute Position": "Center of the image"
"Relative Position: "In the textline: Burlington giig"
"Artifacts": {

"Edge Artifacts": "The edges surrounding the tampered text "Burlington" exhibit a slight blur and discontinuity compared to the 
surrounding authentic text. The background behind the tampered text is less consistent with the authentic regions, indicating tampering where 
the text has been altered or replaced. ", 

"Font Inconsistency": "The font of the tampered text "Burlington" displays noticeable differences in color and thickness compared to 
the authentic text. The letters in "Burlington" are darker and thicker, resulting in a mismatch with the style of the text above and below it. The 
font appears slightly stretched or distorted, which is atypical for the surrounding text. ", 

"Texture Inconsistency": "The texture of the text Burlington" appears unnaturally smooth, lacking the subtle pores and minor 
distortions that lend a natural look, resulting in an artificial appearance."

"High-level Artifacts": "The inclusion of "Burlington" within the text line "Burlington giig" breaks the flow of the sentence. The 
additional characters "giig" after "Burlington" create confusion, as they do not form a coherent word in English, suggesting that the tampered 
text disrupts the intended meaning of the sign."

}
},
{
"Tampered Region": "The text: giig "
"Absolute Position": " Right side of the image"
"Relative Position: "In the textline: Burlington giig"
"Artifacts": {

"Edge Artifacts": "The edges around the tampered text "giig" display noticeable inconsistencies. The background texture does not blend 
seamlessly with the surrounding authentic text, resulting in a jagged or uneven appearance. This discontinuity at the edges indicates a lack of 
integration with the original signage.", 

"Font Inconsistency": "The font of the tampered text differs from the surrounding text in several aspects. The color of "giig" appears 
slightly lighter and less bold compared to the surrounding text "Burlington". Additionally, the style and thickness of the letters are not uniform 
with the authentic text, creating an evident visual discrepancy.", 

"Alignment Inconsistency ": "The positioning of the tampered text "giig" shows misalignment with the rest of the text line. There is an 
observable spacing irregularity, where "giig" does not sit properly aligned with "Burlington". This misalignment detracts from the overall 
coherence of the text line.", 

"Texture Inconsistency": "The texture of the text "giig" lacks uniformity: certain regions are overly smooth, while others exhibit 
unnatural patterning."

"High-level Artifacts": "The tampered text "giig" appears to be a misspelling and does not make sense within the context of the phrase 
"Burlington giig". The intended word is likely "Burlington", which makes the inclusion of "giig" nonsensical and incoherent, further indicating 
tampering.“

}
},
{
"Tampered Region": "The text: Ty"
"Absolute Position": " Top right of the image"
"Relative Position: "In the textline: Footpath.Ty"
"Artifacts": {

"Edge Artifacts": ……,
"Alignment Inconsistency ": ……,
"Texture Inconsistency": ……,
"High-level Artifacts": ……,}

},
]

Figure 18: A representative sample to display our Omni-273k’s structured annotation format.
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"Tampered Region": The text: "pdas",
"Absolute Position": Center of the image,
"Relative Position" : In the textline: "pdas" 
"Artifacts": {
"Edge Artifacts": "The edges around the tampered text "pdas" are 

inconsistent with the background. There is a noticeable blur or softness at 
the edges of the letters, suggesting that the text does not blend seamlessly 
with the background, leading to a discontinuous appearance.", 
"High-level Artifacts": "The word "pdas" should not be on the signboard 

because it is incongruous with standard traffic sign conventions. Official 
directional signs use specific, universally understood text (like place names 
or instructions), and "pdas" does not fit any recognized category, 
suggesting it has been digitally added."
}

Tampered Image

Localization

Network Explanation Network

Empty Mask Prediction (Wrong)

Figure 19: Our explanation module is designed to be robust against localization failures. It uses
the localization mask as a guide but is not strictly bound by it. For example, if the localization
module fails to detect a tampered region (i.e., predicts an empty mask), the explanation module can
still independently identify the anomaly and report it, effectively correcting the initial error. In the
predicted mask of this figure, white denotes real region, blue denotes tampered region.
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Figure 20: To split individual tampered objects, we employed a domain-specific strategy. For docu-
ment, scene-text, and face images, where tampered objects typically consist of a single contiguous
region, we used a connected-component analysis on the annotation masks. For natural images,
where a single object may comprise multiple disconnected regions, we prompted GPT-4o to group
mask fragments into semantic objects, followed by manual verification to ensure accuracy.
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