
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENCODE, THINK, DECODE: SCALING TEST-TIME REA-
SONING WITH RECURSIVE LATENT THOUGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most efforts to improve the reasoning capabilities of large language models
(LLMs) involve either scaling the number of parameters and the size of train-
ing data, or scaling inference computation by letting models generate complex
chains of thought. Motivated by interpretability studies showing that the crucial
computation required for reasoning tasks is concentrated in a limited range of
layers, we introduce Encode–Think–Decode (ETD), a method that enhances the
reasoning capabilities of a base model by training it to iterate over a small subset
of reasoning-relevant layers during the mid-training stage. ETD amplifies latent
reasoning while preserving the original architecture, parameter count, hyperpa-
rameters, and training data composition. When iterating on the selected layers
at inference time, ETD models yield substantial gains on 17 reasoning bench-
marks, including up to +28.4% relative accuracy improvement on GSM8K and up
to +36% on MATH with the OLMo-2 1B Base model. We also explore an adap-
tive depth strategy that adjusts the computation per input token. Our results show
that recursive latent reasoning offers a simple and effective path to stronger LLM
reasoning.

1 INTRODUCTION

Modern language models demonstrate remarkable capabilities in a wide range of reasoning-intensive
tasks, including mathematics, programming, commonsense reasoning, and logical puzzles (Brown
et al., 2020; Dubey et al., 2024; OpenAI et al., 2023; DeepSeek-AI et al., 2025). The main driver for
this progress are scale in both data and parameters, and inference-time techniques such as chain-of-
thought prompting.

Initial scaling laws correlated reasoning capabilities to sheer parameter count and training data to-
kens (Kaplan et al., 2020; Hoffmann et al., 2022; Allen-Zhu & Li, 2024). Ye et al. (2024) refined
this picture and argued that depth, not just parameter count, is critical for reasoning: deeper models
often outperform shallower ones with the same number of parameters. This perspective aligns with
the intuition that reasoning tasks require multi-step, compositional thinking, for which depth plays
a central role.

Beside scaling data and parameters, the prevalent approach to increasing the reasoning capability
of models is by scaling test-time computation. A common approach, known as chain-of-thought
(CoT) reasoning (Kojima et al., 2022; Wei et al., 2022), involves prompting or training LLMs to
generate intermediate reasoning steps before giving a final answer. This approach emulates human
inner monologues and the use of scratchpads, but fails to capture the variability in the amount of
non-verbal thought.

An emerging body of interpretability research has also sought to characterize how reasoning is
implemented within LLMs. Recent studies suggest that reasoning processes are not uniformly dis-
tributed across layers, but instead transition from local, syntactic operations in earlier layers to more
global and semantic integration in deeper layers (Elhage et al., 2022; Nanda et al., 2023; Li et al.,
2022; Stolfo et al., 2023). Other works highlight the presence of specialized circuits and modular
representations that support multi-step inference (Olsson et al., 2022; Singh et al., 2024). These find-
ings suggest that reasoning is not merely a byproduct of scale but is tied to structured computational
patterns within the network, motivating architectural modifications that amplify the contribution of
reasoning-relevant layers.
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Based on these observations, we propose ETD (Encode, Think, Decode), a method to enhance the
latent-space reasoning capabilities of existing models by adjusting the effective depth of the network.
We identify a range of critical layers for latent reasoning and train it into becoming a recurrent block.

Recursive depth models, also known as looped models, have been mostly studied as a way to im-
prove parameter efficiency (Lan et al., 2019; Bae et al., 2024). Our goal in applying a recursive
approach, conversely, is to boost reasoning capabilities by efficiently scaling inference-time com-
putation. There has been work on measuring the effectiveness of recursive-depth models on fairly
simple reasoning tasks (Saunshi et al., 2025), and deliberate attempts to improve reasoning via such
looping (Geiping et al., 2025). However, these works apply recursion without explicitly targeting
the layers most relevant for reasoning within the model.

Rather than training small models from scratch to compare recursive and non-recursive variants, we
validate our approach on pretrained open-source models from the OLMo 2 family (OLMo et al.,
2024). We re-run their mid-training stage to integrate recursion, but crucially, we do not introduce
additional parameters, new data, or changes to the original hyperparameters. This makes our method
practical and straightforward to reproduce, as it builds on widely available pretrained models without
requiring costly retraining from scratch. To our knowledge, this is the first work to demonstrate that
introducing recurrent depth yields significant improvements over modern open-source LLMs.

We demonstrate that our proposed method leads to significant improvements across 17 tasks requir-
ing different types of reasoning. Notably we achieve a relative improvement of 28.4 % and 36% on
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) for the OLMo-2 1B base model.

We also propose how to dynamically set the depth of the model depending on the token. This allows
to spend less compute on easy problems and more compute on challenging ones.

The main contributions of the paper are as follows:

• We show that advanced open-source pretrained models can be further enhanced with a
recurrent-depth mechanism that requires no additional parameters, training data, or hyper-
parameter tuning.

• We demonstrate that ETD provides greater benefits on tasks requiring intensive reasoning,
with relative improvements of 28.4% on GSM8K and 36% on MATH for OLMo-2 1B.

• We analyze the impact of iterating over different layers on reasoning performance and
introduce a practical recipe for selecting critical layers for latent reasoning.

• We show that performing more latent-space reasoning, i.e. increasing the number of itera-
tions, directly improves performance on reasoning tasks.

• We introduce a mechanism to adaptively determine the number of iterations for each input.

2 ON THE ROLES OF LAYERS FOR REASONING

There have been extensive studies on the functional roles of different layers in neural networks. In
computer vision, shallow layers are known to capture general features, while deeper layers represent
more fine-grained ones (Zeiler & Fergus, 2013; Bau et al., 2017). Similar patterns are also observed
in LLMs. For example, Stolfo et al. (2023) show that, when solving simple arithmetic questions,
LLMs encode information about operators and operands in mid-sequence early layers, transform
this information into intermediate computations in middle layers, and form the representation of the
final answer in the last-token middle-to-late layers. Likewise, Zhao et al. (2024) find that, during
instruction tuning, early layers capture broad and reusable knowledge, middle layers amplify task-
relevant signals, and deeper layers refine these signals into task-specific outputs. More broadly,
interpretability studies confirm functional differentiation across layers of varying depths, including
in reasoning settings (Yu et al., 2025; Gromov et al., 2024; Shi et al., 2024; Skean et al., 2025).

As information propagates from early to deeper layers, the reasoning process transitions from spe-
cific, local, and syntactic information to rich semantic integration. We draw the conclusion that
early to middle layers play a critical role in task understanding (Davidson et al., 2025) and knowl-
edge retrieval, while deeper layers are important for higher-level inferences such as those required
for mathematical reasoning.
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Figure 1: Left: Illustration of the proposed architecture (Section 2.1). The latent encoder (blue) maps
inputs into latent space, the recursive “thinking” block (green) iteratively refines representations,
and the latent decoder (red) maps them back to the output space. Each block consists of a different
number of layers. Right: Angular distances d(l, l + 1) between consecutive layers for OLMo 2
1B base and instruct models. The plot highlights three groups of layers—latent encoder, recursive
block, and latent decoder—corresponding to distinct trends in layer-to-layer evolution (Section 2.1).

We therefore break down transformer blocks into three groups (Figure 1): a latent encoder E, which
embeds the input data into a latent space and retrieves information about mentioned entities, then
a core recurrent “thinking” block T , a central unit of recurrent computation, that generates latent
“thoughts”, and finally the latent decoder D, which un-embeds from latent space and also contains
the prediction head of the model. In practice, the information first goes through layers in the latent
encoder E, then iterates over the “thinking” block k times, and finally flows through the latent
decoder D, which returns output tokens. Let’s denote different configurations as NE-NT *k-ND,
e.g. 7-4*2-5 denotes a transformer with 7 layers in the E block, 4 layers in the T block, repeated
twice, and 5 layers in the D block.

If the layer-to-layer evolution of representations is given by a residual iteration equation:

xl+1 = xl + f(xl, θl) (1)

where xl, θl are the input and parameter vectors for layer l, and f(xl, θl) represents the transforma-
tion of one multi-head self-attention and MLP layer block (Vaswani et al., 2017), then after L total
layers the output is the sum of the input embeddings and the contributions of all the layers:

xL = x0+

NE−1∑
l=0

f(xl, θl)+

k∑
j=1

NE+NT−1∑
l=NE

f(xl+(j−1)∗NT , θl)+

L−1∑
l=NE+nT

f(xl+(k−1)∗NT , θl) (2)

2.1 CHOOSING THE OPTIMAL CONFIGURATION FOR LATENT REASONING

Prior work on related recursive architectures has generally adopted a single predefined partition of
layers, without exploring alternatives or analyzing how the choice of split affects performance. Some
approaches apply recursion over all internal layers, i.e. employ only a recursive block T , (Dehghani
et al., 2018; Csordás et al., 2024; Bae et al., 2024; Saunshi et al., 2025), others allocate 1–2 layers
each to the E and D blocks (Geiping et al., 2025; Bae et al., 2025; Aleksandrov et al., 2025). In
contrast, our work takes the roles of layers into consideration when determining the configuration.

The latent encoder should include enough layers to transform input text into the latent space and re-
trieve all relevant knowledge, laying the foundation for higher-level semantic analysis and reasoning
to happen via a recursive “thinking” block, T .

To identify the optimal configuration of layers, we build on the approach of Gromov et al. (2024).
They discovered that later layers change the direction of hidden representations less than earlier
layers. They used the average angular distance as a criterion for identifying layers to prune. Their
experiments show that removing such layers has almost no impact on tasks heavily relying on knowl-
edge retrieval. Despite the low average angular change, however, even moderate pruning of those
same layers results in a degradation on reasoning tasks. We build on these insights and use mean
angular change to identify reasoning-critical layers to iterate over.

We measure the average change in the direction of the residual stream vector after each layer, and
add layers to the latent encoder until the rate of change from layer to layer slows down.
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In practice, we compute the average angular distance d(x(l), x(l+n))1, between the input to layer l
and the input to layer l+ n on the C4 validation set (Raffel et al., 2019). The distance quantifies the
degree of update to x resulting from processing between layers l and l + n. Figure 1(right) shows
the average distances d(x(l), x(l + 1)) for OLMo-2 1B base and instruct models.

To automatically identify the point, i.e. the layer, at which a curve transitions from a rapid to
a gradual decrease, we employ the Kneedle algorithm (Satopaa et al., 2011). This method detects
“knee” (or “elbow”) points in convex, decreasing sequences by analyzing their curvature. Algorithm
details are provided in Appendix C. The detected layer index defines the boundary of the latent
encoder. For the OLMo-2 1B model, this corresponds to layer 7.

Similarly to the latent encoder, the latent decoder must have sufficient depth to transform represen-
tations from the latent space back into the “language” space. To determine the number of layers in
the latent decoder, we follow the same procedure as for the latent encoder, but applied in reverse:
starting from the final layer of the model and moving backward until reaching the last layer assigned
to the latent encoder. For the OLMo-2 1B model, this yields the last 5 layers as the latent decoder.
The remaining 4 layers constitute the recursive “thinking” block.

Hence, we set the configuration to 7-4*k-5, i,e. 7 layers in latent encoder, 4 layer in recursive block,
and 5 layers in latent decoder respectively, and k is number of iterations. In Figure 1 (right), the rate
of change in angular distance decreases around layer 7, stabilizes over the subsequent four layers,
and increases again during the final five layers.

Acknowledging that there is no clear single subset of layers solely responsible for reasoning across
all models and tasks, we show empirically that our approach selects a split that lies near the perfor-
mance maximum in the search space across tasks.

3 EXPERIMENTAL SETUP

Prior work on recursive-depth models have largely investigated recurrence in training settings that
are not representative of modern, fully optimized large-scale LLM pre-training pipelines. We are,
however, interested in understanding the impact of recursive “thinking” in realistic scenarios, and
therefore apply them on open-source models trained following best practices in architecture, training
recipe, and pretraining data mixtures. We base our study on the OLMo 2 family of models (OLMo
et al., 2024), focusing specifically on the base configurations. For fair comparison, our ETD models
use the same number of parameters, datasets, and hyperparameters as the baseline non-recursive
model.

3.1 TRAINING PIPELINE

OLMo 2 is a family of LLMs with open artifacts including intermediate and final checkpoints,
training data, code, and recipes for 1B, 7B and 13B scale models, both pre-trained and post-trained.
As a compromise between experimental agility and model power, we focus on 1B parameter model.
We integrate ETD into the existing training pipeline without introducing additional training steps or
data. This requires access to the model weights, training data, and hyperparameters to evaluate the
impact of ETD in a controlled and isolated manner.

Following recent advances in curriculum learning (Blakeney et al., 2024; Ibrahim et al., 2024) OLMo
2 base models are trained in two stages. The first (pretraining) stage is the longest (≥ 90% training
FLOPs), and uses mostly web-sourced data. The second stage, which is referred to as mid-training
(5-10 % of training FLOPs), upsamples the highest-quality web documents and curated non-web
sources. The purpose of this mixture is to imbue the model with reasoning skills and provide focused
exposure to STEM references and high quality text.

We evaluate the EDT approach by integrating it into the mid-training stage which uses only 1.25%
of the total pretraining tokens.2 In our experiments, we initialize the model with the weights after the
first stage training and run the mid-training with ETD approach for each configuration separately.
OLMo et al. (2024) perform mid-training with three random orders, then average the resulting mod-

1We explain the details of computing angular distance in Appendix A
2For the OLMo-2 1B model, stage-1 pretraining uses 4× 1012 tokens, while stage-2 uses 5× 1010 tokens.
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els. In our setup, we train with one data configuration and compare it to the standard model trained
with the same configuration. Since our experiments adopt the same data mixtures and configurations,
we direct readers to OLMo et al. (2024) for a comprehensive description of the training pipeline.

3.2 EVALUATION BENCHMARKS

Table 1: Evaluation benchmarks grouped into six cate-
gories, listed in order of increasing reasoning intensity
from top to bottom.

Category Benchmarks
Factual Knowledge TriviaQA, NaturalQuestions

Reading Comprehension BoolQ, OpenBookQA, DROP

Commonsense Reasoning CommonSenseQA, HellaSwag
SocialQA, WinoGrande

Multi-Disciplinary Reasoning ARC-Easy, ARC-Challenge, MMLU,
MMLU-Pro, AGIEval-English

BIG-Bench Hard BBH 3

Mathematical Reasoning GSM8K, MATH

To capture broad conceptual nature of rea-
soning, we consider 17 real-world bench-
marks grouped into six categories, ordered
along a spectrum from less to more rea-
soning intensive tasks, i.e. from fac-
tual recall to systematic symbolic reason-
ing: factual knowledge, reading compre-
hension, commonsense reasoning, multi-
disciplinary Reasoning, BIG-Bench Hard
(BBH), and mathematical reasoning. This
progression reflects increasing reliance on
reasoning rather than memorization. We
provide the task categories with the corre-
sponding benchmarks in Table 1. Details
with the motivation for each task category are provided in Appendix B. We evaluate the model using
OLMES (Gu et al., 2024), a standardized evaluation suite and toolkit.

Table 2: Results of the Encode–Think–Decode (ETD) method with varying numbers of iterations
over recursive “thinking” blocks, compared to the OLMo 2 1B baseline. Reported metrics include
accuracy (Acc.) and relative improvement (∆, in %) with respect to the baseline, for each of six task
categories (as defined in Sec. 3.2). Parameter counts denote the number of distinct layers, while
FLOPs correspond to the number of effective forward-pass layers.

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

Model Params/FLOPs Acc. ∆(%) Acc. ∆(%) Acc. ∆(%) Acc. ∆(%) Acc. ∆(%) Acc. ∆(%)

OLMo 2 (k=1) 16 / 16 37.55 - 52.19 - 65.29 - 45 - 31.8 - 24.31 -
ETD (k=2) 16 / 20 38.1 (+1.5%) 56.14 (+7.6%) 66.74 (+2.2%) 48.41 (+7.6%) 31.67 (-0.4%) 28.27 (+16.3%)
ETD (k=3) 16 / 24 37.55 (0%) 56.07 (+7.4%) 67.75 (+3.77%) 49.55 (+10.1%) 32.62 (+2.6%) 30.29 (+24.6%)
ETD (k=4) 16 / 28 37.74 (0%) 57.76 (+10.7%) 68.16 (+4.4%) 50.18 (+11.5%) 33.01 (+3.8%) 29.62 (+21.8%)
ETD (k=5) 16 / 32 38.23 (+1.8%) 58.5 (+12.1%) 68.41 (+4.8%) 50.58 (+12.4%) 33.49 (+5.3%) 30.45 (+25.3%)

4 EVALUATING RECURSIVE “THINKING” BLOCKS

All results are obtained using the training pipeline described in Section 3.1, with the only modifica-
tion being the configuration NE-NT *k-ND. Here, NE , ND, and NT denote the number of layers
in the latent encoder and decoder, and the recursive block, and k is the number of iterations. Since
our objective is to evaluate the model’s reasoning abilities, we focus on reasoning-oriented tasks as
defined in Section 3.2. Because we deal with the same architecture while changing only the number
of layers, we report the number of parameters in terms of distinct layers, NE+NT +ND, and the
number of FLOPs in terms of forward passes through layers, NE+NT *k+ND.

4.1 PERFORMANCE GAINS FROM ITERATING OVER “THINKING” BLOCKS

We begin by examining the first two rows of Table 2, which report results for the baseline and the
recursive model with two iterations, corresponding to the 7–4*2–5 configuration. Notice that the
OLMo 2 1B baseline is equivalent to the ETD model with k=1. Results show that performance
either remains stable or improves, with notable gains in several categories. The largest improve-
ment is observed on Mathematical Reasoning tasks, with an average relative increase of 16.3%. A
breakdown in Table 3 confirms that both GSM8K and MATH benefit from two iterations of the ETD

3BBH, a collection of 23 diverse tasks, serves as a cross-cutting benchmark for compositional reasoning
that does not fit neatly into the other categories. More details in Appendix B
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approach. Additional gains appear in Commonsense Reasoning (+2.2%), Reading Comprehension
(+7.6%), and Multi-Disciplinary Reasoning (+7.6%). In contrast, tasks in the Factual Knowledge
and BIG-Bench Hard categories exhibit at most marginal benefits from a single additional iteration.

Table 3: Results of the ETD method with varying
numbers of iterations. Reported metrics include
accuracy (Acc.) and relative improvement (∆, in
%) with respect to the baseline on the mathemati-
cal reasoning tasks, GSM8K and MATH.

GSM8K MATH

Model Params/FLOPs Acc. ∆(%) Acc. ∆(%)

OLMo 2 (k=1) 16 / 16 44.05 - 4.57 -
ETD (k=2) 16 / 20 51.10 (+16.01%) 5.45 (+19.22%)
ETD (k=3) 16 / 24 54.36 (+23.41%) 6.22 (+36.04%)
ETD (k=4) 16 / 28 55.50 (+25.99%) 3.73 (-18.28%)
ETD (k=5) 16 / 32 56.56 (+28.4%) 4.33 (-5.17%)

To further assess the effect of recursive process-
ing, we train ETD with varying numbers of iter-
ations, with results summarized in Table 2. Per-
formance generally improves as the number of
iterations k increases with one notable excep-
tion: the Factual Knowledge category shows
negligible improvement. As discussed in Sec-
tion 3.2, these tasks rely mainly on memo-
rization rather than reasoning. In contrast, the
largest gains occur in reasoning-intensive tasks,
most notably in Mathematical Reasoning, with
breakdowns shown in Table 3.

These results demonstrate that the ETD approach—by iterating over reasoning-relevant lay-
ers—substantially enhances the non-recursive baseline, yielding relative improvements of +28.4%
on GSM8K and +36% on MATH. Moreover, the minimal gains on memorization tasks further vali-
date our approach from Section 2 for identifying layers specialized in reasoning.

As noted earlier, ETD with k=2 iterations shows no improvement on BIG-Bench Hard (BBH) tasks.
However, performance begins to increase with k=3 and continues to improve with additional iter-
ations. These observations highlight that performance as a function of iterations exhibits different
trends across tasks. For some tasks (e.g., Social IQa, ARC-Challenge, MMLU), performance rises
rapidly with 2–3 iterations, after which the rate of improvement slows. For others (e.g., DROP,
MMLU-Pro, GSM8K), gains continue steadily with each additional iteration. In rare cases, the best
performance is not achieved at the maximum depth, as observed for MATH. Detailed results for all
17 tasks are provided in Appendix F.

Overall, these findings indicate that allocating more resources to generating latent “thought” before
decoding—that is, by performing additional iterations over the “thinking” blocks—systematically
enhances performance on reasoning-oriented tasks. The diverse performance trends across tasks
highlight the opportunity to explore input-dependent, adaptive-depth recursive methods, which we
investigate in Section 5.

Our results empirically demonstrate that the methodology described in Section 2 enables the selec-
tion of configurations that enhance the model’s reasoning capabilities. Notably, the experiments in
the following sections show that it lies near the performance maximum in the search space across
tasks.

4.2 COMPARISON WITH ALTERNATIVE RECURSIVE FRAMEWORKS

Prior work on recursive LLMs typically applies recursion either across all layers (Dehghani et al.,
2018; Csordás et al., 2024; Bae et al., 2024; Saunshi et al., 2025) or across middle layers while
preserving a few initial and final layers (Geiping et al., 2025; Bae et al., 2025; Aleksandrov et al.,
2025). For a fair comparison, we train models using both strategies: (i) looping over all layers, and
(ii) a 2–12*2–2 configuration, which repeats the middle 12 layers while keeping two layers at the
beginning and end fixed. We compare these baselines to our selective looping configuration under a
constant FLOP budget, with results shown in Table 4.

Our approach consistently outperforms these alternatives under equal compute. For example, the
2–12*2–2 setup is FLOP-equivalent to our 7–4*4–5 configuration, yet yields lower accuracy. More-
over, to match or exceed the performance of alternative strategies, our method typically requires
fewer FLOPs—often only three iterations are sufficient. We also want to note that NE=ND=0 con-
figuration in Table 4, is the closest analogue to Coconut (Hao et al., 2024).
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Table 4: Results with recursive baselines

Model Params/
FLOPs

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

OLMo 2 16 / 16 37.55 52.19 65.29 45 31.8 24.31

2-12*2-2 16 / 28 37.7 56.44 67.73 47.58 32.30 29.27
ETD (k=4) 16 / 28 37.74 57.76 68.16 50.18 33.01 29.62

0-16*2-0 16 / 32 37.35 53.58 64.7 45.24 30.59 24.99
ETD (k=5) 16 / 32 38.23 58.5 68.41 50.58 33.49 30.45

Figure 2: Results of the ETD method when varying the subset of layers in the recursive block. We
report accuracy (Acc.) when increasing the size of the latent encoder NE from 1 to 11 in steps of 2,
for each of 6 task categories (as defined in Sec. 3.2). The orange line marks selected configuration.

4.3 HOW DOES THE CHOICE OF RECURSIVE LAYERS CHANGE PERFORMANCE?

To further examine the impact of recursive layer choice, we fix the recursive “thinking” block size
and vary its starting position from layer 2 to 12 in steps of 2, which is equivalent to increasing
the size of the latent encoder NE from 1 to 11 in steps of 2. An intriguing observation is that the
optimal configuration slightly varies depending on the specific category of tasks. The results in
Figure 2 show that the 7-4*2-5 configuration achieves the best overall performance on reasoning-
intensive task, particularly mathematical reasoning. Detailed results are in Table 7 in Appendix E. A
close alternative is 5-4*2-7, which performs comparably on most tasks but falls short in mathemat-
ics. Performance on Factual Knowledge tasks is stable across configurations, which aligns with the
intuition discussed earlier. Interestingly, for reading comprehension, the 3-4*2-9 configuration per-
forms best. This block of layers (4-7) overlaps with layers just before the identified “thinking” block
(8-11), aligning with our earlier intuition that early-to-middle layers are important for context un-
derstanding. These findings are consistent with our layer-role analysis, though further investigation
is needed to establish stronger causal links.

4.4 HOW DOES THE SIZE OF RECURSIVE ”THINKING” BLOCK CHANGE THE PERFORMANCE?

To ensure a controlled comparison, we vary the size of the recursive block by symmetrically adding
or removing layers around the original 7–4×2–5 configuration, keeping its center fixed while chang-
ing its extent. Figure 3 shows that performance increases as more layers are included in the recursive
block up to a point, after which it begins to decline. Notably, for mathematical reasoning, and even
under the same FLOP budget, looping more times over a compact set of layers (7–4×k–5) outper-
forms looping fewer times over a larger set of layers.This suggests that the placement and structure
of the recursive computation are key drivers of performance, not just the amount of extra compute4.

4.5 COMPARISON WITH LARGER MODEL WITH SAME EFFECTIVE DEPTH

We perform an iso-FLOPs comparison by matching the effective depth of ETD with k=2. The
7-4*2-5 configuration has an effective depth of 22, so we construct a non-recurrent baseline with
the same budget by stacking the 4-layer block twice—yielding a 7–8×1–5 configuration that mim-
ics two iterations without recurrence. Both configurations perform identically before mid-training.
However, results in Table 5 show that the larger iso-FLOPs model underperforms both the original

4Detailed results are in in Appendix G.
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Figure 3: Results of the ETD method when varying the number of layers in the recursive block. We
report accuracy (Acc.) when changing the size of the latent encoder D between 2,4,6,8, and 12, for
each of 6 task categories (as defined in Sec. 3.2). Each color represents different configuration of
NE-NT *k-ND.

non-recurrent baseline and the ETD (k=2) model, highlighting the importance of reusing reasoning-
critical layers rather than expanding the network.

Table 5: Results with larger model and same FLOPs

Model Params/
FLOPs

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

OLMo 2 16 / 16 37.55 52.19 65.29 45 31.8 24.31

7-8-5 20 / 20 31.78 52.03 62.45 44.42 30.21 21.68
7-4*2-5 16 / 20 38.1 56.14 66.74 48.41 31.67 28.27

4.6 SCALING FROM 1B PARAMETERS TO 7B PARAMETERS

Table 6: Results of the ETD method on OLMo-
2 7B base model. Reported metrics are accuracy
(Acc.) and relative improvement (∆, in %) with
respect to the baseline.

GSM8K MATH

Model Params/FLOPs Acc. ∆(%) Acc. ∆(%)

OLMo 2 7B (k=1) 32 / 32 66.18 - 17.07 -
ETD (k=2) 32 / 42 67.02 (+1.29%) 18.26 (+6.38%)

We extend our experiments from the 1B model
to the 7B model. Applying the configuration
selection procedure from Section 2.1 yields the
16–10*2–6 layer assignment, which we train
using the same mid-training ETD integration
described in Section 3.1. The 7B experiments
follow the same qualitative trends observed at
1B scale: as shown in Table 6, ETD consis-
tently improves mathematical reasoning perfor-
mance, while gains on other task categories are less pronounced (see Appendix H). We note that
mid-training of both 1B and 7B models uses the same amount of data, meaning that 1B was exposed
to more data per parameter.

5 ADAPTIVE TEST-TIME SCALING

We observed significant improvements of iterating over recursive blocks. The general trend is that
the model benefits from more iterations. However, different problems demand different levels of
reasoning effort: not all tokens or sequences require the same number of iterations to reach an
accurate prediction, and in some cases the marginal benefit of additional iterations may not justify
the extra computation. Adaptive computation (Bengio et al., 2013; 2015) is often used for efficiency
by early-exiting on simpler tokens (Elhoushi et al., 2024). In contrast, our goal is to adaptively
allocate computation at test time to enhance reasoning capability, rather than to reduce cost.

5.1 METHODOLOGY

In our architecture of the form E→T ∗k→D, instead of fixing the number of recursive iterations k,
we adopt the Adaptive Computation Time (ACT) mechanism (Graves, 2016), allowing each token
to dynamically determine how many applications of the recursive block T are necessary. A router
evaluates the hidden state after each iteration and decides whether further computation is required.
This enables allocating more steps to tokens that demand deeper reasoning, while those not meeting
the selection criteria bypass further processing and retain their previous representation.
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At each iteration t, after computing the hidden representation ht with the recursive block, a router
predicts a halting values wt ∈ (0, 1) for each token. These values are accumulated across iterations:

Ht =

t∑
j=1

wj . (3)

Computation for a token is stopped once Ht ≥ 1−ϵ, with ϵ is a small constant (e.g. 0.01). Intuitively,
each wt represents the confidence of the latent “thought”, as produced by the recursive block T .
Until sufficient confidence is accumulated, the latent ”thought” state continues to be updated. The
final representation passed to D is the output of “thinking” block T after final iteration. 5

Despite its simplicity, this design proved effective in practice. Compared to a fixed-depth design,
ACT introduces per-token dynamic depth, enabling more efficient and adaptive use of the recursive
block. Full details are provided in Appendix D.

Figure 4: Results of fixed-depth ETD with varying numbers of recursive “thinking” iterations com-
pared to adaptive-depth ETD. For fixed-depth ETD, we report accuracy (Acc.) at each iteration
count. For adaptive-depth ETD, we report accuracy and the average number of iterations per task.

5.2 RESULTS

We outlined the difference in architecture between fixed- and adaptive-depth approaches, while we
follow the same training pipeline discussed in Section 3.1. Figure 4 reports the performance of
fixed-depth ETD and adaptive-depth ETD, together with the average number of loops per task.6

From Figure 4, we make three key observations. First, this exploratory approach in the direction
of adaptive test-time compute approach shows clear improvement over baseline with no recursive
iterations. Second, looking at the performance on DROP and OpenbookQA, both of which are
reading comprehension tasks, we see that adaptive-depth ETD outperforms the ETD with fixed
k=5 iterations. Moreover, it also achieves this with fewer iterations on average. Third, for the
remaining tasks, adaptive-depth ETD follows the empirical accuracy–iteration tradeoff of the fixed-
depth baselines. In particular, its accuracy matches the trend observed for increasing iteration counts,
suggesting that performance is well-aligned with its average effective depth. Notably, in these tasks,
the adaptive method halts additional iterations once further computation yields only marginal gains.

6 RELATED WORK

Recursive architectures Recurrence has long been a foundational concept, from RNNs to efforts
to incorporate it into transformers. In transformers, recurrence has been explored by iteratively
refining representations across all tokens in parallel (Dehghani et al., 2018; Lan et al., 2019), and
applied to algorithmic tasks such as arithmetic (Schwarzschild et al., 2021; Bansal et al., 2022; Bear
et al., 2024; McLeish et al., 2024). Other works offered theoretical and small-scale analyses of
looped transformers (Giannou et al., 2023; Gatmiry et al., 2024; Yang et al., 2023; Fan et al., 2024).

Beyond fully recurrent-depth architectures, several hybrid designs have also been proposed, includ-
ing latent sub-networks (Li et al., 2020), Mixture-of-Experts structures (Tan et al., 2023; Csordás
et al., 2024), and dynamic weight-tying (Hay & Wolf, 2024; Liu et al., 2024b). The major motivation
of many works mentioned above was inspired by efficiency based on utilizing shared parameters.

5We also tried to follow Graves (2016) to represent final representation as the weighted mixture of the
outputs after each iteration, but found it less effective.

6We selected these tasks because they exhibit the largest relative gains from the recursive approach. See
Appendix F for results on the six tasks with the highest relative improvement of ETD (k=5) over baseline.
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Latent Reasoning Chain-of-thought prompting has been a central focus in recent studies of rea-
soning (Merrill & Sabharwal, 2024; Feng et al., 2023; Li et al., 2024). In contrast, our proposal
follows the alternative line of latent reasoning, where reasoning unfolds in the model’s hidden rep-
resentations rather than explicit textual traces. Related efforts on learning to reason in continuous
spaces include Hao et al. (2024); Cheng & Durme (2024); Liu et al. (2024a); Geiping et al. (2025);
Saunshi et al. (2025). Chen & Zou (2024); Ye et al. (2024); Petty et al. (2023) have shown the
importance of model depth for reasoning. Further analysis on Coconut (Hao et al., 2024), show
that continuous thought vector is a superposition state that encodes multiple search frontiers si-
multaneously (Zhu et al., 2025b;a). We step further showing that larger depth leads to reasoning
improvements also when it is achieved via looping, without increasing the number of parameters.

Adaptive Computation Dynamic compute allocation has been shown to substantially reduce
training and inference costs, spanning from early neural networks (Bengio et al., 2015; Huang et al.,
2016; Teerapittayanon et al., 2016; Panda et al., 2015) to LLMs (Hou et al., 2020; Elbayad et al.,
2019; Fedus et al., 2021; Bae et al., 2023; Elhoushi et al., 2024). A prominent line of work, early
exiting, learns to terminate computation on “easy” inputs by skipping subsequent layers (Elbayad
et al., 2019; Schuster et al., 2022; Bae et al., 2023; Elhoushi et al., 2024). Adaptive depth can be
also formulated as a routing problem: each layer’s router selects a subset of tokens for full compu-
tation while others bypass the layer, enabling token-level conditional compute (Raposo et al., 2024;
Luo et al., 2024). Extending this idea, Bae et al. (2025) applied conditional routing to recursive
transformers, but restricted recursion to a small, fixed maximum of three iterations.

Key Differences from Prior Work Our approach differs from prior work in several important
ways. First, most recursive-depth methods have been studied primarily as a means of improv-
ing parameter efficiency (Lan et al., 2019; Bae et al., 2024), i.e., reducing parameter count while
maintaining performance, whereas our focus is on enhancing reasoning capability. Second, to our
knowledge, we are the first to propose a recursive approach guided by interpretability: rather than
choosing the recursive configuration heuristically, we iterate specifically over layers critical for rea-
soning. Third, our method is simple and requires no additional components such as extra latent states
for recursive blocks and very large of number of iterations (Geiping et al., 2025), LoRA adapters
(Bae et al., 2024), regularization terms (Saunshi et al., 2025), or input injections (Aleksandrov et al.,
2025). Unlike methods such as Coconut (Hao et al., 2024), which introduce a separate language
and latent mode, and multi-stage training, ETD preserves the standard forward pass and applies re-
currence only to a small reasoning-critical block—yielding stronger reasoning gains. Fourth, unlike
most prior work that evaluated recurrence under simplified setups, we show that recursive depth
improves advanced open-source models trained with state-of-the-art practices in architecture, train-
ing recipes, and pretraining mixtures, validating our approach extensively on real-world reasoning
tasks. Speaking of adaptive-depth recursive model, in our formulation we advocate for open-ended
test-time compute scaling: after each iteration, the model should autonomously decide whether to
continue or halt, without being constrained by a predefined cap (Bae et al., 2025).

7 CONCLUSIONS

We introduced Encode–Think–Decode (ETD), a paradigm that enhances the reasoning abilities of
LLMs by performing latent-space reasoning. Unlike approaches that depend on scaling model size
or externalizing reasoning through CoT prompting, ETD amplifies reasoning-relevant computa-
tions within the model itself, without altering its architecture, parameters, data, or hyperparame-
ters. Across 17 benchmarks, ETD consistently improved performance, with substantial gains on
reasoning-intensive tasks such as GSM8K and MATH. Our analysis underscores the importance of
iterating over deeper, reasoning-relevant layers, and adaptive depth strategies further show how ETD
can dynamically allocate compute based on task difficulty.

Overall, recursive latent reasoning emerges as a simple, effective, and broadly applicable approach
for strengthening reasoning. By integrating interpretability insights with recursive computation,
ETD illustrates how leveraging depth and structure can advance reasoning in language models.
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ETHICS STATEMENT

Our study focuses on methodological contributions for enhancing reasoning in large language mod-
els and relies exclusively on publicly available datasets and open-source pretrained models. We do
not introduce new data, nor do we involve human subjects. We do not foresee direct societal risks
beyond those already associated with language models. At the same time, we hope that improving
the reasoning ability of models can lead to safer and more reliable applications by reducing errors
in reasoning-intensive domains.

REPRODUCIBILITY STATEMENT

We build on openly released models, which provide full access to weights, data mixtures, and train-
ing recipes. Our modifications involve only the mid-training stage, where we re-run training with
the same data and hyperparameters, adding recursive iterations without introducing new parameters
or datasets. All evaluations use widely available benchmarks. We report full configuration details,
including recursive block structure and iteration counts in the main text and appendices. These
choices ensure that our results can be reproduced by others with access to the training pipeline and
publicly available evaluation benchmarks.
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A COMPUTING ANGULAR DISTANCE

Elaborating on the computation of angular distance in Section 2.1, the angular distance for a single
sequence of length T is defined as

d
(
x(ℓ), x(ℓ+n)

)
=

1

π
arccos

(
x
(ℓ)
T · x(ℓ+n)

T

∥x(ℓ)
T ∥ ∥x(ℓ+n)

T ∥

)
,

where the inner product is taken over the hidden dimension of the model for the last token T of the
sequence, ∥ ·∥ denotes the L2 norm, and the factor 1/π normalizes the distance to [0, 1]. We average
this distance over 10,000 examples to obtain a stable estimate. We focus on the final token since,
under a causal attention mask, its embedding is the only one that depends on the entire sequence.
We use the same definition of angular distance as Gromov et al. (2024).

B DETAILED EVALUATION BENCHMARKS

To capture broad conceptual nature of reasoning, we consider 17 real-world benchmarks grouped
into six categories, ordered along a spectrum from less to more reasoning intensive tasks, i.e. from
factual recall to systematic symbolic reasoning: factual knowledge, reading comprehension, com-
monsense reasoning, multi-disciplinary Reasoning, BIG-Bench Hard (BBH), and mathematical rea-
soning. This progression reflects increasing reliance on reasoning rather than memorization.

• Factual Knowledge: Tasks that test the model’s ability to recall information without addi-
tional context, thus primarily measuring memorization. We include TriviaQA (Joshi et al.,
2017) and NaturalQuestions (Kwiatkowski et al., 2019).

• Reading Comprehension: Tasks requiring the model to infer answers from a given pas-
sage, involving text understanding and light reasoning (e.g., multi-hop). Benchmarks in-
clude BoolQ (Clark et al., 2019), OpenBookQA (Mihaylov et al., 2018), and DROP (Dua
et al., 2019).

• Commonsense Reasoning: Tasks that evaluate human-like capacity to make assumptions
and inferences about the nature and characteristics of everyday scenarios, including Com-
monSenseQA (Talmor et al., 2019), HellaSwag (Zellers et al., 2019), SocialQA (Sap et al.,
2019), WinoGrande (Sakaguchi et al., 2021).

• Multi-Disciplinary Reasoning: Benchmarks testing both factual knowledge and reason-
ing across broad academic and multi-disciplinary domains. We include ARC-Easy and
ARC-Challenge (Clark et al., 2018), MMLU (Hendrycks et al., 2020), MMLU-Pro (Wang
et al., 2024), and AGIEval-English (Zhong et al., 2023).

• BIG-Bench Hard (BBH): A collection of 23 diverse tasks spanning math, logic puzzles,
symbolic and social reasoning (Suzgun et al., 2022). Many tasks are synthetic, and BBH
serves as a cross-cutting benchmark for compositional reasoning that does not fit neatly
into the other categories.

• Mathematical Reasoning: We finally test the model on solve math word problem
benchmarks to evaluate systematic reasoning and symbolic manipulation, represented by
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021).

C ALGORITHM FOR CHOOSING THE OPTIMAL CONFIGURATION

To automatically identify the point at which a curve transitions from a rapid to a gradual decrease, we
employ the Kneedle algorithm (Satopaa et al., 2011). The difference function Di is then evaluated
on (x, ỹ(x)), providing a smooth approximation that avoids spurious local variations.

Formally, let the curve be represented as a sequence of points:

C = {(xi, yi)}ni=0,

where x corresponds to the layer index l and y to the angular distance d(l, l + 1).The key steps
underlying Kneedle Algorithm are:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1. Smooth and normalize the data into [0, 1]2: (x̂i, ŷi).
2. Compute the deviation Di = ŷi − (1− x̂i) from the diagonal.
3. Identify local maxima of the difference curve as candidate knees.
4. Apply a threshold-based rule (with sensitivity parameter S) to declare knees when the

difference drops below threshold.

To improve robustness against noise, we apply a polynomial interpolation of degree 2 to the data:

ỹ(x) = a0 + a1x+ a2x
2,

fitted via least squares. This provides a smooth approximation that avoids spurious local variations.

The details of Kneedle Algorithm can be summarized as follows:

1. Normalization: Scale both axes to [0, 1]:

x̂i =
xi −min(x)

max(x)−min(x)
, ŷi =

yi −min(y)

max(y)−min(y)
.

2. Difference curve: Compute the deviation between the normalized curve and the diagonal
y = 1− x̂:

Di = ŷi − (1− x̂i).

3. Local maxima: Candidate knees are local maxima of Di, i.e.

Di−1 < Di ∧ Di+1 < Di.

4. Threshold rule: For each local maximum, define a threshold

Ti = Di − S ·∆x, ∆x = 1
n−1

n−1∑
j=1

(x̂j+1 − x̂j),

where S > 0 is a sensitivity parameter. A knee is declared at i∗ if Dj < Ti for some j > i
before the next local maximum is reached.

We run the above procedure using the KneeLocator package:

kneedle = KneeLocator(
x, y,
curve=’convex’,
direction=’decreasing’,
interp_method=’polynomial’,
polynomial_degree=2,
online=True

)

The returned index
i∗ = kneedle.knee

is taken as the transition point from steep to gradual decline.

D DETAILS ON ADAPTIVE-DEPTH ETD TRAINING

In Section 5, we introduce the mechanism that allows the model to adaptively determine the number
of recursive iterations per input token—referred to as adaptive-depth ETD. This subsection provides
full implementation details covering the architecture, training, and inference procedure.

Architecture. We keep the general architecture of the model the same and add a lightweight router.
The router is implemented as a linear projection of the hidden state followed by a sigmoid activation.
The input to the router is the hidden representation that is output by the recursive T block, and the
output of the router is the halting value between 0 and 1. The router is randomly initialized, i.e. we
do not use the insights from fixed-depth ETD to set some priors for the router.
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Training stage. Adaptive-depth ETD undergoes mid-training in the same way as fixed-depth ETD.
We train the router to learn how to allocate resources, i.e. iterations, for different input tokens, at the
same time as we mid-train the other model parameters.

At each iteration t, after computing the hidden representation ht with the recursive block, the router
outputs a halting values wt ∈ (0, 1) for each token. These values are accumulated across iterations:

Ht =

t∑
j=1

wj . (4)

For each input, the initial value of Ht is zero. Computation for a token is stopped once Ht ≥ 1− ϵ,
with ϵ = 0.01. However, early during training the router may output extremely small halting values,
causing excessively many iterations. To avoid this, we cap the maximum number of iterations dur-
ing training to Nmax=10. During training we use the same hyperparameters as during fixed-depth
ETD training. We do not provide auxiliary losses (e.g., intermediate losses after each iteration) nor
we introduce any regularizers. Hyperparameters—including optimizer, learning rate, and sched-
uler—remain identical to fixed-depth ETD. The router is trained end-to-end jointly with the model.

At test-time. The test time regime is very similar to the training regime, except that once the
model is trained we remove the cap on the number of iterations. The model determines on its own
the number of iterations: after each iteration the router uses the output of the recursive block to
predict the halting value for the iteration, and stops as soon as the cumulated halting values exceed
1− ϵ:

∑K
j=1 wj > 1− ϵ, where K is the number of iterations.

Intuitively, until sufficient confidence is accumulated, the latent ”thought” state continues to be up-
dated. The final representation passed to latent deocder is the output of “thinking” block T after the
final iteration. For easy tokens, the computation halts after few iterations, whereas difficult tokens
may trigger more recursive reasoning steps. This design enables test-time computation scaling: the
model dynamically allocates additional reasoning depth where beneficial

E RESULTS WITH ITERATIONS OVER DIFFERENT LAYERS

We fix the recursive “thinking” block size and vary its starting position from layer 2 to 12 in steps
of 2, which is equivalent to increasing the size of the latent encoder NE from 1 to 11 in steps of 2.

Table 7: Results of the Encode–Think–Decode (ETD) method when varying the subset of layers in
the recursive block. We report accuracy (Acc.) when increasing the size of the latent encoder NE

from 1 to 11 in steps of 2, for each of six task categories (as defined in Sec. 3.2).

Model Params/
FLOPs

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

1-4*2-11 16 / 20 37.92 55.53 64.82 44.99 31.23 25.6
3-4*2-9 16 / 20 37.43 56.93 65.87 46.9 29.80 27.31
5-4*2-7 16 / 20 37.58 56.51 66.86 49.03 32.21 26.8
7-4*2-5 16 / 20 38.1 56.14 66.74 48.41 31.67 28.27
9-4*2-3 16 / 20 37.7 53.46 65.52 45.71 31.05 27.35

11-4*2-1 16 / 20 37.67 54.79 64.45 45.18 30.93 24.63

F PERFORMANCE OF ETD ON EACH TASK

Table 2 reports the results of the Encode–Think–Decode (ETD) method with varying numbers of
iterations over recursive “thinking” blocks, compared to the OLMo 2 1B baseline on 6 categories of
tasks described in Sec. 3.2. In this section, we share the results for each individual tasks in Tables 8.
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Table 8: Results of the Encode–Think–Decode (ETD) method with varying numbers of iterations
over recursive “thinking” blocks, compared to the OLMo 2 1B baseline. Reported metrics include
accuracy (Acc.) and relative improvement (∆, in %) with respect to the baseline. Parameter counts
denote the number of distinct layers, while FLOPs correspond to the number of effective forward-
pass layers.

Natural Questions TriviaQA BoolQ OpenbookQA DROP HellaSwag

Model Params/FLOPs Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Baseline 16 / 16 20.98 - 54.12 - 72.0 - 52.8 - 31.761 - 69.7 -
Ours (k=2) 16 / 20 20.76 (-1.01%) 55.43 (+2.43%) 75.7 +(5.14%) 57.0 (+7.95%) 35.73 (+12.5%) 69.8 (+0.14%)
Ours (k=3) 16 / 24 19.97 (-4.78%) 55.13 (+1.88%) 76.0 (+5.56%) 57.4 (+8.71%) 34.82 (+9.64%) 69.6 (-0.14%)
Ours (k=4) 16 / 28 20.35 (-2.99%) 55.13 (+1.8%)8 78.0 (+8.33%) 58.8 (+11.36%) 36.47 (+14.81%) 71.0 (+1.87%)
Ours (k=5) 16 / 32 20.53 (-2.12%) 55.93 (+3.36%) 76.4 (+6.11%) 61.0 (+15.53%) 38.086 (+19.91%) 70.4 (+1%)

Social IQa WinoGrande CommonsenseQA ARC-Easy ARC-Challenge MMLU

Model Params/FLOPs Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Baseline 16 / 16 58.1 - 66.69 - 66.67 - 78.5 - 50.85 - 44.52 -
Ours (k=2) 16 / 20 62.9 (+8.26%) 66.85 (+0.24%) 67.40 (+1.11%) 78.4 (-0.13%) 58.36 (+14.77%) 47.59 (+6.9%)
Ours (k=3) 16 / 24 63.9 (+9.98%) 68.19 (+2.25%) 69.29 (+3.93%) 79.7 (+1.53%) 60.24 (+18.46%) 49.40 (+10.96%)
Ours (k=4) 16 / 28 65.0 (+11.88%) 68.51 (+2.72%) 68.14 (+2.21%) 79.8 (+1.66%) 62.03 (+21.98%) 49.84 (+11.95%)
Ours (k=5) 16 / 32 66.2 (+13.94%) 68.59 (+2.84%) (+68.47%) (+2.7%) 80.4 (+2.42%) 61.43 (+20.81%) 49.95 (+12.19%)

MMLU Pro AGIEval English BBH GSM8K MATH

Model Params/FLOPs Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Baseline 16 / 16 15.55 - 35.58 - 31.8 - 44.05 - 4.57 -
Ours (k=2) 16 / 20 17.53 (12.72%) 40.16 (12.86%) 31.67 (-0.4%) 51.10 (+16.01%) 5.45 (19.22%)
Ours (k=3) 16 / 24 18.13 (+16.57%) 40.27 (+13.2%) 32.62 (+2.58%) 54.36 (+23.41%) 6.22 (+36.04%)
Ours (k=4) 16 / 28 18.37 (+18.12%) 40.88 (+14.89%) 33.01 (+3.82%) 55.50 (+25.99%) 3.73 (-18.28%)
Ours (k=5) 16 / 32 19.07 (+22.66%) 42.07 (+18.24%) 33.49 (+5.3%) 56.56 (+28.4%) 4.33 (-5.17%)

G RESULTS WITH ITERATIONS OVER VARYING RECURSIVE BLOCK SIZE

We vary the block size by removing and adding layers symmetrically around the originally selected
7–4*2–5 configuration, keeping the recursive block centered in the same region of the model while
changing its extent. We report the performance with sizes of recursive block of 2,4,6,8, and 12.

Table 9: Results of the Encode–Think–Decode (ETD) method when varying the number of layers
in the recursive block. We report accuracy (Acc.) when the size of the recursive block T is 2, 4,6,8,
and 12, for each of six task categories (as defined in Sec. 3.2).

Model Params/
FLOPs

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

8-2*2-6 16 / 18 37.99 55.23 65.88 47.00 30.98 26.63
7-4*2-5 16 / 20 38.10 56.14 66.74 48.41 31.67 28.27
6-6*2-4 16 / 22 38.37 57.43 67.01 49.09 31.81 29.04
5-8*2-3 16 / 24 37.00 57.67 67.73 49.54 33.71 29.35

2-12*2-2 16 / 28 37.70 56.44 67.73 47.58 32.30 29.27

H RESULTS ON OLMO-2 7B MODEL

I TRAINING COMPUTE OVERVIEW

We run all our experiments on a node with 8 A100 80GB GPUs. Table ?? we report training time of
experiments presented in Table 2.
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Table 10: Results with larger model and same FLOPs

Model Params/
FLOPs

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

OLMo 2 7B 32 / 32 56.63 74.68 76.73 62.9 48.18 41.63
16-10*2-6 32 / 40 56.89 75.05 76.82 62.95 49.77 42.64

Table 11: Compute cost of experiments (GPU hours per full training run).

Model GPUs Hours / run GPU hours
OLMo2 (k=1) 8 × A100 ∼116 ∼928
ETD (k=2) 8 × A100 ∼137 ∼1,096
ETD (k=3) 8 × A100 ∼170 ∼1,360
ETD (k=4) 8 × A100 ∼195 ∼1,560
ETD (k=5) 8 × A100 ∼220 ∼1,760

J FUTURE WORK

Future work spans several directions. Extending ETD to multimodal models could establish recur-
sive latent reasoning as a general principle of representation learning across domains. Designing
more efficient training strategies, together with refining adaptive depth mechanisms, may yield bet-
ter compute–performance trade-offs. Assessing the impact of ETD on instruct models will require
integration at the post-training stage, which we leave for future investigation. Last but not least,
conducting interpretability studies could clarify how recursive latent reasoning interacts with model
circuits and representations, offering deeper insights into the structure of reasoning in LLMs.

K USAGE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used large language models (LLMs) solely as writing assistants, to
improve grammar, style, and clarity. The authors retain full responsibility for the content and any
remaining errors.
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