

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENCODE, THINK, DECODE: SCALING TEST-TIME REA- SONING WITH RECURSIVE LATENT THOUGHTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Most efforts to improve the reasoning capabilities of large language models (LLMs) involve either scaling the number of parameters and the size of training data, or scaling inference computation by letting models generate complex chains of thought. Motivated by interpretability studies showing that the crucial computation required for reasoning tasks is concentrated in a limited range of layers, we introduce Encode–Think–Decode (ETD), a method that enhances the reasoning capabilities of a base model by training it to iterate over a small subset of reasoning-relevant layers during the mid-training stage. ETD amplifies latent reasoning while preserving the original architecture, parameter count, hyperparameters, and training data composition. When iterating on the selected layers at inference time, ETD models yield substantial gains on 17 reasoning benchmarks, including [up to](#) +28.4% relative accuracy improvement on GSM8K and [up to](#) +36% on MATH with the OLMo-2 1B Base model. We also explore an adaptive depth strategy that adjusts the computation per input token. Our results show that recursive latent reasoning offers a simple and effective path to stronger LLM reasoning.

1 INTRODUCTION

Modern language models demonstrate remarkable capabilities in a wide range of reasoning-intensive tasks, including mathematics, programming, commonsense reasoning, and logical puzzles (Brown et al., 2020; Dubey et al., 2024; OpenAI et al., 2023; DeepSeek-AI et al., 2025). The main driver for this progress are scale in both data and parameters, and inference-time techniques such as chain-of-thought prompting.

Initial scaling laws correlated reasoning capabilities to sheer parameter count and training data tokens (Kaplan et al., 2020; Hoffmann et al., 2022; Allen-Zhu & Li, 2024). Ye et al. (2024) refined this picture and argued that depth, not just parameter count, is critical for reasoning: deeper models often outperform shallower ones with the same number of parameters. This perspective aligns with the intuition that reasoning tasks require multi-step, compositional thinking, for which *depth* plays a central role.

Beside scaling data and parameters, the prevalent approach to increasing the reasoning capability of models is by scaling test-time computation. A common approach, known as chain-of-thought (CoT) reasoning (Kojima et al., 2022; Wei et al., 2022), involves prompting or training LLMs to generate intermediate reasoning steps before giving a final answer. This approach emulates human inner monologues and the use of scratchpads, but fails to capture the variability in the amount of non-verbal thought.

An emerging body of interpretability research has also sought to characterize how reasoning is implemented within LLMs. Recent studies suggest that reasoning processes are not uniformly distributed across layers, but instead transition from local, syntactic operations in earlier layers to more global and semantic integration in deeper layers (Elhage et al., 2022; Nanda et al., 2023; Li et al., 2022; Stolfo et al., 2023). Other works highlight the presence of specialized circuits and modular representations that support multi-step inference (Olsson et al., 2022; Singh et al., 2024). These findings suggest that reasoning is not merely a byproduct of scale but is tied to structured computational patterns within the network, motivating architectural modifications that amplify the contribution of reasoning-relevant layers.

054 Based on these observations, we propose ETD (Encode, Think, Decode), a method to enhance the
 055 latent-space reasoning capabilities of existing models by adjusting the effective depth of the network.
 056 We identify a range of critical layers for latent reasoning and train it into becoming a recurrent block.
 057

058 Recursive depth models, also known as looped models, have been mostly studied as a way to im-
 059 prove parameter efficiency (Lan et al., 2019; Bae et al., 2024). Our goal in applying a recursive
 060 approach, conversely, is to boost reasoning capabilities by efficiently scaling inference-time com-
 061 putation. There has been work on measuring the effectiveness of recursive-depth models on fairly
 062 simple reasoning tasks (Saunshi et al., 2025), and deliberate attempts to improve reasoning via such
 063 looping (Geiping et al., 2025). However, these works apply recursion without explicitly targeting
 064 the layers most relevant for reasoning within the model.

065 Rather than training small models from scratch to compare recursive and non-recursive variants, we
 066 validate our approach on pretrained open-source models from the OLMo 2 family (OLMo et al.,
 067 2024). We re-run their mid-training stage to integrate recursion, but crucially, we do not introduce
 068 additional parameters, new data, or changes to the original hyperparameters. This makes our method
 069 practical and straightforward to reproduce, as it builds on widely available pretrained models without
 070 requiring costly retraining from scratch. To our knowledge, this is the first work to demonstrate that
 071 introducing recurrent depth yields significant improvements over modern open-source LLMs.

072 We demonstrate that our proposed method leads to significant improvements across 17 tasks requir-
 073 ing different types of reasoning. Notably we achieve a relative improvement of 28.4 % and 36% on
 074 GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) for the OLMo-2 1B base model.

075 We also propose how to dynamically set the depth of the model depending on the token. This allows
 076 to spend less compute on easy problems and more compute on challenging ones.

077 The main contributions of the paper are as follows:

- 079 • We show that advanced open-source pretrained models can be further enhanced with a
 080 recurrent-depth mechanism that requires no additional parameters, training data, or hyper-
 081 parameter tuning.
- 082 • We demonstrate that ETD provides greater benefits on tasks requiring intensive reasoning,
 083 with relative improvements of 28.4% on GSM8K and 36% on MATH for OLMo-2 1B.
- 084 • We analyze the impact of iterating over different layers on reasoning performance and
 085 introduce a practical recipe for selecting critical layers for latent reasoning.
- 086 • We show that performing more latent-space reasoning, i.e. increasing the number of itera-
 087 tions, directly improves performance on reasoning tasks.
- 088 • We introduce a mechanism to adaptively determine the number of iterations for each input.

091 2 ON THE ROLES OF LAYERS FOR REASONING

093 There have been extensive studies on the functional roles of different layers in neural networks. In
 094 computer vision, shallow layers are known to capture general features, while deeper layers represent
 095 more fine-grained ones (Zeiler & Fergus, 2013; Bau et al., 2017). Similar patterns are also observed
 096 in LLMs. For example, Stolfo et al. (2023) show that, when solving simple arithmetic questions,
 097 LLMs encode information about operators and operands in mid-sequence early layers, transform
 098 this information into intermediate computations in middle layers, and form the representation of the
 099 final answer in the last-token middle-to-late layers. Likewise, Zhao et al. (2024) find that, during
 100 instruction tuning, early layers capture broad and reusable knowledge, middle layers amplify task-
 101 relevant signals, and deeper layers refine these signals into task-specific outputs. More broadly,
 102 interpretability studies confirm functional differentiation across layers of varying depths, including
 103 in reasoning settings (Yu et al., 2025; Gromov et al., 2024; Shi et al., 2024; Skean et al., 2025).

104 As information propagates from early to deeper layers, the reasoning process transitions from spe-
 105 cific, local, and syntactic information to rich semantic integration. We draw the conclusion that
 106 early to middle layers play a critical role in task understanding (Davidson et al., 2025) and knowl-
 107 edge retrieval, while deeper layers are important for higher-level inferences such as those required
 108 for mathematical reasoning.

Figure 1: *Left*: Illustration of the proposed architecture (Section 2.1). The latent encoder (blue) maps inputs into latent space, the recursive “thinking” block (green) iteratively refines representations, and the latent decoder (red) maps them back to the output space. Each block consists of a different number of layers. *Right*: Angular distances $d(l, l + 1)$ between consecutive layers for OLMo 2 1B base and instruct models. The plot highlights three groups of layers—latent encoder, recursive block, and latent decoder—corresponding to distinct trends in layer-to-layer evolution (Section 2.1).

We therefore break down transformer blocks into three groups (Figure 1): a latent encoder E , which embeds the input data into a latent space and retrieves information about mentioned entities, then a core recurrent “thinking” block T , a central unit of recurrent computation, that generates latent “thoughts”, and finally the latent decoder D , which un-embeds from latent space and also contains the prediction head of the model. In practice, the information first goes through layers in the latent encoder E , then iterates over the “thinking” block k times, and finally flows through the latent decoder D , which returns output tokens. Let’s denote different configurations as $N_E \cdot N_T \cdot k \cdot N_D$, e.g. 7-4*2-5 denotes a transformer with 7 layers in the E block, 4 layers in the T block, repeated twice, and 5 layers in the D block.

If the layer-to-layer evolution of representations is given by a residual iteration equation:

$$x^{l+1} = x^l + f(x^l, \theta^l) \quad (1)$$

where x^l, θ^l are the input and parameter vectors for layer l , and $f(x^l, \theta^l)$ represents the transformation of one multi-head self-attention and MLP layer block (Vaswani et al., 2017), then after L total layers the output is the sum of the input embeddings and the contributions of all the layers:

$$x^L = x^0 + \sum_{l=0}^{N_E-1} f(x^l, \theta^l) + \sum_{j=1}^k \sum_{l=N_E}^{N_E+N_T-1} f(x^{l+(j-1)*N_T}, \theta^l) + \sum_{l=N_E+n_T}^{L-1} f(x^{l+(k-1)*N_T}, \theta^l) \quad (2)$$

2.1 CHOOSING THE OPTIMAL CONFIGURATION FOR LATENT REASONING

Prior work on related recursive architectures has generally adopted a single predefined partition of layers, without exploring alternatives or analyzing how the choice of split affects performance. Some approaches apply recursion over all internal layers, i.e. employ only a recursive block T , (Dehghani et al., 2018; Csordás et al., 2024; Bae et al., 2024; Saunshi et al., 2025), others allocate 1–2 layers each to the E and D blocks (Geiping et al., 2025; Bae et al., 2025; Aleksandrov et al., 2025). In contrast, our work takes the roles of layers into consideration when determining the configuration.

The latent encoder should include enough layers to transform input text into the latent space and retrieve all relevant knowledge, laying the foundation for higher-level semantic analysis and reasoning to happen via a recursive “thinking” block, T .

To identify the optimal configuration of layers, we build on the approach of Gromov et al. (2024). They discovered that later layers change the direction of hidden representations less than earlier layers. They used the average angular distance as a criterion for identifying layers to prune. Their experiments show that removing such layers has almost no impact on tasks heavily relying on knowledge retrieval. Despite the low average angular change, however, even moderate pruning of those same layers results in a degradation on reasoning tasks. We build on these insights and use mean angular change to identify reasoning-critical layers to iterate over.

We measure the average change in the direction of the residual stream vector after each layer, and add layers to the latent encoder until the rate of change from layer to layer slows down.

162 In practice, we compute the average angular distance $d(x(l), x(l+n))$ ¹, between the input to layer l
 163 and the input to layer $l+n$ on the C4 validation set (Raffel et al., 2019). The distance quantifies the
 164 degree of update to x resulting from processing between layers l and $l+n$. Figure 1(right) shows
 165 the average distances $d(x(l), x(l+1))$ for OLMo-2 1B base and instruct models.

166 To automatically identify the point, i.e. the layer, at which a curve transitions from a rapid to
 167 a gradual decrease, we employ the *Kneedle algorithm* (Satopaa et al., 2011). This method detects
 168 “knee” (or “elbow”) points in convex, decreasing sequences by analyzing their curvature. Algorithm
 169 details are provided in Appendix C. The detected layer index defines the boundary of the latent
 170 encoder. For the OLMo-2 1B model, this corresponds to layer 7.

171 Similarly to the latent encoder, the latent decoder must have sufficient depth to transform represen-
 172 tations from the latent space back into the “language” space. To determine the number of layers in
 173 the latent decoder, we follow the same procedure as for the latent encoder, but applied in reverse:
 174 starting from the final layer of the model and moving backward until reaching the last layer assigned
 175 to the latent encoder. For the OLMo-2 1B model, this yields the last 5 layers as the latent decoder.
 176 The remaining 4 layers constitute the recursive “thinking” block.

177 Hence, we set the configuration to 7-4*k-5, i.e. 7 layers in latent encoder, 4 layer in recursive block,
 178 and 5 layers in latent decoder respectively, and k is number of iterations. In Figure 1 (right), the rate
 179 of change in angular distance decreases around layer 7, stabilizes over the subsequent four layers,
 180 and increases again during the final five layers.

181 **Acknowledging that there is no clear single subset of layers solely responsible for reasoning across**
 182 **all models and tasks, we show empirically that our approach selects a split that lies near the perfor-**
 183 **mance maximum in the search space across tasks.**

186 3 EXPERIMENTAL SETUP

187 **Prior work on recursive-depth models have largely investigated recurrence in training settings that**
 188 **are not representative of modern, fully optimized large-scale LLM pre-training pipelines.** We are,
 189 however, interested in understanding the impact of recursive “thinking” in realistic scenarios, and
 190 therefore apply them on open-source models trained following best practices in architecture, training
 191 recipe, and pretraining data mixtures. We base our study on the OLMo 2 family of models (OLMo
 192 et al., 2024), focusing specifically on the base configurations. For fair comparison, our ETD models
 193 use the same number of parameters, datasets, and hyperparameters as the baseline non-recursive
 194 model.

196 3.1 TRAINING PIPELINE

197 OLMo 2 is a family of LLMs with open artifacts including intermediate and final checkpoints,
 198 training data, code, and recipes for 1B, 7B and 13B scale models, both pre-trained and post-trained.
 199 As a compromise between experimental agility and model power, we focus on 1B parameter model.
 200 We integrate ETD into the existing training pipeline without introducing additional training steps or
 201 data. This requires access to the model weights, training data, and hyperparameters to evaluate the
 202 impact of ETD in a controlled and isolated manner.

203 Following recent advances in curriculum learning (Blakeney et al., 2024; Ibrahim et al., 2024) OLMo
 204 2 base models are trained in two stages. The first (pretraining) stage is the longest ($\geq 90\%$ training
 205 FLOPs), and uses mostly web-sourced data. The second stage, which is referred to as mid-training
 206 (5-10 % of training FLOPs), upsamples the highest-quality web documents and curated non-web
 207 sources. The purpose of this mixture is to imbue the model with reasoning skills and provide focused
 208 exposure to STEM references and high quality text.

209 We evaluate the EDT approach by integrating it into the mid-training stage which uses only 1.25%
 210 of the total pretraining tokens.² In our experiments, we initialize the model with the weights after the
 211 first stage training and run the mid-training with ETD approach for each configuration separately.
 212 OLMo et al. (2024) perform mid-training with three random orders, then average the resulting mod-

213 ¹We explain the details of computing angular distance in Appendix A

214 ²For the OLMo-2 1B model, stage-1 pretraining uses 4×10^{12} tokens, while stage-2 uses 5×10^{10} tokens.

els. In our setup, we train with one data configuration and compare it to the standard model trained with the same configuration. Since our experiments adopt the same data mixtures and configurations, we direct readers to OLMo et al. (2024) for a comprehensive description of the training pipeline.

3.2 EVALUATION BENCHMARKS

To capture broad conceptual nature of reasoning, we consider 17 real-world benchmarks grouped into six categories, ordered along a spectrum from less to more reasoning intensive tasks, i.e. from factual recall to systematic symbolic reasoning: factual knowledge, reading comprehension, commonsense reasoning, multidisciplinary Reasoning, BIG-Bench Hard (BBH), and mathematical reasoning. This progression reflects increasing reliance on reasoning rather than memorization. We provide the task categories with the corresponding benchmarks in Table 1. Details

with the motivation for each task category are provided in Appendix B. We evaluate the model using OLMES (Gu et al., 2024), a standardized evaluation suite and toolkit.

Table 1: Evaluation benchmarks grouped into six categories, listed in order of increasing reasoning intensity from top to bottom.

Category	Benchmarks
Factual Knowledge	TriviaQA, NaturalQuestions
Reading Comprehension	BoolQ, OpenBookQA, DROP
Commonsense Reasoning	CommonSenseQA, HellaSwag SocialQA, Winogrande
Multi-Disciplinary Reasoning	ARC-Easy, ARC-Challenge, MMLU, MMLU-Pro, AGIEval-English
BIG-Bench Hard	BBH ³
Mathematical Reasoning	GSM8K, MATH

Table 2: Results of the Encode–Think–Decode (ETD) method with varying numbers of iterations over recursive “thinking” blocks, compared to the OLMo 2 1B baseline. Reported metrics include accuracy (Acc.) and relative improvement (Δ , in %) with respect to the baseline, for each of six task categories (as defined in Sec. 3.2). Parameter counts denote the number of distinct layers, while FLOPs correspond to the number of effective forward-pass layers.

Model	Params/FLOPs	Factual Knowledge		Reading Comprehension		Commonsense Reasoning		Multi-Disciplinary Reasoning		BBH		Math. Reasoning	
		Acc.	$\Delta(\%)$	Acc.	$\Delta(\%)$	Acc.	$\Delta(\%)$	Acc.	$\Delta(\%)$	Acc.	$\Delta(\%)$	Acc.	$\Delta(\%)$
OLMo 2 (k=1)	16 / 16	37.55	-	52.19	-	65.29	-	45	-	31.8	-	24.31	-
ETD (k=2)	16 / 20	38.1	(+1.5%)	56.14	(+7.6%)	66.74	(+2.2%)	48.41	(+7.6%)	31.67	(-0.4%)	28.27	(+16.3%)
ETD (k=3)	16 / 24	37.55	(0%)	56.07	(+7.4%)	67.75	(+3.77%)	49.55	(+10.1%)	32.62	(+2.6%)	30.29	(+24.6%)
ETD (k=4)	16 / 28	37.74	(0%)	57.76	(+10.7%)	68.16	(+4.4%)	50.18	(+11.5%)	33.01	(+3.8%)	29.62	(+21.8%)
ETD (k=5)	16 / 32	38.23	(+1.8%)	58.5	(+12.1%)	68.41	(+4.8%)	50.58	(+12.4%)	33.49	(+5.3%)	30.45	(+25.3%)

4 EVALUATING RECURSIVE “THINKING” BLOCKS

All results are obtained using the training pipeline described in Section 3.1, with the only modification being the configuration $N_E \cdot N_T \cdot k \cdot N_D$. Here, N_E , N_D , and N_T denote the number of layers in the latent encoder and decoder, and the recursive block, and k is the number of iterations. Since our objective is to evaluate the model’s reasoning abilities, we focus on reasoning-oriented tasks as defined in Section 3.2. Because we deal with the same architecture while changing only the number of layers, we report the number of parameters in terms of distinct layers, $N_E + N_T + N_D$, and the number of FLOPs in terms of forward passes through layers, $N_E + N_T \cdot k + N_D$.

4.1 PERFORMANCE GAINS FROM ITERATING OVER “THINKING” BLOCKS

We begin by examining the first two rows of Table 2, which report results for the baseline and the recursive model with two iterations, corresponding to the 7–4*2–5 configuration. Notice that the OLMo 2 1B baseline is equivalent to the ETD model with $k=1$. Results show that performance either remains stable or improves, with notable gains in several categories. The largest improvement is observed on Mathematical Reasoning tasks, with an average relative increase of 16.3%. A breakdown in Table 3 confirms that both GSM8K and MATH benefit from two iterations of the ETD

³BBH, a collection of 23 diverse tasks, serves as a cross-cutting benchmark for compositional reasoning that does not fit neatly into the other categories. More details in Appendix B

approach. Additional gains appear in Commonsense Reasoning (+2.2%), Reading Comprehension (+7.6%), and Multi-Disciplinary Reasoning (+7.6%). In contrast, tasks in the Factual Knowledge and BIG-Bench Hard categories exhibit at most marginal benefits from a single additional iteration.

To further assess the effect of recursive processing, we train ETD with varying numbers of iterations, with results summarized in Table 2. Performance generally improves as the number of iterations k increases with one notable exception: the Factual Knowledge category shows negligible improvement. As discussed in Section 3.2, these tasks rely mainly on memorization rather than reasoning. In contrast, the largest gains occur in reasoning-intensive tasks, most notably in Mathematical Reasoning, with breakdowns shown in Table 3.

These results demonstrate that the ETD approach—by iterating over reasoning-relevant layers—substantially enhances the non-recursive baseline, yielding relative improvements of +28.4% on GSM8K and +36% on MATH. Moreover, the minimal gains on memorization tasks further validate our approach from Section 2 for identifying layers specialized in reasoning.

As noted earlier, ETD with $k=2$ iterations shows no improvement on BIG-Bench Hard (BBH) tasks. However, performance begins to increase with $k=3$ and continues to improve with additional iterations. These observations highlight that performance as a function of iterations exhibits different trends across tasks. For some tasks (e.g., Social IQa, ARC-Challenge, MMLU), performance rises rapidly with 2–3 iterations, after which the rate of improvement slows. For others (e.g., DROP, MMLU-Pro, GSM8K), gains continue steadily with each additional iteration. In rare cases, the best performance is not achieved at the maximum depth, as observed for MATH. Detailed results for all 17 tasks are provided in Appendix F.

Overall, these findings indicate that allocating more resources to generating latent “thought” before decoding—that is, by performing additional iterations over the “thinking” blocks—systematically enhances performance on reasoning-oriented tasks. The diverse performance trends across tasks highlight the opportunity to explore input-dependent, adaptive-depth recursive methods, which we investigate in Section 5.

Our results empirically demonstrate that the methodology described in Section 2 enables the selection of configurations that enhance the model’s reasoning capabilities. Notably, the experiments in the following sections show that it lies near the performance maximum in the search space across tasks.

306

307

308

309

310 4.2 COMPARISON WITH ALTERNATIVE RECURSIVE FRAMEWORKS

311

312

313 Prior work on recursive LLMs typically applies recursion either across all layers (Dehghani et al.,
 314 2018; Csordás et al., 2024; Bae et al., 2024; Saunshi et al., 2025) or across middle layers while
 315 preserving a few initial and final layers (Geiping et al., 2025; Bae et al., 2025; Aleksandrov et al.,
 316 2025). For a fair comparison, we train models using both strategies: (i) looping over all layers, and
 317 (ii) a 2–12*2–2 configuration, which repeats the middle 12 layers while keeping two layers at the
 318 beginning and end fixed. We compare these baselines to our selective looping configuration under a
 319 constant FLOP budget, with results shown in Table 4.

320 Our approach consistently outperforms these alternatives under equal compute. For example, the
 321 2–12*2–2 setup is FLOP-equivalent to our 7–4*4–5 configuration, yet yields lower accuracy. More-
 322 over, to match or exceed the performance of alternative strategies, our method typically requires
 323 fewer FLOPs—often only three iterations are sufficient. [We also want to note that \$N_E=N_D=0\$ configura-](#)
[tion in Table 4, is the closest analogue to Coconut \(Hao et al., 2024\).](#)

Table 3: Results of the ETD method with varying numbers of iterations. Reported metrics include accuracy (Acc.) and relative improvement (Δ , in %) with respect to the baseline on the mathematical reasoning tasks, GSM8K and MATH.

Model	Params/FLOPs	GSM8K		MATH	
		Acc.	Δ (%)	Acc.	Δ (%)
OLMo 2 (k=1)	16 / 16	44.05	-	4.57	-
ETD (k=2)	16 / 20	51.10	(+16.01%)	5.45	(+19.22%)
ETD (k=3)	16 / 24	54.36	(+23.41%)	6.22	(+36.04%)
ETD (k=4)	16 / 28	55.50	(+25.99%)	3.73	(-18.28%)
ETD (k=5)	16 / 32	56.56	(+28.4%)	4.33	(-5.17%)

324
325
326 Table 4: Results with recursive baselines
327
328
329
330
331

Model	Params/ FLOPs	Factual Knowledge	Reading Comprehension	Commonsense Reasoning	Multi-Disciplinary Reasoning	BBH	Math. Reasoning
OLMo 2	16 / 16	37.55	52.19	65.29	45	31.8	24.31
2-12*2-2	16 / 28	37.7	56.44	67.73	47.58	32.30	29.27
ETD (k=4)	16 / 28	37.74	57.76	68.16	50.18	33.01	29.62
0-16*2-0	16 / 32	37.35	53.58	64.7	45.24	30.59	24.99
ETD (k=5)	16 / 32	38.23	58.5	68.41	50.58	33.49	30.45

332
333
334
335
336
337
338
339 Figure 2: Results of the ETD method when varying the subset of layers in the recursive block. We
340 report accuracy (Acc.) when increasing the size of the latent encoder N_E from 1 to 11 in steps of 2,
341 for each of 6 task categories (as defined in Sec. 3.2). The orange line marks selected configuration.
342
343344 4.3 HOW DOES THE CHOICE OF RECURSIVE LAYERS CHANGE PERFORMANCE?
345346 To further examine the impact of recursive “thinking” block size
347 and vary its starting position from layer 2 to 12 in steps of 2, which is equivalent to increasing
348 the size of the latent encoder N_E from 1 to 11 in steps of 2. An intriguing observation is that the
349 optimal configuration slightly varies depending on the specific category of tasks. The results in
350 Figure 2 show that the 7-4*2-5 configuration achieves the best overall performance on reasoning-
351 intensive task, particularly mathematical reasoning. [Detailed results are in Table 7 in Appendix E](#). A
352 close alternative is 5-4*2-7, which performs comparably on most tasks but falls short in mathematics.
353 Performance on Factual Knowledge tasks is stable across configurations, which aligns with the
354 intuition discussed earlier. Interestingly, for reading comprehension, the 3-4*2-9 configuration per-
355 forms best. This block of layers (4-7) overlaps with layers just before the identified “thinking” block
356 (8-11), aligning with our earlier intuition that early-to-middle layers are important for context un-
357 derstanding. These findings are consistent with our layer-role analysis, though further investigation
358 is needed to establish stronger causal links.
359360 4.4 HOW DOES THE SIZE OF RECURSIVE “THINKING” BLOCK CHANGE THE PERFORMANCE?
361362 To ensure a controlled comparison, we vary the size of the recursive block by symmetrically adding
363 or removing layers around the original 7-4*2-5 configuration, keeping its center fixed while chang-
364 ing its extent. Figure 3 shows that performance increases as more layers are included in the recursive
365 block up to a point, after which it begins to decline. Notably, for mathematical reasoning, and even
366 under the same FLOP budget, looping more times over a compact set of layers (7-4*k-5) outper-
367 forms looping fewer times over a larger set of layers. This suggests that the placement and structure
368 of the recursive computation are key drivers of performance, not just the amount of extra compute⁴.
369
370371 4.5 COMPARISON WITH LARGER MODEL WITH SAME EFFECTIVE DEPTH
372373 We perform an iso-FLOPs comparison by matching the effective depth of ETD with k=2. The
374 7-4*2-5 configuration has an effective depth of 22, so we construct a non-recurrent baseline with
375 the same budget by stacking the 4-layer block twice—yielding a 7-8*1-5 configuration that mim-
376 ics two iterations without recurrence. Both configurations perform identically before mid-training.
377 However, results in Table 5 show that the larger iso-FLOPs model underperforms both the original⁴Detailed results are in [Appendix G](#).

Figure 3: Results of the ETD method when varying the number of layers in the recursive block. We report accuracy (Acc.) when changing the size of the latent encoder D between 2,4,6,8, and 12, for each of 6 task categories (as defined in Sec. 3.2). Each color represents different configuration of N_E - N_T * k - N_D .

non-recurrent baseline and the ETD ($k=2$) model, highlighting the importance of reusing reasoning-critical layers rather than expanding the network.

Table 5: Results with larger model and same FLOPs

Model	Params/ FLOPs	Factual Knowledge	Reading Comprehension	Commonsense Reasoning	Multi-Disciplinary Reasoning	BBH	Math. Reasoning
OLMo 2	16 / 16	37.55	52.19	65.29	45	31.8	24.31
7-8-5	20 / 20	31.78	52.03	62.45	44.42	30.21	21.68
7-4*2-5	16 / 20	38.1	56.14	66.74	48.41	31.67	28.27

4.6 SCALING FROM 1B PARAMETERS TO 7B PARAMETERS

We extend our experiments from the 1B model to the 7B model. Applying the configuration selection procedure from Section 2.1 yields the 16–10*2–6 layer assignment, which we train using the same mid-training ETD integration described in Section 3.1. The 7B experiments follow the same qualitative trends observed at 1B scale: as shown in Table 6, ETD consistently improves mathematical reasoning performance, while gains on other task categories are less pronounced (see Appendix H). We note that mid-training of both 1B and 7B models uses the same amount of data, meaning that 1B was exposed to more data per parameter.

Table 6: Results of the ETD method on OLMo-2 7B base model. Reported metrics are accuracy (Acc.) and relative improvement (Δ , in %) with respect to the baseline.

Model	Params/FLOPs	GSM8K		MATH	
		Acc.	Δ (%)	Acc.	Δ (%)
OLMo 2 7B ($k=1$)	32 / 32	66.18	-	17.07	-
ETD ($k=2$)	32 / 42	67.02	(+1.29%)	18.26	(+6.38%)

5 ADAPTIVE TEST-TIME SCALING

We observed significant improvements of iterating over recursive blocks. The general trend is that the model benefits from more iterations. However, different problems demand different levels of reasoning effort: not all tokens or sequences require the same number of iterations to reach an accurate prediction, and in some cases the marginal benefit of additional iterations may not justify the extra computation. Adaptive computation (Bengio et al., 2013; 2015) is often used for efficiency by early-exiting on simpler tokens (Elhoushi et al., 2024). In contrast, our goal is to adaptively allocate computation at test time to enhance reasoning capability, rather than to reduce cost.

5.1 METHODOLOGY

In our architecture of the form $E \rightarrow T * k \rightarrow D$, instead of fixing the number of recursive iterations k , we adopt the Adaptive Computation Time (ACT) mechanism (Graves, 2016), allowing each token to dynamically determine how many applications of the recursive block T are necessary. A *router* evaluates the hidden state after each iteration and decides whether further computation is required. This enables allocating more steps to tokens that demand deeper reasoning, while those not meeting the selection criteria bypass further processing and retain their previous representation.

At each iteration t , after computing the hidden representation h_t with the recursive block, a *router* predicts a halting values $w_t \in (0, 1)$ for each token. These values are accumulated across iterations:

$$H_t = \sum_{j=1}^t w_j. \quad (3)$$

Computation for a token is stopped once $H_t \geq 1 - \epsilon$, with ϵ is a small constant (e.g. 0.01). Intuitively, each w_t represents the confidence of the latent “thought”, as produced by the recursive block T . Until sufficient confidence is accumulated, the latent “thought” state continues to be updated. The final representation passed to D is the output of “thinking” block T after final iteration.⁵

Despite its simplicity, this design proved effective in practice. Compared to a fixed-depth design, ACT introduces per-token dynamic depth, enabling more efficient and adaptive use of the recursive block. **Full details are provided in Appendix D.**

Figure 4: Results of fixed-depth ETD with varying numbers of recursive “thinking” iterations compared to adaptive-depth ETD. For fixed-depth ETD, we report accuracy (Acc.) at each iteration count. For adaptive-depth ETD, we report accuracy and the average number of iterations per task.

5.2 RESULTS

We outlined the difference in architecture between fixed- and adaptive-depth approaches, while we follow the same training pipeline discussed in Section 3.1. Figure 4 reports the performance of fixed-depth ETD and adaptive-depth ETD, together with the average number of loops per task.⁶

From Figure 4, we make three key observations. First, this exploratory approach in the direction of adaptive test-time compute approach shows clear improvement over baseline with no recursive iterations. Second, looking at the performance on DROP and OpenbookQA, both of which are reading comprehension tasks, we see that adaptive-depth ETD outperforms the ETD with fixed $k=5$ iterations. Moreover, it also achieves this with fewer iterations on average. Third, for the remaining tasks, adaptive-depth ETD follows the empirical accuracy–iteration tradeoff of the fixed-depth baselines. In particular, its accuracy matches the trend observed for increasing iteration counts, suggesting that performance is well-aligned with its average effective depth. Notably, in these tasks, the adaptive method halts additional iterations once further computation yields only marginal gains.

6 RELATED WORK

Recursive architectures Recurrence has long been a foundational concept, from RNNs to efforts to incorporate it into transformers. In transformers, recurrence has been explored by iteratively refining representations across all tokens in parallel (Dehghani et al., 2018; Lan et al., 2019), and applied to algorithmic tasks such as arithmetic (Schwarzschild et al., 2021; Bansal et al., 2022; Bear et al., 2024; McLeish et al., 2024). Other works offered theoretical and small-scale analyses of looped transformers (Giannou et al., 2023; Gatmiry et al., 2024; Yang et al., 2023; Fan et al., 2024).

Beyond fully recurrent-depth architectures, several hybrid designs have also been proposed, including latent sub-networks (Li et al., 2020), Mixture-of-Experts structures (Tan et al., 2023; Csordás et al., 2024), and dynamic weight-tying (Hay & Wolf, 2024; Liu et al., 2024b). The major motivation of many works mentioned above was inspired by efficiency based on utilizing shared parameters.

⁵We also tried to follow Graves (2016) to represent final representation as the weighted mixture of the outputs after each iteration, but found it less effective.

⁶We selected these tasks because they exhibit the largest relative gains from the recursive approach. See Appendix F for results on the six tasks with the highest relative improvement of ETD ($k=5$) over baseline.

486 **Latent Reasoning** Chain-of-thought prompting has been a central focus in recent studies of reasoning (Merrill & Sabharwal, 2024; Feng et al., 2023; Li et al., 2024). In contrast, our proposal follows the alternative line of latent reasoning, where reasoning unfolds in the model’s hidden representations rather than explicit textual traces. Related efforts on learning to reason in continuous spaces include Hao et al. (2024); Cheng & Durme (2024); Liu et al. (2024a); Geiping et al. (2025); Saunshi et al. (2025). Chen & Zou (2024); Ye et al. (2024); Petty et al. (2023) have shown the importance of model depth for reasoning. **Further analysis on Coconut (Hao et al., 2024), show that continuous thought vector is a superposition state that encodes multiple search frontiers simultaneously (Zhu et al., 2025b;a).** We step further showing that larger depth leads to reasoning improvements also when it is achieved via looping, without increasing the number of parameters.

496
497 **Adaptive Computation** Dynamic compute allocation has been shown to substantially reduce
498 training and inference costs, spanning from early neural networks (Bengio et al., 2015; Huang et al.,
499 2016; Teerapittayanon et al., 2016; Panda et al., 2015) to LLMs (Hou et al., 2020; Elbayad et al.,
500 2019; Fedus et al., 2021; Bae et al., 2023; Elhouoshi et al., 2024). A prominent line of work, early
501 exiting, learns to terminate computation on “easy” inputs by skipping subsequent layers (Elbayad
502 et al., 2019; Schuster et al., 2022; Bae et al., 2023; Elhouoshi et al., 2024). Adaptive depth can be
503 also formulated as a routing problem: each layer’s router selects a subset of tokens for full compu-
504 tation while others bypass the layer, enabling token-level conditional compute (Raposo et al., 2024;
505 Luo et al., 2024). Extending this idea, Bae et al. (2025) applied conditional routing to recursive
506 transformers, but restricted recursion to a small, fixed maximum of three iterations.

507
508 **Key Differences from Prior Work** Our approach differs from prior work in several important
509 ways. First, most recursive-depth methods have been studied primarily as a means of improv-
510 ing parameter efficiency (Lan et al., 2019; Bae et al., 2024), i.e., reducing parameter count while
511 maintaining performance, whereas our focus is on enhancing reasoning capability. Second, to our
512 knowledge, we are the first to propose a recursive approach guided by interpretability: rather than
513 choosing the recursive configuration heuristically, we iterate specifically over layers critical for rea-
514 soning. Third, our method is simple and requires no additional components such as extra latent states
515 for recursive blocks and very large of number of iterations (Geiping et al., 2025), LoRA adapters
516 (Bae et al., 2024), regularization terms (Saunshi et al., 2025), or input injections (Aleksandrov et al.,
517 2025). **Unlike methods such as Coconut (Hao et al., 2024), which introduce a separate language**
518 **and latent mode, and multi-stage training, ETD preserves the standard forward pass and applies re-**
519 **currence only to a small reasoning-critical block—yielding stronger reasoning gains.** Fourth, unlike
520 most prior work that evaluated recurrence under simplified setups, we show that recursive depth
521 improves advanced open-source models trained with state-of-the-art practices in architecture, train-
522 ing recipes, and pretraining mixtures, validating our approach extensively on real-world reasoning
523 tasks. Speaking of adaptive-depth recursive model, in our formulation we advocate for open-ended
524 test-time compute scaling: after each iteration, the model should autonomously decide whether to
525 continue or halt, without being constrained by a predefined cap (Bae et al., 2025).

527 7 CONCLUSIONS

528
529 We introduced *Encode–Think–Decode* (ETD), a paradigm that enhances the reasoning abilities of
530 LLMs by performing latent-space reasoning. Unlike approaches that depend on scaling model size
531 or externalizing reasoning through CoT prompting, ETD amplifies reasoning-relevant computa-
532 tions within the model itself, without altering its architecture, parameters, data, or hyperparam-
533 eters. Across 17 benchmarks, ETD consistently improved performance, with substantial gains on
534 reasoning-intensive tasks such as GSM8K and MATH. Our analysis underscores the importance of
535 iterating over deeper, reasoning-relevant layers, and adaptive depth strategies further show how ETD
536 can dynamically allocate compute based on task difficulty.

537
538 Overall, recursive latent reasoning emerges as a simple, effective, and broadly applicable approach
539 for strengthening reasoning. By integrating interpretability insights with recursive computation,
ETD illustrates how leveraging depth and structure can advance reasoning in language models.

540 ETHICS STATEMENT
541542 Our study focuses on methodological contributions for enhancing reasoning in large language mod-
543 els and relies exclusively on publicly available datasets and open-source pretrained models. We do
544 not introduce new data, nor do we involve human subjects. We do not foresee direct societal risks
545 beyond those already associated with language models. At the same time, we hope that improving
546 the reasoning ability of models can lead to safer and more reliable applications by reducing errors
547 in reasoning-intensive domains.548
549 REPRODUCIBILITY STATEMENT
550551 We build on openly released models, which provide full access to weights, data mixtures, and train-
552 ing recipes. Our modifications involve only the mid-training stage, where we re-run training with
553 the same data and hyperparameters, adding recursive iterations without introducing new parameters
554 or datasets. All evaluations use widely available benchmarks. We report full configuration details,
555 including recursive block structure and iteration counts in the main text and appendices. These
556 choices ensure that our results can be reproduced by others with access to the training pipeline and
557 publicly available evaluation benchmarks.558
559 REFERENCES
560561 Preslav Aleksandrov, Meghdad Kurmanji, Fernando García-Redondo, David O’Shea, William F.
562 Shen, Alexandru Iacob, Lorenzo Sani, Xinchi Qiu, Nicola Cancedda, and Nicholas Don-
563 ald Lane. Abbie: Autoregressive block-based iterative encoder for efficient sequence mod-
564 eling. *ArXiv*, abs/2507.08567, 2025. URL <https://api.semanticscholar.org/CorpusID:280293934>.
565
566 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scal-
567 ing laws. *ArXiv*, abs/2404.05405, 2024. URL <https://api.semanticscholar.org/CorpusID:269005957>.
568
569 Sangmin Bae, Jongwoo Ko, Hwanjun Song, and SeYoung Yun. Fast and robust early-
570 exiting framework for autoregressive language models with synchronized parallel decod-
571 ing. *ArXiv*, abs/2310.05424, 2023. URL <https://api.semanticscholar.org/CorpusID:263830054>.
572
573 Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schus-
574 ter. Relaxed recursive transformers: Effective parameter sharing with layer-wise lora. *ArXiv*,
575 abs/2410.20672, 2024. URL <https://api.semanticscholar.org/CorpusID:273654907>.
576
577 Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr
578 Harutyunyan, Ziwei Ji, Aaron Courville, and SeYoung Yun. Mixture-of-recursions: Learning
579 dynamic recursive depths for adaptive token-level computation. *ArXiv*, abs/2507.10524, 2025.
580 URL <https://api.semanticscholar.org/CorpusID:280151550>.
581
582 Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Ali Sami Emam, Furong Huang, Micah
583 Goldblum, and Tom Goldstein. End-to-end algorithm synthesis with recurrent networks: Ex-
584 trapolation without overthinking. In *Neural Information Processing Systems*, 2022. URL
585 <https://api.semanticscholar.org/CorpusID:258509719>.
586
587 David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
588 Quantifying interpretability of deep visual representations. *2017 IEEE Conference on Com-
589 puter Vision and Pattern Recognition (CVPR)*, pp. 3319–3327, 2017. URL <https://api.semanticscholar.org/CorpusID:378410>.
590
591 Jay Bear, Adam Prügel-Bennett, and Jonathon Hare. Rethinking deep thinking: Stable learning of
592 algorithms using lipschitz constraints. *ArXiv*, abs/2410.23451, 2024. URL <https://api.semanticscholar.org/CorpusID:273707386>.

594 Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
 595 in neural networks for faster models. *ArXiv*, abs/1511.06297, 2015. URL <https://api.semanticscholar.org/CorpusID:16049527>.
 596

597 Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
 598 through stochastic neurons for conditional computation. *ArXiv*, abs/1308.3432, 2013. URL
 599 <https://api.semanticscholar.org/CorpusID:18406556>.
 600

601 Cody Blakeney, Mansheej Paul, Brett W. Larsen, Sean Owen, and Jonathan Frankle. Does
 602 your data spark joy? performance gains from domain upsampling at the end of training.
 603 *ArXiv*, abs/2406.03476, 2024. URL <https://api.semanticscholar.org/CorpusID:270258382>.
 604

605 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 606 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 607 wal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh,
 608 Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
 609 Ma teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
 610 Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
 611 learners. *ArXiv*, abs/2005.14165, 2020. URL <https://api.semanticscholar.org/CorpusID:218971783>.
 612

613 Xingwu Chen and Difan Zou. What can transformer learn with varying depth? case stu-
 614 dies on sequence learning tasks. *ArXiv*, abs/2404.01601, 2024. URL <https://api.semanticscholar.org/CorpusID:268856974>.
 615

616 Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reason-
 617 ing through dense representations. *ArXiv*, abs/2412.13171, 2024. URL <https://api.semanticscholar.org/CorpusID:274789675>.
 618

619 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
 620 Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no ques-
 621 tions. *ArXiv*, abs/1905.10044, 2019. URL <https://api.semanticscholar.org/CorpusID:165163607>.
 622

623 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
 624 and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
 625 challenge. *ArXiv*, abs/1803.05457, 2018. URL <https://api.semanticscholar.org/CorpusID:3922816>.
 626

627 Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
 628 Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
 629 Training verifiers to solve math word problems. *ArXiv*, abs/2110.14168, 2021. URL <https://api.semanticscholar.org/CorpusID:239998651>.
 630

631 Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber, Christopher Potts, and Christopher D. Manning.
 632 Moeut: Mixture-of-experts universal transformers. *ArXiv*, abs/2405.16039, 2024. URL <https://api.semanticscholar.org/CorpusID:270063139>.
 633

634 Guy Davidson, Todd M Gureckis, Brenden M Lake, and Adina Williams. Do different prompt-
 635 ing methods yield a common task representation in language models? *arXiv preprint arXiv:2505.12075*, 2025.
 636

637 DeepSeek-AI et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learn-
 638 ing, 2025. URL <https://arxiv.org/abs/2501.12948>.
 639

640 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Univer-
 641 sal transformers. *ArXiv*, abs/1807.03819, 2018. URL <https://api.semanticscholar.org/CorpusID:49667762>.
 642

643 Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
 644 Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
 645 *North American Chapter of the Association for Computational Linguistics*, 2019. URL <https://api.semanticscholar.org/CorpusID:67855846>.
 646

648 Abhimanyu Dubey et al. The llama 3 herd of models. *ArXiv*, abs/2407.21783, 2024. URL <https://api.semanticscholar.org/CorpusID:271571434>.
649
650

651 Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. *ArXiv*,
652 abs/1910.10073, 2019. URL <https://api.semanticscholar.org/CorpusID:204824061>.
653

654 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, T. J. Henighan, Shauna Kravec,
655 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Baker Grosse, Sam Mc-
656 Candlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Chris Olah. Toy models of su-
657 perposition. *ArXiv*, abs/2209.10652, 2022. URL <https://api.semanticscholar.org/CorpusID:252439050>.
658

659 Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
660 Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi
661 Chen, and Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative de-
662 coding. *ArXiv*, abs/2404.16710, 2024. URL <https://api.semanticscholar.org/CorpusID:269362647>.
663

664 Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
665 generalization. *ArXiv*, abs/2409.15647, 2024. URL <https://api.semanticscholar.org/CorpusID:272831982>.
666

667 William Fedus, Barret Zoph, and Noam M. Shazeer. Switch transformers: Scaling to trillion
668 parameter models with simple and efficient sparsity. *ArXiv*, abs/2101.03961, 2021. URL
669 <https://api.semanticscholar.org/CorpusID:231573431>.
670

671 Guha Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing
672 the mystery behind chain of thought: a theoretical perspective. *ArXiv*, abs/2305.15408, 2023.
673 URL <https://api.semanticscholar.org/CorpusID:258865989>.
674

675 Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar.
676 Can looped transformers learn to implement multi-step gradient descent for in-context learn-
677 ing? *ArXiv*, abs/2410.08292, 2024. URL <https://api.semanticscholar.org/CorpusID:272330312>.
678

679 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
680 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
681 latent reasoning: A recurrent depth approach. *arXiv preprint arXiv:2502.05171*, 2025.
682

683 Angeliki Giannou, Shashank Rajput, Jy yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
684 Papailiopoulos. Looped transformers as programmable computers. *ArXiv*, abs/2301.13196, 2023.
685 URL <https://api.semanticscholar.org/CorpusID:256389656>.
686

687 Alex Graves. Adaptive computation time for recurrent neural networks. *ArXiv*, abs/1603.08983,
688 2016. URL <https://api.semanticscholar.org/CorpusID:8224916>.
689

690 Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
691 unreasonable ineffectiveness of the deeper layers. *arXiv preprint arXiv:2403.17887*, 2024.
692

693 Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hanna Hajishirzi.
694 Olmes: A standard for language model evaluations. *ArXiv*, abs/2406.08446, 2024. URL
695 <https://api.semanticscholar.org/CorpusID:270391754>.
696

697 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason E. Weston, and Yuan-
698 dong Tian. Training large language models to reason in a continuous latent space. *ArXiv*,
699 abs/2412.06769, 2024. URL <https://api.semanticscholar.org/CorpusID:274610816>.
700

701 Tamir David Hay and Lior Wolf. Dynamic layer tying for parameter-efficient transform-
702 ers. *ArXiv*, abs/2401.12819, 2024. URL <https://api.semanticscholar.org/CorpusID:267095141>.
702

702 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong
 703 Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *ArXiv*,
 704 abs/2009.03300, 2020. URL <https://api.semanticscholar.org/CorpusID:221516475>.

705

706 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xi-
 707 aodong Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
 708 dataset. *ArXiv*, abs/2103.03874, 2021. URL <https://api.semanticscholar.org/CorpusID:232134851>.

709

710

711 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 712 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
 713 Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aure-
 714 lia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and
 715 L. Sifre. Training compute-optimal large language models. *ArXiv*, abs/2203.15556, 2022. URL
 716 <https://api.semanticscholar.org/CorpusID:247778764>.

717

718 Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, and Qun Liu. Dynabert: Dynamic bert with adaptive
 719 width and depth. *ArXiv*, abs/2004.04037, 2020. URL <https://api.semanticscholar.org/CorpusID:215415863>.

720

721 Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
 722 stochastic depth. In *European Conference on Computer Vision*, 2016. URL <https://api.semanticscholar.org/CorpusID:6773885>.

723

724 Adam Ibrahim, Benjamin Th'eren, Kshitij Gupta, Mats L. Richter, Quentin Anthony, Tim-
 725 othée Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continu-
 726 ally pre-train large language models. *ArXiv*, abs/2403.08763, 2024. URL <https://api.semanticscholar.org/CorpusID:268379604>.

727

728 Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 729 supervised challenge dataset for reading comprehension. *ArXiv*, abs/1705.03551, 2017. URL
 730 <https://api.semanticscholar.org/CorpusID:26501419>.

731

732 Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 733 Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language
 734 models. *ArXiv*, abs/2001.08361, 2020. URL <https://api.semanticscholar.org/CorpusID:210861095>.

735

736 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 737 language models are zero-shot reasoners. *ArXiv*, abs/2205.11916, 2022. URL <https://api.semanticscholar.org/CorpusID:249017743>.

738

739 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris
 740 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 741 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc V. Le,
 742 and Slav Petrov. Natural questions: A benchmark for question answering research. *Trans-
 743 actions of the Association for Computational Linguistics*, 7:453–466, 2019. URL <https://api.semanticscholar.org/CorpusID:86611921>.

744

745 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
 746 Radu Soricut. Albert: A lite bert for self-supervised learning of language representa-
 747 tions. *ArXiv*, abs/1909.11942, 2019. URL <https://api.semanticscholar.org/CorpusID:202888986>.

748

749 Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin
 750 Wattenberg. Emergent world representations: Exploring a sequence model trained on a syn-
 751 synthetic task. *ArXiv*, abs/2210.13382, 2022. URL <https://api.semanticscholar.org/CorpusID:253098566>.

752

753 Xian Li, Asa Cooper Stickland, Yuqing Tang, and X. Kong. Deep transformers with latent
 754 depth. *ArXiv*, abs/2009.13102, 2020. URL <https://api.semanticscholar.org/CorpusID:221970592>.

755

756 Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
 757 ers to solve inherently serial problems. *ArXiv*, abs/2402.12875, 2024. URL <https://api.semanticscholar.org/CorpusID:267760184>.
 759

760 Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur D. Szlam. Deliberation in latent
 761 space via differentiable cache augmentation. *ArXiv*, abs/2412.17747, 2024a. URL <https://api.semanticscholar.org/CorpusID:274992824>.
 762

763 Zechun Liu, Changsheng Zhao, Forrest N. Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yun-
 764 yang Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and
 765 Vikas Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device
 766 use cases. *ArXiv*, abs/2402.14905, 2024b. URL <https://api.semanticscholar.org/CorpusID:267898017>.
 767

768 Yaxin Luo, Gen Luo, Jiayi Ji, Yiyi Zhou, Xiaoshuai Sun, Zhiqiang Shen, and Rongrong
 769 Ji. γ -mod: Exploring mixture-of-depth adaptation for multimodal large language mod-
 770 els. *ArXiv*, abs/2410.13859, 2024. URL <https://api.semanticscholar.org/CorpusID:273403699>.
 771

772 Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
 773 Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Trans-
 774 formers can do arithmetic with the right embeddings. *ArXiv*, abs/2405.17399, 2024. URL
 775 <https://api.semanticscholar.org/CorpusID:270062339>.
 776

777 William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of
 778 thought. *ArXiv*, abs/2310.07923, 2024. URL <https://api.semanticscholar.org/CorpusID:263909434>.
 779

780 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 781 electricity? a new dataset for open book question answering. In *Conference on Empirical Methods
 782 in Natural Language Processing*, 2018. URL <https://api.semanticscholar.org/CorpusID:52183757>.
 783

784 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
 785 for grokking via mechanistic interpretability. *ArXiv*, abs/2301.05217, 2023. URL <https://api.semanticscholar.org/CorpusID:255749430>.
 786

787 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
 788 Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind
 789 Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi,
 790 Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Ma-
 791 lik, William Merrill, Lester James Validad Miranda, Jacob Daniel Morrison, Tyler C. Murray,
 792 Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David
 793 Wadden, Christopher Wilhelm, Michael Wilson, Luke S. Zettlemoyer, Ali Farhadi, Noah A.
 794 Smith, and Hanna Hajishirzi. 2 olmo 2 furious. *ArXiv*, abs/2501.00656, 2024. URL <https://api.semanticscholar.org/CorpusID:275213098>.
 795

796 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova Dassarma, T. J. Henighan,
 797 Benjamin Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep
 798 Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, John Kernion,
 799 Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom B. Brown, Jack Clark, Jared Kaplan, Sam
 800 McCandlish, and Chris Olah. In-context learning and induction heads. *ArXiv*, abs/2209.11895,
 801 2022. URL <https://api.semanticscholar.org/CorpusID:252532078>.
 802

803 OpenAI et al. Gpt-4 technical report. 2023. URL <https://api.semanticscholar.org/CorpusID:257532815>.
 804

805 Priyadarshini Panda, Abhroni Sengupta, and Kaushik Roy. Conditional deep learning for energy-
 806 efficient and enhanced pattern recognition. *2016 Design, Automation & Test in Europe Conference
 807 & Exhibition (DATE)*, pp. 475–480, 2015. URL <https://api.semanticscholar.org/CorpusID:8798529>.
 808

809

810 Jackson Petty, Sjoerd van Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, and Tal Linzen. The
 811 impact of depth and width on transformer language model generalization. *CoRR*, 2023.

812

813 Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
 814 Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
 815 text-to-text transformer. *J. Mach. Learn. Res.*, 21:140:1–140:67, 2019. URL <https://api.semanticscholar.org/CorpusID:204838007>.

816

817 David Raposo, Sam Ritter, Blake Richards, Timothy P. Lillicrap, Peter Humphreys, and Adam
 818 Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
 819 models. *ArXiv*, abs/2404.02258, 2024. URL <https://api.semanticscholar.org/CorpusID:268876220>.

820

821 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 822 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

823

824 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
 825 sense reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.

826 Ville A. Satopaa, Jeannie R. Albrecht, David E. Irwin, and Barath Raghavan. Finding a "knee-
 827 needle" in a haystack: Detecting knee points in system behavior. *2011 31st International Con-
 828 ference on Distributed Computing Systems Workshops*, pp. 166–171, 2011. URL <https://api.semanticscholar.org/CorpusID:67623>.

829

830 Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
 831 with latent thoughts: On the power of looped transformers. *arXiv preprint arXiv:2502.17416*,
 832 2025.

833

834 Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
 835 Donald Metzler. Confident adaptive language modeling. *ArXiv*, abs/2207.07061, 2022. URL <https://api.semanticscholar.org/CorpusID:250526382>.

836

837 Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
 838 and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
 839 recurrent networks. In *Neural Information Processing Systems*, 2021. URL <https://api.semanticscholar.org/CorpusID:235368338>.

840

841 Guangyuan Shi, Zexin Lu, Xiaoyu Dong, Wenlong Zhang, Xuanyu Zhang, Yujie Feng, and Xiao-
 842 Ming Wu. Understanding layer significance in Ilm alignment. *arXiv preprint arXiv:2410.17875*,
 843 2024.

844

845 Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, and Jianfeng Gao. Rethinking
 846 interpretability in the era of large language models. *ArXiv*, abs/2402.01761, 2024. URL <https://api.semanticscholar.org/CorpusID:267412530>.

847

848 Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and
 849 Ravid Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language mod-
 850 els. *ArXiv*, abs/2502.02013, 2025. URL <https://api.semanticscholar.org/CorpusID:276107264>.

851

852 Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of arith-
 853 metic reasoning in language models using causal mediation analysis. In *Conference on Empirical
 854 Methods in Natural Language Processing*, 2023. URL <https://api.semanticscholar.org/CorpusID:258865170>.

855

856 Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 857 Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
 858 bench tasks and whether chain-of-thought can solve them. In *Annual Meeting of the Associa-
 859 tion for Computational Linguistics*, 2022. URL <https://api.semanticscholar.org/CorpusID:252917648>.

860

861 Alon Talmor, Jonathan Herzog, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 862 answering challenge targeting commonsense knowledge. *ArXiv*, abs/1811.00937, 2019. URL
 863 <https://api.semanticscholar.org/CorpusID:53296520>.

864 Shawn Tan, Yikang Shen, Zhenfang Chen, Aaron C. Courville, and Chuang Gan. Sparse universal
 865 transformer. *ArXiv*, abs/2310.07096, 2023. URL <https://api.semanticscholar.org/CorpusID:263834790>.
 866

867 Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference via early
 868 exiting from deep neural networks. *2016 23rd International Conference on Pattern Recognition (ICPR)*, pp. 2464–2469, 2016. URL <https://api.semanticscholar.org/CorpusID:2916466>.
 869

870 Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 871 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Neural Information Processing
 872 Systems*, 2017. URL <https://api.semanticscholar.org/CorpusID:13756489>.
 873

874 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 875 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max W.F. Ku, Kai Wang, Alex Zhuang,
 876 Rongqi "Richard" Fan, Xiang Yue, and Wenhui Chen. Mmlu-pro: A more robust and challenging
 877 multi-task language understanding benchmark. *ArXiv*, abs/2406.01574, 2024. URL <https://api.semanticscholar.org/CorpusID:270210486>.
 878

879 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, F. Xia, Quoc Le,
 880 and Denny Zhou. Chain of thought prompting elicits reasoning in large language
 881 models. *ArXiv*, abs/2201.11903, 2022. URL <https://api.semanticscholar.org/CorpusID:246411621>.
 882

883 Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
 884 better at learning learning algorithms. *ArXiv*, abs/2311.12424, 2023. URL <https://api.semanticscholar.org/CorpusID:265308959>.
 885

886 Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part
 887 2.1, grade-school math and the hidden reasoning process. *ArXiv*, abs/2407.20311, 2024. URL
 888 <https://api.semanticscholar.org/CorpusID:271544257>.
 889

890 Zeping Yu, Yonatan Belinkov, and Sophia Ananiadou. Back attention: Understanding and enhancing
 891 multi-hop reasoning in large language models. *ArXiv*, abs/2502.10835, 2025. URL <https://api.semanticscholar.org/CorpusID:276409219>.
 892

893 Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
 894 *ArXiv*, abs/1311.2901, 2013. URL <https://api.semanticscholar.org/CorpusID:3960646>.
 895

896 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
 897 machine really finish your sentence? In *Annual Meeting of the Association for Computational Lin-
 898 guistics*, 2019. URL <https://api.semanticscholar.org/CorpusID:159041722>.
 899

900 Zheng Zhao, Yftah Ziser, and Shay B. Cohen. Layer by layer: Uncovering where multi-task learning
 901 happens in instruction-tuned large language models. *ArXiv*, abs/2410.20008, 2024. URL <https://api.semanticscholar.org/CorpusID:273654756>.
 902

903 Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied Sanosi
 904 Saied, Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foun-
 905 dation models. In *NAACL-HLT*, 2023. URL <https://api.semanticscholar.org/CorpusID:258108259>.
 906

907 Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Emer-
 908 gence of superposition: Unveiling the training dynamics of chain of continuous thought. *ArXiv*,
 909 abs/2509.23365, 2025a. URL <https://api.semanticscholar.org/CorpusID:281675453>.
 910

911 Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reasoning by
 912 superposition: A theoretical perspective on chain of continuous thought. *ArXiv*, abs/2505.12514,
 913 2025b. URL <https://api.semanticscholar.org/CorpusID:278740606>.
 914

915

916

917

918 A COMPUTING ANGULAR DISTANCE
919920 Elaborating on the computation of angular distance in Section 2.1, the angular distance for a single
921 sequence of length T is defined as
922

923
$$d(x^{(\ell)}, x^{(\ell+n)}) = \frac{1}{\pi} \arccos \left(\frac{x_T^{(\ell)} \cdot x_T^{(\ell+n)}}{\|x_T^{(\ell)}\| \|x_T^{(\ell+n)}\|} \right),$$

924
925

926 where the inner product is taken over the hidden dimension of the model for the last token T of the
927 sequence, $\|\cdot\|$ denotes the L^2 norm, and the factor $1/\pi$ normalizes the distance to $[0, 1]$. We average
928 this distance over 10,000 examples to obtain a stable estimate. We focus on the final token since,
929 under a causal attention mask, its embedding is the only one that depends on the entire sequence.
930 We use the same definition of angular distance as Gromov et al. (2024).
931932 B DETAILED EVALUATION BENCHMARKS
933934 To capture broad conceptual nature of reasoning, we consider 17 real-world benchmarks grouped
935 into six categories, ordered along a spectrum from less to more reasoning intensive tasks, i.e. from
936 factual recall to systematic symbolic reasoning: factual knowledge, reading comprehension, com-
937 monsense reasoning, multi-disciplinary Reasoning, BIG-Bench Hard (BBH), and mathematical rea-
938 soning. This progression reflects increasing reliance on reasoning rather than memorization.
939940

- **Factual Knowledge:** Tasks that test the model’s ability to recall information without addi-
941 tional context, thus primarily measuring memorization. We include TriviaQA (Joshi et al.,
942 2017) and NaturalQuestions (Kwiatkowski et al., 2019).
- **Reading Comprehension:** Tasks requiring the model to infer answers from a given pas-
943 sage, involving text understanding and light reasoning (e.g., multi-hop). Benchmarks in-
944 clude BoolQ (Clark et al., 2019), OpenBookQA (Mihaylov et al., 2018), and DROP (Dua
945 et al., 2019).
- **Commonsense Reasoning:** Tasks that evaluate human-like capacity to make assumptions
946 and inferences about the nature and characteristics of everyday scenarios, including Com-
947 monSenseQA (Talmor et al., 2019), HellaSwag (Zellers et al., 2019), SocialQA (Sap et al.,
948 2019), WinoGrande (Sakaguchi et al., 2021).
- **Multi-Disciplinary Reasoning:** Benchmarks testing both factual knowledge and reason-
949 ing across broad academic and multi-disciplinary domains. We include ARC-Easy and
950 ARC-Challenge (Clark et al., 2018), MMLU (Hendrycks et al., 2020), MMLU-Pro (Wang
951 et al., 2024), and AGIEval-English (Zhong et al., 2023).
- **BIG-Bench Hard (BBH):** A collection of 23 diverse tasks spanning math, logic puzzles,
952 symbolic and social reasoning (Suzgun et al., 2022). Many tasks are synthetic, and BBH
953 serves as a cross-cutting benchmark for compositional reasoning that does not fit neatly
954 into the other categories.
- **Mathematical Reasoning:** We finally test the model on solve math word problem
955 benchmarks to evaluate systematic reasoning and symbolic manipulation, represented by
956 GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021).

957958 C ALGORITHM FOR CHOOSING THE OPTIMAL CONFIGURATION
959960 To automatically identify the point at which a curve transitions from a rapid to a gradual decrease, we
961 employ the *Kneedle algorithm* (Satopaa et al., 2011). The difference function D_i is then evaluated
962 on $(x, \tilde{y}(x))$, providing a smooth approximation that avoids spurious local variations.
963964 Formally, let the curve be represented as a sequence of points:
965

966
$$\mathcal{C} = \{(x_i, y_i)\}_{i=0}^n,$$

967

968 where x corresponds to the layer index l and y to the angular distance $d(l, l + 1)$. The key steps
969 underlying Kneedle Algorithm are:
970

972 1. Smooth and normalize the data into $[0, 1]^2$: (\hat{x}_i, \hat{y}_i) .
 973 2. Compute the deviation $D_i = \hat{y}_i - (1 - \hat{x}_i)$ from the diagonal.
 974 3. Identify local maxima of the difference curve as candidate knees.
 975 4. Apply a threshold-based rule (with sensitivity parameter S) to declare knees when the
 976 difference drops below threshold.

978 To improve robustness against noise, we apply a polynomial interpolation of degree 2 to the data:

$$\tilde{y}(x) = a_0 + a_1 x + a_2 x^2,$$

980 fitted via least squares. This provides a smooth approximation that avoids spurious local variations.

982 The details of Kneedle Algorithm can be summarized as follows:

984 1. Normalization: Scale both axes to $[0, 1]$:
 985
$$\hat{x}_i = \frac{x_i - \min(x)}{\max(x) - \min(x)}, \quad \hat{y}_i = \frac{y_i - \min(y)}{\max(y) - \min(y)}.$$

 986 2. Difference curve: Compute the deviation between the normalized curve and the diagonal
 987 $y = 1 - \hat{x}$:
 988
$$D_i = \hat{y}_i - (1 - \hat{x}_i).$$

 989 3. Local maxima: Candidate knees are local maxima of D_i , i.e.
 990
$$D_{i-1} < D_i \quad \wedge \quad D_{i+1} < D_i.$$

 991 4. Threshold rule: For each local maximum, define a threshold

$$T_i = D_i - S \cdot \Delta_x, \quad \Delta_x = \frac{1}{n-1} \sum_{j=1}^{n-1} (\hat{x}_{j+1} - \hat{x}_j),$$

992 where $S > 0$ is a sensitivity parameter. A knee is declared at i^* if $D_j < T_i$ for some $j > i$
 993 before the next local maximum is reached.

1001 We run the above procedure using the `KneeLocator` package:

```
1002     kneedle = KneeLocator(  

  1003        x, y,  

  1004        curve='convex',  

  1005        direction='decreasing',  

  1006        interp_method='polynomial',  

  1007        polynomial_degree=2,  

  1008        online=True  

  1009     )  

  1010  

  1011     The returned index
```

$$i^* = \text{kneedle.knee}$$

1012 is taken as the transition point from steep to gradual decline.

D DETAILS ON ADAPTIVE-DEPTH ETD TRAINING

1018 In Section 5, we introduce the mechanism that allows the model to adaptively determine the number
 1019 of recursive iterations per input token—referred to as adaptive-depth ETD. This subsection provides
 1020 full implementation details covering the architecture, training, and inference procedure.

1021 **Architecture.** We keep the general architecture of the model the same and add a lightweight router.
 1022 The router is implemented as a linear projection of the hidden state followed by a sigmoid activation.
 1023 The input to the router is the hidden representation that is output by the recursive T block, and the
 1024 output of the router is the halting value between 0 and 1. The router is randomly initialized, i.e. we
 1025 do not use the insights from fixed-depth ETD to set some priors for the router.

1026 **Training stage.** Adaptive-depth ETD undergoes mid-training in the same way as fixed-depth ETD.
 1027 We train the router to learn how to allocate resources, i.e. iterations, for different input tokens, at the
 1028 same time as we mid-train the other model parameters.

1029 At each iteration t , after computing the hidden representation h_t with the recursive block, the *router*
 1030 outputs a halting values $w_t \in (0, 1)$ for each token. These values are accumulated across iterations:
 1031

$$H_t = \sum_{j=1}^t w_j. \quad (4)$$

1032 For each input, the initial value of H_t is zero. Computation for a token is stopped once $H_t \geq 1 - \epsilon$,
 1033 with $\epsilon = 0.01$. However, early during training the router may output extremely small halting values,
 1034 causing excessively many iterations. To avoid this, we cap the maximum number of iterations during
 1035 training to $N_{max}=10$. During training we use the same hyperparameters as during fixed-depth
 1036 ETD training. We do not provide auxiliary losses (e.g., intermediate losses after each iteration) nor
 1037 we introduce any regularizers. Hyperparameters—including optimizer, learning rate, and scheduler—remain
 1038 identical to fixed-depth ETD. The router is trained end-to-end jointly with the model.
 1039

1040 **At test-time.** The test time regime is very similar to the training regime, except that once the
 1041 model is trained we remove the cap on the number of iterations. The model determines on its own
 1042 the number of iterations: after each iteration the router uses the output of the recursive block to
 1043 predict the halting value for the iteration, and stops as soon as the cumulated halting values exceed
 1044 $1 - \epsilon$: $\sum_{j=1}^K w_j > 1 - \epsilon$, where K is the number of iterations.
 1045

1046 Intuitively, until sufficient confidence is accumulated, the latent “thought” state continues to be up-
 1047 dated. The final representation passed to latent decoder is the output of “thinking” block T after the
 1048 final iteration. For easy tokens, the computation halts after few iterations, whereas difficult tokens
 1049 may trigger more recursive reasoning steps. This design enables test-time computation scaling: the
 1050 model dynamically allocates additional reasoning depth where beneficial
 1051

1052 E RESULTS WITH ITERATIONS OVER DIFFERENT LAYERS

1053 We fix the recursive “thinking” block size and vary its starting position from layer 2 to 12 in steps
 1054 of 2, which is equivalent to increasing the size of the latent encoder N_E from 1 to 11 in steps of 2.
 1055

1056 Table 7: Results of the Encode–Think–Decode (ETD) method when varying the subset of layers in
 1057 the recursive block. We report accuracy (Acc.) when increasing the size of the latent encoder N_E
 1058 from 1 to 11 in steps of 2, for each of six task categories (as defined in Sec. 3.2).
 1059

1060 Model	1061 Params/ FLOPs	1062 Factual Knowledge	1063 Reading Comprehension	1064 Commonsense Reasoning	1065 Multi-Disciplinary Reasoning	1066 BBH	1067 Math. Reasoning
1-4*2-11	16 / 20	37.92	55.53	64.82	44.99	31.23	25.6
3-4*2-9	16 / 20	37.43	56.93	65.87	46.9	29.80	27.31
5-4*2-7	16 / 20	37.58	56.51	66.86	49.03	32.21	26.8
7-4*2-5	16 / 20	38.1	56.14	66.74	48.41	31.67	28.27
9-4*2-3	16 / 20	37.7	53.46	65.52	45.71	31.05	27.35
11-4*2-1	16 / 20	37.67	54.79	64.45	45.18	30.93	24.63

1076 F PERFORMANCE OF ETD ON EACH TASK

1077 Table 2 reports the results of the Encode–Think–Decode (ETD) method with varying numbers of
 1078 iterations over recursive “thinking” blocks, compared to the OLMo 2 1B baseline on 6 categories of
 1079 tasks described in Sec. 3.2. In this section, we share the results for each individual tasks in Tables 8.
 1080

1080
 1081 Table 8: Results of the Encode–Think–Decode (ETD) method with varying numbers of iterations
 1082 over recursive “thinking” blocks, compared to the OLMo 2 1B baseline. Reported metrics include
 1083 accuracy (Acc.) and relative improvement (Δ , in %) with respect to the baseline. Parameter counts
 1084 denote the number of distinct layers, while FLOPs correspond to the number of effective forward-
 1085 pass layers.

Model	Params/FLOPs	Natural Questions		TriviaQA		BoolQ		OpenbookQA		DROP		HellaSwag	
		Acc.	Δ	Acc.	Δ	Acc.	Δ	Acc.	Δ	Acc.	Δ	Acc.	Δ
Baseline	16 / 16	20.98	-	54.12	-	72.0	-	52.8	-	31.761	-	69.7	-
Ours (k=2)	16 / 20	20.76	(-0.01%)	55.43	(+2.43%)	75.7	(+5.14%)	57.0	(+7.95%)	35.73	(+12.5%)	69.8	(+0.14%)
Ours (k=3)	16 / 24	19.97	(-4.78%)	55.13	(+1.88%)	76.0	(+5.56%)	57.4	(+8.71%)	34.82	(+9.64%)	69.6	(-0.14%)
Ours (k=4)	16 / 28	20.35	(-2.99%)	55.13	(+1.8%)	78.0	(+8.33%)	58.8	(+11.36%)	36.47	(+14.81%)	71.0	(+1.87%)
Ours (k=5)	16 / 32	20.53	(-2.12%)	55.93	(+3.36%)	76.4	(+6.11%)	61.0	(+15.53%)	38.086	(+19.91%)	70.4	(+1%)

Model	Params/FLOPs	Social IQa		WinoGrande		CommonsenseQA		ARC-Easy		ARC-Challenge		MMLU	
		Acc.	Δ	Acc.	Δ	Acc.	Δ	Acc.	Δ	Acc.	Δ	Acc.	Δ
Baseline	16 / 16	58.1	-	66.69	-	66.67	-	78.5	-	50.85	-	44.52	-
Ours (k=2)	16 / 20	62.9	(+8.26%)	66.85	(+0.24%)	67.40	(+1.11%)	78.4	(-0.13%)	58.36	(+14.77%)	47.59	(+6.9%)
Ours (k=3)	16 / 24	63.9	(+9.98%)	68.19	(+2.25%)	69.29	(+3.93%)	79.7	(+1.53%)	60.24	(+18.46%)	49.40	(+10.96%)
Ours (k=4)	16 / 28	65.0	(+11.88%)	68.51	(+2.72%)	68.14	(+2.21%)	79.8	(+1.66%)	62.03	(+21.98%)	49.84	(+11.95%)
Ours (k=5)	16 / 32	66.2	(+13.94%)	68.59	(+2.84%)	(+68.47%)	(+2.7%)	80.4	(+2.42%)	61.43	(+20.81%)	49.95	(+12.19%)

Model	Params/FLOPs	MMLU Pro		AGIEval English		BBH		GSM8K		MATH	
		Acc.	Δ	Acc.	Δ	Acc.	Δ	Acc.	Δ	Acc.	Δ
Baseline	16 / 16	15.55	-	35.58	-	31.8	-	44.05	-	4.57	-
Ours (k=2)	16 / 20	17.53	(12.72%)	40.16	(12.86%)	31.67	(-0.4%)	51.10	(+16.01%)	5.45	(19.22%)
Ours (k=3)	16 / 24	18.13	(+16.57%)	40.27	(+13.2%)	32.62	(+2.58%)	54.36	(+23.41%)	6.22	(+36.04%)
Ours (k=4)	16 / 28	18.37	(+18.12%)	40.88	(+14.89%)	33.01	(+3.82%)	55.50	(+25.99%)	3.73	(-18.28%)
Ours (k=5)	16 / 32	19.07	(+22.66%)	42.07	(+18.24%)	33.49	(+5.3%)	56.56	(+28.4%)	4.33	(-5.17%)

G RESULTS WITH ITERATIONS OVER VARYING RECURSIVE BLOCK SIZE

We vary the block size by removing and adding layers symmetrically around the originally selected 7–4*2–5 configuration, keeping the recursive block centered in the same region of the model while changing its extent. We report the performance with sizes of recursive block of 2,4,6,8, and 12.

Table 9: Results of the Encode–Think–Decode (ETD) method when varying the number of layers in the recursive block. We report accuracy (Acc.) when the size of the recursive block T is 2, 4, 6, 8, and 12, for each of six task categories (as defined in Sec. 3.2).

Model	Params/FLOPs	Factual Knowledge	Reading Comprehension	Commonsense Reasoning	Multi-Disciplinary Reasoning	BBH	Math. Reasoning
8-2*2-6	16 / 18	37.99	55.23	65.88	47.00	30.98	26.63
7-4*2-5	16 / 20	38.10	56.14	66.74	48.41	31.67	28.27
6-6*2-4	16 / 22	38.37	57.43	67.01	49.09	31.81	29.04
5-8*2-3	16 / 24	37.00	57.67	67.73	49.54	33.71	29.35
2-12*2-2	16 / 28	37.70	56.44	67.73	47.58	32.30	29.27

H RESULTS ON OLMO-2 7B MODEL

I TRAINING COMPUTE OVERVIEW

We run all our experiments on a node with 8 A100 80GB GPUs. Table ?? we report training time of experiments presented in Table 2.

1134

Table 10: Results with larger model and same FLOPs

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

J FUTURE WORK

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

K USAGE OF LARGE LANGUAGE MODELS

1164

1165

Future work spans several directions. Extending ETD to multimodal models could establish recursive latent reasoning as a general principle of representation learning across domains. Designing more efficient training strategies, together with refining adaptive depth mechanisms, may yield better compute–performance trade-offs. Assessing the impact of ETD on instruct models will require integration at the post-training stage, which we leave for future investigation. Last but not least, conducting interpretability studies could clarify how recursive latent reasoning interacts with model circuits and representations, offering deeper insights into the structure of reasoning in LLMs.

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Model	Params/ FLOPs	Factual Knowledge	Reading Comprehension	Commonsense Reasoning	Multi-Disciplinary Reasoning	BBH	Math. Reasoning
OLMo 2.7B	32 / 32	56.63	74.68	76.73	62.9	48.18	41.63
16-10*2-6	32 / 40	56.89	75.05	76.82	62.95	49.77	42.64

Table 11: Compute cost of experiments (GPU hours per full training run).

Model	GPUs	Hours / run	GPU hours
OLMo2 (k=1)	8 × A100	~116	~928
ETD (k=2)	8 × A100	~137	~1,096
ETD (k=3)	8 × A100	~170	~1,360
ETD (k=4)	8 × A100	~195	~1,560
ETD (k=5)	8 × A100	~220	~1,760