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Abstract

In the rapidly evolving domain of Natural001
Language Generation (NLG) evaluation, intro-002
ducing Large Language Models (LLMs) has003
opened new avenues for assessing generated004
content quality, e.g., coherence, creativity, and005
context relevance. This paper aims to provide006
a thorough overview of leveraging LLMs for007
NLG evaluation, a burgeoning area that lacks a008
systematic analysis. We propose a coherent tax-009
onomy for organizing existing LLM-based eval-010
uation metrics, offering a structured framework011
to understand and compare these methods. Our012
detailed exploration includes critically assess-013
ing various LLM-based methodologies, as well014
as comparing their strengths and limitations in015
evaluating NLG outputs. By discussing unre-016
solved challenges, including bias, robustness,017
domain-specificity, and unified evaluation, this018
paper seeks to offer insights to researchers and019
advocate for fairer and more advanced NLG020
evaluation techniques.021

1 Introduction022

Natural Language Generation (NLG) stands at the023

forefront of AI-driven communication, with ad-024

vancements in LLMs (Ouyang et al., 2022; Ope-025

nAI, 2023). These models demonstrate exceptional026

text generation proficiency, highlighting the need027

for robust evaluation. Traditional metrics such as028

BLEU (Papineni et al., 2002) and ROUGE (Lin,029

2004) mainly focus on surface differences, inade-030

quately capturing semantic quality (Freitag et al.,031

2020). Embedding-based methods (Liu et al., 2016;032

Sellam et al., 2020; Zhang et al., 2020) suffer from033

limited scope (Freitag et al., 2021a), low align-034

ment with human judgment (Liu et al., 2023c), and035

lack of interpretability (Xu et al., 2023). These036

underscores the urgent need for more effective and037

flexible evaluation techniques in NLG.038

The emergent capabilities of LLMs, such as039

Chain-of-Thought (CoT) (Wei et al., 2022) and040
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Figure 1: Illustration of LLMs for NLG evaluation. The
dashed line means that the references and sources are
optional based on the scenarios.

better alignment with human preferences (Ouyang 041

et al., 2022), position them as effective tools 042

for NLG evaluation, offering sophisticated and 043

human-aligned assessments beyond traditional 044

methods (Liu et al., 2023c; Kocmi and Federmann, 045

2023; Fu et al., 2023). For example, LLMs can 046

provide explanations for scores (Xu et al., 2023), 047

and reinforcement learning with human feedback 048

(RLHF) further aligns LLMs with human judg- 049

ment (Ouyang et al., 2022; Zheng et al., 2023). 050

As illustrated in Figure 1, the key strategy involves 051

prompting LLMs to evaluate texts from various 052

aspects, with or without references or sources. 053

Given the burgeoning body of work on LLMs 054

for NLG evaluation, there is an urgent need for 055

a synthesized summary to navigate the advanced 056

and varied works in this area. This paper aims to 057

offer a comprehensive overview with a coherent 058

taxonomy for categorizing existing research. We 059

carefully outline the existing methods, and engage 060

in an analytical discussion on their unique features 061

and limitations. Additionally, we navigate through 062

the unresolved challenges and open questions, high- 063

lighting potential directions for future research. 064

Organization of this paper: We start by set- 065

ting up a formal framework for NLG evaluation 066

and introduce a taxonomy to organize relevant re- 067

search (§2). We then provide detailed discussions 068

on these works (§3). Furthermore, we provide 069

a thorough comparison of LLM-based evaluators 070
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Figure 2: Illustration of NLG evaluation functions: (a)
generative-based and (b) matching-based methods.

with traditional evaluators in terms of performance,071

efficiency and qualitative qualitative analysis (Sec-072

tion 4). Acknowledging the field’s swift progress,073

we highlight and explore potential open problems074

for future investigation (§5).075

2 Formalization and Taxonomy076

Formalization The goal of LLM-based NLG077

evaluation is to evaluate model-generated text078

across various dimensions, such as fluency, consis-079

tency, etc. To maintain generality, the LLM-based080

NLG evaluation framework for task t is defined as:081

E = ft(h, s, r), (1)082

where f represents the evaluation function exe-083

cuted by LLMs, h is the hypothesis text (i.e. the084

candidate generation) under evaluation, s stands for085

the source of the generation, which could include086

source text or supporting documents, and r denotes087

the ground truth references.088

Taxonomy We classify works along three pri-089

mary dimensions according to Eq. 1: evaluation090

task, evaluation references and evaluation function.091

Evaluation Task t: NLG encompasses a di-092

verse range of tasks, such as Machine Translation093

(MT) (Farhad et al., 2021; Bapna et al., 2019), Text094

Summarization (TS) (Liu and Liu, 2021; Zhang095

et al., 2023a), Dialogue Generation (DG) (Wang096

et al., 2022; Kann et al., 2022), Story Generation097

(SG) (Yang et al., 2022; Fan et al., 2018), etc, each098

with its unique evaluation requirements. The spe-099

cific nature of each task determines the target eval-100

uation aspects and scenarios.101

Evaluation References r: Evaluation scenarios102

are categorized into reference-based and reference-103

free based on the availability of references. In104

reference-based evaluation, the generated text h105

is assessed against ground truth references r, focus-106

ing on accuracy, relevance, coherence, and similar-107

ity to the references. Conversely, the reference-free108

method evaluates h without external references,109

concentrating on its intrinsic qualities or alignment110

with the source context s. It is suitable for evaluat- 111

ing fluency, originality, context relevance, etc. 112

Evaluation Function f : The evaluation func- 113

tion can be categorized as either matching-based 114

or generative-based, depending on how LLMs are 115

utilized. As depicted in Figure 2, matching-based 116

methods assess the semantic similarity between the 117

hypothesis and the reference or source text. These 118

methods include token-level matching in represen- 119

tation space (Zhang et al., 2020; Zhao et al., 2019) 120

or in discrete string space (Lin, 2004; Papineni 121

et al., 2002), and sequence-level evaluation (Sellam 122

et al., 2020; Rei et al., 2020; Peyrard et al., 2017). 123

On the other hand, generative-based methods use 124

LLMs to produce textual evaluations directly, tap- 125

ping into the generative powers of LLMs to design 126

instructions for assessing text quality. 127

Scope of this paper Matching-based methods 128

are typically based on encoder-based language 129

models to calculate a score-specific aspect of eval- 130

uation. Most of them often face challenges such 131

as limited interpretability, lower correlation with 132

human judgments, and restricted aspects (Xu et al., 133

2023; Fu et al., 2023). In contrast, generative LLMs 134

tend to have huge size with powerful emergent 135

abilities. These abilities include improved inter- 136

pretability through CoT, higher customization via 137

instruction-following capabilities, and better align- 138

ment with human evaluations through RLHF (Xu 139

et al., 2023; Zheng et al., 2023). Given the abun- 140

dance of recent surveys primarily focusing on 141

matching-based evaluation methods (refer to (Ce- 142

likyilmaz et al., 2020; Sai et al., 2022; Goyal et al., 143

2023) for comprehensive summaries), our paper is 144

dedicated to exploring more burgeoning generative- 145

based methods (Figure 3). 146

3 Generative Evaluation 147

Amidst the rapid evolution of LLMs, a burgeon- 148

ing body of research has directed its focus toward 149

leveraging LLMs as NLG evaluators, which we 150

refer to as generative evaluation. This category, 151

broadly classified into prompt-based and tuning- 152

based evaluation, hinges on whether the parame- 153

ters of LLM evaluators require fine-tuning. The 154

former typically involves directly prompting LLMs 155

to assess generated text through prompt engineer- 156

ing, while the latter relies on open-source LLMs 157

that are specifically calibrated for NLG evaluation. 158

Both approaches cater to diverse evaluation proto- 159

cols for measuring the quality of generated texts. 160
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LLMs for NLG
Evaluation

Taxonomy
of Generative
Evaluation (§3)

Prompt-based (§3.1)

Score-based GEMBA (Kocmi and Federmann, 2023), Lin (Lin and Chen, 2023), Liu (Liu et al., 2023e),
Wang (Wang et al., 2023b)

Probability-based GPTSCORE (Fu et al., 2023), FFLM (Jia et al., 2023)

Likert-style

GEMBA (Kocmi and Federmann, 2023), Luo (Luo et al., 2023), Gao (Gao et al., 2023),
Skopek (Skopek et al., 2023), LLM-ToT-eval (Zhao et al., 2023), Attrscore (Yue et al., 2023),
Chen (Chen et al., 2023), Bai (Bai et al., 2023), Gilardi (Gilardi et al., 2023),
Huang (Huang et al., 2023), LLM-longeval (Wu et al., 2023b), LLM-judge (Zheng et al., 2023),
Zhuo (Zhuo, 2023), Sottana (Sottana et al., 2023), Ostheimer (Ostheimer et al., 2023),
AUTOCALIBRATE (Liu et al., 2023f), Chiang (Chiang and Lee, 2023)

Pairwise
Luo (Luo et al., 2023), Gao (Gao et al., 2023), FairEval (Wang et al., 2023c), Ji (Ji et al., 2023),
LLM-judge (Zheng et al., 2023), EvalLM (Kim et al., 2023b), Bai (Bai et al., 2023),
Chen (Chen et al., 2023), AuPEL (Wang et al., 2023e)

Ensemble DRPE (Wu et al., 2023a), WideDeep (Zhang et al., 2023b), ChatEval (Chan et al., 2023),
Prd (Li et al., 2023c)

Advanced
EAprompt (Lu et al., 2023), Geval (Liu et al., 2023c), FACTSCORE (Min et al., 2023),
ALLURE (Hasanbeig et al., 2023), Para-Ref (Tang et al., 2023),
ICE (Jain et al., 2023)

Tuning-based (§3.2)

Probability-based PRISM (Thompson and Post, 2020), T5SCORE (Qin et al., 2022)

Likert-style
TrueTeacher (Gekhman et al., 2023), PERSE (Wang et al., 2023a), Attrscore (Yue et al., 2023),
AUTO-J (Li et al., 2023a), Prometheus (Kim et al., 2023a), CritiqueLLM (Ke et al., 2023) ,
X-EVAL (Liu et al., 2023a), PROMETHEUS-2 (Kim et al., 2024)

Pairwise PandaLM (Wang et al., 2023f), AUTO-J (Li et al., 2023a), LLM-judge (Zheng et al., 2023),
PERSE (Wang et al., 2023a), Prometheus (Kim et al., 2023a)

Advanced Attscore (Yue et al., 2023), INSTRUCTSCORE (Xu et al., 2023), TIGERScore (Jiang et al., 2023)

Meta-Evaluation
Benchmarks (§B)

Machine Translation MQM (Freitag et al., 2021a), WMT Metrics Shared Task (Mathur et al., 2020; Freitag et al., 2021b, 2022)

Text Summarization
NEWSROOM (Grusky et al., 2018), SamSum (Gliwa et al., 2019), REALSumm (Bhandari et al., 2020),
QAGS_XSUM (Wang et al., 2020a), FRANK (Pagnoni et al., 2021), SummEval (Fabbri et al., 2021a),
SummaC (Laban et al., 2022), RiSum (Skopek et al., 2023), OpinSummEval (Shen and Wan, 2023)

Dialogue Generation FED (Mehri and Eskenazi, 2020a), Topical-Chat (Gopalakrishnan et al., 2019), PersonaChat (Zhang et al., 2018)

Image Caption Flickr8K-Expert (Hodosh et al., 2013), Composite (Aditya et al., 2015), Pascal-50S (Vedantam et al., 2015),
MSCOCO Image Captioning Challenge (Cui et al., 2018)

Data-to-Text BAGEL (Mairesse et al., 2010), SFRES (Wen et al., 2015), SFHOT (Wen et al., 2015), WebNLG (Castro Ferreira et al., 2020)

Story Generation OpenMEVA (Guan et al., 2021), WP200 (Chen et al., 2022), SCARY200 (Chen et al., 2022), PREF200 (Chen et al., 2022),
COH200 (Chen et al., 2022), Per-MPST (Wang et al., 2023a), Per-DOC (Wang et al., 2023a)

General Generation AlpacaEval (Li et al., 2023d), MT-bench (Zheng et al., 2023), FairEval (Wang et al., 2023c), Shepherd (Wang et al., 2023d),
LLMBar (Zeng et al., 2023), LLMeval (Zhang et al., 2023b), AttrEval (Yue et al., 2023), ALIGNBENCH (Liu et al., 2023b)

Figure 3: Taxonomy of research in NLG evaluation with large language models.

Some endeavors deploy LLM evaluators to yield161

continuous scalar quality scores for generated162

texts—termed as ➊ score-based evaluation. Oth-163

ers calculate the generation probability of gener-164

ated texts based on prompts, sources or reference165

texts (optional) as the evaluation metric, denoted166

as ➋ probability-based evaluation. Certain works167

assess the quality of generated text by assigning168

it to a specific quality level using quality labels or169

likert scales—referred to as ➌ likert-style evalua-170

tion. Meanwhile, ➍ pairwise comparison methods171

involve using LLM evaluators to compare quality172

of pairs of generated texts. Additionally, ➎ en-173

semble evaluation methods utilize multiple LLM174

evaluators, orchestrating communication among175

evaluators to yield final evaluation results. Finally,176

some recent studies explore ➏ advanced evalua-177

tion methods that consider fine-grained criteria or178

combine the capabilities of chain-of-thought or in-179

context leaning. Table 1 provides a comprehensive180

overview of current representative prompt-based181

and tuning-based evaluation methods. This sec-182

tion delves into a detailed exploration of these two183

overarching categories, each accompanied by their184

respective evaluation protocols.185

3.1 Prompt-based Evaluation 186

Prompt-based text evaluation stands at the fore- 187

front of advancements in NLG, particularly lever- 188

aging the capabilities of LLMs. In this method, 189

the evaluation process is intricately woven into the 190

crafting of prompts – specialized cues designed to 191

guide LLMs in assessing the quality of generated 192

text. More recently, the Eval4NLP workshop held 193

a shared task on prompting LLMs as explainable 194

metrics (Leiter et al., 2023). By harnessing the 195

prowess of LLMs, prompt-based evaluation not 196

only provides a comprehensive understanding of 197

NLG system performance but also offers a nuanced 198

approach to extracting valuable insights. 199

Score Evaluation. An intuitive and widely em- 200

ployed protocol for text evaluation involves prompt- 201

ing LLM evaluators to generate a continuous qual- 202

ity score. A concrete example is illustrated in the 203

first row of Table 4 in the appendix. Pioneering this 204

method, GEMBA (Kocmi and Federmann, 2023) 205

proposed to utilize LLM evaluators to assign trans- 206

lation quality scores ranging from 0 to 100 with 207

or without reference. Building on this foundation, 208

Lin and Chen (2023) and Liu et al. (2023e) ex- 209

tended score evaluation methods to open-domain 210

and closed-end conversations evaluation. Further- 211
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Metric MT TS DG IC D2T SG GE REF LLMs Protocol Aspects

Prompt-based Evaluation

BARTScore (Yuan et al., 2021) ✓ ✓ * * ✓ * * ✓ BART Prob CON/COH/REL/FLU/
INF/COV/ADE

GPTScore (Fu et al., 2023) ✓ ✓ ✓ ✓ * * GPT3 Prob CON/COH/REL/FLU/COV/ACC
MQM/INF/FAC/INT/ENG/NAT

G-EVAL (Liu et al., 2023c) * ✓ ✓ * * * ChatGPT/GPT-4 Advanced CON/COH/REL/FLU
/NAT/ENG/GRO

ICE (Jain et al., 2023) * ✓ * * * * GPT-3 Score CON/COH/REL/FLU
GEMBA (Kocmi and Federmann, 2023) ✓ * * * * * ChatGPT Score/Likert NONE

LLM_eval (Chiang and Lee, 2023) * * * * ✓ * ChatGPT Likert GRAM/COH/REL/LIK
FairEval (Wang et al., 2023c) * * * * * ✓ ChatGPT/GPT-4 Pairwise NONE
AuPEL (Wang et al., 2023e) * * * * * ✓ PaLM-2 Pairwise PER/QUA/REL

DRPE (Wu et al., 2023a) * ✓ * * * * * ✓ GPT-3 Ensemble CON/COH/REL/FLU/INT/USE
ChatEval (Chan et al., 2023) * * ✓ * * ✓ ChatGPT/GPT-4 Ensemble NAT/COH/ENG/GRO

WideDeep (Zhang et al., 2023b) * * * * * ✓ ChatGPT Ensemble COH/REL/HARM/ACC

PRD (Li et al., 2023c) * * * * * ✓
GPT-4/GPT-3.5

Vicuna/Claude/Bard Ensemble INF/COH

FACTSCORE (Min et al., 2023) * ✓ ChatGPT Advanced FAC
EAprompt (Lu et al., 2023) ✓ * * * * * ChatGPT/text-davinci-003 Advanced NONE

AUTOCALIBRATE (Liu et al., 2023f) * ✓ * * * * GPT-4 Likert CON/COH/REL/FLU/INF/NAT
ALLURE (Hasanbeig et al., 2023) * ✓ * * * ✓ GPT-4 Advanced CON/COH/FLU/REL

Tuning-based Evaluation

PRISM (Thompson and Post, 2020) ✓ * * * * * * ✓ Transformer Prob NONE
T5Score (Qin et al., 2022) ✓ ✓ * * * * * ✓ T5 Prob NONE

TrueTeacher (Gekhman et al., 2023) * ✓ * * * * T5 Likert CON

X-EVAL (Liu et al., 2023a) * ✓ ✓ ✓ * * FLAN-T5-large Likert
DEP/LIK/UND/FLE/INF/INQ
INT/SPE/COR/SEM/COH/ENG
NAT/GRO/CON/REL/FLU

AUTO-J (Li et al., 2023a) * * * * * * LLaMA Likert/Pairwise ACC/CLA/FEA/CRE/THO
STR/LAY/COM/INF

PERSE (Wang et al., 2023a) * * * * * ✓ * ✓ LLaMA Likert/Pairwise INT/ADA/SUR/CHA/END
PandaLM (Wang et al., 2023f) * * * * * ✓ LLaMA Pairwise CLA/COM/FOR/ADH

Attscore (Yue et al., 2023) * * * * * ✓
Roberta/T5/GPT2
LLaMA/Vicuna Advanced CON

TIGERScore (Jiang et al., 2023) ✓ ✓ * ✓ ✓ ✓ LLaMA Advanced COH/INF/ACC/COM
INSTRUCTSCORE (Xu et al., 2023) ✓ * * * * * * ✓ LLaMA Advanced NONE

Prometheus (Kim et al., 2023a) * * * * * ✓ LLaMA-2 Likert/Pairwise NONE
Prometheus-2 (Kim et al., 2023a) * * * * * ✓ Mistral 7B Likert/Pairwise NONE

CritiqueLLM (Ke et al., 2023) * * * * * ✓ ChatGLM Likert NONE

Table 1: Automatic metrics proposed (✓) and adopted (*) for various NLG tasks. REF indicate the method is
source context-free. MT: Machine Translation, TS: Text Summarization, DG: Dialogue Generation, IC: Image
Captioning, D2T: Data-to-Text, SG: Story Generation, GE: General Generation. We adopted the evaluation aspects
for different tasks from Fu et al. (2023). Specifically, for each evaluation aspect, CON: consistency, COH: coherence,
REL: relevance, FLU: fluency, INF: informativeness, COV: semantic coverage, ADE: adequacy, NAT: naturalness,
ENG: engagement, GRO: groundness, GRAM: grammaticality, LIK: likability, PER: personalization, QUA: quality,
INT: interest, USE: usefulness, HARM: harmlessness, ACC: accuracy, FAC: factuality, ADA: adaptability, SUR:
surprise, CHA: character, END: ending, FEA: feasibility, CRE: creativity, THO: thoroughness, STR: structure,
LAY: layout, CLA: clarity, COM: comprehensiveness, FPR: formality, ADH: adherence, DEP: topic depth, UND:
understandability, FLE: flexibility, INQ: inquisitiveness, SPE: specificity, COR: correctness, SEM: semantic
appropriateness. NONE means that the method does not specify any aspects and gives an overall evaluation. The
detailed explanation of most evaluation aspect can be found in Fu et al. (2023).

more, Wang et al. (2023b) prompted LLM to gener-212

ate quality scores for generated texts across various213

tasks, both with and without reference.214

Probability-based Evaluation. Recognizing215

that the quality of the generated text is often corre-216

lated with the ease of generation by LLMs based217

on source or reference text, some studies frame218

the evaluation task as a conditional generation219

task. In this context, the generative likelihood220

of the produced text is calculated, serving as the221

score indicative of text quality, as illustrated in222

the second row of Table 4. Yuan et al. (2021)223

first leveraged BART (Lewis et al., 2019) as224

an evaluator to compute the probability of the225

generated text based on source or reference text226

in machine translation, text summarization, and 227

data-to-text tasks. Fu et al. (2023) prompt LLM 228

evaluator to calculate the generation probability of 229

generated text with definitions of evaluation tasks 230

and aspects. Unlike conventional use of generation 231

probability as a quality score, Jia et al. (2023) 232

calculated three probability changes to evaluate the 233

faithfulness of the generated summary including 234

changes with prior and conditional probability. 235

Likert-Style Evaluation. Inspired by the human 236

annotation process, many studies employ LLM 237

evaluators to assess the quality levels of generated 238

texts based on a likert-style scale (Bai et al., 2023; 239

Gao et al., 2023; Ostheimer et al., 2023; Gilardi 240

et al., 2023; Huang et al., 2023; Zhao et al., 2023; 241
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Figure 4: A example of fine-grained evaluation in-
spired by Jiang et al. (2023).

Figure 5: A example of ensemble evaluation inspired
by Li et al. (2023c).

Wu et al., 2023b; Luo et al., 2023; Zheng et al.,242

2023; Zhuo, 2023; Sottana et al., 2023; Skopek243

et al., 2023). A representative likert-style prompt244

is depicted in the third line of Table 4. Chiang245

and Lee (2023) provided LLM evaluators with the246

same evaluation instructions as human annotators,247

prompting them to rate the quality of generated248

texts using a 5-point likert scale. Meanwhile, Gao249

et al. (2023) instructed ChatGPT to rate model-250

generated summarizations across multiple evalua-251

tion aspects, using a scale ranging from 1 (worst)252

to 5 (best) based on the provided source document.253

Ostheimer et al. (2023) designed multiple prompts,254

each guiding the LLM evaluator to assess a specific255

evaluation aspect of text style transfer task with a256

discrete scale. Liu et al. (2023f) utilized LLMs to257

draft, filter, and refine comprehensive evaluation258

criteria with a likert scale as score instructions.259

Pairwise Evaluation. Compared with utilizing260

LLM evaluators to individually evaluate the quality261

of generated texts, another way is explicitly com-262

paring with other generated text and decide which263

one is superior (Bai et al., 2023; Ji et al., 2023). A264

representative prompt is shown in the last row of Ta-265

ble 4. Wang et al. (2023c) employed LLM to assess266

a pair of model-generated responses, integrating a267

methodology involving multifaceted evidence and268

calibrated positioning, and leveraging human an-269

notators if necessary to mitigate the influence of270

response pair order. Wang et al. (2023e) introduced271

a personalized evaluation framework prompting272

LLM to perform pairwise comparisons on three273

aspects: personalization, quality, and relevance.274

Ensemble Evaluation. Since the evaluation pro-275

cess typically entails collaboration among multi-276

ple human annotators, some studies employ di-277

verse LLM evaluators with varying base models278

or prompts, enabling assessments of text quality279

from different perspectives, as illustrated in Fig-280

ure 5. Wu et al. (2023a) set multiple roles for281

the LLM to evaluate the quality of the generated282

summary by comparing it with the reference one283

on both subjective and objective dimensions. Li284

et al. (2023c) employed multiple LLM evaluators 285

to conduct pairwise evaluations of model-generated 286

responses which iteratively discuss comparison re- 287

sults. Besides, Chan et al. (2023) designed di- 288

verse communication strategies with various role 289

prompts during collaborative discussions. 290

Advanced Evaluation. Some recent works in- 291

vestigate advanced evaluation to achieve compre- 292

hensive assessment outcomes by leveraging chain- 293

of-thought, in-context learning capabilities, fine- 294

grained analysis, etc (Jain et al., 2023; Min et al., 295

2023; Hasanbeig et al., 2023; Tang et al., 2023). 296

A representative fine-grained evaluation method 297

is shown in Figure 4. Liu et al. (2023c) utilized 298

LLMs with chain-of-thought to evaluate the quality 299

of generated texts across various NLG tasks and 300

evaluation aspects. Lu et al. (2023) combined CoT 301

to prompt the LLM evaluator to analyze different 302

types of pre-defined errors in the generated transla- 303

tion, and then measured the quality of a generated 304

translation. To enhance and improve the robust- 305

ness of LLM-based evaluators, Hasanbeig et al. 306

(2023) proposed ALLURE, a systematic protocol 307

for auditing and improving LLM-based evaluation 308

of text using iterative in-context-learning. Tang 309

et al. (2023) leveraged LLMs to paraphrase a single 310

reference into multiple high-quality ones in diverse 311

expressions, which enhances evaluation methods 312

on several NLG tasks. Liu et al. (2023f) mined and 313

calibrated rubrics utilizing in-context learning to 314

automatically align the LLM evaluator. 315

3.2 Tuning-based Evaluation 316

Researchers are also increasingly turn their atten- 317

tion towards fine-tuning open-source LLMs (e.g., 318

LLaMA). In contrast to closed-based models de- 319

manding expensive API calls, the fine-tuning of 320

smaller LLMs provides a cost-effective alternative. 321

Additionally, the process of prompting LLMs for 322

NLG evaluation requires meticulous crafting of 323

prompts, with variations potentially resulting in 324

significant differences in outcomes. Furthermore, 325

the consideration of domain adaptability under- 326
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scores the evolving landscape of NLG evaluation.327

Fine-tuning open-source LLMs affords researchers328

the flexibility to tailor models to diverse domains329

and tasks, transcending the limitations imposed by330

closed-based models confined to specific niches.331

Likert-Style Evaluation. Some works tune332

LLMs to provide quality level or label for gen-333

erated texts (Li et al., 2023a; Gekhman et al., 2023;334

Yue et al., 2023; Wang et al., 2023a; Kim et al.,335

2023a). Gekhman et al. (2023) employed FLAN-336

PaLM 540B (Chung et al., 2022) to annotate the337

quality of real model-generated summaries and uti-338

lized these annotated data as training data to tune339

a light-weight LLM (e.g., T5-11B) as a factual340

consistency summary evaluator. Li et al. (2023a)341

created a dataset containing multiple scenarios and342

used GPT-4 (OpenAI, 2023) to generate evaluation343

judgments for each scenario as supervision signals344

to tune LLaMA as a generative evaluator. Wang345

et al. (2023a) repurposed existing datasets with346

new personalized labels to tune LLaMA2 (Tou-347

vron et al., 2023) as a personalized story evaluation348

model which outputs a grade in [1, 10] and detailed349

reviews. Ke et al. (2023) collected referenced and350

reference-free data with dialogue-based prompt-351

ing by instructing GPT-4, utilized which to tune352

LLMs for evaluating generated texts with explana-353

tions. Liu et al. (2023a) constructed a reference-354

free instruction-tuning dataset tailored for multi-355

aspect evaluation across various tasks, and tuned356

evaluator with auxiliary aspects additionally.357

Probability-based Evaluation. Some works358

train generative LLMs to calculate the generation359

probability of generated texts to evaluate text qual-360

ity. Thompson and Post (2020) trained a trans-361

former as a multilingual reference-to-candidate362

paraphraser to obtain the generated probability of363

generated translation based on reference. Qin et al.364

(2022) tuned the T5 model in the generative and365

discriminative fashion, used which to calculate gen-366

erative probability of generated text.367

Pairwise Evaluation. There are also some works368

tuning LLMs for comparison between generated369

text pairs. Wang et al. (2023f) collected response370

pairs from LLMs and asked GPT-3.5 to generate371

output judgments, utilized which to tune LLaMA-372

7B to evaluate a pair of model-generated responses373

with the given query, accompanied by a concise de-374

scription of the evaluation procedure. Zheng et al.375

(2023) performed fine-tuning on Vicuna using a hu-376

man votes dataset from Chatbot Arena to pairwise377

evaluate two answers with the given query. 378

Advanced Evaluation. Nearly all tuning-based 379

evaluators are trained to emulate evaluation behav- 380

ior produced by strong closed models (e.g., GPT- 381

4 or ChatGPT). Most studies gravitate towards 382

holistic evaluation (Li et al., 2023a; Wang et al., 383

2023f,a; Kim et al., 2023a), which takes into ac- 384

count a diverse range of aspects to offer a holistic 385

understanding of the quality of the hypothesis text. 386

Besides, some studies explore error-oriented eval- 387

uation which focused on examining and explaining 388

the specific errors in the hypothesis text, offering in- 389

sights into why a particular score is derived. For in- 390

stance, Yue et al. (2023) first defined different types 391

of attribution errors, and then explored prompting 392

LLMs or fine-tuning smaller LLMs on simulated 393

and repurposed data from related tasks such as 394

QA, NLI, and summarization. Xu et al. (2023) 395

utilized GPT-4 to construct fine-grained analysis 396

data to tune LLaMA as error-oriented evaluator, 397

after which this work utilized real model-generated 398

response-reference pairs to refine and self-train 399

evaluator. Furthermore, Jiang et al. (2023) sam- 400

pled data from diverse text generation datasets with 401

real system output and GPT-4 synthesis, and tuned 402

LLaMA using error analysis generated by GPT4 403

for fine-grained evaluation. 404

4 Comparing Traditional Evaluators 405

Qualitative Comparison Traditional evaluation 406

metrics (e.g., BLEU (Papineni et al., 2002) and 407

ROUGE) focus on exacting n-gram matches, which 408

penalizes semantically correct but lexically differ- 409

ent hypotheses. These methods are simple and fast 410

but not robust to paraphrasing. BERTScore (Zhang 411

et al., 2020) measures quality through semantic 412

similarity based on BERT contextual embeddings, 413

effectively handling paraphrases and synonyms. 414

However, such matching-based evaluators depend 415

on the quality of the pre-trained embeddings, may 416

struggle with very fine-grained semantic distinc- 417

tions, and neglect the overall semantics of the hy- 418

potheses and references. Additionally, neither met- 419

ric accounts for fluency or readability during evalu- 420

ation and both still rely on reference texts. 421

In contrast, LLMs have a strong capability for 422

language understanding and generation, which sup- 423

ports evaluating quality without needing references. 424

They can adapt to various domains and languages, 425

making them suitable for a wide range of NLG 426

tasks without requiring task-specific feature engi- 427
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Metrics Sup SummEval Topical-Chat WMT22

COH CON FLU REL Avg NAT COH ENG GRO Avg En-De En-Ru Zh-Eu

Traditional Metrics (Word Overlap)

ROUGE-1 0.167 0.160 0.115 0.326 0.192 0.158 0.206 0.319 0.264 0.233 - - -
ROUGE-2 0.184 0.187 0.159 0.290 0.205 0.168 0.247 0.337 0.311 0.266 - - -
ROUGE-L 0.128 0.115 0.105 0.311 0.165 0.145 0.205 0.306 0.293 0.237 - - -
BLEU - - - - - 0.175 0.235 0.316 0.310 0.259 0.169 0.140 0.145

BERT-based Metrics

BERTScore 0.284 0.110 0.193 0.312 0.225 0.209 0.233 0.335 0.317 0.273 0.232 0.192 0.316
BLEURT ✓ - - - - - - - - - - 0.344 0.359 0.361
BARTScore ✓ 0.448 0.382 0.356 0.356 0.385 -0.053 -0.079 -0.084 -0.197 -0.103 - - 0.220
UniEval ✓ 0.575 0.446 0.449 0.426 0.474 0.450 0.616 0.615 0.590 0.568 - - -

LLM-based Metrics

GPTScore 0.434 0.449 0.403 0.381 0.417 - - - - - - - 0.187
CHATGPT(DA) 0.451 0.432 0.380 0.439 0.425 0.474 0.527 0.599 0.576 0.544 0.306 0.332 0.371
G-Eval 0.582 0.507 0.455 0.547 0.514 0.607 0.590 0.605 0.536 0.590 - - -
Embed Llama - - - - - - - - - - 0.400 0.227 0.217
X-Eval ✓ 0.530 0.428 0.461 0.500 0.480 0.478 0.622 0.593 0.728 0.605 - - -

Table 2: Performance of traditional and LLM-based metrics on Summarizing (SummEval), Dialogue (Topical-Chat)
and MT (WMT22) tasks. We demonstrate the sample-level Spearman correlations on SummEval and Topical-Chat
benchmarks and the segment-level Kendall-Tau correlations on WMT22 benchmarks respectively. Sup indicates the
metric is supervised. The specific meaning of the evaluation aspects is shown in Table 1.

neering. LLMs also provide more nuanced eval-428

uation criteria beyond traditional metrics, such as429

semantic coherence, fluency and possible explana-430

tions. However, LLM-based methods are compu-431

tationally more intensive due to their vast architec-432

tures. Additionally, prompting LLMs for NLG eval-433

uation requires careful crafting of prompts. Varia-434

tions in these prompts can lead to substantial differ-435

ences in evaluation outcomes, as indicated in (Gao436

et al., 2023). Section 5 summarizes more open437

problems of LLM-based metrics.438

Performance Comparison Table 2 summarizes439

the performance of both traditional word-overlap440

metrics, BERT-based metrics and recent LLM-441

based metrics on representative benchmarks such442

as SummEval, WMT, and Topical-Chat. We can443

easy to observe that the latter two metrics generally444

perform better than word-overlap metrics. Despite445

not being fine-tuned, the most competitive LLM-446

based methods (e.g., G-Eval for summarization and447

CHATGPT(DA) for machine translation) generally448

achieve a higher correlation with all traditional met-449

rics, whether for unsupervised or fine-tuned meth-450

ods. These results reveal the strong capability of451

LLMs in language understanding, contextual anal-452

ysis, coherence checking, and fluency assessment453

of generated text. Among the three tasks, the per-454

formance gap between LLM-based evaluators and455

traditional evaluators is not significant in the ma-456

chine translation task. This phenomenon might457

be due to the limitations of LLM-based models in458

cross-lingual understanding. Additionally, accord-459

ing to the results of last row in the table, we can ob- 460

serve that the performance of different LLM-based 461

metrics varies significantly, which implies their sen- 462

sitivity to prompt crafting. In contrast, traditional 463

unsupervised methods like ROUGE, BLEU, and 464

BERTScore are more robust, although their overall 465

performance is relatively worse. 466

Efficiency Comparison Table 3 presents the av- 467

erage number of texts evaluated per second for 468

different metrics in the SummEval (TS task) and 469

Topical-chat (DG task) benchmarks. This compar- 470

ison highlights the efficiency differences between 471

traditional metrics and LLM-based metrics. Our 472

tests were conducted on an NVIDIA A40 GPU. 473

The results show that efficiency generally corre- 474

lates with model size and traditional word-overlap 475

metrics (e.g., BLEU and ROUGE) are significantly 476

faster than other metrics. Specifically, LLM-based 477

evaluators are about 200 to 400 times slower than 478

traditional word-overlap metrics. However, their 479

efficiency can be improved with advanced LM in- 480

ference tools such as vLLM. While LLM-based 481

evaluators are suitable for offline evaluation, they 482

may not be feasible for online evaluation. 483

5 Open Problems 484

Despite significant efforts and achievements in var- 485

ious benchmarks, several challenges persist for 486

LLM-based evaluators. 487

Bias of LLM-based Evaluators. The use of 488

LLMs as evaluators inherently cast the text eval- 489

uation as a generation task. Consequently, when 490
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Methods Backbone TS DG

BLEU - 977.31 2344.16
ROUGE - 446.36 2379.24
BERTScore BERT 37.64 42.37

ChatGPT(DA) ChatGPT 1.94 1.87
G-Eval GPT-4 1.51 1.40
TIGERScore Llama 2.67 3.72

Table 3: The average number of texts evaluated per
second for different metrics.

LLMs are employed in this evaluator role, they491

may carry over biases intrinsic to their function492

as generators. These biases may include social493

biases, such as stereotypes related to specific demo-494

graphic identities (e.g., race, gender, religion, cul-495

ture, and ideology) (Sheng et al., 2021). In addition496

to these general biases, LLMs-as-evaluators are497

subject to specific biases unique to their evaluative498

role. These include order bias, where preference499

is given to options based on their sequence (Zheng500

et al., 2023; Wang et al., 2023c); egocentric bias,501

where a tendency exists to favor texts generated by502

the same LLM (Liu et al., 2023d; Koo et al., 2023);503

and length bias, which leads to a preference for504

longer or shorter texts (Zheng et al., 2023).505

Robustness of LLM-based Evaluators. Most506

LLMs-based evaluation methods rely heavily on507

prompt engineering. However, the process of508

prompting LLMs for NLG evaluation demands509

careful crafting of prompts. The variations in510

these prompts can potentially lead to substantial511

differences in the outcomes of the evaluation pro-512

cess. As demonstrated in Liu et al. (2023e) and513

Koo et al. (2023), LLMs exhibit limited robustness514

when subjected to the adversarial dataset contain-515

ing incorrect facts, irrelevant information, or fab-516

ricated statistics. The robustness of LLM-based517

evaluators emerges as a critical area of exploration,518

underscoring the need for further research to en-519

hance their robustness in the face of challenging or520

misleading inputs.521

Which came first, the chicken or the egg? If the522

evaluator possesses capabilities comparable to the523

model being evaluated, e.g. using GPT-4 to evalu-524

ate GPT-4 itself, there may exist egocentric issue of525

favoring their own generated responses (Bai et al.,526

2023). This scenario mirrors the chicken-and-egg527

dilemma: an LLM-based evaluator relies on a more528

powerful LLM, yet the development of a more pow-529

erful LLM depends on having a robust evaluator.530

To address this dilemma, a broader spectrum of531

evaluation method is necessary, involving various532

benchmark (Srivastava et al., 2022; Liang et al., 533

2022), evaluation criteria (Sellam et al., 2020), and 534

human feedback (Xu et al., 2023; Ouyang et al., 535

2022) to ensure more comprehensive assessments. 536

Domain-Specific Evaluation. Most LLM-based 537

evaluators are general-purpose and not tailored 538

to specific domains. The domain-specific eval- 539

uation poses significant challenges of checking 540

domain factuality and designing specific evalua- 541

tion prompts. For example, while evaluating le- 542

gal documents, aspects such as legal accuracy and 543

adherence to the judicial system are crucial (Cui 544

et al., 2023). Therefore, to enhance the efficacy of 545

LLMs as evaluators in specialized domains, there’s 546

a pressing need to develop models that are not only 547

domain-aware but also equipped with the capability 548

to evaluate based on domain-specific criteria. 549

Unified Evaluation. As LLMs become increas- 550

ingly versatile, there is a need for more compre- 551

hensive and flexible assessment methods. How- 552

ever, most current LLM-based evaluators are lim- 553

ited to constrained tasks and aspects (cf. Table 1). 554

Some promising attempts have been made in this 555

direction. For instance, MT-Bench (Zheng et al., 556

2023) uses GPT-4 as an evaluator across multiple 557

domains for multi-turn questions. Another model, 558

Auto-J (Li et al., 2023b), accommodates diverse 559

evaluation protocols and has been validated in 58 560

different scenarios. In light of increasingly diverse 561

user queries, developing a more unified evaluation 562

protocol is a promising direction. Additionally, 563

constructing high-quality, comprehensive datasets 564

to train unified models holds great potential. 565

6 Conclusion 566

In this paper, we have comprehensively surveyed 567

the role of LLMs in the evaluation of NLG. Our 568

comprehensive taxonomy classifies works along 569

three primary dimensions: evaluation function, 570

evaluation references and evaluation task. Addi- 571

tionally, we summarize holistic LLM-based ap- 572

proaches and prevalent meta-evaluation bench- 573

marks for NLG evaluation. Through our paper, we 574

highlight unresolved issues, including bias, robust- 575

ness, and the need for domain-specific and unified 576

evaluation within LLM-based evaluators. We an- 577

ticipate that addressing these challenges will pave 578

the way for more reliable, general, and effective 579

LLM-based NLG evaluation techniques. 580
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7 Limitations581

In this paper, we propose an overview of leveraging582

large language models for NLG evaluation. This583

paper provides a comprehensive overview about584

the usage of LLM evaluators in evaluation of NLG585

tasks. Nevertheless, due to space restrictions, we586

are unable to provide further details on LLM evalu-587

ators and meta-evaluation benchmarks in this sur-588

vey. Additionally, we do not compare the perfor-589

mance of various LLM evaluators in the paper. Fur-590

thermore, as LLM-based NLG evaluation field is591

rapidly evolving, our paper may not include the592

latest LLM evaluators which are emerged shortly593

before or after its completion. In the future, we594

plan to demonstrate more detailed information for595

each LLM evaluators and track the latest progress596

through updating periodically GitHub repository.597
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Keizer, Blaise Thomson, Kai Yu, and Steve Young.948
2010. Phrase-based statistical language generation949
using graphical models and active learning. In Pro-950
ceedings of the 48th Annual Meeting of the Asso-951
ciation for Computational Linguistics, pages 1552–952
1561, Uppsala, Sweden. Association for Computa-953
tional Linguistics.954

Nitika Mathur, Johnny Wei, Markus Freitag, Qingsong955
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A Appendix1218

B Benchmarks and Tasks1219

Numerous meta-evaluation benchmarks serve the1220

purpose of validating the efficacy of NLG evalua-1221

tors. These benchmarks incorporate human anno-1222

tations gauging the quality of generated text, and1223

evaluating the degree of concurrence between au-1224

tomatic evaluators and human preferences. Cate-1225

gorized based on the tasks involved, these bench-1226

marks can be classified into single-scenario ex-1227

amples, such as summarization, as well as multi-1228

scenario benchmarks. This section will provide an1229

overview of these NLG tasks and their associated1230

meta-evaluation benchmarks.1231

Machine Translation (MT). MT task is centered1232

around converting a sentence or document from1233

a source language into a target language while1234

preserving the same semantic meaning. The An-1235

nual WMT Metrics Shared tasks (Freitag et al.,1236

2021b, 2022) annually introduce a set of bench-1237

marks encompassing model-generated translations,1238

source text, reference text, and human judgment1239

across multiple languages. Simultaneously, Freitag1240

et al. (2021a) curated and annotated outputs from1241

10 translated systems for translation pairs in the1242

WMT 2020 news translation task (Barrault et al.,1243

2020). They used professionals and crowd workers1244

to rate translations on a 7-point scale using multi-1245

dimensional metrics.1246

Text Summarizing (TS). TS involves generating1247

a summary of a given text while capturing its es-1248

sential meaning. There are many meta-evaluation1249

benchmarks proposed (Grusky et al., 2018; Gliwa1250

et al., 2019; Bhandari et al., 2020; Wang et al.,1251

2020b; Pagnoni et al., 2021; Laban et al., 2022;1252

Skopek et al., 2023; Shen and Wan, 2023). One of1253

the widely used benchmarks is SummEval (Fabbri1254

et al., 2021b) which includes summaries generated1255

by 16 models from 100 source news articles. Each1256

summary underwent annotation by crowd-sourced1257

workers and experts on four dimensions: coherence,1258

consistency, fluency and relevance. In addition,1259

Shen and Wan (2023) presented a meta-evaluation1260

benchmark for opinion summarization tasks, in-1261

cluding human judgments and outputs from 141262

models over four dimensions.1263

Dialogue Generation (DG). DG task aims to1264

generate human-like responses in the context of1265

a conversation which should be natural and con-1266

sistent. Mehri and Eskenazi (2020b) performed1267

human annotations across two open-domain dialog 1268

corpora Topical-Chat (Gopalakrishnan et al., 2019) 1269

and PersonaChat (Zhang et al., 2018), where each 1270

response is scored from 6 dimensions including nat- 1271

uralness, coherence, engagingness, groundedness, 1272

understandability and overall quality. Similaritily, 1273

Mehri and Eskenazi (2020a) sampled and anno- 1274

tated a subset from a set of conversations across 1275

eighteen dialog quality dimensions. 1276

Image Caption (IC). The task involves gener- 1277

ating textual descriptions or captions for images. 1278

Meta-evaluation benchmarks of IC contain human 1279

annotations for image-textual pairs or hypothesis- 1280

reference caption pairs (Aditya et al., 2015; Vedan- 1281

tam et al., 2015; Cui et al., 2018). For example, the 1282

commonly used Flickr 8k dataset (Hodosh et al., 1283

2013) collected human annotations from both ex- 1284

pert and CrowdFlower for each image-caption pair. 1285

Cui et al. (2018) collected human judgments for 1286

twelve submission entries with reference captions 1287

from the 2015 COCO Captioning Challenge on the 1288

COCO validation set (Vinyals et al., 2016). 1289

Data-to-Text (D2T). D2T task involves gener- 1290

ating fluent and factual human-readable text from 1291

structured data. Mairesse et al. (2010) proposed 1292

BAGEL, which contains 202 structured informa- 1293

tion samples about restaurants in Cambridge. Wen 1294

et al. (2015) further proposed SFRES and SFHOT, 1295

which contain 581 samples of restaurants and 398 1296

samples of hotels in San Francisco, respectively. 1297

Story Generation (SG). The task involves cre- 1298

ating relevant narratives or stories with the given 1299

beginning of a story or writing requirement. Most 1300

meta-evaluation benchmarks of story generation 1301

always contain stories and corresponding manu- 1302

ally annotated judgment scores (Guan et al., 2021; 1303

Chen et al., 2022). Besides, Wang et al. (2023a) 1304

created two personalized story evaluation bench- 1305

marks denoted as Per-MPST and Per-DOC. This 1306

work repurposed existing datasets (Kar et al., 2018; 1307

Yang et al., 2023) through anonymizing and sum- 1308

marizing. Both them provide personalized human 1309

judgements for each generated story. 1310

General Generation (GE). As LLMs have been 1311

increasingly used in general NLG tasks, LLM eval- 1312

uators have been proposed to effectively evaluate 1313

the generated texts across multiple scenario (Kim 1314

et al., 2023a; Ke et al., 2023). Accordingly, there 1315

are many multi-scenario meta-evaluation bench- 1316

marks (Wang et al., 2023c; Zheng et al., 2023; 1317

Wang et al., 2023d; Yue et al., 2023; Liu et al., 1318
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Prompt Type Prompt Output

Score-based
Given the source document: [. . . ]
Given the model-generated text: [. . . ]
Please score the quality of the generated text from 1 (worst) to 5 (best)

Scores: 2

Likert-style
Given the source document: [. . . ]
Given the model-generated text: [. . . ]
Is the generated text consistent with the source document? (Answer Yes or No)

Yes

Pairwise

Given the source document: [. . . ]
Given the model-generated text 1: [. . . ]
And given the model-generated text 2: [. . . ]
Please answer which text is better-generated and more consistent.

Text 1

Table 4: Illustration of different types of prompts.

2023b; Zeng et al., 2023). Typically, Zhang et al.1319

(2023b) sampled 2,553 evaluation samples, includ-1320

ing instructions and generated responses with cor-1321

responding human-annotated labels from multiple1322

tasks. Additionally, Zeng et al. (2023) introduced1323

a benchmark divided into NATURAL and AD-1324

VERSARIAL sets. The former set comprises in-1325

stances from human-preference benchmarks, ensur-1326

ing objective preferences. The latter set contains1327

instances created by authors to challenge evalua-1328

tors, deviating from instructions but maintaining1329

superficial quality.1330
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