This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

ProbMED: A Probabilistic Framework for Medical Multimodal Binding

1,2,3,5,6x 1,3,4,5,6x

Yuan Gao Sangwook Kim

"Peter Munk Cardiac Centre
4Joint Department of Medical Imaging

{yuan.gao, sangwook.kim,

Abstract

Medical decision-making requires integrating diverse med-
ical information, from imaging to clinical narratives. These
medical modalities are often acquired in a many-to-many
manner. However, current medical vision-language pre-
training models (Med-VLPMs) fail to directly account for
this many-to-many mapping in their model training and
embeddings. To address this, we present Probabilistic
Modality-Enhanced Diagnosis (ProbMED), a multimodal
Med-VLPM that employs probabilistic contrastive learn-
ing to model distributions over embeddings rather than
deterministic estimates. ProbMED aligns four distinct
modalities—chest X-rays, electrocardiograms, echocardio-
grams, and clinical text—into a unified probabilistic em-
bedding space. We use InfoNCE loss with Hellinger dis-
tance to integrate inter-modality distributions. We in-
troduce a probabilistic synthetic sampling loss that cap-
tures modality-specific mean and variance to improve intra-
modality binding. Extensive experiments across 13 med-
ical datasets demonstrate that our model outperforms cur-
rent Med-VLPMs in cross-modality retrieval, zero-shot, and
few-shot classification. We also demonstrate the robust inte-
gration of multiple modalities for prognostication, showing
improved intra- and inter-medical modality binding. Code
is available: hitps://github.com/mcintoshML/probMED.

1. Introduction

Medical decision-making is inherently multimodal and re-
quires integrating diverse information ranging from imag-
ing modalities to clinical reports. Despite the growing suc-
cess of medical vision language pretraining models (Med-
VLPM) in extracting embeddings from paired modalities,
typically chest radiographs (CXR) with corresponding re-
ports, these approaches operate primarily under a determin-
istic embedding framework that enforces one-to-one map-
pings [8, 16, 22, 50, 61, 62]. Existing approaches face two
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key limitations: 1) Deterministic models may struggle to
capture the inherent variability and complex many-to-many
relationships in medical data, 2) Majority of existing mod-
els focus exclusively on CXR-text alignment, overlooking
broader multimodal nature of medical care.

Regarding the first problem, there are many medical
cases where many-to-many relationships exist. For exam-
ple, a CXR of a patient in respiratory distress can have
multiple valid interpretations: "A cloudy patch in
the lower lung" or "CXR has pneumonia". Al-
though phrased differently, these examples inherently con-
vey the same meaning, where one describes pneumonia
and the other states the disease. Thus, these two examples
should both relate to a pneumonia CXR, but not all cloudy
patches are pneumonia (e.g., cloudy patches could be lung
cancer). Next, consider a patient visit; they may require
multiple electrocardiograms (ECGs) and CXRs to confirm
prognosis—the relationships between ECGs and CXRs are
inherently many-to-many. These examples highlight the
limitations of deterministic methods that force embeddings
into discrete positive/negative labels, making them ill-suited
to modeling the ambiguity in the pairings. Recent ad-
vances in contrastive learning have highlighted the impor-
tance of capturing these relationships in learned representa-
tions [10]. Probabilistic contrastive learning extends tradi-
tional methods by modeling distributions over embeddings
rather than single-point estimates [11, 30]; thus, each in-
stance is represented as a distribution, which can enable bet-
ter semantic overlap and resolve ambiguity during training.

For the second problem, real-world diagnostics integrate
multiple modalities, for a more comprehensive clinical pic-
ture [16, 51]. However, as modalities multiply, cross-modal
pairings grow quadratically, requiring a probabilistic con-
trastive approach. Thus, our approach unifies multiple med-
ical data pairs through probabilistic contrastive learning by
randomly sampling one modality pair per gradient update.

In this work, we introduce Probabilistic Modality-
Enhanced Diagnosis (PROBMED), a probabilistic multi-
modal Med-VLPM that bridges the gap between multiple
medical modalities. This is the first study to leverage prob-
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(A) Text-modality binding

“ECG: sinus rhythm”

“CXR shows cardiomegaly”

“ECHO has hypertrophy”

(B) Non-text modality binding

(C) Withi dality binding
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Figure 1. The overview of PROBMED. (Left) (A) Text-modality: Given multiple medical modalities, we align each with its corresponding
textual description using a contrastive learning framework. Traditional deterministic approaches represent each modality-text pair as fixed
points in latent space (z, and z:), whereas probabilistic ones model each modality embedding as a Gaussian distribution (Z,, and Z;),
detailed in §3.3. (B) Non-text modality: We also bind between non-text modalities and model overlapping related modalities, where n
and n’ are different non-text modalities (§3.3). (C) Within-modality: We introduce a Synthetic Instance Sampling Loss for improved

within-modality binding. Given any modality Z,,, we use the learned distribution to sample additional samples z' and 2 , detailed in §3.4.
(Right) PROBMED links ECG, CXR, ECHO, and text into a unified probabilistic embedding space, we trained (black solid lines) on all

text-modality pairs and ECG-CXR (non-text modality) pairs. We observe emergent alignment (

abilistic modeling for such extensive multimodal integra-
tion in the medical domain. Unlike prior approaches [10,
12], PROBMED uses a probabilistic contrastive framework
to cross-integrate four distinct medical modalities: CXR,
ECG, echocardiogram (ECHO), and text.

Contributions: 1) We propose PROBMED, which inte-
grates multimodal medical data through probabilistic map-
pings. It aligns learned probability distributions across
modalities within a shared embedding space while lever-
aging a novel loss function, Synthetic Instance Sampling
Loss, to enhance intra-modal representation. 2) We evalu-
ated PROBMED on 13 distinct medical datasets, demon-
strating superior performance in cross-modality retrieval,
zero-shot, and few-shot classification. 3) We further showed
its multimodal capability by integrating CXR and ECG
for improved prognostication of diseases often misdiag-
nosed using a single modality [43]. 4) We showcased use-
cases of the probabilistic modeling enabled by PROBMED:
Uncertainty-based prompt filtering to enhance robustness
against ambiguous data pairs, and Distribution-based sam-
pling to improve classification in few-shot scenarios.

2. Related Work

Contrastive Learning. We focus on cross-modal con-
trastive learning, which integrates multimodal data like im-
ages and text [46]. Cross-modal learning has proven espe-
cially valuable in the medical domain [8, 50, 56, 61-63].
The objective is to maximize the similarity between modal-
ity pairs, e.g., aligning a CXR with its corresponding radi-
ology report. These foundational approaches generate se-
mantically rich representations that can be fine-tuned for
downstream tasks, such as disease classification, even with
limited annotated datasets. The ability to learn from data-
scarce scenarios is a significant focus of this study since it

) after training our model.

is especially valuable in medical research, where acquiring
large-scale annotated datasets is limited.

Probabilistic Multimodal Embeddings. Probabilistic
contrastive learning enhances cross-modal learning in natu-
ral images by explicitly modeling the ambiguity in mapping
visual features to textual descriptions [10, 11, 30, 52]. This
ambiguity arises primarily from the prevalence of false-
negative pairs during training [12]. Early methods, such as
Probabilistic Cross-Modal Embedding (PCME) [11], intro-
duced probabilistic embeddings to move beyond fixed rep-
resentations but suffered from high computational costs and
loss saturation. PCME++ [10] mitigates these challenges
by introducing a closed-form probabilistic distance (CSD)
and pseudo-positive samples with mixed-sample augmenta-
tions, enhancing learning of many-to-many relationships.

As described, the many-to-many challenge is also ev-
ident in the medical domain. Probabilistic embeddings
can thus offer a dual benefit: they enable flexible cross-
modal correspondences and explicitly capture uncertainty
(via mean and variance), leading to richer representations
for downstream tasks in data-scarce scenarios. Extending
these models to bind more than three or more modalities
remains an open challenge—one we address here.

Multimodal Learning. Multimodal learning extends many
learning principles beyond simple image-text pairs to inte-
grate additional modalities. ImageBind [17] introduced an
effective way to integrate multiple modality pairs into a sin-
gle unified model, improving the understanding of cross-
modal mappings. Although the study was conducted on
natural images, the potential of multimodal training in the
medical domain is significant [39, 45, 47, 51, 58]. For in-
stance, the use of medical data such as computed tomogra-
phy [20, 60], sensor signals [16, 37], endoscopic videos [3],
and even genomic information [59] are emerging. As such,

20158



it can be seen that the multi-pair training paradigm capital-
izes on each modality’s complementary strengths, allowing
for models that generalize across diverse clinical scenarios
and tasks, especially for disease assessments that require
examination of multiple modalities [43].

3. Methods

In this section, we introduce PROBMED, which learns a
unified joint probabilistic embedding space for multiple
medical modalities by utilizing all possible data pairs, with
clinical notes to connect them (functioning as the primary
binder). Here, each modality’s embeddings are aligned with
their corresponding text embeddings (e.g., CXR to radiol-
ogy text) and/or across modalities (e.g., CXR to its corre-
sponding ECG) as shown in Fig. 1. Inspired by Image-
Bind [17], PROBMED does not require complete pairs of
modalities (that is, the four modalities of a single patient)
during training, making it more practical for real-world
datasets. We hypothesize that the resulting probabilistic
embedding space across multiple modalities can better deal
with the many-to-many mapping typically found in medical
data. For the rest of this section, we explain how we trained
PROBMED to integrate multiple medical modalities using
a probabilistic approach.

3.1. Aligning Specific Pairs of Data.

Probabilistic contrastive learning is a technique for repre-
senting embeddings as distributions in an embedding space.
Like traditional contrastive learning, the premise is based
on using pairs of related examples (positives) and unrelated
examples (negatives) to align data optimally. The key dif-
ference lies in the representation: instead of a fixed-point
deterministic representation, the feature extractor outputs a
distribution parameterized by mean, p, and covariance ma-
trix, 3. As proposed in [10], we stipulate that the covari-
ance matrix is strictly the diagonal covariance matrix:

¥ = diag(o?), (1)

where o2 represents the variance in each dimension. As

such, we define our distributions as:
Z ~ N (p, diag(c?)), )

where p, 02 € RP for a D-dimensional embedding. The
pair similarities are computed using probabilistic similari-
ties (§3.3), which optimize the joint embedding of different
data pairs represented as distributions, allowing for greater
flexibility to address many-to-many relationships better.

3.2. Model Framework

PROBMED processes four medical modalities—CXR,
ECG, ECHO, and medical text—using dedicated modality-
specific encoders inspired by [17]. Supplementary Fig. 4

presents the architecture overview; however, by design, the
model framework is simple to implement. As in [10], our
model relies on pretrained weights to facilitate the transi-
tion from deterministic to a probabilistic embedding space.
Specifically, for the CXR encoder, we employ Swin Trans-
former backbone pretrained with ImageNet-1k [34, 38]. For
the ECG encoder, we adopt an XResNet-1d-101, a widely
used ECG encoder [49]. For the text encoder, we use
BioBERT [31], a variant of BERT fine-tuned on biomed-
ical corpora. Finally, for the ECHO encoder, we employ
pre-trained ECHO-CLIP [8].

Generalized Pooling Operator. To generate probabilistic
embeddings, we added two additional layers in parallel on
top of each encoder, one for predicting the mean p (initial-
ized from the pre-trained backbone) and one for predicting
log o2 (randomly initialized). For computational efficiency,
the log 02 head is a single-layer network, and features are
aggregated using Generalized Pooling Operator (GPO) fol-
lowing [5, 10].

Batch Normalization. Before GPO for feature aggrega-
tion, we incorporate Batch Normalization (BN). BN en-
forces a zero mean and unit variance across mini-batch,
which may stabilize training and mitigate internal covariate
shifts [23]. This may be beneficial in probabilistic settings,
where BN could ensure estimated distribution parameters
remain less sensitive to fluctuations in individual samples.

3.3. Binding Multimodal Probabilistic Embeddings

PROBMED integrates CXR-TEXT, ECG-TEXT, ECHO-
TEXT, and CXR-ECG pairs in the MIMIC datasets to learn
a unified joint embedding space, the available modality
pairs is defined as B € {(CXR,TEXT), (ECG, TEXT),
(ECHO, TEXT), (CXR,ECG)}. CXR-ECG was the
only non-text modality pair we trained on as our training
datasets had < 1000 samples of other non-text modality
pairs. The model is trained using a meta-learning strategy
akin to [17], where each gradient update is derived from a
distinct objective for each available pair (described in §3.6).
We encode an input for each modality m into a proba-
bilistic embedding using Eq. 2, as i, o,, € RP, and

Zin ~ N (jim, diag(02))), 3)
where m € {CXR, ECG, ECHO, TEXT}.
Modality-Text Alignment. For modality-text alignment
(e.g., CXR-TEXT), we use InfoNCE loss [41] on the prob-
abilistic embeddings. Let g,, be the output of the non-text

modality n € {CXR,ECG, ECHO}, and k; be the output
of the corresponding paired text. Based on Eq. (3):

G ~ N (jin, diag(02)) and ky ~ N (pu, diag(0?)) @)
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where ¢ refers to the text representation of modal-
ity n. Then, given a batch of N modality—text pairs
{(gn.is ke.i)} Y 1, we can calculate the InfoNCE loss as:

exp(—PS(qn,i, kr,i)/7)
N

j=1 eXp(_PS(Qn,ia kt,j)/T)
4)
where 7 is the temperature and PS(-, -) is a similarity func-
tion computing the similarity between two probability dis-
tributions. We use symmetric loss: Lyop,, , + £moD, . -
Non-text Modality Alignment. Where possible (Fig. 1),
we enforced consistency across non-text modality pairs
alignment, termed non-text modality. Lyop, ,, repre-
sents this alignment for n # n’ using the same equation
as Eq. (5) by replacing ¢ to n’. We trained PROBMED on
ECG-CXR non-text modality (see §3.3).
Probabilistic Similarity Function. We adopt 1 — H, where
H is the Hellinger distance [44], to measure the similarity
between probabilistic embeddings because it is symmetric
and bounded, making it well-suited for contrastive learn-
ing. The squared Hellinger distance between two multi-
variate Gaussian distributions [44], ¢,, and k;, follows from
Eq. (1), where the covariance matrices are diag(c2) = X,
and diag(o?) = %;. Then:

)

| N
Lyop,,, = —+ Zlog
NZ X

_ det(E,)1 det(2)

HQ(Qm kt) =1 I
det( Zu52:)"
x exp (=5 (m = 1) (Z2 ) (i — )

(6)

We can then simplify the squared Hellinger distance as a
product over the D dimensions:

Hz(qna kt) =1-

D 1

H 20n,oot,o 2 exp| — (Mn,o - /-‘Lt,o)2 (7)
sri\oZ, + i, Aok, +070)) |

Following this, we define the similarity measure as
PS(gn,kt) = 1 — \/H?(gn, k), converting the squared
Hellinger distance into a similarity metric. The details of
calculating and computing Hellinger distance are described
in the Supplementary §B.1. Unlike alternatives such as
the PCME++ closed-form distance (CSD) and the Bhat-
tacharyya distance, the Hellinger distance is symmetric and
bounded, stabilizing training by mitigating excessive gra-
dient magnitudes, an essential feature when handling noisy
and uncertain nature of medical data. Furthermore, its
sensitivity to differences in the means and variances of
distributions enables it to capture subtle discrepancies be-
tween modalities. Empirically, our findings indicate that
the Hellinger similarity facilitates superior convergence and
creates a more discriminative joint embedding space.

3.4. Within-Modality Probabilistic Embeddings

To make the probability distributions of each modality
robust we further propose Synthetic Instance Sampling
(SIS) Loss. SIS loss encourages learning meaningful dis-
tributions by maximizing the similarity between two sam-
pled instances from the same latent distributions. We adopt
the reparameterization trick for multivariate Gaussian with
a diagonal covariance structure from [29]. So, for an input
with latent distribution (Eq. (2)) a sample is obtained:

e ~N(0,T), I={1,...,N},

(3)
where N is the number of sampled instances, Iisa D x D
identity matrix, and ¢ € RP. Note: o,, is the modality,
m, standard deviation. We reformulate InfoNCE [41] to
operate on these sampled embedding instances. For each
instance 2! and zf;L where [ # I’. Negative keys are drawn

from other instances in the mini-batch. Thus, SIS loss:

N eXp(—CS(ZLLi,Zi;”;)/T)
Lsis,, = — Zlog SN — ;

D DERC exp(=CS(z, ;> 2 ;)/7)

©)

where CS(-,-) denotes the cosine similarity function. We
present Lgrs for Ny = 2, which is analogous to Sim-
CLR [6]. Thus, these two samples act as distinct instanti-
ated views of the same distribution, reinforcing the distribu-
tions to maintain the meaningful variance. Lg1g encourages
the model to learn distributions by enforcing consistency
between samples drawn from the same underlying distribu-
tion. We used Lgrg on all modalities during pretraining.

2y = pm + diag(om)e,

3.5. Variational Information Bottleneck

To prevent the collapse of the variance, we use a Variational
Information Bottleneck (VIB) loss [40] similar to [10]. VIB
loss is computed as KL-divergence between learned latent
distribution Z,,, Eq. (3) and a standard normal prior:

N
Lyis,, = —% ZKL(ZW N (O, I)). (10)
=1

Empirically, VIB loss prevents variance collapse.

3.6. Final Loss Function

The overall loss is a weighted sum of multiple components.
We randomly sample a modality pair from the available
pairs for each gradient update. Lgrg and Lyp are always
included. So for {(m1,m2)} € B, where B is the set of
available modality pairs (defined in §3.3), then:

£m1,m2 = a(‘CMODml,mQ + [’MOsz,ml)

(11)
+ B(Lsis,, + Ls18,,.) +7 (LviB,., + LviB,.2),

The weights of each loss and 7 scaling were set empirically
and are presented and are presented in Supplementary §D.
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(a) TEXT-to-CXR retrieval.

L MIMIC-CXR Openl Chexpert5x200 .-
Prob? Similarity poi pes rel Res Rel Res KSUM
MedCLIP [56] Cosine 1.0 43 06 28 26 3.0 143
CXR-CLIP [61] Cosine 473 704 127 252 85 230  187.1
BiomedCLIP [62] Cosine 362 599 90 199 64 19.8 151.2
CheXzero [50] Cosine 267 500 58 151 35 17.8 118.9
MEDBind [16] Cosine 408 675 116 255 179 214 174.7
BioVil-T[1] Cosine 284 582 81 189 49 17.1 135.6
SAT [32] Cosine 403 692 67 147 9.1 26.7 166.7
PCME-++ [10] v/ CSD 321 506 108 283 40 16.2 142.0
PROBMED (Ours) v Hellinger 479 714 127 275 8.9 28.4 196.8
(b) TEXT-to-ECG retrieval. (¢) TEXT-to-ECHO retrieval.
Similarity y(g\?c }Eg; N (1;]3 ﬁL@ ; RSUM Similarity II;’“@NI“C ‘;f(g’so RSUM
ECG-CLIP [16] Cosine 408 767 23 98 1296 EchoCLIP [8] Cosine 1.1 64 75
MEDBind [16] Cosine 44.1 782 31 121 1375 PCME++ [10] CSD 1.0 5.0 6.0
PCME-++ [10] CSD 409 548 13 113 1083 PROBMED (Ours)  Hellinger 2.4 7.8 10.2
PROBMED (Ours) Hellinger 483 87.0 2.8 12.2 150.3

Table 1. Cross-modal retrieval performance, Recall @K, for (a) TEXT-to-CXR, (b) TEXT-to-ECG, and (c) TEXT-to-ECHO retrieval tasks.
CSD stands for closed-form distance from [10]. The best performance is in bold, while the second-best is underlined.

Dataset Emerg. Task #Cls  #test

MIMIC-CXR [26]* Retrieval/Multimodal 24,799
Openl [13] Retrieval - 2,864
CheXpert5x200 [24] Retrieval 5 1,000
RSNA [48] Classification 2 5,338
COVID Kaggle [7] Classification 2 2,780
Montgomery [4] Classification 2 106

CheXchoNet [2] v Classification 2 3,667
MIMIC-ECG [19]* Retrieval/Multimodal - 24,644
PTB-XL [55] Retrieval/Classification 71 2,198
ICBEB [33] Classification 9 1,376
MUSIC [36] v Classification 2 125

MIMIC-ECHO [18]* Retrieval 1,957
EchoNet-Dynamic [42] Classification 2 1,264

Table 2. Datasets for CXR, ECG, and ECHO modalities. For each
dataset, we report the task (i.e., classification, retrieval, and mul-
timodal), number of classes (#Cls), and number of test samples
(#test). CheXchoNet and MUSIC are both emergent (Emerg.)
and external datasets. PROBMED was never trained on CXR-
ECHO or ECG-ECHO pairs. *These datasets were used for per-
taining, but test set was reserved (Supplementary §A)

4. Experiments and Results

This section introduces our experiments to evaluate
PROBMED, compared to other Med-VLPMs. We trained
PROBMED exclusively on MIMIC datasets. We also
trained a PCME++ model for comparison. We evaluated
on the 3 MIMIC and 10 external datasets. All datasets used
in testing are in Tab. 2, and detailed in Supplementary §A.

Text-to-Modality Retrieval: In text-based retrieval ex-
periments on free-form clinical notes, deterministic em-
beddings often miss linguistic nuances. Our probabilistic
framework represents each text as a distribution, enabling

similarity metrics that account for central tendency and un-
certainty through probabilistic similarity comparisons.

Zero-shot and few-shot classification: We tested
PROBMED on traditional zero-shot (ZS) and few-shot (FS)
datasets. In addition, we explored emergent ZS and FS clas-
sification, which refers to a model’s ability to align modal-
ity pairs that were not explicitly trained during pretraining
(e.g., ECG and ECHO pairs were unseen). Inspired by [17],
we observed that training this unified model, PROBMED,
facilitated these emergent alignments. We illustrated this
phenomenon by evaluating classification tasks that map
ECG or CXR inputs to ECHO labels, even though these
specific pairs were never observed together during training.

Multimodal Classification: Medical decision-making re-
lies on multiple sources of evidence (e.g., combining infor-
mation from both CXR and ECG for more accurate prog-
noses [15]). As discussed in the introduction, a central mo-
tivation behind PROBMED is its capacity to encode and in-
tegrate information from various modalities. We demon-
strated this by evaluating the ZS and FS performance of
PROBMED using embeddings from multiple modalities
and comparing its performance to that of traditional ap-
proaches with a single modality.

Pushing the Boundaries of Probabilistic Models: While
prior approaches [61, 62] emphasize improved ZS/FS
performance using deterministic embeddings, PROBMED
leverages probabilistic embeddings to capture each modal-
ity’s intrinsic uncertainty and distributional characteristics.
In addition to the conventional way of doing ZS and FS,
we underlined use-cases that leverage the learned distribu-
tions to improve ZS and FS performance. 1) ZS: We used
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(a) CXR-based zero and few-shot

COVID Kaggle RSNA Montgomery CheXchoNet x Overall Rank
A 4S5 16S A 45 16S A 4S5 16S A 4S 16S | ZS FS
MedCLIP [56] 753 855 90.8 757 580 654 883 873 885 61.6 558 639 | 4 8
CXR-CLIP [61] 769 86.7 91.6 727 64.1 709 81.1 858 916 61.1 532 597 | 6 7
BiomedCLIP [62] 844 86.0 894 81.6 803 840 845 870 922 62.1 598 618 | 3 2
CheXzero [50] 79.5 828 884 479 750 827 716 885 929 679 603 66.1 | 8 3
MEDBind [16] 86.4 862 92.0 80.0 673 734 868 899 918 620 576 654 | 2 4
BioViL-T [1] 699 67.7 766 715 822 859 88.6 886 91.8 633 566 647 | 5 5
SAT [32] 72.1 81.8 874 735 560 612 759 789 823 603 560 659 | 7 10
MedKLIPT [57] 68.8 854 902 824 793 828 517 795 842 638 560 63.6]| 9 5
PCME++ [10] 486 79.6 859 452 732 792 504 757 81.8 599 56.8 62.7 | 10 9
PROBMED (Ours) 86.4 86.5 91.8 825 822 847 843 931 937 695 633 685 1 1
(b) ECG-based zero and few-shot (c) ECHO-based zero and few-shot
PTB-XL ICBEB MUSIC % Overall Rank EchoNet-Dynamic | Overall Rank
ZS 4S 16S ZS 4S 16S ZS 4S  16S | ZS FS ZS 4S 165 |ZS FS
ECG-CLIP [16] 523 671 712 619 691 741 604 486 514 | 4 5 EchoCLIP [§] 5.1 83 50]2 2
MEDBind [16] 553 711 818 657 812 878 613 515 546 | 3 2 oMt | ‘(’g)m) [oo ROl e B
ECG-FM [37] - 69.1 71.6 - 693 71.8 - 50.0 53.1 - 4 — -
PCME++ [10] 612 754 799 713 741 805 672 467 48.6 | 2 3
PROBMED (Ours) 64.5 82.6 87.6 753 848 90.1 705 538 59.1 1 1

Table 3. Performance comparison of PROBMED with state-of-the-art Med-VLPMs on many different modalities, few-shot tasks across
(a) CXR-based, (b) ECG-based, and (c) ECHO-based datasets. We report AUROC scores under zero-shot (ZS), 4-shot (4S), and 16-shot
(16S). For probabilistic models (i.e., PCME++ and PROBMED), only 1 embeddings were used in few-shot learning for fair comparisons.
«CheXchoNet is an emergent dataset using CXR as an input to predict an ECHO label, composite of severe left ventricular hypertrophy
(SLVH) and dilated left ventricle (DLV). xMUSIC is an emergent dataset using ECG (input) to ECHO label, composite of SLVH and DLV.
fMedKLIP performance was with the 77 classes in disease book (i.e., COVID and CheXchoNet were added to the original disease book).

an uncertainty-based prompt filtering mechanism proposed
in [10], which filters out prompts with high uncertainty, as-
suming more ambiguous prompts are therefore less help-
ful as classifier references. 2) FS: the probabilistic nature
of PROBMED is leveraged to generate synthetic samples
that provide more training samples. For example, by sam-
pling from the latent distribution, a single image can gener-
ate multiple effective training examples for FS training.

4.1. Text-to-Modality Retrieval

We benchmarked PROBMED across several text-to-
modality retrieval tasks against state-of-the-art Med-
VLPMs. Our evaluation leveraged a probabilistic frame-
work that measures central tendency and uncertainty using
tailored similarity metrics. For all models, we used the
most appropriate similarity for the respective model (i.e.,
cosine similarity was used for deterministic methods, while
PCME++ and PROBMED used probabilistic similarities).
Tab. 1a, Tab. 1b, and Tab. 1c summarizes the top-k perfor-
mance (Recall@K) across three retrieval tasks: TEXT-to-
CXR, TEXT-to-ECG, and TEXT-to-ECHO. Compared to
competing models, PROBMED achieved the highest overall
recall performance in these tasks, as indicated by the recall
total sum (RSUM). These results underscore the feasibil-
ity of incorporating probabilistic modeling and multimodal
binding into classical tasks. Using our proposed method and
training on multiple modality pairs, we saw that PROBMED
improves the modality-text alignment.

4.2. Zero-shot and few-shot classification

We assessed PROBMED using traditional ZS and FS pro-
tocols [17, 46] for a fair comparison between probabilis-
tic and deterministic models. ZS performance was calcu-
lated using the similarity metrics between text and non-text
modality embeddings according to [17]. Like recall, we ap-
plied the most appropriate similarity to measure the rela-
tionship between modality-text pairs. We employed linear
probing for FS learning following [17]. Since PROBMED
uses probabilistic embeddings, we only used p embeddings
to enable direct comparison to the output embeddings from
the deterministic encoders. See §4.4 for leveraging the com-
plete probabilistic distribution.

Tab. 3a, Tab. 3b, and Tab. 3¢ summarizes the area un-
der the receiver operating characteristic curve (AUROC) of
ZS and FS results for multiple datasets. PROBMED had
competitive results and often outperformed state-of-the-art
models across the evaluated modalities. In particular, our
method significantly enhances CXR and ECG tasks while
marginally surpassing ECHO experiments. In the emergent
tasks (CheXchoNet and MUSIC), we noted substantial per-
formance gains with PROBMED, where training on only
ECHO-text pairing significantly improves performance.

4.3. Multimodal Classification

We evaluated PROBMED for chronic kidney disease (CKD)
and chronic heart disease (CHD) classification under ZS
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(a) CXR and ECG concatenated to improve prognostication.

+ ks

Hypertrophy

“Patient has
chronic heart
disease.”

(b) AUROC performance (in %) on two prognostic tasks.

CKD CHD SUM
ZS 4S 16S ZS 4S 16S

State-of-the-art best performance from respective VLPMs
CXR 73.6[50] 66.9[50] 71.2[62] 77.1[50] 68.4[61] 75.2[61] 4324
ECG 61.2[16] 66.4[16] 67.8[16] 65.7[16] 73.5[16] 74.1[16] 408.8
CXR+ECG* 71.5[16] 68.4[16] 69.8[16] 75.3[16] 71.7[16] 78.6[16] 4353
PCME++
CXR 51.0 68.6 68.8 51.1 721 76.7 388.9
ECG 31.7 66.7 70.3 40.3 74.7 76.7 360.4
CXR+ECG 46.8 69.4 71.6 52.4 76.9 78.7 395.8
PROBMED (Ours)
CXR 75.0 70.6 76.5 77.0 71.9 79.8 450.8
ECG 68.5 67.4 71.1 70.3 722 76.7 426.2
CXR+ECG 78.1 71.5 76.8 78.4 73.0 80.8 458.6

Table 4. Multimodal classification results for chronic kidney dis-
ease (CKD) and chronic heart disease (CHD). (a) A visual exam-
ple of multimodal decision-making with two non-text modalities.
(b) Classification results under ZS, 4S, and 16S settings. SUM
represents the total performance across the ZS and FS settings (in
%). The best Med-VLPM performance is reported in (b) and cited.
*Only MEDBind[16] processes both ECG and CXR.

and FS settings in MIMIC datasets, particularly on a subset
of patients with both CXR and ECG (MIMIC-CONNECT,
described in more detail in Supplementary §A.4). In these
experiments, we explored using CXR-only, ECG-only, and
concatenation of CXR and ECG (i.e., multimodal).

The integration process is visualized in Tab. 4a, showing
how CXR and ECG can be used rogether for complex dis-
eases. Tab. 4b presents AUROC comparisons among state-
of-the-art Med-VLPMs, PCME++, and our PROBMED ap-
proach across single-modality (CXR or ECG), and mul-
timodality (CXR and ECG). Overall, PROBMED outper-
formed competing methods. CXR+ECG with PROBMED
produced gains in tasks, improving single-modality base-
lines by the largest gain of 7.8%—in ZS and FS scenar-
ios. These results emphasize the value of leveraging multi-
ple data sources in medical decision-making and highlight
PROBMED’s effectiveness in integrating multimodal infor-
mation for improved prognosis.

4.4. Pushing the Boundaries of Probabilistic Models

This section outlines some experimental assessments for the
utility of probabilistic modeling.

Uncertainty-based Prompt Filtering: We showcased this
task as a proof-of-concept for ZS classification in CXR
datasets, first proposed in [10]. Although ZS requires a
well-curated set of prompts for prediction, the common way
is taking the average of multiple text prompts to make a
robust prototype for each class. However, optimizing the
best set of prompts is not trivial. We perform uncertainty-
based prompt filtering, where we choose the prompts based

(A) 2-way 3-Shot

(B) w/ Sampling

(C) Full Data

% o

3
o0 &
Co,

Figure 2. Qualitative comparison of decision boundaries on Kag-
gle COVID. Each plot shows data projected on the same PCA with
an SVM (radial kernel) decision boundary. (A) The boundary is
less reliable in a 2-way 3-shot few-shot setting. (B) PROBMED’s
probabilistic sampling (X-marks indicate sampled points) im-
proves the boundary with more samples. (C) Using the full dataset.
Note: two green points are overlapped in the 3-shot scenario.

Prompts CX RN CV MG | SUM
"Chest X-ray of {-}" 702 634 788 86.8 | 299.2
All 80 prompts 70.8 83.0 87.2 856 | 326.6
Uncertainty-based filtering 71.0 85.6 87.3 87.7 | 331.6

Table 5. Zero-shot performance using uncertainty-based prompt-
filtering. CX: CheXchoNet, RN: RSNA, CV: COVID, and MG:
Montgomery, SUM: the sum of performance across datasets.

on the learned variance, o2, assuming the prompts with

low variance are robust. For comparison, we conducted ZS
experiments using: (1) a single prompt "Chest X-ray
of {-}" where - denotes the name of a target disease for
each dataset, and (2) 80 prompts describing the disease for
the CXR datasets. For the uncertainty-based filtering, we
chose k prompts with the lowest variance, which worked
the best for each dataset [10]. Our results in Tab. 5 demon-
strate that using prompt filtering on the learned variance
consistently improved the ZS performance across all CXR
datasets. Thus, PROBMED captures meaningful probabil-
ity distributions of the given prompts.

Sampling to Improve Few-shot: We explore a novel
probabilistic FS learning approach that harnesses feature
sampling to enrich representation in FS regimes—enabled
through probabilistic modeling. Unlike methods that rely
solely on deterministic embeddings, PROBMED models
each input as a distribution (i.e., refer to §3.3, Eq. (2). Let
P(z) denote the learned embedding distribution for an in-
put modality. Using the reparameterization trick, we drew n
distinct feature samples from P(z) to create additional data
{z} j=1. effectively capturing the latent uncertainty of the
data. When applied to our FS datasets with n = 16, we
improved over all our FS results (i.e., §4.2) with this prob-
abilistic sampling approach, as shown in Fig. 3. This sam-
pling approach is also visualized in Fig. 2, where, in a 2-way
3-shot scenario, the decision boundary for traditional meth-
ods is not enough to approximate the true decision bound-
ary. With sampling, the decision boundary is much closer.
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Figure 3. Probabilistic sampling in PROBMED improves few-shot performance.

PROBMED extracts a probabilistic distribution Z ~ A (u,

(A-C) Our probabilistic feature sampling strategy.

o) for inputs. We leverage the reparameterization trick to sample 16 distinct

feature embeddings, capturing latent uncertainty. (Bottom) Few-shot AUROC comparison across 8 datasets. Sampling-based embeddings
(colored lines) against using only the 1 embedding (grey /ines). For reference, grey lines is PROBMED results in Tab. 3a, 3b, and 3c.

Fig. 2 and Fig. 3 illustrate our approach, which we believe
could be useful for limited data availability.

5. Ablation

We performed ablations to evaluate the impact of our
PROBMED design choices, concentrating on the similar-
ity metric applied for probabilistic embeddings and addi-
tional enhancements such as our SIS loss and BN. Tab. 6a
compares four similarity metrics: cosine, CSD, Bhat-
tacharyya, and Hellinger, on MIMIC-CXR, MIMIC-ECG,
and MIMIC-ECHO (that is, all possible pairs of modality-
text). Cosine represents the deterministic training ap-
proach on these modality pairs and performs well in some
recall tests; however, Hellinger consistently achieved the
highest Recall@1 and Recall@5 scores across datasets,
confirming its effectiveness. Hellinger offers a more ex-
pressive similarity measure by accounting for the overlap
between probability distributions. This enables the model
to capture more nuanced cross-modality relationships. The
low performance of CSD in Tab. 6a arises from the limita-
tions of its metric, not probabilistic training, and shows that
a robust probabilistic distance (e.g., Hellinger) is needed to
outperform deterministic baselines.

Tab. 6b examines two enhancements: our SIS loss inte-
grated into pretraining and BN applied before feature aggre-
gation. Using the SIS loss on top of the Hellinger baseline
improved performance in MIMIC-CXR, while BN further
boosted scores in MIMIC-ECHO. Combined, we saw the
highest Recall@1 and Recall @5 across datasets, underscor-
ing the complementary benefits of modeling through sam-

(a) Ablation training probabilistic similarity metric.

Similarities MIMIC-CXR = MIMIC-ECG MIMIC-ECHO RSUM
R@]l R@5 R@] R@5 R@l R@5

Cosine* 424 645 489 873 2.0 6.3 2514

CSD 321 506 409 548 1.0 5.0 184.4

Bhattacharyya 434 637 419 879 1.0 32 241.1

Hellinger 4.5 677 481 911 2.0 6.9 260.3

(b) Ablation of additional loss and batch normalization.

MIMIC-CXR MIMIC-ECG MIMIC-ECHO
Method R@l R@5 R@l R@5 R@l R@5 RSWM
Fellinger 345 677 481 OL1 20 69 2603
+SISLoss 462 715 481 870 21 64 2613
+BachNorm 472 707 479 867 23 15 2623
T Both Ours) 479 714 483 8.0 24 78 2648

Table 6. (a) Similarity metric performance across MIMIC-CXR,
MIMIC-ECG, and MIMIC-ECHO. (b) Results show the impact of
the new loss and batch normalization on performance.” ;1 embed-
ding was used to calculate the cosine similarity.

pling (SIS loss) and stabilizing feature distributions (BN).

6. Conclusion

PROBMED is a probabilistic framework for binding mul-
timodal medical data—modeling each modality as a distri-
bution to capture many-to-many relationships—and outper-
forms existing Med-VLPMs in retrieval, ZS, and FS across
13 medical datasets. Future works include integrating ad-
ditional modalities, utilizing label efficient fine-tuning, and
exploring more probabilistic use cases. In summary, our
probabilistic approach to multimodal Med-VLPM intro-
duce fresh perspectives in the field.
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