Under review as a conference paper at ICLR 2026

ENCODE, THINK, DECODE: SCALING TEST-TIME REA-
SONING WITH RECURSIVE LATENT THOUGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most efforts to improve the reasoning capabilities of large language models
(LLMs) involve either scaling the number of parameters and the size of train-
ing data, or scaling inference computation by letting models generate complex
chains of thought. Motivated by interpretability studies showing that the crucial
computation required for reasoning tasks is concentrated in a limited range of
layers, we introduce Encode-Think—Decode (ETD), a method that enhances the
reasoning capabilities of a base model by training it to iterate over a small subset
of reasoning-relevant layers during the mid-training stage. ETD amplifies latent
reasoning while preserving the original architecture, parameter count, hyperpa-
rameters, and training data composition. When iterating on the selected layers
at inference time, ETD models yield substantial gains on 17 reasoning bench-
marks, including up to +28.4% relative accuracy improvement on GSM8K and up
to +36% on MATH with the OLMo-2 1B Base model. We also explore an adap-
tive depth strategy that adjusts the computation per input token. Our results show
that recursive latent reasoning offers a simple and effective path to stronger LLM
reasoning.

1 INTRODUCTION

Modern language models demonstrate remarkable capabilities in a wide range of reasoning-intensive
tasks, including mathematics, programming, commonsense reasoning, and logical puzzles (Brown
et al.}2020; |Dubey et al., 2024;|OpenAl et al.| [2023} |DeepSeek-Al et al.,|2025). The main driver for
this progress are scale in both data and parameters, and inference-time techniques such as chain-of-
thought prompting.

Initial scaling laws correlated reasoning capabilities to sheer parameter count and training data to-
kens (Kaplan et al.| [2020; Hoffmann et al.| [2022; |Allen-Zhu & Li, 2024). |Ye et al.| (2024) refined
this picture and argued that depth, not just parameter count, is critical for reasoning: deeper models
often outperform shallower ones with the same number of parameters. This perspective aligns with
the intuition that reasoning tasks require multi-step, compositional thinking, for which depth plays
a central role.

Beside scaling data and parameters, the prevalent approach to increasing the reasoning capability
of models is by scaling test-time computation. A common approach, known as chain-of-thought
(CoT) reasoning (Kojima et al., |2022; |Wei et al., 2022), involves prompting or training LLMs to
generate intermediate reasoning steps before giving a final answer. This approach emulates human
inner monologues and the use of scratchpads, but fails to capture the variability in the amount of
non-verbal thought.

An emerging body of interpretability research has also sought to characterize how reasoning is
implemented within LLMs. Recent studies suggest that reasoning processes are not uniformly dis-
tributed across layers, but instead transition from local, syntactic operations in earlier layers to more
global and semantic integration in deeper layers (Elhage et al., [2022; [Nanda et al. [2023; L1 et al.,
2022; [Stolfo et al., [2023). Other works highlight the presence of specialized circuits and modular
representations that support multi-step inference (Olsson et al.,[2022}Singh et al.,2024)). These find-
ings suggest that reasoning is not merely a byproduct of scale but is tied to structured computational
patterns within the network, motivating architectural modifications that amplify the contribution of
reasoning-relevant layers.

Under review as a conference paper at ICLR 2026

Based on these observations, we propose ETD (Encode, Think, Decode), a method to enhance the
latent-space reasoning capabilities of existing models by adjusting the effective depth of the network.
We identify a range of critical layers for latent reasoning and train it into becoming a recurrent block.

Recursive depth models, also known as looped models, have been mostly studied as a way to im-
prove parameter efficiency (Lan et al., [2019; Bae et al., 2024). Our goal in applying a recursive
approach, conversely, is to boost reasoning capabilities by efficiently scaling inference-time com-
putation. There has been work on measuring the effectiveness of recursive-depth models on fairly
simple reasoning tasks (Saunshi et al.} 2025), and deliberate attempts to improve reasoning via such
looping (Geiping et al. [2025). However, these works apply recursion without explicitly targeting
the layers most relevant for reasoning within the model.

Rather than training small models from scratch to compare recursive and non-recursive variants, we
validate our approach on pretrained open-source models from the OLMo 2 family (OLMo et al.,
2024). We re-run their mid-training stage to integrate recursion, but crucially, we do not introduce
additional parameters, new data, or changes to the original hyperparameters. This makes our method
practical and straightforward to reproduce, as it builds on widely available pretrained models without
requiring costly retraining from scratch. To our knowledge, this is the first work to demonstrate that
introducing recurrent depth yields significant improvements over modern open-source LLMs.

We demonstrate that our proposed method leads to significant improvements across 17 tasks requir-
ing different types of reasoning. Notably we achieve a relative improvement of 28.4 % and 36% on
GSMSK (Cobbe et al.,2021) and MATH (Hendrycks et al., [2021) for the OLMo-2 1B base model.

We also propose how to dynamically set the depth of the model depending on the token. This allows
to spend less compute on easy problems and more compute on challenging ones.

The main contributions of the paper are as follows:

* We show that advanced open-source pretrained models can be further enhanced with a
recurrent-depth mechanism that requires no additional parameters, training data, or hyper-
parameter tuning.

* We demonstrate that ETD provides greater benefits on tasks requiring intensive reasoning,
with relative improvements of 28.4% on GSM8K and 36% on MATH for OLMo-2 1B.

* We analyze the impact of iterating over different layers on reasoning performance and
introduce a practical recipe for selecting critical layers for latent reasoning.

* We show that performing more latent-space reasoning, i.e. increasing the number of itera-
tions, directly improves performance on reasoning tasks.

* We introduce a mechanism to adaptively determine the number of iterations for each input.

2 ON THE ROLES OF LAYERS FOR REASONING

There have been extensive studies on the functional roles of different layers in neural networks. In
computer vision, shallow layers are known to capture general features, while deeper layers represent
more fine-grained ones (Zeiler & Fergus|, 2013} Bau et al.|[2017). Similar patterns are also observed
in LLMs. For example, [Stolfo et al.| (2023)) show that, when solving simple arithmetic questions,
LLMs encode information about operators and operands in mid-sequence early layers, transform
this information into intermediate computations in middle layers, and form the representation of the
final answer in the last-token middle-to-late layers. Likewise, |[Zhao et al.| (2024)) find that, during
instruction tuning, early layers capture broad and reusable knowledge, middle layers amplify task-
relevant signals, and deeper layers refine these signals into task-specific outputs. More broadly,
interpretability studies confirm functional differentiation across layers of varying depths, including
in reasoning settings (Yu et al.| 2025; Gromov et al., [2024} Shi et al.| 2024; |Skean et al.| [2025)).

As information propagates from early to deeper layers, the reasoning process transitions from spe-
cific, local, and syntactic information to rich semantic integration. We draw the conclusion that
early to middle layers play a critical role in task understanding (Davidson et al.| [2025)) and knowl-
edge retrieval, while deeper layers are important for higher-level inferences such as those required
for mathematical reasoning.

Under review as a conference paper at ICLR 2026

Vanilla Transformer

: 028
I it Output
npul : utpul _—

"Encode" "Think" "Decode” w02

Input Output

Latent Encoder Latent Decoder I T R A S b N2 B

)
Layers, |

Recursive
“Thinking" Block

Figure 1: Left: Illustration of the proposed architecture (Section. The latent encoder (blue) maps
inputs into latent space, the recursive “thinking” block (green) iteratively refines representations,
and the latent decoder (red) maps them back to the output space. Each block consists of a different
number of layers. Right: Angular distances d(l,! + 1) between consecutive layers for OLMo 2
1B base and instruct models. The plot highlights three groups of layers—latent encoder, recursive
block, and latent decoder—corresponding to distinct trends in layer-to-layer evolution (Section[2.1)).

We therefore break down transformer blocks into three groups (Figure[I): a latent encoder E, which
embeds the input data into a latent space and retrieves information about mentioned entities, then
a core recurrent “thinking” block 7', a central unit of recurrent computation, that generates latent
“thoughts”, and finally the latent decoder D, which un-embeds from latent space and also contains
the prediction head of the model. In practice, the information first goes through layers in the latent
encoder F, then iterates over the “thinking” block %k times, and finally flows through the latent
decoder D, which returns output tokens. Let’s denote different configurations as Ng-Np*k-Np,
e.g. 7-4%2-5 denotes a transformer with 7 layers in the E block, 4 layers in the 7" block, repeated
twice, and 5 layers in the D block.

If the layer-to-layer evolution of representations is given by a residual iteration equation:
2t =gl f(a!,0") (M

where !, 6! are the input and parameter vectors for layer I, and f(z!, 6') represents the transforma-
tion of one multi-head self-attention and MLP layer block (Vaswani et al., 2017), then after L total
layers the output is the sum of the input embeddings and the contributions of all the layers:

Ng—1 k Ng+Nr—1) L—-1
2k = 1,0+ Z f(l’l,el)+ Z f(l,l+(‘]71)*NT79l)+ Z f(l,lJr(kfl)*NT,gl))
=0 j=1 l=Ng I=Ng+nr

2.1 CHOOSING THE OPTIMAL CONFIGURATION FOR LATENT REASONING

Prior work on related recursive architectures has generally adopted a single predefined partition of
layers, without exploring alternatives or analyzing how the choice of split affects performance. Some
approaches apply recursion over all internal layers, i.e. employ only a recursive block 7', (Dehghani
et al., 2018; [Csordas et al., 2024} |Bae et al., 2024; Saunshi et al.l [2025)), others allocate 1-2 layers
each to the E and D blocks (Geiping et al.| [2025; [Bae et al., [2025; |Aleksandrov et al., [2025). In
contrast, our work takes the roles of layers into consideration when determining the configuration.

The latent encoder should include enough layers to transform input text into the latent space and re-
trieve all relevant knowledge, laying the foundation for higher-level semantic analysis and reasoning
to happen via a recursive “thinking” block, T

To identify the optimal configuration of layers, we build on the approach of (Gromov et al.| (2024).
They discovered that later layers change the direction of hidden representations less than earlier
layers. They used the average angular distance as a criterion for identifying layers to prune. Their
experiments show that removing such layers has almost no impact on tasks heavily relying on knowl-
edge retrieval. Despite the low average angular change, however, even moderate pruning of those
same layers results in a degradation on reasoning tasks. We build on these insights and use mean
angular change to identify reasoning-critical layers to iterate over.

We measure the average change in the direction of the residual stream vector after each layer, and
add layers to the latent encoder until the rate of change from layer to layer slows down.

Under review as a conference paper at ICLR 2026

In practice, we compute the average angular distance d(z(l), z(l + n))ﬂ between the input to layer [
and the input to layer [+ n on the C4 validation set (Raffel et al., 2019). The distance quantifies the
degree of update to x resulting from processing between layers [and [+ n. Figure [[[(right) shows
the average distances d(x (1), z(l + 1)) for OLMo-2 1B base and instruct models.

To automatically identify the point, i.e. the layer, at which a curve transitions from a rapid to
a gradual decrease, we employ the Kneedle algorithm (Satopaa et al., 2011). This method detects
“knee” (or “elbow”) points in convex, decreasing sequences by analyzing their curvature. Algorithm
details are provided in Appendix |[Cl The detected layer index defines the boundary of the latent
encoder. For the OLMo-2 1B model, this corresponds to layer 7.

Similarly to the latent encoder, the latent decoder must have sufficient depth to transform represen-
tations from the latent space back into the “language” space. To determine the number of layers in
the latent decoder, we follow the same procedure as for the latent encoder, but applied in reverse:
starting from the final layer of the model and moving backward until reaching the last layer assigned
to the latent encoder. For the OLMo-2 1B model, this yields the last 5 layers as the latent decoder.
The remaining 4 layers constitute the recursive “thinking” block.

Hence, we set the configuration to 7-4*k-5, i,e. 7 layers in latent encoder, 4 layer in recursive block,
and 5 layers in latent decoder respectively, and k is number of iterations. In Figure [T](right), the rate
of change in angular distance decreases around layer 7, stabilizes over the subsequent four layers,
and increases again during the final five layers.

Acknowledging that there is no clear single subset of layers solely responsible for reasoning across
all models and tasks, we show empirically that our approach selects a split that lies near the perfor-
mance maximum in the search space across tasks.

3 EXPERIMENTAL SETUP

Prior work on recursive-depth models have largely investigated recurrence in training settings that
are not representative of modern, fully optimized large-scale LLM pre-training pipelines. We are,
however, interested in understanding the impact of recursive “thinking” in realistic scenarios, and
therefore apply them on open-source models trained following best practices in architecture, training
recipe, and pretraining data mixtures. We base our study on the OLMo 2 family of models (OLMo
et al.| [2024), focusing specifically on the base configurations. For fair comparison, our ETD models
use the same number of parameters, datasets, and hyperparameters as the baseline non-recursive
model.

3.1 TRAINING PIPELINE

OLMo 2 is a family of LLMs with open artifacts including intermediate and final checkpoints,
training data, code, and recipes for 1B, 7B and 13B scale models, both pre-trained and post-trained.
As a compromise between experimental agility and model power, we focus on 1B parameter model.
We integrate ETD into the existing training pipeline without introducing additional training steps or
data. This requires access to the model weights, training data, and hyperparameters to evaluate the
impact of ETD in a controlled and isolated manner.

Following recent advances in curriculum learning (Blakeney et al., 2024; [Ibrahim et al.,|2024)) OLMo
2 base models are trained in two stages. The first (pretraining) stage is the longest (> 90% training
FLOPs), and uses mostly web-sourced data. The second stage, which is referred to as mid-training
(5-10 % of training FLOPs), upsamples the highest-quality web documents and curated non-web
sources. The purpose of this mixture is to imbue the model with reasoning skills and provide focused
exposure to STEM references and high quality text.

We evaluate the EDT approach by integrating it into the mid-training stage which uses only 1.25%
of the total pretraining tokens)"| In our experiments, we initialize the model with the weights after the
first stage training and run the mid-training with ETD approach for each configuration separately.
OLMo et al.|(2024) perform mid-training with three random orders, then average the resulting mod-

"We explain the details of computing angular distance in Appendix
?For the OLMo-2 1B model, stage-1 pretraining uses 4 x 102 tokens, while stage-2 uses 5 x 10*° tokens.

Under review as a conference paper at ICLR 2026

els. In our setup, we train with one data configuration and compare it to the standard model trained
with the same configuration. Since our experiments adopt the same data mixtures and configurations,
we direct readers to|OLMo et al.|(2024) for a comprehensive description of the training pipeline.

3.2 EVALUATION BENCHMARKS

To capture broad conceptual nature of rea- Table 1: Evaluation benchmarks grouped into six cate-
soning, we consider 17 real-world bench- gories, listed in order of increasing reasoning intensity
marks grouped into six categories, ordered from top to bottom.

along a spectrum from less to more rea-

soning intensive tasks, i.e. from fac- cCategory Benchmarks

tual recall to SyStematiC SymbOIiC reason- Factual Knowledge TriviaQA, NaturalQuestions

ing: .faCtual knOWIedge’ readiqg COl’Ilpl’f?— Reading Comprehension BoolQ, OpenBookQA, DROP
hensmn, commonsense reasoning, multi- Commonsense Reasoning CommonSenseQA, HellaSwag
disciplinary Reasoning, BIG-Bench Hard SocialQA, WinoGrande

(BBH), and mathematical reasoning. This Multi-Disciplinary Reasoning ARC-Easy, ARC-Challenge, MMLU,
progression reflects increasing reliance on MMLU-Pro, AGIEval-English
reasoning rather than memorization. We BIG-Bench Hard BBH]

provide the task categories with the corre- Mathematical Reasoning GSMBK, MATH

sponding benchmarks in Table [I| Details
with the motivation for each task category are provided in Appendix[B] We evaluate the model using
OLMES (Gu et al., 2024)), a standardized evaluation suite and toolkit.

Table 2: Results of the Encode-Think-Decode (ETD) method with varying numbers of iterations
over recursive “thinking” blocks, compared to the OLMo 2 1B baseline. Reported metrics include
accuracy (Acc.) and relative improvement (A, in %) with respect to the baseline, for each of six task
categories (as defined in Sec. [3.2)). Parameter counts denote the number of distinct layers, while
FLOPs correspond to the number of effective forward-pass layers.

Factual Reading Commonsense Multi-Disciplinary BBH Math.
Knowledge Comprehension Reasoning Reasoning Reasoning
Model Params/FLOPs ‘ Ace. A(%) ‘ Acc. A(%) ‘ Acc. A(%) ‘ Acc. A(%) ‘ Acc. A(%) ‘ Acc. A(%)

OLMo 2 (k=1) 16716 37.55 - 52.19 - ‘ 65.29 - 45 - ‘ 31.8 - 2431 -
ETD (k=2) 16/20 381 (+1.5%) | 56.14 (+7.6%) 66.74 (+2.2%) | 4841 (+7.6%) 31.67 (-0.4%) | 28.27 (+16.3%)
ETD (k=3) 16/24 3755 (0%) |56.07 (+74%) 6775 (+3.77%) | 49.55 (+10.1%) 32.62 (+2.6%) | 30.29 (+24.6%)
ETD (k=4) 16/28 3774 (0%) |57.776 (+10.7%) 68.16 (+4.4%) | 50.18 (+11.5%) 33.01 (+3.8%) | 29.62 (+21.8%)
ETD (k=5) 16732 38.23 (+1.8%) | 58.5 (+12.1%) 68.41 (+4.8%) |50.58 (+12.4%) 33.49 (+5.3%) | 30.45 (+25.3%)

4 EVALUATING RECURSIVE “THINKING” BLOCKS

All results are obtained using the training pipeline described in Section[3.1} with the only modifica-
tion being the configuration Ng-Np*k-Np. Here, Ng, Np, and Nt denote the number of layers
in the latent encoder and decoder, and the recursive block, and & is the number of iterations. Since
our objective is to evaluate the model’s reasoning abilities, we focus on reasoning-oriented tasks as
defined in Section[3.2] Because we deal with the same architecture while changing only the number
of layers, we report the number of parameters in terms of distinct layers, Ng+Nr+Np, and the
number of FLOPs in terms of forward passes through layers, Ng+N1*k+Np.

4.1 PERFORMANCE GAINS FROM ITERATING OVER “THINKING” BLOCKS

We begin by examining the first two rows of Table [2] which report results for the baseline and the
recursive model with two iterations, corresponding to the 7-4*2-5 configuration. Notice that the
OLMo 2 1B baseline is equivalent to the ETD model with k=1. Results show that performance
either remains stable or improves, with notable gains in several categories. The largest improve-
ment is observed on Mathematical Reasoning tasks, with an average relative increase of 16.3%. A
breakdown in Table [3]confirms that both GSM8K and MATH benefit from two iterations of the ETD

3BBH, a collection of 23 diverse tasks, serves as a cross-cutting benchmark for compositional reasoning
that does not fit neatly into the other categories. More details in Appendix

Under review as a conference paper at ICLR 2026

approach. Additional gains appear in Commonsense Reasoning (+2.2%), Reading Comprehension
(+7.6%), and Multi-Disciplinary Reasoning (+7.6%). In contrast, tasks in the Factual Knowledge
and BIG-Bench Hard categories exhibit at most marginal benefits from a single additional iteration.

To further assess the effect of recursive process- Table 3: Results of the ETD method with varying
ing, we train ETD with varying numbers of iter- numbers of iterations. Reported metrics include
ations, with results summarized in Table[2] Per- accuracy (Acc.) and relative improvement (A, in
formance generally improves as the number of %) with respect to the baseline on the mathemati-
iterations k increases with one notable excep- cal reasoning tasks, GSM8K and MATH.

tion: the Factual Knowledge category shows

negligible improvement. As discussed in Sec- | GSMsK MATH
tion these tasks rely mainly on memo- Model Params/FLOPs | Acc. A(%) | Ace. A(%)
rization rather than reasoning. In contrast, the oLMo24=1) 16/16 |44.05 - 457 -
largest gains occur in reasoning-intensive tasks, Y e 1w A L
most notably in Mathematical Reasoning, with ETD (k=4) 16/28 55.50 (+25.99%) | 3.73 (-18.28%)
breakdowns shown in Table[3] ETD (k=5) 16/32 5656 (+284%) | 433 (-5.17%)

These results demonstrate that the ETD approach—by iterating over reasoning-relevant lay-
ers—substantially enhances the non-recursive baseline, yielding relative improvements of +28.4%
on GSMS8K and +36% on MATH. Moreover, the minimal gains on memorization tasks further vali-
date our approach from Section 2] for identifying layers specialized in reasoning.

As noted earlier, ETD with k=2 iterations shows no improvement on BIG-Bench Hard (BBH) tasks.
However, performance begins to increase with k=3 and continues to improve with additional iter-
ations. These observations highlight that performance as a function of iterations exhibits different
trends across tasks. For some tasks (e.g., Social IQa, ARC-Challenge, MMLU), performance rises
rapidly with 2-3 iterations, after which the rate of improvement slows. For others (e.g., DROP,
MMLU-Pro, GSM8K), gains continue steadily with each additional iteration. In rare cases, the best
performance is not achieved at the maximum depth, as observed for MATH. Detailed results for all
17 tasks are provided in Appendix [F

Overall, these findings indicate that allocating more resources to generating latent “thought” before
decoding—that is, by performing additional iterations over the “thinking” blocks—systematically
enhances performance on reasoning-oriented tasks. The diverse performance trends across tasks
highlight the opportunity to explore input-dependent, adaptive-depth recursive methods, which we
investigate in Section 5]

Our results empirically demonstrate that the methodology described in Section [2| enables the selec-
tion of configurations that enhance the model’s reasoning capabilities. Notably, the experiments in
the following sections show that it lies near the performance maximum in the search space across
tasks.

4.2 COMPARISON WITH ALTERNATIVE RECURSIVE FRAMEWORKS

Prior work on recursive LLMs typically applies recursion either across all layers (Dehghani et al.
2018 (Csordas et al., [2024; Bae et al., [2024; Saunshi1 et al.l 2025) or across middle layers while
preserving a few initial and final layers (Geiping et al., 2025} Bae et al.l [2025; |Aleksandrov et al.|
2025). For a fair comparison, we train models using both strategies: (i) looping over all layers, and
(ii) a 2—-12*2-2 configuration, which repeats the middle 12 layers while keeping two layers at the
beginning and end fixed. We compare these baselines to our selective looping configuration under a
constant FLOP budget, with results shown in Table]

Our approach consistently outperforms these alternatives under equal compute. For example, the
2-12*2-2 setup is FLOP-equivalent to our 7-4*4-5 configuration, yet yields lower accuracy. More-
over, to match or exceed the performance of alternative strategies, our method typically requires
fewer FLOPs—often only three iterations are sufficient. We also want to note that Ng=Np=0 con-
figuration in Table is the closest analogue to Coconut (Hao et al., 2024).

Under review as a conference paper at ICLR 2026

Table 4: Results with recursive baselines

Model | Params/ Factual Reading) Commonsense Mulli»Disci_plinary BBH Math.
FLOPs | Knowledge | Comprehension | Reasoning Reasoning Reasoning
OLMo2 [16/16 | 37.55 5219 | 6529 45 [318 | 2431
2-12%2-2 | 16/28 377 56.44 ‘ 67.73 47.58 ‘ 3230 29.27
ETD (k=4) | 16/28 37.74 57.76 68.16 50.18 33.01 29.62
0-16%¥2-0 | 16/32 37.35 53.58 ‘ 64.7 45.24 ‘ 30.59 24.99
ETD (k=5) | 16/32 38.23 58.5 68.41 50.58 33.49 3045
Factual Knowledge Reading Comprehension =~ Commonsense Reasoning " Academic Reasoning BBH Math. Reasoning
~ - w o y S8
ula e ‘/ *__'\ .//0' —q\ . // w\\ /kNm‘ /.\“/ \.\
A g e IS L - . | N ‘\ / Rt 1IN e \
B N7 (4 ol “1 'S o / [5
¥ ®l sle” e A »

sN.E7 s’VE7 gNE7 s’VE7 sNE7 SNE7
Figure 2: Results of the ETD method when varying the subset of layers in the recursive block. We
report accuracy (Acc.) when increasing the size of the latent encoder Nz from 1 to 11 in steps of 2,

for each of 6 task categories (as defined in Sec. @ The orange line marks selected configuration.

4.3 HOW DOES THE CHOICE OF RECURSIVE LAYERS CHANGE PERFORMANCE?

To further examine the impact of recursive layer choice, we fix the recursive “thinking” block size
and vary its starting position from layer 2 to 12 in steps of 2, which is equivalent to increasing
the size of the latent encoder Ng from 1 to 11 in steps of 2. An intriguing observation is that the
optimal configuration slightly varies depending on the specific category of tasks. The results in
Figure 2] show that the 7-4*2-5 configuration achieves the best overall performance on reasoning-
intensive task, particularly mathematical reasoning. Detailed results are in Table[7)in Appendix[E} A
close alternative is 5-4*2-7, which performs comparably on most tasks but falls short in mathemat-
ics. Performance on Factual Knowledge tasks is stable across configurations, which aligns with the
intuition discussed earlier. Interestingly, for reading comprehension, the 3-4*2-9 configuration per-
forms best. This block of layers (4-7) overlaps with layers just before the identified “thinking” block
(8-11), aligning with our earlier intuition that early-to-middle layers are important for context un-
derstanding. These findings are consistent with our layer-role analysis, though further investigation
is needed to establish stronger causal links.

4.4 HOW DOES THE SIZE OF RECURSIVE "THINKING” BLOCK CHANGE THE PERFORMANCE?

To ensure a controlled comparison, we vary the size of the recursive block by symmetrically adding
or removing layers around the original 7-4x2-5 configuration, keeping its center fixed while chang-
ing its extent. Figure[3|shows that performance increases as more layers are included in the recursive
block up to a point, after which it begins to decline. Notably, for mathematical reasoning, and even
under the same FLOP budget, looping more times over a compact set of layers (7-4xk-5) outper-
forms looping fewer times over a larger set of layers.This suggests that the placement and structure
of the recursive computation are key drivers of performance, not just the amount of extra computeﬂ

4.5 COMPARISON WITH LARGER MODEL WITH SAME EFFECTIVE DEPTH

We perform an iso-FLOPs comparison by matching the effective depth of ETD with k=2. The
7-4*%2-5 configuration has an effective depth of 22, so we construct a non-recurrent baseline with
the same budget by stacking the 4-layer block twice—yielding a 7-8x1-5 configuration that mim-
ics two iterations without recurrence. Both configurations perform identically before mid-training.
However, results in Table [5] show that the larger iso-FLOPs model underperforms both the original

“Detailed results are in in Appendix

Under review as a conference paper at ICLR 2026

Factual Knowledge Reading Comprehension ~ Commonsense Reasoning Academic Reasoning BBH Math. Reasoning
P e raws e rans 7] @ as o] o 7 -
ale |7 s .
o] e X - 5| -
+ + o n* NEE 14
3]+ 2 s 2 = - _e| ® - 22 (3 e -
G ot ~o| = 2 e - P |
g S T . _e-
& | * .
7 + #1 . w -9 8
w 2{@ .
3 0
2
B e 4
I F I R S T % & @ = ® % @ @ = P S S PR I S
FLOPs FLOPs FLOPs FLOPs FLOPs FLOPs

Figure 3: Results of the ETD method when varying the number of layers in the recursive block. We
report accuracy (Acc.) when changing the size of the latent encoder D between 2.,4,6,8, and 12, for
each of 6 task categories (as defined in Sec. [3.2). Each color represents different configuration of
Ng-N1*k-Np.

non-recurrent baseline and the ETD (k=2) model, highlighting the importance of reusing reasoning-
critical layers rather than expanding the network.

Table 5: Results with larger model and same FLOPs

Model | Params/ KFactlu:;l c Rea(l{‘ing) CoRmm0n§ense Mulg-Disciplinary BBH N Mathl.
FLOPs | Knowledge | Comprehension easoning easoning easoning

OLMo 2| 16/16 37.55 52.19 65.29 45 31.8 2431

7-8-5 | 20/20 31.78 52.03 62.45 44.42 30.21 21.68

7-4%2-5 | 16/20 38.1 56.14 66.74 48.41 31.67| 2827

4.6 SCALING FROM 1B PARAMETERS TO 7B PARAMETERS

We extend our experiments from the 1B model Table 6: Results of the ETD method on OLMo-
to the 7B model. Applying the configuration 2 7B base model. Reported metrics are accuracy
selection procedure from Section[2.1]yields the (Acc.) and relative improvement (A, in %) with
16-10*2-6 layer assignment, which we train respect to the baseline.

using the same mid-training ETD integration

described in Section [3.1] The 7B experiments | GSMsK MATH
follow the same qualitative trends observed at Model Params/FLOPs | Ace. A(%) | Acc. A(%)
1B scale: as shown in Table [f] ETD consis- OLMo27B(k=l) 32/32 ‘66.18 - 107

ETD (k=2) 32/42 67.02 (+1.29%) 18:26 (+6.38%)

tently improves mathematical reasoning perfor-
mance, while gains on other task categories are less pronounced (see Appendix [H). We note that
mid-training of both 1B and 7B models uses the same amount of data, meaning that 1B was exposed
to more data per parameter.

5 ADAPTIVE TEST-TIME SCALING

We observed significant improvements of iterating over recursive blocks. The general trend is that
the model benefits from more iterations. However, different problems demand different levels of
reasoning effort: not all tokens or sequences require the same number of iterations to reach an
accurate prediction, and in some cases the marginal benefit of additional iterations may not justify
the extra computation. Adaptive computation (Bengio et al., 2013} 2015) is often used for efficiency
by early-exiting on simpler tokens (Elhoushi et al., |2024). In contrast, our goal is to adaptively
allocate computation at test time to enhance reasoning capability, rather than to reduce cost.

5.1 METHODOLOGY

In our architecture of the form £ — T+« k — D, instead of fixing the number of recursive iterations k,
we adopt the Adaptive Computation Time (ACT) mechanism 2016), allowing each token
to dynamically determine how many applications of the recursive block 7" are necessary. A router
evaluates the hidden state after each iteration and decides whether further computation is required.
This enables allocating more steps to tokens that demand deeper reasoning, while those not meeting
the selection criteria bypass further processing and retain their previous representation.

Under review as a conference paper at ICLR 2026

At each iteration ¢, after computing the hidden representation h; with the recursive block, a router
predicts a halting values w; € (0, 1) for each token. These values are accumulated across iterations:

t
H, = ij. (3)
j=1

Computation for a token is stopped once H; > 1—¢, with € is a small constant (e.g. 0.01). Intuitively,
each w; represents the confidence of the latent “thought”, as produced by the recursive block 7.
Until sufficient confidence is accumulated, the latent ’thought” state continues to be updated. The
final representation passed to D is the output of “thinking” block 7" after final iteration.pE]

Despite its simplicity, this design proved effective in practice. Compared to a fixed-depth design,
ACT introduces per-token dynamic depth, enabling more efficient and adaptive use of the recursive
block. Full details are provided in Appendix D]

DROP OpenbookQA GSM8K MMLU Pro AGIEval English ARC-Challenge
0% 5 8| 0100 A 0w A oez ye—
056 - - -
2 o0 //. 054 F”. o1 .(// e - ”
’ 7’ - - -
o s . ,,’ 01801 /,/’ od0 =9 o5 »
I+ Ao ° -’ 2 o3y vt sl) /
< A 4 2 / / / /
/, Il // 1 7
/I II I/ II II
(] ‘¢ ¢ [[
3 3 3 3 I 3 3 7 3 I 3 3 7 3 T B 3 3 3 T p 3 3 3 T 3 3 3
#iterations, k #iterations, k #iterations, k #iterations, k #iterations, k #iterations, k

Figure 4: Results of fixed-depth ETD with varying numbers of recursive “thinking” iterations com-
pared to adaptive-depth ETD. For fixed-depth ETD, we report accuracy (Acc.) at each iteration
count. For adaptive-depth ETD, we report accuracy and the average number of iterations per task.

5.2 RESULTS

We outlined the difference in architecture between fixed- and adaptive-depth approaches, while we
follow the same training pipeline discussed in Section [3.1] Figure [reports the performance of
fixed-depth ETD and adaptive-depth ETD, together with the average number of loops per taskE]

From Figure] we make three key observations. First, this exploratory approach in the direction
of adaptive test-time compute approach shows clear improvement over baseline with no recursive
iterations. Second, looking at the performance on DROP and OpenbookQA, both of which are
reading comprehension tasks, we see that adaptive-depth ETD outperforms the ETD with fixed
k=5 iterations. Moreover, it also achieves this with fewer iterations on average. Third, for the
remaining tasks, adaptive-depth ETD follows the empirical accuracy—iteration tradeoff of the fixed-
depth baselines. In particular, its accuracy matches the trend observed for increasing iteration counts,
suggesting that performance is well-aligned with its average effective depth. Notably, in these tasks,
the adaptive method halts additional iterations once further computation yields only marginal gains.

6 RELATED WORK

Recursive architectures Recurrence has long been a foundational concept, from RNNs to efforts
to incorporate it into transformers. In transformers, recurrence has been explored by iteratively
refining representations across all tokens in parallel (Dehghani et al.| 2018} |Lan et al., [2019), and
applied to algorithmic tasks such as arithmetic (Schwarzschild et al.|[2021; Bansal et al., 2022} Bear
et al., 2024; McLeish et al., [2024). Other works offered theoretical and small-scale analyses of
looped transformers (Giannou et al., 2023; \Gatmiry et al., [2024} Yang et al.| 2023} |[Fan et al.| [2024)).

Beyond fully recurrent-depth architectures, several hybrid designs have also been proposed, includ-
ing latent sub-networks (Li et al., 2020), Mixture-of-Experts structures (Tan et al., 2023} |Csordas
et al.,[2024)), and dynamic weight-tying (Hay & Wolf}|2024;[Liu et al.| 2024b). The major motivation
of many works mentioned above was inspired by efficiency based on utilizing shared parameters.

SWe also tried to follow (Graves| (2016) to represent final representation as the weighted mixture of the
outputs after each iteration, but found it less effective.

SWe selected these tasks because they exhibit the largest relative gains from the recursive approach. See
Appendix@for results on the six tasks with the highest relative improvement of ETD (k=5) over baseline.

Under review as a conference paper at ICLR 2026

Latent Reasoning Chain-of-thought prompting has been a central focus in recent studies of rea-
soning (Merrill & Sabharwal, 2024; Feng et al., 2023} [Li et al., [2024). In contrast, our proposal
follows the alternative line of latent reasoning, where reasoning unfolds in the model’s hidden rep-
resentations rather than explicit textual traces. Related efforts on learning to reason in continuous
spaces include |[Hao et al.| (2024); |Cheng & Durme|(2024)); Liu et al.| (2024a)); |Geiping et al.[(2025);
Saunshi et al.| (2025). |Chen & Zoul (2024); |Ye et al.| (2024); |Petty et al.| (2023) have shown the
importance of model depth for reasoning. Further analysis on Coconut (Hao et al.l 2024), show
that continuous thought vector is a superposition state that encodes multiple search frontiers si-
multaneously (Zhu et al.l 2025bja). We step further showing that larger depth leads to reasoning
improvements also when it is achieved via looping, without increasing the number of parameters.

Adaptive Computation Dynamic compute allocation has been shown to substantially reduce
training and inference costs, spanning from early neural networks (Bengio et al.|[2015; [Huang et al.,
2016; [Teerapittayanon et al., [2016; [Panda et al., 2015) to LLMs (Hou et al.| 2020; [Elbayad et al.,
2019; [Fedus et al.| 2021} Bae et al., 2023} [Elhoushi et al., 2024). A prominent line of work, early
exiting, learns to terminate computation on “easy” inputs by skipping subsequent layers (Elbayad
et al., 2019} [Schuster et al.l [2022; Bae et al., 2023} [Elhoushi et al.l [2024). Adaptive depth can be
also formulated as a routing problem: each layer’s router selects a subset of tokens for full compu-
tation while others bypass the layer, enabling token-level conditional compute (Raposo et al., 2024;
Luo et al., 2024). Extending this idea, Bae et al.| (2025)) applied conditional routing to recursive
transformers, but restricted recursion to a small, fixed maximum of three iterations.

Key Differences from Prior Work Our approach differs from prior work in several important
ways. First, most recursive-depth methods have been studied primarily as a means of improv-
ing parameter efficiency (Lan et al., 2019; Bae et al., 2024), i.e., reducing parameter count while
maintaining performance, whereas our focus is on enhancing reasoning capability. Second, to our
knowledge, we are the first to propose a recursive approach guided by interpretability: rather than
choosing the recursive configuration heuristically, we iterate specifically over layers critical for rea-
soning. Third, our method is simple and requires no additional components such as extra latent states
for recursive blocks and very large of number of iterations (Geiping et al., [2025), LoRA adapters
(Bae et al., 2024), regularization terms (Saunshi et al.,|2025)), or input injections (Aleksandrov et al.,
2025). Unlike methods such as Coconut (Hao et al.| |2024), which introduce a separate language
and latent mode, and multi-stage training, ETD preserves the standard forward pass and applies re-
currence only to a small reasoning-critical block—yielding stronger reasoning gains. Fourth, unlike
most prior work that evaluated recurrence under simplified setups, we show that recursive depth
improves advanced open-source models trained with state-of-the-art practices in architecture, train-
ing recipes, and pretraining mixtures, validating our approach extensively on real-world reasoning
tasks. Speaking of adaptive-depth recursive model, in our formulation we advocate for open-ended
test-time compute scaling: after each iteration, the model should autonomously decide whether to
continue or halt, without being constrained by a predefined cap (Bae et al.| 2025)).

7 CONCLUSIONS

We introduced Encode—Think—Decode (ETD), a paradigm that enhances the reasoning abilities of
LLMs by performing latent-space reasoning. Unlike approaches that depend on scaling model size
or externalizing reasoning through CoT prompting, ETD amplifies reasoning-relevant computa-
tions within the model itself, without altering its architecture, parameters, data, or hyperparame-
ters. Across 17 benchmarks, ETD consistently improved performance, with substantial gains on
reasoning-intensive tasks such as GSM8K and MATH. Our analysis underscores the importance of
iterating over deeper, reasoning-relevant layers, and adaptive depth strategies further show how ETD
can dynamically allocate compute based on task difficulty.

Overall, recursive latent reasoning emerges as a simple, effective, and broadly applicable approach
for strengthening reasoning. By integrating interpretability insights with recursive computation,
ETD illustrates how leveraging depth and structure can advance reasoning in language models.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our study focuses on methodological contributions for enhancing reasoning in large language mod-
els and relies exclusively on publicly available datasets and open-source pretrained models. We do
not introduce new data, nor do we involve human subjects. We do not foresee direct societal risks
beyond those already associated with language models. At the same time, we hope that improving
the reasoning ability of models can lead to safer and more reliable applications by reducing errors
in reasoning-intensive domains.

REPRODUCIBILITY STATEMENT

‘We build on openly released models, which provide full access to weights, data mixtures, and train-
ing recipes. Our modifications involve only the mid-training stage, where we re-run training with
the same data and hyperparameters, adding recursive iterations without introducing new parameters
or datasets. All evaluations use widely available benchmarks. We report full configuration details,
including recursive block structure and iteration counts in the main text and appendices. These
choices ensure that our results can be reproduced by others with access to the training pipeline and
publicly available evaluation benchmarks.

REFERENCES

Preslav Aleksandrov, Meghdad Kurmanji, Fernando Garcia-Redondo, David O’Shea, William F.
Shen, Alexandru Iacob, Lorenzo Sani, Xinchi Qiu, Nicola Cancedda, and Nicholas Don-
ald Lane. Abbie: Autoregressive block-based iterative encoder for efficient sequence mod-
eling. ArXiv, abs/2507.08567, 2025. URL fhttps://api.semanticscholar.org/
CorpusID:280293934.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scal-
ing laws. ArXiv, abs/2404.05405, 2024. URL https://api.semanticscholar.org/
CorpusID:269005957.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and SeYoung Yun. Fast and robust early-
exiting framework for autoregressive language models with synchronized parallel decod-
ing. ArXiv, abs/2310.05424, 2023. URL https://api.semanticscholar.org/
CorpusID:263830054.

Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schus-
ter. Relaxed recursive transformers: Effective parameter sharing with layer-wise lora. ArXiv,
abs/2410.20672, 2024. URL https://api.semanticscholar.org/CorpusID:
273654907

Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr
Harutyunyan, Ziwei Ji, Aaron Courville, and SeYoung Yun. Mixture-of-recursions: Learning
dynamic recursive depths for adaptive token-level computation. ArXiv, abs/2507.10524, 2025.
URLhttps://api.semanticscholar.org/CorpusID:280151550.

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Ali Sami Emam, Furong Huang, Micah
Goldblum, and Tom Goldstein. End-to-end algorithm synthesis with recurrent networks: Ex-
trapolation without overthinking. In Neural Information Processing Systems, 2022. URL
https://api.semanticscholar.org/CorpusID:2585097109.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 3319-3327, 2017. URL https://api.
semanticscholar.org/CorpusID:378410.

Jay Bear, Adam Priigel-Bennett, and Jonathon Hare. Rethinking deep thinking: Stable learning of
algorithms using lipschitz constraints. ArXiv, abs/2410.23451, 2024. URL https://api.
semanticscholar.org/CorpusID:273707386.

11

https://api.semanticscholar.org/CorpusID:280293934
https://api.semanticscholar.org/CorpusID:280293934
https://api.semanticscholar.org/CorpusID:269005957
https://api.semanticscholar.org/CorpusID:269005957
https://api.semanticscholar.org/CorpusID:263830054
https://api.semanticscholar.org/CorpusID:263830054
https://api.semanticscholar.org/CorpusID:273654907
https://api.semanticscholar.org/CorpusID:273654907
https://api.semanticscholar.org/CorpusID:280151550
https://api.semanticscholar.org/CorpusID:258509719
https://api.semanticscholar.org/CorpusID:378410
https://api.semanticscholar.org/CorpusID:378410
https://api.semanticscholar.org/CorpusID:273707386
https://api.semanticscholar.org/CorpusID:273707386

Under review as a conference paper at ICLR 2026

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
in neural networks for faster models. ArXiv, abs/1511.06297, 2015. URL https://api.
semanticscholar.org/CorpusID:16049527.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. ArXiv, abs/1308.3432, 2013. URL
https://api.semanticscholar.org/CorpusID:18406556.

Cody Blakeney, Mansheej Paul, Brett W. Larsen, Sean Owen, and Jonathan Frankle. Does
your data spark joy? performance gains from domain upsampling at the end of train-
ing. ArXiv, abs/2406.03476, 2024. URL https://api.semanticscholar.org/
CorpusID:270258382.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Ma teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. ArXiv, abs/2005.14165, 2020. URL https://api.semanticscholar.org/
CorpusID:218971783.

Xingwu Chen and Difan Zou. What can transformer learn with varying depth? case stud-
ies on sequence learning tasks. ArXiv, abs/2404.01601, 2024. URL https://api.
semanticscholar.org/CorpusID:268856974.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reason-
ing through dense representations. ArXiv, abs/2412.13171, 2024. URL https://api.
semanticscholar.org/CorpusID:274789675.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no ques-
tions. ArXiv, abs/1905.10044, 2019. URL https://api.semanticscholar.org/
CorpusID:165163607.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/
CorpusID:3922816,

Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
Training verifiers to solve math word problems. ArXiv, abs/2110.14168, 2021. URL https:
//api.semanticscholar.org/CorpusID:239998651.

Rébert Csordas, Kazuki Irie, Jiirgen Schmidhuber, Christopher Potts, and Christopher D. Manning.
Moeut: Mixture-of-experts universal transformers. ArXiv, abs/2405.16039, 2024. URL https:
//api.semanticscholar.org/CorpusID:270063139.

Guy Davidson, Todd M Gureckis, Brenden M Lake, and Adina Williams. Do different prompt-
ing methods yield a common task representation in language models? arXiv preprint
arXiv:2505.12075, 2025.

DeepSeek-Al et al. Deepseek-r1: Incentivizing reasoning capability in 1lms via reinforcement learn-
ing, 2025. URL https://arxiv.org/abs/2501.12948,

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Univer-
sal transformers. ArXiv, abs/1807.03819, 2018. URL https://api.semanticscholar.
org/CorpusID:49667762.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
North American Chapter of the Association for Computational Linguistics, 2019. URL https:
//api.semanticscholar.org/CorpusID:67855846.

12

https://api.semanticscholar.org/CorpusID:16049527
https://api.semanticscholar.org/CorpusID:16049527
https://api.semanticscholar.org/CorpusID:18406556
https://api.semanticscholar.org/CorpusID:270258382
https://api.semanticscholar.org/CorpusID:270258382
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:268856974
https://api.semanticscholar.org/CorpusID:268856974
https://api.semanticscholar.org/CorpusID:274789675
https://api.semanticscholar.org/CorpusID:274789675
https://api.semanticscholar.org/CorpusID:165163607
https://api.semanticscholar.org/CorpusID:165163607
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:270063139
https://api.semanticscholar.org/CorpusID:270063139
https://arxiv.org/abs/2501.12948
https://api.semanticscholar.org/CorpusID:49667762
https://api.semanticscholar.org/CorpusID:49667762
https://api.semanticscholar.org/CorpusID:67855846
https://api.semanticscholar.org/CorpusID:67855846

Under review as a conference paper at ICLR 2026

Abhimanyu Dubey et al. The llama 3 herd of models. ArXiv, abs/2407.21783, 2024. URL https:
//api.semanticscholar.orqg/CorpusID:271571434\

Mabha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. ArXiv,
abs/1910.10073, 2019. URL https://api.semanticscholar.org/CorpusID:
204824061.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, T. J. Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Baker Grosse, Sam Mc-
Candlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Chris Olah. Toy models of su-
perposition. ArXiv, abs/2209.10652, 2022. URL https://api.semanticscholar.org/
CorpusID:252439050.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi
Chen, and Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative de-
coding. ArXiv, abs/2404.16710, 2024. URL |https://api.semanticscholar.org/
CorpusID:269362647.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
generalization. ArXiv, abs/2409.15647, 2024. URL https://api.semanticscholar.
org/CorpusID:272831982l

William Fedus, Barret Zoph, and Noam M. Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. ArXiv, abs/2101.03961, 2021. URL
https://api.semanticscholar.org/CorpusID:231573431.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. ArXiv, abs/2305.15408, 2023.
URLhttps://api.semanticscholar.org/CorpusID:258865989.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar.
Can looped transformers learn to implement multi-step gradient descent for in-context learn-
ing? ArXiv, abs/2410.08292, 2024. URL https://api.semanticscholar.org/
CorpusID:272330312.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Angeliki Giannou, Shashank Rajput, Jy yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. ArXiv, abs/2301.13196, 2023.
URL https://api.semanticscholar.org/CorpusID:256389656.

Alex Graves. Adaptive computation time for recurrent neural networks. ArXiv, abs/1603.08983,
2016. URL https://api.semanticscholar.org/CorpusID:8224916.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hanna Hajishirzi.
Olmes: A standard for language model evaluations. ArXiv, abs/2406.08446, 2024. URL
https://api.semanticscholar.org/CorpusID:270391754.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason E. Weston, and Yuan-
dong Tian. Training large language models to reason in a continuous latent space. ArXiv,
abs/2412.06769, 2024. URL https://api.semanticscholar.org/CorpusID:
274610816.

Tamir David Hay and Lior Wolf. Dynamic layer tying for parameter-efficient transform-

ers. ArXiv, abs/2401.12819, 2024. URL hhttps://api.semanticscholar.org/
CorpusID:267095141.

13

https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:204824061
https://api.semanticscholar.org/CorpusID:204824061
https://api.semanticscholar.org/CorpusID:252439050
https://api.semanticscholar.org/CorpusID:252439050
https://api.semanticscholar.org/CorpusID:269362647
https://api.semanticscholar.org/CorpusID:269362647
https://api.semanticscholar.org/CorpusID:272831982
https://api.semanticscholar.org/CorpusID:272831982
https://api.semanticscholar.org/CorpusID:231573431
https://api.semanticscholar.org/CorpusID:258865989
https://api.semanticscholar.org/CorpusID:272330312
https://api.semanticscholar.org/CorpusID:272330312
https://api.semanticscholar.org/CorpusID:256389656
https://api.semanticscholar.org/CorpusID:8224916
https://api.semanticscholar.org/CorpusID:270391754
https://api.semanticscholar.org/CorpusID:274610816
https://api.semanticscholar.org/CorpusID:274610816
https://api.semanticscholar.org/CorpusID:267095141
https://api.semanticscholar.org/CorpusID:267095141

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong
Song, and Jacob Steinhardt. Measuring massive multitask language understanding. ArXiv,
abs/2009.03300, 2020. URL https://api.semanticscholar.org/CorpusID:
221516475.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xi-
aodong Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
dataset. ArXiv, abs/2103.03874, 2021. URL |https://api.semanticscholar.org/
CorpusID:232134851.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aure-
lia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and
L. Sifre. Training compute-optimal large language models. ArXiv, abs/2203.15556, 2022. URL
https://api.semanticscholar.org/CorpusID:247778764.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, and Qun Liu. Dynabert: Dynamic bert with adaptive
width and depth. ArXiv, abs/2004.04037, 2020. URL https://api.semanticscholar.
org/CorpusID:215415863.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. In European Conference on Computer Vision, 2016. URL https://api.
semanticscholar.org/CorpusID: 6773885,

Adam Ibrahim, Benjamin Th’erien, Kshitij Gupta, Mats L. Richter, Quentin Anthony, Tim-
othée Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continu-
ally pre-train large language models. ArXiv, abs/2403.08763, 2024. URL https://api.
semanticscholar.org/CorpusID:268379604.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. ArXiv, abs/1705.03551, 2017. URL
https://api.semanticscholar.org/CorpusID:265014109.

Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language
models. ArXiv, abs/2001.08361, 2020. URL https://api.semanticscholar.org/
CorpusID:210861095.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. ArXiv, abs/2205.11916, 2022. URL https://api.
semanticscholar.org/CorpusID:249017743.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc V. Le,
and Slav Petrov. Natural questions: A benchmark for question answering research. Trans-
actions of the Association for Computational Linguistics, 7:453-466, 2019. URL https:
//api.semanticscholar.org/CorpusID:86611921.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
Radu Soricut. Albert: A lite bert for self-supervised learning of language representa-
tions. ArXiv, abs/1909.11942, 2019. URL https://api.semanticscholar.org/
CorpusID:202888986.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin
Wattenberg. Emergent world representations: Exploring a sequence model trained on a syn-
thetic task. ArXiv, abs/2210.13382, 2022. URL https://api.semanticscholar.org/
CorpusID:253098566.

Xian Li, Asa Cooper Stickland, Yuqing Tang, and X. Kong. Deep transformers with latent
depth. ArXiv, abs/2009.13102, 2020. URL jhttps://api.semanticscholar.org/
CorpusID:221970592.

14

https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:247778764
https://api.semanticscholar.org/CorpusID:215415863
https://api.semanticscholar.org/CorpusID:215415863
https://api.semanticscholar.org/CorpusID:6773885
https://api.semanticscholar.org/CorpusID:6773885
https://api.semanticscholar.org/CorpusID:268379604
https://api.semanticscholar.org/CorpusID:268379604
https://api.semanticscholar.org/CorpusID:26501419
https://api.semanticscholar.org/CorpusID:210861095
https://api.semanticscholar.org/CorpusID:210861095
https://api.semanticscholar.org/CorpusID:249017743
https://api.semanticscholar.org/CorpusID:249017743
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:202888986
https://api.semanticscholar.org/CorpusID:202888986
https://api.semanticscholar.org/CorpusID:253098566
https://api.semanticscholar.org/CorpusID:253098566
https://api.semanticscholar.org/CorpusID:221970592
https://api.semanticscholar.org/CorpusID:221970592

Under review as a conference paper at ICLR 2026

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. ArXiv, abs/2402.12875, 2024. URL https://api.
semanticscholar.org/CorpusID:267760184.

Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur D. Szlam. Deliberation in latent
space via differentiable cache augmentation. ArXiv, abs/2412.17747, 2024a. URL |https:
//api.semanticscholar.orqg/CorpusID:274992824.

Zechun Liu, Changsheng Zhao, Forrest N. Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yun-
yang Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and
Vikas Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device
use cases. ArXiv, abs/2402.14905, 2024b. URL https://api.semanticscholar.org/
CorpusID:267898017.

Yaxin Luo, Gen Luo, Jiayi Ji, Yiyi Zhou, Xiaoshuai Sun, Zhiqiang Shen, and Rongrong
Ji. y-mod: Exploring mixture-of-depth adaptation for multimodal large language mod-
els. ArXiv, abs/2410.13859, 2024. URL hhttps://api.semanticscholar.orqg/
CorpusID:2734036909.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Trans-
formers can do arithmetic with the right embeddings. ArXiv, abs/2405.17399, 2024. URL
https://api.semanticscholar.org/CorpusID:2700623309.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of
thought. ArXiv, abs/2310.07923, 2024. URL https://api.semanticscholar.org/
CorpusID:263909434.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Conference on Empirical Methods
in Natural Language Processing, 2018. URL https://api.semanticscholar.org/
CorpusID:52183757.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. ArXiv, abs/2301.05217, 2023. URL https://
apli.semanticscholar.org/CorpusID:255749430.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind
Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi,
Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Ma-
lik, William Merrill, Lester James Validad Miranda, Jacob Daniel Morrison, Tyler C. Murray,
Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David
Wadden, Christopher Wilhelm, Michael Wilson, Luke S. Zettlemoyer, Ali Farhadi, Noah A.
Smith, and Hanna Hajishirzi. 2 olmo 2 furious. ArXiv, abs/2501.00656, 2024. URL https:
//api.semanticscholar.orqg/CorpusID:275213098.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova Dassarma, T. J. Henighan,
Benjamin Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, John Kernion,
Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom B. Brown, Jack Clark, Jared Kaplan, Sam
McCandlish, and Chris Olah. In-context learning and induction heads. ArXiv, abs/2209.11895,
2022. URL https://api.semanticscholar.org/CorpusID:252532078.

OpenAl et al. Gpt-4 technical report. 2023. URL https://api.semanticscholar.org/
CorpusID:257532815.

Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for energy-
efficient and enhanced pattern recognition. 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 475-480, 2015. URL https://api.semanticscholar.org/
CorpusID:8798529,

15

https://api.semanticscholar.org/CorpusID:267760184
https://api.semanticscholar.org/CorpusID:267760184
https://api.semanticscholar.org/CorpusID:274992824
https://api.semanticscholar.org/CorpusID:274992824
https://api.semanticscholar.org/CorpusID:267898017
https://api.semanticscholar.org/CorpusID:267898017
https://api.semanticscholar.org/CorpusID:273403699
https://api.semanticscholar.org/CorpusID:273403699
https://api.semanticscholar.org/CorpusID:270062339
https://api.semanticscholar.org/CorpusID:263909434
https://api.semanticscholar.org/CorpusID:263909434
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:255749430
https://api.semanticscholar.org/CorpusID:255749430
https://api.semanticscholar.org/CorpusID:275213098
https://api.semanticscholar.org/CorpusID:275213098
https://api.semanticscholar.org/CorpusID:252532078
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:8798529
https://api.semanticscholar.org/CorpusID:8798529

Under review as a conference paper at ICLR 2026

Jackson Petty, Sjoerd van Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, and Tal Linzen. The
impact of depth and width on transformer language model generalization. CoRR, 2023.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21:140:1-140:67, 2019. URL https://api.
semanticscholar.org/CorpusID:204838007.

David Raposo, Sam Ritter, Blake Richards, Timothy P. Lillicrap, Peter Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
models. ArXiv, abs/2404.02258, 2024. URL https://api.semanticscholar.org/
CorpusID:268876220.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99—-106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiga: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Ville A. Satopaa, Jeannie R. Albrecht, David E. Irwin, and Barath Raghavan. Finding a “’knee-
dle” in a haystack: Detecting knee points in system behavior. 2011 31st International Con-
ference on Distributed Computing Systems Workshops, pp. 166171, 2011. URL https:
//api.semanticscholar.org/CorpusID:67623.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. ArXiv, abs/2207.07061, 2022. URL
https://api.semanticscholar.org/CorpusID:250526382.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. In Neural Information Processing Systems, 2021. URL https://api.
semanticscholar.org/CorpusID:235368338.

Guangyuan Shi, Zexin Lu, Xiaoyu Dong, Wenlong Zhang, Xuanyu Zhang, Yujie Feng, and Xiao-
Ming Wu. Understanding layer significance in 1lm alignment. arXiv preprint arXiv:2410.17875,
2024.

Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, and Jianfeng Gao. Rethinking
interpretability in the era of large language models. ArXiv, abs/2402.01761, 2024. URL https:
//api.semanticscholar.org/CorpusID:267412530.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and
Ravid Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language mod-
els. ArXiv, abs/2502.02013, 2025. URL https://api.semanticscholar.orqg/
CorpusID:276107264.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of arith-
metic reasoning in language models using causal mediation analysis. In Conference on Empirical
Methods in Natural Language Processing, 2023. URL https://api.semanticscholar.
org/CorpusID:258865170.

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2022. URL |https://api.semanticscholar.org/
CorpusID:252917648.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. ArXiv, abs/1811.00937, 2019. URL
https://api.semanticscholar.org/CorpusID:53296520.

16

https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:268876220
https://api.semanticscholar.org/CorpusID:268876220
https://api.semanticscholar.org/CorpusID:67623
https://api.semanticscholar.org/CorpusID:67623
https://api.semanticscholar.org/CorpusID:250526382
https://api.semanticscholar.org/CorpusID:235368338
https://api.semanticscholar.org/CorpusID:235368338
https://api.semanticscholar.org/CorpusID:267412530
https://api.semanticscholar.org/CorpusID:267412530
https://api.semanticscholar.org/CorpusID:276107264
https://api.semanticscholar.org/CorpusID:276107264
https://api.semanticscholar.org/CorpusID:258865170
https://api.semanticscholar.org/CorpusID:258865170
https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:53296520

Under review as a conference paper at ICLR 2026

Shawn Tan, Yikang Shen, Zhenfang Chen, Aaron C. Courville, and Chuang Gan. Sparse universal
transformer. ArXiv, abs/2310.07096, 2023. URL https://api.semanticscholar.org/
CorpusID:263834790.

Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference via early
exiting from deep neural networks. 2016 23rd International Conference on Pattern Recog-
nition (ICPR), pp. 2464-2469, 2016. URL https://api.semanticscholar.org/
CorpusID:2916466.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:137564809.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max W.F. Ku, Kai Wang, Alex Zhuang,
Rongqi “Richard” Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. ArXiv, abs/2406.01574, 2024. URL https:
//api.semanticscholar.org/CorpusID:270210486.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, F. Xia, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language mod-
els. ArXiv, abs/2201.11903, 2022. URL https://api.semanticscholar.org/
CorpusID:246411621.

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
better at learning learning algorithms. ArXiv, abs/2311.12424, 2023. URL https://api.
semanticscholar.org/CorpusID:265308959.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part
2.1, grade-school math and the hidden reasoning process. ArXiv, abs/2407.20311, 2024. URL
https://api.semanticscholar.org/CorpusID:271544257.

Zeping Yu, Yonatan Belinkov, and Sophia Ananiadou. Back attention: Understanding and enhancing
multi-hop reasoning in large language models. ArXiv, abs/2502.10835, 2025. URL https:
//api.semanticscholar.org/CorpusID:276409219.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
ArXiv, abs/1311.2901, 2013. URL https://api.semanticscholar.org/CorpusID:
3960646.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Annual Meeting of the Association for Computational Lin-
guistics, 2019. URL |https://api.semanticscholar.org/CorpusID:159041722,

Zheng Zhao, Yftah Ziser, and Shay B. Cohen. Layer by layer: Uncovering where multi-task learning
happens in instruction-tuned large language models. ArXiv, abs/2410.20008, 2024. URL https:
//api.semanticscholar.org/CorpusID:273654756.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied Sanosi
Saied, Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foun-
dation models. In NAACL-HLT, 2023. URL https://api.semanticscholar.org/
CorpusID:2581082509.

Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Emer-
gence of superposition: Unveiling the training dynamics of chain of continuous thought. ArXiv,
abs/2509.23365, 2025a. URL https://api.semanticscholar.org/CorpusID:
281675453

Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reasoning by
superposition: A theoretical perspective on chain of continuous thought. ArXiv, abs/2505.12514,
2025b. URL https://api.semanticscholar.org/CorpusID:278740606.

17

https://api.semanticscholar.org/CorpusID:263834790
https://api.semanticscholar.org/CorpusID:263834790
https://api.semanticscholar.org/CorpusID:2916466
https://api.semanticscholar.org/CorpusID:2916466
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:270210486
https://api.semanticscholar.org/CorpusID:270210486
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:265308959
https://api.semanticscholar.org/CorpusID:265308959
https://api.semanticscholar.org/CorpusID:271544257
https://api.semanticscholar.org/CorpusID:276409219
https://api.semanticscholar.org/CorpusID:276409219
https://api.semanticscholar.org/CorpusID:3960646
https://api.semanticscholar.org/CorpusID:3960646
https://api.semanticscholar.org/CorpusID:159041722
https://api.semanticscholar.org/CorpusID:273654756
https://api.semanticscholar.org/CorpusID:273654756
https://api.semanticscholar.org/CorpusID:258108259
https://api.semanticscholar.org/CorpusID:258108259
https://api.semanticscholar.org/CorpusID:281675453
https://api.semanticscholar.org/CorpusID:281675453
https://api.semanticscholar.org/CorpusID:278740606

Under review as a conference paper at ICLR 2026

A COMPUTING ANGULAR DISTANCE

Elaborating on the computation of angular distance in Section [2.1] the angular distance for a single
sequence of length 7' is defined as

) (€4n)
1 .
d(l‘(z)’x(é-i-n)) = — arccos <m> ,
4 [l ™l

|y
where the inner product is taken over the hidden dimension of the model for the last token 7" of the
sequence, || - || denotes the L? norm, and the factor 1 /7 normalizes the distance to [0, 1]. We average
this distance over 10,000 examples to obtain a stable estimate. We focus on the final token since,
under a causal attention mask, its embedding is the only one that depends on the entire sequence.
We use the same definition of angular distance as|Gromov et al.| (2024)).

B DETAILED EVALUATION BENCHMARKS

To capture broad conceptual nature of reasoning, we consider 17 real-world benchmarks grouped
into six categories, ordered along a spectrum from less to more reasoning intensive tasks, i.e. from
factual recall to systematic symbolic reasoning: factual knowledge, reading comprehension, com-
monsense reasoning, multi-disciplinary Reasoning, BIG-Bench Hard (BBH), and mathematical rea-
soning. This progression reflects increasing reliance on reasoning rather than memorization.

* Factual Knowledge: Tasks that test the model’s ability to recall information without addi-
tional context, thus primarily measuring memorization. We include TriviaQA (Joshi et al.|
2017)) and NaturalQuestions (Kwiatkowski et al., 2019)).

* Reading Comprehension: Tasks requiring the model to infer answers from a given pas-
sage, involving text understanding and light reasoning (e.g., multi-hop). Benchmarks in-
clude BoolQ (Clark et al.} 2019), OpenBookQA (Mihaylov et al.l |2018)), and DROP (Dua
et al.,[2019).

* Commonsense Reasoning: Tasks that evaluate human-like capacity to make assumptions
and inferences about the nature and characteristics of everyday scenarios, including Com-
monSenseQA (Talmor et al.| [2019), HellaSwag (Zellers et al., 2019), Social QA (Sap et al.,
2019), WinoGrande (Sakaguchi et al., 2021}

* Multi-Disciplinary Reasoning: Benchmarks testing both factual knowledge and reason-
ing across broad academic and multi-disciplinary domains. We include ARC-Easy and
ARC-Challenge (Clark et al., 2018), MMLU (Hendrycks et al., [2020), MMLU-Pro (Wang
et al.| 2024)), and AGIEval-English (Zhong et al.||2023).

* BIG-Bench Hard (BBH): A collection of 23 diverse tasks spanning math, logic puzzles,
symbolic and social reasoning (Suzgun et al., 2022). Many tasks are synthetic, and BBH
serves as a cross-cutting benchmark for compositional reasoning that does not fit neatly
into the other categories.

* Mathematical Reasoning: We finally test the model on solve math word problem
benchmarks to evaluate systematic reasoning and symbolic manipulation, represented by
GSMSK (Cobbe et al., 2021) and MATH (Hendrycks et al.| 2021)).

C ALGORITHM FOR CHOOSING THE OPTIMAL CONFIGURATION

To automatically identify the point at which a curve transitions from a rapid to a gradual decrease, we
employ the Kneedle algorithm (Satopaa et al., 2011). The difference function D; is then evaluated
on (z,§(z)), providing a smooth approximation that avoids spurious local variations.

Formally, let the curve be represented as a sequence of points:

C= {<xi7yi)}?:()a

where « corresponds to the layer index [and y to the angular distance d(I,! + 1).The key steps
underlying Kneedle Algorithm are:

18

Under review as a conference paper at ICLR 2026

. Smooth and normalize the data into [0, 1)%: (4, ;).
. Compute the deviation D; = ¢; — (1 — &;) from the diagonal.

. Identify local maxima of the difference curve as candidate knees.

A W N =

. Apply a threshold-based rule (with sensitivity parameter S) to declare knees when the
difference drops below threshold.

To improve robustness against noise, we apply a polynomial interpolation of degree 2 to the data:
§(x) = ap + ayx + azr?,
fitted via least squares. This provides a smooth approximation that avoids spurious local variations.

The details of Kneedle Algorithm can be summarized as follows:

1. Normalization: Scale both axes to [0, 1]:

x; — min(z) . y; — min(y)

"7 max(z) — min(z)’ " max(y) — min(y)’

2. Difference curve: Compute the deviation between the normalized curve and the diagonal
y=1-—2:
D; =4, — (1 —1;).
3. Local maxima: Candidate knees are local maxima of D;, i.e.
D;,_1 < D; AN Di+1 < D;.

4. Threshold rule: For each local maximum, define a threshold
n—1
Ti=D; —S-A,, A,=-1 Z(fcj+1 — &),
j=1

where S > 0 is a sensitivity parameter. A knee is declared at ¢* if D; < T} for some j > 4
before the next local maximum is reached.

We run the above procedure using the KneeLocator package:

kneedle = Kneelocator (
Xy Yy
curve='convex’,
direction='"decreasing’,
interp_method=’polynomial’,
polynomial_degree=2,
online=True

)

The returned index
1* = kneedle.knee

is taken as the transition point from steep to gradual decline.

D DETAILS ON ADAPTIVE-DEPTH ETD TRAINING

In Section[5] we introduce the mechanism that allows the model to adaptively determine the number
of recursive iterations per input token—referred to as adaptive-depth ETD. This subsection provides
full implementation details covering the architecture, training, and inference procedure.

Architecture. We keep the general architecture of the model the same and add a lightweight router.
The router is implemented as a linear projection of the hidden state followed by a sigmoid activation.
The input to the router is the hidden representation that is output by the recursive T block, and the
output of the router is the halting value between 0 and 1. The router is randomly initialized, i.e. we
do not use the insights from fixed-depth ETD to set some priors for the router.

19

Under review as a conference paper at ICLR 2026

Training stage. Adaptive-depth ETD undergoes mid-training in the same way as fixed-depth ETD.
We train the router to learn how to allocate resources, i.e. iterations, for different input tokens, at the
same time as we mid-train the other model parameters.

At each iteration ¢, after computing the hidden representation h, with the recursive block, the router
outputs a halting values w; € (0, 1) for each token. These values are accumulated across iterations:

Hy =Y w;. 4)

Jj=1

For each input, the initial value of H, is zero. Computation for a token is stopped once H; > 1 — e,
with ¢ = 0.01. However, early during training the router may output extremely small halting values,
causing excessively many iterations. To avoid this, we cap the maximum number of iterations dur-
ing training to N,,,,=10. During training we use the same hyperparameters as during fixed-depth
ETD training. We do not provide auxiliary losses (e.g., intermediate losses after each iteration) nor
we introduce any regularizers. Hyperparameters—including optimizer, learning rate, and sched-
uler—remain identical to fixed-depth ETD. The router is trained end-to-end jointly with the model.

At test-time. The test time regime is very similar to the training regime, except that once the
model is trained we remove the cap on the number of iterations. The model determines on its own
the number of iterations: after each iteration the router uses the output of the recursive block to
predict the halting value for the iteration, and stops as soon as the cumulated halting values exceed

l-e Z;il w; > 1 — ¢, where K is the number of iterations.

Intuitively, until sufficient confidence is accumulated, the latent “thought” state continues to be up-
dated. The final representation passed to latent deocder is the output of “thinking” block T after the
final iteration. For easy tokens, the computation halts after few iterations, whereas difficult tokens
may trigger more recursive reasoning steps. This design enables test-time computation scaling: the
model dynamically allocates additional reasoning depth where beneficial

E RESULTS WITH ITERATIONS OVER DIFFERENT LAYERS

We fix the recursive “thinking” block size and vary its starting position from layer 2 to 12 in steps
of 2, which is equivalent to increasing the size of the latent encoder Ng from 1 to 11 in steps of 2.

Table 7: Results of the Encode-Think—-Decode (ETD) method when varying the subset of layers in
the recursive block. We report accuracy (Acc.) when increasing the size of the latent encoder Ng
from 1 to 11 in steps of 2, for each of six task categories (as defined in Sec. @

Model | Params/ ngfvtg c Rea(lijng . Cc;{mmon.sense Mulﬁ—Disciplinary BBH ® Math..
FLOPs ge | Comprehension easoning easoning easoning

1-4%2-11 | 16/20 37.92 55.53 64.82 44.99 31.23 25.6

3-4%2-9 | 16/20 37.43 56.93 65.87 46.9 29.80 | 27.31
5-4%2-7 | 16/20 37.58 56.51 66.86 49.03 32.21 26.8

7-4%2-5 | 16/20 38.1 56.14 66.74 48.41 31.67 | 2827
9-4%2-3 | 16/20 37.7 53.46 65.52 45.71 31.05 27.35
11-4*%2-1 | 16/20 37.67 54.79 64.45 45.18 30.93 24.63

F PERFORMANCE OF ETD ON EACH TASK

Table [2] reports the results of the Encode-Think—Decode (ETD) method with varying numbers of
iterations over recursive “thinking” blocks, compared to the OLMo 2 1B baseline on 6 categories of
tasks described in Sec. [3.2} In this section, we share the results for each individual tasks in Tables[§]

20

Under review as a conference paper at ICLR 2026

Table 8: Results of the Encode-Think-Decode (ETD) method with varying numbers of iterations
over recursive “thinking” blocks, compared to the OLMo 2 1B baseline. Reported metrics include
accuracy (Acc.) and relative improvement (A, in %) with respect to the baseline. Parameter counts
denote the number of distinct layers, while FLOPs correspond to the number of effective forward-
pass layers.

‘ Natural Questions TriviaQA BoolQ OpenbookQA DROP HellaSwag
Model Params/FLOPs ‘ Acc. A ‘ Acc. A ‘ Acc. A ‘ Acc. A ‘ Acc. A ‘ Acc. A
Baseline 16/16 20.98 - 54.12 - 72.0 - 52.8 - 31.761 - 69.7 -
Ours (k=2) 16/20 20.76 (-1.01%) | 55.43 (+2.43%) | 75.7 +(5.14%) | 57.0 (+7.95%) | 35.73 (+12.5%) | 69.8 (+0.14%)
Ours (k=3) 16/24 19.97 (-4.78%) | 55.13 (+1.88%) | 76.0 (+5.56%) | 574 (+8.71%) | 3482 (+9.64%) | 69.6 (-0.14%)

Ours (k=4) 16/28 2035 (-2.99%) | 55.13 (+1.8%)8 | 78.0 (+8.33%) | 58.8 (+11.36%) | 3647 (+14.81%) | 71.0 (+1.87%)
Ours (k=5) 16/32 20.53 (-2.12%) | 55.93 (+3.36%) | 76.4 (+6.11%) | 61.0 (+15.53%) | 38.086 (+19.91%) | 704 (+1%)

‘ Social IQa ‘WinoGrande CommonsenseQA ARC-Easy ARC-Challenge MMLU
Model Params/FLOPs ‘ Acc. A ‘ Acc. A ‘ Acc. A ‘ Acc. A ‘ Acc. A ‘ Acc. A
Baseline 16/16 58.1 - 66.69 - ‘ 66.67 - 78.5 - ‘ 50.85 - 44.52 -
Ours (k=2) 16 /20 629 (+8.26%) | 66.85 (+0.24%) 67.40 (+1.11%) | 784 (-0.13%) 5836 (+14.77%) | 47.59 (+6.9%)
Ours (k=3) 16/24 63.9 (+9.98%) | 68.19 (+2.25%) 69.29 (+3.93%) | 79.7 (+1.53%) 60.24 (+18.46%) | 49.40 (+10.96%)
Ours (k=4) 16/28 650 (+11.88%) | 68.51 (+2.72%) 68.14 (+2.21%) | 79.8 (+1.66%) 62.03 (+21.98%) | 49.84 (+11.95%)
Ours (k=5) 16/32 66.2 (+13.94%) | 68.59 (+2.84%) (+68.47%) (+2.7%) | 804 (+2.42%) 6143 (+20.81%) | 49.95 (+12.19%)
‘ MMLU Pro AGIEval English BBH GSMBK MATH
Model PaIams/FLOPs‘ Acc. A ‘ Acc. A ‘ Acc. A ‘ Acc. A ‘ACC. A
Baseline 16/16 15.55 - 35.58 - 31.8 - 44.05 - 4.57 -
Ours (k=2) 16720 17.53 (12.72%) | 40.16 (12.86%) | 31.67 (-0.4%) | 51.10 (+16.01%) | 5.45 (19.22%)
Ours (k=3) 16724 18.13 (+16.57%) | 40.27 (+13.2%) | 32.62 (+2.58%) | 54.36 (+23.41%) | 6.22 (+36.04%)
Ours (k=4) 16 /28 18.37 (+18.12%) | 40.88 (+14.89%) | 33.01 (+3.82%) | 55.50 (+25.99%) | 3.73 (-18.28%)
Ours (k=5) 16/32 19.07 (+22.66%) | 42.07 (+18.24%) | 33.49 (+5.3%) | 56.56 (+28.4%) | 433 (-5.17%)

G RESULTS WITH ITERATIONS OVER VARYING RECURSIVE BLOCK SIZE

We vary the block size by removing and adding layers symmetrically around the originally selected
7-4*2-5 configuration, keeping the recursive block centered in the same region of the model while
changing its extent. We report the performance with sizes of recursive block of 2,4,6,8, and 12.

Table 9: Results of the Encode-Think—Decode (ETD) method when varying the number of layers
in the recursive block. We report accuracy (Acc.) when the size of the recursive block 71" is 2, 4,6,8,
and 12, for each of six task categories (as defined in Sec. @

Model | Params/ Factual Reading . Common§ense Multi—Disciplinary BBH Math..
FLOPs Knowledge | Comprehension | Reasoning Reasoning Reasoning

8-2%2-6 | 16/18 37.99 55.23 65.88 47.00 30.98 26.63

7-4%2-5 | 16/20 38.10 56.14 66.74 48.41 31.67 28.27

6-6%2-4 | 16/22 38.37 57.43 67.01 49.09 31.81 29.04

5-8%2-3 | 16/24 37.00 57.67 67.73 49.54 33.71 29.35

2-12%2-2 | 16/28 37.70 56.44 67.73 47.58 32.30 29.27

H RESULTS ON OLMO-2 7B MODEL

I TRAINING COMPUTE OVERVIEW

We run all our experiments on a node with 8 A100 80GB GPUs. Table[??]we report training time of
experiments presented in Table 2]

21

Under review as a conference paper at ICLR 2026

Table 10: Results with larger model and same FLOPs

S Factual Reading Commonsense | Multi-Disciplinary Math.
P s/

Model F‘{aon];: Knowledge | Comprehension | Reasoning Reasoning BBH Reasoning
OLMo 2 7B ‘ 32/32 56.63 74.68 76.73 62.9 48.18 41.63
16-10%2-6 32/40 56.89 75.05 76.82 62.95 49.77| 42.64

Table 11: Compute cost of experiments (GPU hours per full training run).

Model GPUs Hours/run GPU hours
OLMo2 (k=1) 8 x A100 ~116 ~928
ETD (k=2) 8 x A100 ~137 ~1,096
ETD (k=3) 8 x A100 ~170 ~1,360
ETD (k=4) 8 x A100 ~195 ~1,560
ETD (k=5) 8 x A100 ~220 ~1,760

J FUTURE WORK

Future work spans several directions. Extending ETD to multimodal models could establish recur-
sive latent reasoning as a general principle of representation learning across domains. Designing
more efficient training strategies, together with refining adaptive depth mechanisms, may yield bet-
ter compute—performance trade-offs. Assessing the impact of ETD on instruct models will require
integration at the post-training stage, which we leave for future investigation. Last but not least,
conducting interpretability studies could clarify how recursive latent reasoning interacts with model
circuits and representations, offering deeper insights into the structure of reasoning in LLMs.

K USAGE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used large language models (LLMs) solely as writing assistants, to
improve grammar, style, and clarity. The authors retain full responsibility for the content and any

remaining errors.

22

	Introduction
	On the Roles of Layers for Reasoning
	Choosing the optimal configuration for latent reasoning

	Experimental Setup
	Training Pipeline
	Evaluation Benchmarks

	Evaluating Recursive ``Thinking'' Blocks
	Performance Gains from Iterating over ``Thinking'' Blocks
	Comparison with alternative recursive frameworks
	How does the choice of recursive layers change performance?
	How does the size of Recursive "Thinking" block change the performance?
	Comparison with larger model with same effective depth
	Scaling from 1B parameters to 7B parameters

	Adaptive test-time scaling
	Methodology
	Results

	Related Work
	Conclusions
	Computing Angular Distance
	Detailed Evaluation Benchmarks
	Algorithm for choosing the optimal configuration
	Details on Adaptive-depth ETD training
	Results with iterations over different layers
	Performance of ETD on each task
	Results with iterations over varying recursive block size
	Results on OLMo-2 7B model
	Training Compute Overview
	Future Work
	Usage of Large Language Models

