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Abstract 
Recombinant protein expression is central to academic exploration as well as biotechnology’s advancement of human 
health, climate applications and the bioeconomy in general. However, not all proteins can be expressed in all organisms, 
and the field lacks a predictive model of soluble protein expression that could replace laborious experimental 
trial-and-error. This project aims to design and test an openly available and extensible experimental platform and 
standardized data ontology for collecting soluble recombinant protein expression data across organisms. The resulting 
public dataset will be used in building predictive models of protein expression. Here we share preliminary assay feasibility 
data in our first expression host organism, Escherichia coli. 
 
Introduction     
Soluble protein expression impacts all corners of the scientific community. However, most models of protein expression 
focus on one organism1, thus there is a need for a generalized model of protein expression in common expression hosts. 
However, building such a model requires a dataset of large-scale protein production across a variety of proteins in a 
variety of organisms. There is a lack of freely-available, large-scale expression datasets that span organisms and have 
been collected in consistent experimental settings. 1 
 
In this work, we aim to design and generate an expression host- and sequence-diverse dataset, soluble protein 
expression dataset specifically to feed into predictive models (Figure 1, top). “We define soluble protein expression as 
measurable recombinant protein in the soluble fraction of cell lysate produced in the context of a microbial expression 
system, represented as proteins/cell. Broadly the factors that impact expression can be divided into extrinsic and intrinsic 
factors2,3. Extrinsic factors that represent experimental choices in how to express the protein - host genotype, expression 
cassette architecture, and experimental details of culturing, lysis etc - can be modified for better results. Intrinsic factors 
that are driven by the specific amino acid sequence - foldability, stability and solubility -  cannot be altered without 
changing the identity of the protein. Soluble protein expression is the compound outcome of both the intrinsic and extrinsic 
factors. For this reason, expression is a valuable single readout that summarizes many relevant inputs. Our dataset 
proposes to explore both extrinsic (different host organisms) and intrinsic factors (different amino acid sequences) to 
produce reproducible, quantitative measurements of soluble expression. Ideally, the interaction of  of both these intrinsic 
and extrinsic factors can be predicted using predictive models that are trained on the resulting dataset.” 1 

 
When designing a dataset for ML, two major 
questions arise: what types of data and how much 
of it do you need? Our approach tests assays of 
varying resolution and throughput. In order to 
answer the questions about data types and 
amounts, we need to collect data of different 
types. First-pass modeling of this data will be 
used to understand data scaling laws and guide 
us in larger scale pilot experiments. We plan to 
first generate arrayed data using HiBiT and mass 
spectrometry. This data will support onboarding of 
pooled methods like proteomics and a pooled 
growth based assay. To date, we have generated 
HiBiT assay data, discussed below. 
 
Results 
Our first round of experimentation focused on 
singleplex (SPX) assay feasibility in Escherichia 
coli (Ec) and Pichia pastoris (Pp). The goal of 
assay feasibility is to identify an assay data that 

shows quantitative protein expression, as supported by an orthogonal readout. Subsequent work to scale the assay, or 
use it as a way to monitor quality of a high-throughput method would proceed. We will focus on Ec data for a single assay 
below. “Due to its popularity for protein expression, an E.coli BL21(DE3) related strain, BL21-AI, was used4,5.  Similarly, 
the widely used pET28a vector was used as the backbone for expression6.  
 
We wanted to first test two SPX assays: HiBiT and mass spectrometry. HiBiT measures protein abundance using a split 
NanoLuc luciferase system. Proteins of interest (20 diverse ORFs and 10 re-coded mScarlet-I3) were N- or C-terminally 
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tagged with the 11 amino acid HiBiT peptide tag 
(a portion of NanoLuc). The HiBiT complementing 
LgBit polypeptide is added after cell lysis. When 
HiBiT and LgBiT interact, they reconstitute the 
luminescent enzyme, NanoLuc. Luminescence 
intensity is proportional to the abundance of the 
HiBiT tagged protein of interest7. HiBiT and mass 
spectrometry were chosen for SPX assay 
feasibility because they have small tags, the 
readouts are proportional to protein expression, 
they require limited optimization, and they are 
easily extended to other organisms (important for 
future dataset growth).  
 
The experimental workflow for feasibility of HiBiT 
and mass spectrometry is assay independent 
(Figure 1, bottom panel). In fact, the same basic 
steps for sample generation would be used 
across most assays. Since we are interrogating 
only soluble protein expression, the soluble 
fraction would be used to measure target protein 
expression.  

 
For assay feasibility, we used 2 sets of control open reading frames (ORFs), a diverse set of ORFs8, and a fluorescent 
protein (FP) sequence (mScarlet-I3) that has been codon varied multiple times to produce unique sequence variants. We 
hypothesized that the diverse ORFs will have a range of expression and could be used as an expression ladder for 
downstream experiments. We included the codon varied mScarliet-I3 (FP) set because it has been shown that a range of 
GFP expression can be produced by changing codon usage in Ec9. We will not know the expression of these mScalet-I3 
variants in Ec a priori, however fluorescence provides a quick orthogonal readout to HiBiT and mass spectrometry 
therefore we feel these proteins are valuable to include.” 1  
 
There is a ladder of HiBiT signal in E.coli among the diverse ORF set (Figure 2). Unsurprisingly, the placement of the 
HiBiT tag on N- or C-terminus has a different impact on HiBiT signal depending on the protein. Curiously, there is not a 
strong correlation between fluorescence of the FP variants and the observed HiBiT signal. Mass spectrometry will be used 
as an orthogonal assay to validate protein expression in these strains.  
 
Methods 
Input glycerol stocked strains were grown overnight at 37°C (pre-culture). These were subcultured into a fresh production 
plate and this was grown for 2 hours before arabinose and IPTG were added to induce protein expression. After induction, 
plates were grown at 25°C overnight. 250µL of the production plate was spun down, followed by a freeze/thaw cycle. 
Lysis buffer was added and the plate was incubated at 25°C for 30 minutes. Following this, the lysis plate was centrifuged 
and 100nL was used in the final HiBiT reaction following the manufacturer's protocol. See Appendix for additional details. 

Discussion 
Our preliminary data highlight both the feasibility and limitations of the HiBiT assay for measuring soluble recombinant 
protein expression in E. coli. The observed HiBit response among the diverse ORF set confirms that the HiBiT assay can 
provide a quantitative readout of protein abundance. However, the lack of strong correlation between the fluorescence 
signal from the codon-varied mScarlet-I3 proteins suggests additional factors are influencing the readout beyond simple 
protein abundance. 

To address these incongruencies, we propose establishing a ground-truth for our data by incorporating mass 
spectrometry-based quantification as an orthogonal approach to validate protein abundance. In parallel, we will continue 
to explore whether the HiBiT assay poses similar challenges in P. pastoris. 

These findings emphasize the importance of a multi-modal approach in constructing a robust, organism-spanning protein 
expression dataset. Rather than relying solely on large, unlabeled datasets used in unsupervised learning (e.g., multiple 
sequence alignment-based models or protein language models) or small, labeled datasets used in supervised learning 
(e.g., regression or neural networks trained on bespoke proteins), we aim to strike a balance by creating high quality 
datasets on a broad class of proteins. This approach aims to generate a dataset that will enable more accurate and 
generalizable predictions of soluble protein expression. With additional validation, we envision this dataset serving as a 
foundation for developing machine learning models capable of predicting soluble protein expression across diverse host 
organisms, ultimately reducing the need for trial-and-error approaches in protein expression. 
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Appendix 
 
Production sample generation 

 
 
Lysis of Samples 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



HiBiT assay plate generation 

 


