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ABSTRACT

Human video generation has advanced rapidly with the development of diffusion
models, but the high computational cost and substantial memory consumption
associated with training these models on high-resolution, multi-frame data pose
significant challenges. In this paper, we propose Entropy-Guided Prioritized Pro-
gressive Learning (Ent-Prog), an efficient training framework tailored for diffu-
sion models on human video generation. First, we introduce Conditional Entropy
Inflation (CEI) to assess the importance of different model components on the tar-
get conditional generation task, enabling prioritized training of the most critical
components. Second, we introduce an adaptive progressive schedule that adap-
tively increases computational complexity during training by measuring the con-
vergence efficiency. Ent-Prog reduces both training time and GPU memory con-
sumption while maintaining model performance. Extensive experiments across
three datasets, demonstrate the effectiveness of Ent-Prog, achieving up to 2.2×
training speedup and 2.4× GPU memory reduction without compromising gener-
ative performance.

1 INTRODUCTION

Human video generation (Zhu et al., 2024; Hu, 2024; Xu et al., 2024; Shao et al., 2024), the task
of synthesizing realistic video sequences of human actions and appearances, has become essential
in applications such as video synthesis, animation, virtual reality, and augmented reality. Recently,
diffusion models (Ho et al., 2020) have emerged as a leading framework for video generation due to
their ability to produce high-quality, temporally coherent outputs. Video diffusion models (Ho et al.,
2022a;b; Khachatryan et al., 2023) generate video sequences by progressively refining noisy inputs,
enabling fine-grained control over both spatial and temporal aspects. Condition encoders, such as
CLIP visual encoder (Radford et al., 2021), ReferenceNet (Hu, 2024), and ControlNet (Zhang et al.,
2023), further enhance the conditional generation ability of diffusion models, allowing the synthesis
of high-fidelity videos from diverse reference images and motion controls.

Despite their strengths, training diffusion models for human video generation presents signifi-
cant computational challenges. The high dimensionality of video data, which involves multiple
frames, high resolutions, and intricate temporal dependencies, demands substantial resources. For
instance, training a Diffusion Transformer (DiT) (Peebles & Xie, 2023) on videos with a resolution
of 512×512 pixels and 20 frames can consume up to 100 GB of VRAM, exceeding the limits of cur-
rent GPU hardware. Such requirements restrict the scalability to higher resolutions, longer videos,
larger model size, and more complex control signals, such as human poses or reference images.

Previous approaches to human video generation often involve adapting a pretrained large diffusion
model with fixed configurations, such as pre-defined depth, frame count, and resolution. In con-
ventional deep learning training schemes, all network parameters in the pretrained diffusion model
are updated in every training iteration, regardless of their individual contributions to the target task.
This static approach can lead to inefficiencies, as it fails to consider that not all parameters or input
elements are equally important throughout the training.

To achieve efficient training, a common practice is to minimize the total number of fine-tuning pa-
rameters and new parameters. For example, in parameter-efficient tuning methods (Hu et al., 2021),
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Figure 1: Human video generation results by Ent-Prog with up to 2.1× training acceleration
and 2.4× lower training VRAM usage. Given a reference image (left image for each clip), we
generate consistent and controllable human dance videos after Ent-Prog efficient training.

Figure 2: The impact of freezing or skipping blocks. (a) illustrates the effect of freezing differ-
ent numbers of blocks on the model’s final convergence performance, showing a clear decline as
more blocks are frozen. (b) and (c) present the loss and Conditional Entropy Inflation (CEI) when
randomly skipping 8 to 23 blocks, emphasizing the objective of accelerating convergence by selec-
tively skipping blocks with lower interaction (characterized by lower CEI and loss). (d) compares
the training dynamics of the most important 10 blocks and the least important 10 blocks, with all
other blocks frozen. It is clear that the more influential blocks contribute to faster convergence and
better model performance.

total number of fine-tuning parameters is usually set to zero and total number of trainable parameters
is set to the minimum via low-rank decomposition. However, when the gap between different task is
large, a large capacity of learnable parameters is essential to bypass the gap. Figure 4 (a) illustrates
how the number of trainable parameters substantially influences the quality of generated images in
pose-guided human image generation.

Effectively identifying which parameters in a pretrained model should be prioritized for training
can significantly enhance training efficiency. By randomly skipping 8 to 23 blocks in the pretrained
DiT-XL/2 model, the impact on loss and Conditional Entropy Inflation (CEI) in a new task is shown
in Figure 4 (b) and (c). As the number of skipped blocks increases, the likelihood of omitting highly
interactive blocks rises sharply, leading to network collapse, evidenced by higher loss and increased
CEI. Figure 4 (d) presents the training dynamics of the most and least important 10 blocks in the pre-
trained DiT-XL/2 model on the downstream CUB dataset. Notably, the strongly interactive blocks
exhibit significantly faster convergence during training. These observations motivate us to propose
a layer importance assessment strategy aimed at optimizing model convergence more effectively.

To address these inefficiencies, we propose Entropy-Guided Prioritized Progressive Learning (Ent-
Prog), an efficient training framework tailored for diffusion models on pose-guided human video
generation. First, we introduce Conditional Entropy Inflation (CEI) to assess the training priority of
each network block for the target conditional generation task. CEI measures how much the condi-
tional uncertainty of the predicted noise increases when a block is ablated, providing a task-aware
signal of a block’s contribution to pose and reference adherence. We define each block’s training
priority as the Gaussian approximation of CEI, and use these priorities to guide which components
should be updated earlier in prioritized progressive learning. Second, we adopt an adaptive pro-
gressive schedule to adjust the training load to achieve dynamic balance between performance and
efficiency. At the beginning of each stage, we decide how many of the top-priority blocks to un-
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freeze by estimating the convergence efficiency. A Nested Diffusion Supernet provides one-shot
estimates across candidate unfreezing sizes and lets us continue the stage with the choice that yields
the largest loss decrease per wall time, while reusing supernet parameters. Together, CEI-driven
prioritization and adaptive scheduling reduce training time and GPU memory consumption while
maintaining pose adherence and generative quality. We demonstrate the effectiveness of Ent-Prog
with DiT-based backbone Peebles & Xie (2023) on multiple human video benchmarks.

In summary, our contributions are as follows:

• We propose Conditional Entropy Inflation (CEI) to assess the training priority of each net-
work block for the target conditional generation task.

• We further propose the adaptive progressive schedule to adjust the training load to achieve
dynamic balance between performance and efficiency.

• Ent-Prog accelerates the training process remarkably by up to 2.2× training speedup and
2.4× GPU memory reduction without compromising, or even enhancing generative perfor-
mance across 3 different human video generation datasets.

2 ENTROPY-GUIDED ADAPTIVE PROGRESSIVE LEARNING

2.1 PRELIMINARIES

Learning Process of Diffusion Models. The learning process of diffusion models involves two
main phases: the forward diffusion process and the reverse denoising process. The forward diffu-
sion process progressively perturbs a training sample x0 to a noisy version xτ by adding Gaussian
noise iteratively until timestep τ ∈ [0, 1]. In the reverse process, the diffusion model progressively
denoises the noisy sample to recover the original sample. At each denoising timestep τ , the noise
is predicted by a diffusion denoiser network ϵ̂(x, τ). The optimization objective of this denoiser
network is to minimize the mean square error loss between the predicted noise ϵ̂ω(xτ , τ) and the
real added noise ϵ in the current timestep during forward diffusion.

Progressive Learning. Progressive learning incrementally increases a neural network’s training
load by sequentially expanding its sub-networks used for training, according to a predefined pro-
gressive schedule Ψ. This schedule comprises a series of sub-networks ψk with progressively larger
sizes over the training epochs t. To ensure adequate optimization after each expansion, previous
works evenly divide the training process into |k| stages (Yang et al., 2020; Gu et al., 2021; Tan &
Le, 2021; Li et al., 2022b). Thus, the progressive schedule is represented as Ψ = (ψk)

|k|
k=1, with

the final stage corresponding to the complete model. Stages of varying lengths can be achieved by
repeating the same sub-network ψ across multiple consecutive stages.

2.2 PRIORITIZED PROGRESSIVE LEARNING

Given a pretrained diffusion model ϕ(ω) with parameters ω and residual blocks B = {b1, . . . , bL}.
When customizing it to a new conditional generation task with training data and corresponding
conditions D = {(x0, c)}, our goal is to increase efficiency by allocating training resources prefer-
entially to blocks that contribute more to conditional generation on the target task.

Prioritized progressive learning. Previous works on progressive learning typically trains from
scratch and grows from non-specific sub-networks without prioritizing the training of certain net-
work components. In contrast, when adapting a pretrained generative model, different blocks con-
tribute unevenly to conditional generation on the target task. We therefore introduce Prioritized
Progressive Learning (PPL) to prioritize the training of more important blocks on the target task
when progressively unfreezing the network blocks B in ϕ(ω).

Formally, let πb ∈ R denote the score of training priority for block b. We factorize the progressive
schedule into

ψk = argmax
ψ⊆B

∑
b∈ψ

πb s.t. |ψ| = mk,

where ψk is the unfrozen sub-network, the set of blocks unfreezed for training at stage k, and mk

represents the scheduled number of unfrozen blocks in stage k. Intuitively, high-priority blocks
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Figure 3: Illustration of deciding training priority of blocks in diffusion model with Conditional
Entropy Inflation. Blocks in deeper colors after ranking indicate higher conditional entropy inflation
when the block is skipped, suggesting that the block is more critical for conditional adherence.

start training earlier, while low-priority blocks are deferred. This inproves over previous progressive
learning by learning which components to emphasize (via {πb}b∈B), in addition to how much to
grow per stage (via (mk)

|k|
k=0).

We set to answer the remaining questions in the following sections: 1) how to estimate {πb} in a way
that is task-aware, and correlates with conditional generation (Section 2.3), and 2) how to adaptively
adjust mk to achieve a dynamic balance of performance vs. efficiency according to the online
performance of different sub-networks with different number of unfrozen blocks (Section 2.4).

2.3 TRAINING PRIORITY VIA CONDITIONAL ENTROPY INFLATION

Conditional entropy in diffusion models. Conditional diffusion model predicts noise ϵ̂ given
noisy latent xτ , the timestep τ and the condition c. A model that adheres to the condition should
exhibit a lower uncertainty after observing c. This connection is formalized via conditional mutual
information:

I(ϵ̂; c | xτ , τ) = H(ϵ̂ | xτ , τ) − H(ϵ̂ | xτ , τ, c).

When decreasing the conditional entropy H(ϵ̂ | xτ , τ, c), the mutual information I(ϵ̂; c | xτ , τ)
increases, i.e., the predictions ϵ̂ carry more information about the condition c. In human video
generation, it reflects that the generated video adheres better to the reference image and motion
condition.

Conditional Entropy Inflation. To quantify the importance of each block, we introduce Condi-
tional Entropy Inflation (CEI). CEI measures how much the entropy of the model output increases
if a specific block is removed, given the same conditioning state. For block b in the pretrained dif-
fusion model ϕ(ω), we compare the conditional entropy of ϵ̂ when the block is skipped versus the
original model:

∆Hcond(b) = H
(
ϵ̂ | xτ , τ, c; skip(b)

)
− H(ϵ̂ | xτ , τ, c) . (1)

A large ∆Hcond(b, τ) indicates that skipping block b inflates the uncertainty of the prediction, sug-
gesting that block b is critical for conditional adherence.

Since diffusion models are trained to predict Gaussian noise, we expect the distribution of ϵ̂ to be
approximately Gaussian. Under this assumption, we define the score of training priority π(b) as the
Gaussian approximation of the CEI ∆Hcond(b, τ):

π(b) = log
σskip(b)(ϵ̂)

σ(ϵ̂)
, (2)

where σ(ϵ̂) is the standard deviation of ϵ̂ with the full model, and σskip(b)(ϵ̂) is the corresponding
value when block b is disabled. In practice, we randomly sample around 1,000 τ and (xt, c) pairs to
calculate π(b). Blocks B are then ranked by π(b), with higher-ranked blocks unfrozen earlier, which
ensures that training resources are allocated more to components that contribute more to reducing
conditional uncertainty.
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Figure 4: Illustration of adaptive progressive schedule. We search within the defined space to
identify sub-networks with optimal convergence efficiency. At the start of each progressive learning
stage, we first train a one-shot supernet, and evaluate the convergence efficiency of each unfreezing
choice. The sub-network with optimal convergence efficiency is then selected, inheriting parameters
from the supernet and continuing training in the next phase.

2.4 ADAPTIVE PROGRESSIVE SCHEDULE VIA CONVERGENCE EFFICIENCY

Given the entropy-guided priorities {πb}, we now determine, at the beginning of each stage k, how
many blocks to unfreeze, mk. Our objective is to adaptively set the training load so that each stage
uses the unfreezing choice with optimal convergence efficiency on the target objective.

Nested Diffusion Supernet. To score the convergence efficiency of each candidate m, we employ
a Nested Diffusion Supernet Φ(ω̂) that nests parameters for all unfreezing choices in Mk under a
shared weight space ω̂. Let B⋆ = (b(1), . . . , b(L)) be the blocks ranked by priority πb (high to low).
For a candidate count m ∈ Mk, we define the unfreezing set Btrain(m) = {b(1), . . . , b(m)}. At the
start of stage k, we train Φ for one epoch by uniformly sampling the candidate unfreezing choice. At
each step, we randomly sample an m∈Mk, unfreeze Btrain(m), and update only those parameters.
During supernet training, the forward pass always uses the full network, while gradients are applied
only to blocks in Btrain(m), allocating the training resources to prioritized blocks.

Measuring convergence efficiency. To take real-world efficiency into consideration, we record
the elapsed wall time {T (s)

m }Ss=1 for each training step s of each candidate m. After each step of
supernet training, we evaluate each m on a fixed small hold-out set Deval (part of the training set that
are not used in supernet updates) with fixed denoising timesteps τ and fixed noises, yielding a loss
trace {ℓ(s)m }Ss=1 collected at the total S steps during the supernet epoch. We define the convergence
efficiency of m as the average loss decrease per wall time:

CE(m) = −
∑S

s=2

(
ℓ
(s)
m − ℓ

(s−1)
m

)∑S
s=2

(
T

(s)
m

) .

A larger CE(m) indicates more efficient convergence. CE(m) can be seen as an estimation of the
time derivative of loss. As all candidates share the same initialization at the beginning of the stage,
the short-term loss decrease is well-approximated by a first-order Taylor step with CE(m).

After the one-shot supernet epoch, we select the optimal m⋆
k that achieves the highest CE(m) and

resume training for the remainder of stage k using the corresponding unfrozen set with the top-
m⋆

k blocks with highest priority πb, reusing the supernet parameters ω̂. This results in an adaptive
progressive schedule that gradually unfreezes the most important blocks with block number that
achieves optimal convergence efficiency.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Data Preprocessing We evaluate Ent-Prog on a dataset of approximately 1,000 real-world dance
videos collected from Bilibili, following the preprocessing protocol of Open-Sora (Zheng et al.,
2024). From these, we extract 4,086 clips for training and reserve 10 full videos for testing. Hu-
man pose sequences are estimated using Multi-HMR (Baradel et al., 2024). All experiments are
conducted on four A800 GPUs with a unified preprocessing workflow, where frames are cropped
according to bounding boxes detected by Yolov7 (Wang et al., 2023a) and resized to 768×768.
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Figure 5: Qualitative comparison of two training methods on Bilibili dataset. The red boxes
indicate the defects of the generated images. Ent-Prog surpasses full training in terms of visual
coherence and realism, and it also excels in restoring fine-grained details such as facial expressions.
The first row highlights the unreasonable artifacts in the results generated by the full training method,
which are absent in Ent-Prog. The second row marks the shortcomings of the full training method
in restoring facial features.
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Figure 6: Comparison of evaluation metrics in training progress. Models are evaluated every 10
epochs in the second stage. Ent-Prog speeds up the training process by 1.45× without compromising
performance.

Training Strategy. To enhance model transfer learning, we design a multi-stage training strategy
tailored to different objectives. The training procedure consists of three stages: 1) a subject-driven
generation stage, where the model is trained for 50k steps with a batch size of 32 to learn subject-
driven image generation from a reference image; 2) a pose-guided generation stage, where the
model is trained to generate video frames from both the reference image and control poses, training
for 200k steps with a batch size of 8; 3) a video generation stage, where we only train all the temporal
layers on 10-frame sequences resized to 512×512 for 200k steps with a batch size of 4. Across all
stages, the learning rate is fixed at 1e-5. The architecture of our baseline model is in Appendix A.

Inference Setting. During inference, we use the IDDPM sampler (Nichol & Dhariwal, 2021) with
100 denoising steps and set the classifier-free guidance scale to 4.0. To further validate generaliza-
tion, we evaluate Ent-Prog on the UBC Fashion Video Dataset and the TikTok Dataset, following
established evaluation protocols from prior work (Wang et al., 2023b; Xu et al., 2024; Hu, 2024;
Zhu et al., 2024).

Evaluation Metric. To validate the effectiveness of our method, we conducted evaluations on the
Bilibili dataset as well as two specific benchmarks: human dance generation and fashion video
synthesis. For single-frame quality evaluation, we followed the established evaluation metrics used
in previous studies, including L1 error, Structural Similarity Index (SSIM; Wang et al. (2004)),
Peak Signal-to-Noise Ratio (PSNR; Hore & Ziou (2010)), and Learned Perceptual Image Patch
Similarity (LPIPS; Zhang et al. (2018)). Additionally, we used Video-level FID (FID-VID; Balaji
et al. (2019)) and Fréchet Video Distance (FVD; Unterthiner et al. (2018)) metrics to evaluate video-
level performance.

Datasets. We evaluate Ent-Prog on three datasets: Bilibili dataset, TikTok dataset (Jafarian & Park,
2021), and UBC-Fashion dataset (Zablotskaia et al., 2019). These datasets exhibit substantial differ-
ences in content, enabling a comprehensive assessment of our method across diverse scenarios. Our
evaluation focuses on two tasks: human video generation and image conditioned generation, pro-
viding a comprehensive assessment of the model’s capabilities in both image and video generation.
For image generation, we report results using the model trained in the second stage, while for video
generation, we use the model obtained after the third stage of training.
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Table 1: Results comparison of efficient train-
ing on Bilibili dataset. The reported training time
speedup corresponds to the wall time of the train-
ing process.

Training
scheme L1 ↓ SSIM ↑ PSNR ↑ LPIPS ↓ FID-

VID ↓ FVD ↓ Memory
(GB) Speedup

100k steps
Original 1.31e-05 0.885 33.00 0.129 16.50 168.17 72 -
Ent-Prog 1.43e-05 0.884 33.26 0.132 15.52 120.35 44 1.52×
200k steps
Original 1.31e-05 0.886 33.93 0.128 15.01 132.06 72 -
Ent-Prog 1.26e-05 0.892 34.41 0.121 14.90 119.77 53 2.17×

Table 2: Results comparison of human dance
image generation in the first two stages of
training on Bilibili dataset.

Training
Scheme L1 ↓ SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ Memory Speedup

Bilibili stage 1

Original 7.72e-06 0.952 31.48 0.068 20.93 56 -
Ent-Prog 6.74e-06 0.953 32.08 0.066 20.93 31 2.07×
Bilibili stage 2

Original 2.44e-05 0.814 31.32 0.256 45.71 77 -
Ent-Prog 2.61e-05 0.821 31.48 0.249 44.09 49 1.45×

Figure 7: Qualitative comparison of two training methods on TikTok dataset. The red boxes
indicate the defects of the generated videos. With the original training method, the top-left example
shows that the logo on the garment is missing, while other examples show distortions in facial
details. In contrast, Ent-Prog accurately restores the detailed information from the reference image.

3.2 HUMAN DANCE VIDEO GENERATION ON BILIBILI DATASET

Bilibili dataset contains numerous high-resolution single-person dance videos with large motion
amplitudes and substantial diversity in scenes and clothing, making it well-suited for evaluating
model’s generalization ability.

Human dance video generation. As shown in Table 1, Ent-Prog surpassed full training in all
single-frame quality metrics and video fidelity for human dance video generation, achieving a 2.17×
speedup (6 vs. 13 days) and reducing GPU memory usage to 45.1%.

Human dance image generation. As shown in Table 2, Ent-Prog consistently outperforms full
training across all metrics for human image generation, while achieving 2.07× training speedup and
46.6% reduction in GPU memory usage during the first training stage, as well as 1.45× training
speedup and 36.4% memory reduction during the second training stage. Furthermore, Figure 6
illustrates the changes of four image quality metrics during the second-stage training on BiliBili
dataset using Ent-Prog and the full training method. It is evident that, given the same training time,
Ent-Prog consistently outperforms full training across all metrics.

Qualitative comparison. Figure 5 presents the qualitative comparison results, where Ent-Prog
demonstrates superior adherence to motion guidance and better preservation of full-body details,
outperforming full training in both facial detail and overall fidelity.

3.3 HUMAN DANCE VIDEO GENERATION ON TIKTOK DATASET

TikTok dataset contains hundreds of casual, non-professional videos of multiple motions with simple
scenes, plain clothing, and gentle movements. As a public benchmark, it has been widely used for
evaluation video generation tasks, proving strong credibility.

Human dance video generation. Table 3 presents quantification comparison between Ent-Prog
and full training on TikTok dataset for video generation. Ent-Prog outperforms full training across
all metrics, with a notable 46.1% relative improvements in FVD. In terms of efficiency, Ent-Prog
achieves 1.52× training speedup and reduces memory usage to 61.1% of full training.
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Figure 8: Qualitative comparison of two training methods on UBC-Fashion dataset. Red boxes
highlight artifacts in the generated videos. Ent-Prog accurately and coherently reconstructs the
person from the reference image, while the full training method introduces unrealistic flaws, such as
the presence of three feet in the two examples on the right side.

Table 3: Results on human video generation.
Video quality comparison on the Tiktok and
UBC dataset.

Training
scheme SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓ Memory

(GB) Speedup

Tiktok

Original 0.747 29.53 0.316 385.64 72 -

Ent-Prog 0.790 30.77 0.268 264.03 44 1.52×
UBC

Original 0.906 36.44 0.069 79.94 46 -

Ent-Prog 0.906 36.45 0.068 79.76 29 1.69×

Table 4: Results on pose-guided image generation.
Comparison of the results between Ent-Prog and Full
training in the first two stages of image-conditioned
modeling.

Training
Scheme L1 ↓ SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ Memory Speedup

Tiktok

Original 5.78e-05 0.727 28.45 0.339 61.29 77 -

Ent-Prog 5.16e-05 0.735 28.86 0.330 59.18 32 1.45×
UBC

Original 1.46e-05 0.887 36.17 0.082 12.13 50 -

Ent-Prog 1.33e-05 0.886 36.52 0.079 11.84 34 1.45×

Human dance image generation. For image generation, Ent-Prog maintains strong performance
compared to full training, while providing 1.45× training speedup and 58.4% reduction in GPU
memory usage. The quantitative results are summarized in Table 4.

Qualitative comparison. Figure 7 presents qualitative comparisons. Ent-Prog consistently recovers
finer details and better preserves subject identity, with noticeably improved facial expression recon-
struction. It is noteworthy that in the first example, Ent-Prog better keeps garment details, which the
standard fine-tuning baseline omits.

3.4 HUMAN FASHION VIDEO GENERATION ON UBC-FASHION DATASET

UBC-Fashion dataset comprises numerous fashion model showcase videos, characterized by highly
stylized clothing, and serves as a widely used benchmark in video generation task.

Human fashion video generation. Table 3 present the quantitative comparison between Ent-Prog
and full training on video generation, where Ent-Prog consistently outperforms full training across
all metrics. For acceleration, Ent-Prog achieves 1.69× training speedup and lowers GPU memory
usage to 63.0% for video generation compared to full training.

Human fashion image generation. For human fashion image generation, Ent-Prog consistently
maintains high performance, surpassing full training across all metrics, while achieving a 45.4%
acceleration in training and a 32% reduction in memory usage. The quantitative results are summa-
rized in Table 4.

Qualitative comparison. Qualitative examples are shown in Figure 8. It is evident that Ent-Prog
performs better in maintaining clothing textures and ensuring motion coordination in fashion videos.

3.5 ABLATION STUDY

To demonstrate the effectiveness of the two components of our Ent-Prog, we investigate two al-
ternative designs: 1) removing the CEI training priority, and 2) removing the adaptive progressive
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schedule and using a linear schedule instead. These variations are compared to our proposed Ent-
Prog. We test the video generation capability on the TikTok dataset.

Effect of CEI. As shown in Table 5, when removing the CEI training priority, the train-
ing scheme fails to find the optimal network configuration for accelerating model conver-
gence, leading to inferior performance. The FID-VID deteriorates sharply from 32.15 to 37.43.

Table 5: Ablation on adaptive progressive schedule and CEI.
We compare video generation results on the TikTok dataset.

Training scheme L1 ↓ SSIM ↑ PSNR ↑ LPIPS ↓ FID-VID ↓ FVD ↓ Memory
(GB) Speedup

Original 4.64e-05 0.747 29.53 0.316 32.85 385.64 72 -

w/o Adaptive 3.78e-05 0.788 30.04 0.272 44.31 382.41 28 2.11×
w/o CEI 3.79e-05 0.789 30.51 0.270 37.43 285.94 30 1.95×
Ent-Prog 3.78e-05 0.790 30.77 0.268 32.15 264.03 44 1.52×

Effect of adaptive progressive
schedule. We further validate the
effectiveness of adaptive progres-
sive schedule through ablation ex-
periments. As shown in Table 5,
the absence of adaptive progressive
schedule leads to a decline in both
single-frame and video-level met-
rics. While removing adaptive pro-
gressive schedule can speed up training, it leads to performance degradation due to suboptimal
configurations during training.

4 RELATED WORK

Diffusion Models for Human Video Generation. Video generation (Ho et al., 2022a; Khachatryan
et al., 2023) builds on image generation by adapting architectures and attention mechanisms (Ho
et al., 2022b). A key branch, human video generation (Hu, 2024; Xu et al., 2024; Shao et al.,
2024), focuses on producing temporally coherent videos of humans from the given character images
and motion sequences. Despite progress, these models remain limited by high computational and
memory demands.

Progressive Learning. Deep learning models excel across many tasks but incur high train-
ing costs, motivating research into efficient methods. Progressive learning (Bengio et al., 2006) has
gained attention for its ability to accelerates training without performance loss. Auto-Prog (Li et al.,
2022a) improves training efficiency by dynamically adjusting growth schedules, while (Li et al.,
2024) extends progressive learning to fine-tuning with progressive unfreezing for diffusion models.
Our research further proposes a Entropy-Guided Progressive Learning training framework which
tailored for diffusion models.

Efficient training for diffusion models. Diffusion models (Ho et al., 2020) achieve strong
performance but suffer from high training costs. Efficient fine-tuning methods for diffusion models
have been extensively studied. Few-shot methods like DreamBooth (Ruiz et al., 2023) adapt
models with limited data, while other works (Rombach et al., 2022; Bao et al., 2022a;b; Lu et al.,
2022a;b) target efficiency through sampling strategies. Recent studies (Zhang et al., 2024; Wang
et al., 2024) propose multi-stage and patch-level frameworks to cut training costs, though these are
often hand-designed and less transferable. In contrast, our method Ent-Prog automates training
acceleration, reduces memory use, and generalizes across architectures.

5 CONCLUSION

We presented Entropy-Guided Prioritized Progressive Learning (Ent-Prog), an efficient training
framework for pose-guided human video diffusion. Ent-Prog combines 1) Conditional Entropy In-
flation (CEI) to prioritize blocks that most improve pose adherence and 2) an adaptive progressive
schedule via a Nested Diffusion Supernet to select, at each stage, how many top-priority blocks to
unfreeze based on short-horizon convergence efficiency. This concentrates updates where they mat-
ter most while keeping full-capacity forward passes, yielding up to 2.2× training speedup and 2.4×
GPU memory reduction across three datasets, without degrading visual quality or pose alignment.

Limitation: Efficient training may result in a proliferation of models with harmful biases or intended
uses.

9
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A MODEL ARCHITECTURE FOR HUMAN VIDEO GENERATION

We propose a strong baseline model for human video generation based on diffusion transformer.

Transformer-based Denoiser with Temporal Attention. Our baseline model start with a Diffusion
Transformer (DiT) designed for image generation. DiT is a latent diffusion model with VAEs to
encode the higher level input to lower dimension latent feature. A transformer-based diffusion model
learns the distribution of the latent features. We add a temporal attention layer to each block of the
diffusion transformer to model the temporal relationship across frames.

Siamese ReferenceNet. ReferenceNet is widely used in controlled video generation as it can capture
the detailed appearance of reference image. However, previous works train referencenet as a separate
network with its own set of parameters. The optimization of the new set of parameters during
training is computationally costly. To reduce GPU memory usage and speedup training, we propose
Siamese ReferenceNet, which share exactly the same architecture and parameter of the denoiser
network. The Siamese ReferenceNet is connected to the main denoiser network through cross-
attention.

Efficient DiT ControlNet. We use an efficient transformer-based ControlNet for pose condition.
We use the PixArt with only 1 transformer layer to minimize the memory consumption.

B ADDITIONAL RESULTS

Effect of Siamese ReferenceNet. Given the superior performance of double network structures
in generative tasks, we adopt a similar approach inspired by models like Animate Anyone (Hu,
2024) and Champ (Zhu et al., 2024). Our architecture includes an additional DiT-based reference
network alongside 1-layer ControlNet blocks. To evaluate the effectiveness of image-conditioned
generation, we conduct experiments on the Bilibili dataset. The results, as presented in Table
6, indicate that our original model outperforms the double network structure(Reference Network,
RN), achieving competitive results with a simpler architecture and lower memory and computational
costs. Notably, our proposed Ent-Prog model achieves the best performance across all metrics,
demonstrating enhanced training speed and improved generation quality.

These results qualitatively illustrates the effect of different components on efficient model train-
ing. Ent-Prog excels at preserving subject details and accurately synthesizing single-frame images,
particularly in retaining fine body details and generating correct images.

Table 6: Comparison with different model
structure.

Training
scheme L1 ↓ SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓

w/o RN 4.15e-5 0.745 26.32 0.330 176.02
Original 3.11e-5 0.718 28.42 0.279 115.42

Ent-Prog 2.75e-05 0.783 28.56 0.279 95.98
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