
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENCODE, THINK, DECODE: SCALING TEST-TIME REA-
SONING WITH RECURSIVE LATENT THOUGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most efforts to improve the reasoning capabilities of large language models
(LLMs) involve either scaling the number of parameters and the size of train-
ing data, or scaling inference computation by letting models generate complex
chains of thought. Motivated by interpretability studies showing that the crucial
computation required for reasoning tasks is concentrated in a limited range of
layers, we introduce Encode–Think–Decode (ETD), a method that enhances the
reasoning capabilities of a base model by training it to iterate over a small subset
of reasoning-relevant layers during the mid-training stage. ETD amplifies latent
reasoning while preserving the original architecture, parameter count, hyperpa-
rameters, and training data composition. When iterating on the selected layers
at inference time, ETD models yield substantial gains on 17 reasoning bench-
marks, including up to +28.4% relative accuracy improvement on GSM8K and up
to +36% on MATH with the OLMo-2 1B Base model. We also explore an adap-
tive depth strategy that adjusts the computation per input token. Our results show
that recursive latent reasoning offers a simple and effective path to stronger LLM
reasoning.

1 INTRODUCTION

Modern language models demonstrate remarkable capabilities in a wide range of reasoning-intensive
tasks, including mathematics, programming, commonsense reasoning, and logical puzzles (Brown
et al., 2020; Dubey et al., 2024; OpenAI et al., 2023; DeepSeek-AI et al., 2025). The main driver for
this progress are scale in both data and parameters, and inference-time techniques such as chain-of-
thought prompting.

Initial scaling laws correlated reasoning capabilities to sheer parameter count and training data to-
kens (Kaplan et al., 2020; Hoffmann et al., 2022; Allen-Zhu & Li, 2024). Ye et al. (2024) refined
this picture and argued that depth, not just parameter count, is critical for reasoning: deeper models
often outperform shallower ones with the same number of parameters. This perspective aligns with
the intuition that reasoning tasks require multi-step, compositional thinking, for which depth plays
a central role.

Beside scaling data and parameters, the prevalent approach to increasing the reasoning capability
of models is by scaling test-time computation. A common approach, known as chain-of-thought
(CoT) reasoning (Kojima et al., 2022; Wei et al., 2022), involves prompting or training LLMs to
generate intermediate reasoning steps before giving a final answer. This approach emulates human
inner monologues and the use of scratchpads, but fails to capture the variability in the amount of
non-verbal thought.

An emerging body of interpretability research has also sought to characterize how reasoning is
implemented within LLMs. Recent studies suggest that reasoning processes are not uniformly dis-
tributed across layers, but instead transition from local, syntactic operations in earlier layers to more
global and semantic integration in deeper layers (Elhage et al., 2022; Nanda et al., 2023; Li et al.,
2022; Stolfo et al., 2023). Other works highlight the presence of specialized circuits and modular
representations that support multi-step inference (Olsson et al., 2022; Singh et al., 2024). These find-
ings suggest that reasoning is not merely a byproduct of scale but is tied to structured computational
patterns within the network, motivating architectural modifications that amplify the contribution of
reasoning-relevant layers.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Based on these observations, we propose ETD (Encode, Think, Decode), a method to enhance the
latent-space reasoning capabilities of existing models by adjusting the effective depth of the network.
We identify a range of critical layers for latent reasoning and train it into becoming a recurrent block.

Recursive depth models, also known as looped models, have been mostly studied as a way to im-
prove parameter efficiency (Lan et al., 2019; Bae et al., 2024). Our goal in applying a recursive
approach, conversely, is to boost reasoning capabilities by efficiently scaling inference-time com-
putation. There has been work on measuring the effectiveness of recursive-depth models on fairly
simple reasoning tasks (Saunshi et al., 2025), and deliberate attempts to improve reasoning via such
looping (Geiping et al., 2025). However, these works apply recursion without explicitly targeting
the layers most relevant for reasoning within the model.

Rather than training small models from scratch to compare recursive and non-recursive variants, we
validate our approach on pretrained open-source models from the OLMo 2 family (OLMo et al.,
2024). We re-run their mid-training stage to integrate recursion, but crucially, we do not introduce
additional parameters, new data, or changes to the original hyperparameters. This makes our method
practical and straightforward to reproduce, as it builds on widely available pretrained models without
requiring costly retraining from scratch. To our knowledge, this is the first work to demonstrate that
introducing recurrent depth yields significant improvements over modern open-source LLMs.

We demonstrate that our proposed method leads to significant improvements across 17 tasks requir-
ing different types of reasoning. Notably we achieve a relative improvement of 28.4 % and 36% on
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) for the OLMo-2 1B base model.

We also propose how to dynamically set the depth of the model depending on the token. This allows
to spend less compute on easy problems and more compute on challenging ones.

The main contributions of the paper are as follows:

• We show that advanced open-source pretrained models can be further enhanced with a
recurrent-depth mechanism that requires no additional parameters, training data, or hyper-
parameter tuning.

• We demonstrate that ETD provides greater benefits on tasks requiring intensive reasoning,
with relative improvements of 28.4% on GSM8K and 36% on MATH for OLMo-2 1B.

• We analyze the impact of iterating over different layers on reasoning performance and
introduce a practical recipe for selecting critical layers for latent reasoning.

• We show that performing more latent-space reasoning, i.e. increasing the number of itera-
tions, directly improves performance on reasoning tasks.

• We introduce a mechanism to adaptively determine the number of iterations for each input.

2 ON THE ROLES OF LAYERS FOR REASONING

There have been extensive studies on the functional roles of different layers in neural networks. In
computer vision, shallow layers are known to capture general features, while deeper layers represent
more fine-grained ones (Zeiler & Fergus, 2013; Bau et al., 2017). Similar patterns are also observed
in LLMs. For example, Stolfo et al. (2023) show that, when solving simple arithmetic questions,
LLMs encode information about operators and operands in mid-sequence early layers, transform
this information into intermediate computations in middle layers, and form the representation of the
final answer in the last-token middle-to-late layers. Likewise, Zhao et al. (2024) find that, during
instruction tuning, early layers capture broad and reusable knowledge, middle layers amplify task-
relevant signals, and deeper layers refine these signals into task-specific outputs. More broadly,
interpretability studies confirm functional differentiation across layers of varying depths, including
in reasoning settings (Yu et al., 2025; Gromov et al., 2024; Shi et al., 2024; Skean et al., 2025).

As information propagates from early to deeper layers, the reasoning process transitions from spe-
cific, local, and syntactic information to rich semantic integration. We draw the conclusion that
early to middle layers play a critical role in task understanding (Davidson et al., 2025) and knowl-
edge retrieval, while deeper layers are important for higher-level inferences such as those required
for mathematical reasoning.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Input Output

Latent Encoder Latent Decoder
Recursive 

"Thinking" Block

"Encode" "Think"  "Decode"

Vanilla Transformer

Input Output

Figure 1: Left: Illustration of the proposed architecture (Section 2.1). The latent encoder (blue) maps
inputs into latent space, the recursive “thinking” block (green) iteratively refines representations,
and the latent decoder (red) maps them back to the output space. Each block consists of a different
number of layers. Right: Angular distances d(l, l + 1) between consecutive layers for OLMo 2
1B base and instruct models. The plot highlights three groups of layers—latent encoder, recursive
block, and latent decoder—corresponding to distinct trends in layer-to-layer evolution (Section 2.1).

We therefore break down transformer blocks into three groups (Figure 1): a latent encoder E, which
embeds the input data into a latent space and retrieves information about mentioned entities, then
a core recurrent “thinking” block T , a central unit of recurrent computation, that generates latent
“thoughts”, and finally the latent decoder D, which un-embeds from latent space and also contains
the prediction head of the model. In practice, the information first goes through layers in the latent
encoder E, then iterates over the “thinking” block k times, and finally flows through the latent
decoder D, which returns output tokens. Let’s denote different configurations as NE-NT *k-ND,
e.g. 7-4*2-5 denotes a transformer with 7 layers in the E block, 4 layers in the T block, repeated
twice, and 5 layers in the D block.

If the layer-to-layer evolution of representations is given by a residual iteration equation:

xl+1 = xl + f(xl, θl) (1)

where xl, θl are the input and parameter vectors for layer l, and f(xl, θl) represents the transforma-
tion of one multi-head self-attention and MLP layer block (Vaswani et al., 2017), then after L total
layers the output is the sum of the input embeddings and the contributions of all the layers:

xL = x0+

NE−1∑
l=0

f(xl, θl)+

k∑
j=1

NE+NT−1∑
l=NE

f(xl+(j−1)∗NT , θl)+

L−1∑
l=NE+nT

f(xl+(k−1)∗NT , θl) (2)

2.1 CHOOSING THE OPTIMAL CONFIGURATION FOR LATENT REASONING

Prior work on related recursive architectures has generally adopted a single predefined partition of
layers, without exploring alternatives or analyzing how the choice of split affects performance. Some
approaches apply recursion over all internal layers, i.e. employ only a recursive block T , (Dehghani
et al., 2018; Csordás et al., 2024; Bae et al., 2024; Saunshi et al., 2025), others allocate 1–2 layers
each to the E and D blocks (Geiping et al., 2025; Bae et al., 2025; Aleksandrov et al., 2025). In
contrast, our work takes the roles of layers into consideration when determining the configuration.

The latent encoder should include enough layers to transform input text into the latent space and re-
trieve all relevant knowledge, laying the foundation for higher-level semantic analysis and reasoning
to happen via a recursive “thinking” block, T .

To identify the optimal configuration of layers, we build on the approach of Gromov et al. (2024).
They discovered that later layers change the direction of hidden representations less than earlier
layers. They used the average angular distance as a criterion for identifying layers to prune. Their
experiments show that removing such layers has almost no impact on tasks heavily relying on knowl-
edge retrieval. Despite the low average angular change, however, even moderate pruning of those
same layers results in a degradation on reasoning tasks. We build on these insights and use mean
angular change to identify reasoning-critical layers to iterate over.

We measure the average change in the direction of the residual stream vector after each layer, and
add layers to the latent encoder until the rate of change from layer to layer slows down.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In practice, we compute the average angular distance d(x(l), x(l+n))1, between the input to layer l
and the input to layer l+ n on the C4 validation set (Raffel et al., 2019). The distance quantifies the
degree of update to x resulting from processing between layers l and l + n. Figure 1(right) shows
the average distances d(x(l), x(l + 1)) for OLMo-2 1B base and instruct models.

To automatically identify the point, i.e. the layer, at which a curve transitions from a rapid to
a gradual decrease, we employ the Kneedle algorithm (Satopaa et al., 2011). This method detects
“knee” (or “elbow”) points in convex, decreasing sequences by analyzing their curvature. Algorithm
details are provided in Appendix C. The detected layer index defines the boundary of the latent
encoder. For the OLMo-2 1B model, this corresponds to layer 7.

Similarly to the latent encoder, the latent decoder must have sufficient depth to transform represen-
tations from the latent space back into the “language” space. To determine the number of layers in
the latent decoder, we follow the same procedure as for the latent encoder, but applied in reverse:
starting from the final layer of the model and moving backward until reaching the last layer assigned
to the latent encoder. For the OLMo-2 1B model, this yields the last 5 layers as the latent decoder.
The remaining 4 layers constitute the recursive “thinking” block.

Hence, we set the configuration to 7-4*k-5, i,e. 7 layers in latent encoder, 4 layer in recursive block,
and 5 layers in latent decoder respectively, and k is number of iterations. In Figure 1 (right), the rate
of change in angular distance decreases around layer 7, stabilizes over the subsequent four layers,
and increases again during the final five layers.

Acknowledging that there is no clear single subset of layers solely responsible for reasoning across
all models and tasks, we show empirically that our approach selects a split that lies near the perfor-
mance maximum in the search space across tasks.

3 EXPERIMENTAL SETUP

Prior work on recursive-depth models have largely investigated recurrence in training settings that
are not representative of modern, fully optimized large-scale LLM pre-training pipelines. We are,
however, interested in understanding the impact of recursive “thinking” in realistic scenarios, and
therefore apply them on open-source models trained following best practices in architecture, training
recipe, and pretraining data mixtures. We base our study on the OLMo 2 family of models (OLMo
et al., 2024), focusing specifically on the base configurations. For fair comparison, our ETD models
use the same number of parameters, datasets, and hyperparameters as the baseline non-recursive
model.

3.1 TRAINING PIPELINE

OLMo 2 is a family of LLMs with open artifacts including intermediate and final checkpoints,
training data, code, and recipes for 1B, 7B and 13B scale models, both pre-trained and post-trained.
As a compromise between experimental agility and model power, we focus on 1B parameter model.
We integrate ETD into the existing training pipeline without introducing additional training steps or
data. This requires access to the model weights, training data, and hyperparameters to evaluate the
impact of ETD in a controlled and isolated manner.

Following recent advances in curriculum learning (Blakeney et al., 2024; Ibrahim et al., 2024) OLMo
2 base models are trained in two stages. The first (pretraining) stage is the longest (≥ 90% training
FLOPs), and uses mostly web-sourced data. The second stage, which is referred to as mid-training
(5-10 % of training FLOPs), upsamples the highest-quality web documents and curated non-web
sources. The purpose of this mixture is to imbue the model with reasoning skills and provide focused
exposure to STEM references and high quality text.

We evaluate the EDT approach by integrating it into the mid-training stage which uses only 1.25%
of the total pretraining tokens.2 In our experiments, we initialize the model with the weights after the
first stage training and run the mid-training with ETD approach for each configuration separately.
OLMo et al. (2024) perform mid-training with three random orders, then average the resulting mod-

1We explain the details of computing angular distance in Appendix A
2For the OLMo-2 1B model, stage-1 pretraining uses 4× 1012 tokens, while stage-2 uses 5× 1010 tokens.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

els. In our setup, we train with one data configuration and compare it to the standard model trained
with the same configuration. Since our experiments adopt the same data mixtures and configurations,
we direct readers to OLMo et al. (2024) for a comprehensive description of the training pipeline.

3.2 EVALUATION BENCHMARKS

Table 1: Evaluation benchmarks grouped into six cate-
gories, listed in order of increasing reasoning intensity
from top to bottom.

Category Benchmarks
Factual Knowledge TriviaQA, NaturalQuestions

Reading Comprehension BoolQ, OpenBookQA, DROP

Commonsense Reasoning CommonSenseQA, HellaSwag
SocialQA, WinoGrande

Multi-Disciplinary Reasoning ARC-Easy, ARC-Challenge, MMLU,
MMLU-Pro, AGIEval-English

BIG-Bench Hard BBH 3

Mathematical Reasoning GSM8K, MATH

To capture broad conceptual nature of rea-
soning, we consider 17 real-world bench-
marks grouped into six categories, ordered
along a spectrum from less to more rea-
soning intensive tasks, i.e. from fac-
tual recall to systematic symbolic reason-
ing: factual knowledge, reading compre-
hension, commonsense reasoning, multi-
disciplinary Reasoning, BIG-Bench Hard
(BBH), and mathematical reasoning. This
progression reflects increasing reliance on
reasoning rather than memorization. We
provide the task categories with the corre-
sponding benchmarks in Table 1. Details
with the motivation for each task category are provided in Appendix B. We evaluate the model using
OLMES (Gu et al., 2024), a standardized evaluation suite and toolkit.

Table 2: Results of the Encode–Think–Decode (ETD) method with varying numbers of iterations
over recursive “thinking” blocks, compared to the OLMo 2 1B baseline. Reported metrics include
accuracy (Acc.) and relative improvement (∆, in %) with respect to the baseline, for each of six task
categories (as defined in Sec. 3.2). Parameter counts denote the number of distinct layers, while
FLOPs correspond to the number of effective forward-pass layers.

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

Model Params/FLOPs Acc. ∆(%) Acc. ∆(%) Acc. ∆(%) Acc. ∆(%) Acc. ∆(%) Acc. ∆(%)

OLMo 2 (k=1) 16 / 16 37.55 - 52.19 - 65.29 - 45 - 31.8 - 24.31 -
ETD (k=2) 16 / 20 38.1 (+1.5%) 56.14 (+7.6%) 66.74 (+2.2%) 48.41 (+7.6%) 31.67 (-0.4%) 28.27 (+16.3%)
ETD (k=3) 16 / 24 37.55 (0%) 56.07 (+7.4%) 67.75 (+3.77%) 49.55 (+10.1%) 32.62 (+2.6%) 30.29 (+24.6%)
ETD (k=4) 16 / 28 37.74 (0%) 57.76 (+10.7%) 68.16 (+4.4%) 50.18 (+11.5%) 33.01 (+3.8%) 29.62 (+21.8%)
ETD (k=5) 16 / 32 38.23 (+1.8%) 58.5 (+12.1%) 68.41 (+4.8%) 50.58 (+12.4%) 33.49 (+5.3%) 30.45 (+25.3%)

4 EVALUATING RECURSIVE “THINKING” BLOCKS

All results are obtained using the training pipeline described in Section 3.1, with the only modifica-
tion being the configuration NE-NT *k-ND. Here, NE , ND, and NT denote the number of layers
in the latent encoder and decoder, and the recursive block, and k is the number of iterations. Since
our objective is to evaluate the model’s reasoning abilities, we focus on reasoning-oriented tasks as
defined in Section 3.2. Because we deal with the same architecture while changing only the number
of layers, we report the number of parameters in terms of distinct layers, NE+NT +ND, and the
number of FLOPs in terms of forward passes through layers, NE+NT *k+ND.

4.1 PERFORMANCE GAINS FROM ITERATING OVER “THINKING” BLOCKS

We begin by examining the first two rows of Table 2, which report results for the baseline and the
recursive model with two iterations, corresponding to the 7–4*2–5 configuration. Notice that the
OLMo 2 1B baseline is equivalent to the ETD model with k=1. Results show that performance
either remains stable or improves, with notable gains in several categories. The largest improve-
ment is observed on Mathematical Reasoning tasks, with an average relative increase of 16.3%. A
breakdown in Table 3 confirms that both GSM8K and MATH benefit from two iterations of the ETD

3BBH, a collection of 23 diverse tasks, serves as a cross-cutting benchmark for compositional reasoning
that does not fit neatly into the other categories. More details in Appendix B

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

approach. Additional gains appear in Commonsense Reasoning (+2.2%), Reading Comprehension
(+7.6%), and Multi-Disciplinary Reasoning (+7.6%). In contrast, tasks in the Factual Knowledge
and BIG-Bench Hard categories exhibit at most marginal benefits from a single additional iteration.

Table 3: Results of the ETD method with varying
numbers of iterations. Reported metrics include
accuracy (Acc.) and relative improvement (∆, in
%) with respect to the baseline on the mathemati-
cal reasoning tasks, GSM8K and MATH.

GSM8K MATH

Model Params/FLOPs Acc. ∆(%) Acc. ∆(%)

OLMo 2 (k=1) 16 / 16 44.05 - 4.57 -
ETD (k=2) 16 / 20 51.10 (+16.01%) 5.45 (+19.22%)
ETD (k=3) 16 / 24 54.36 (+23.41%) 6.22 (+36.04%)
ETD (k=4) 16 / 28 55.50 (+25.99%) 3.73 (-18.28%)
ETD (k=5) 16 / 32 56.56 (+28.4%) 4.33 (-5.17%)

To further assess the effect of recursive process-
ing, we train ETD with varying numbers of iter-
ations, with results summarized in Table 2. Per-
formance generally improves as the number of
iterations k increases with one notable excep-
tion: the Factual Knowledge category shows
negligible improvement. As discussed in Sec-
tion 3.2, these tasks rely mainly on memo-
rization rather than reasoning. In contrast, the
largest gains occur in reasoning-intensive tasks,
most notably in Mathematical Reasoning, with
breakdowns shown in Table 3.

These results demonstrate that the ETD approach—by iterating over reasoning-relevant lay-
ers—substantially enhances the non-recursive baseline, yielding relative improvements of +28.4%
on GSM8K and +36% on MATH. Moreover, the minimal gains on memorization tasks further vali-
date our approach from Section 2 for identifying layers specialized in reasoning.

As noted earlier, ETD with k=2 iterations shows no improvement on BIG-Bench Hard (BBH) tasks.
However, performance begins to increase with k=3 and continues to improve with additional iter-
ations. These observations highlight that performance as a function of iterations exhibits different
trends across tasks. For some tasks (e.g., Social IQa, ARC-Challenge, MMLU), performance rises
rapidly with 2–3 iterations, after which the rate of improvement slows. For others (e.g., DROP,
MMLU-Pro, GSM8K), gains continue steadily with each additional iteration. In rare cases, the best
performance is not achieved at the maximum depth, as observed for MATH. Detailed results for all
17 tasks are provided in Appendix F.

Overall, these findings indicate that allocating more resources to generating latent “thought” before
decoding—that is, by performing additional iterations over the “thinking” blocks—systematically
enhances performance on reasoning-oriented tasks. The diverse performance trends across tasks
highlight the opportunity to explore input-dependent, adaptive-depth recursive methods, which we
investigate in Section 5.

Our results empirically demonstrate that the methodology described in Section 2 enables the selec-
tion of configurations that enhance the model’s reasoning capabilities. Notably, the experiments in
the following sections show that it lies near the performance maximum in the search space across
tasks.

4.2 COMPARISON WITH ALTERNATIVE RECURSIVE FRAMEWORKS

Prior work on recursive LLMs typically applies recursion either across all layers (Dehghani et al.,
2018; Csordás et al., 2024; Bae et al., 2024; Saunshi et al., 2025) or across middle layers while
preserving a few initial and final layers (Geiping et al., 2025; Bae et al., 2025; Aleksandrov et al.,
2025). For a fair comparison, we train models using both strategies: (i) looping over all layers, and
(ii) a 2–12*2–2 configuration, which repeats the middle 12 layers while keeping two layers at the
beginning and end fixed. We compare these baselines to our selective looping configuration under a
constant FLOP budget, with results shown in Table 4.

Our approach consistently outperforms these alternatives under equal compute. For example, the
2–12*2–2 setup is FLOP-equivalent to our 7–4*4–5 configuration, yet yields lower accuracy. More-
over, to match or exceed the performance of alternative strategies, our method typically requires
fewer FLOPs—often only three iterations are sufficient. We also want to note that NE=ND=0 con-
figuration in Table 4, is the closest analogue to Coconut (Hao et al., 2024).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Results with recursive baselines

Model Params/
FLOPs

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

OLMo 2 16 / 16 37.55 52.19 65.29 45 31.8 24.31

2-12*2-2 16 / 28 37.7 56.44 67.73 47.58 32.30 29.27
ETD (k=4) 16 / 28 37.74 57.76 68.16 50.18 33.01 29.62

0-16*2-0 16 / 32 37.35 53.58 64.7 45.24 30.59 24.99
ETD (k=5) 16 / 32 38.23 58.5 68.41 50.58 33.49 30.45

Figure 2: Results of the ETD method when varying the subset of layers in the recursive block. We
report accuracy (Acc.) when increasing the size of the latent encoder NE from 1 to 11 in steps of 2,
for each of 6 task categories (as defined in Sec. 3.2). The orange line marks selected configuration.

4.3 HOW DOES THE CHOICE OF RECURSIVE LAYERS CHANGE PERFORMANCE?

To further examine the impact of recursive layer choice, we fix the recursive “thinking” block size
and vary its starting position from layer 2 to 12 in steps of 2, which is equivalent to increasing
the size of the latent encoder NE from 1 to 11 in steps of 2. An intriguing observation is that the
optimal configuration slightly varies depending on the specific category of tasks. The results in
Figure 2 show that the 7-4*2-5 configuration achieves the best overall performance on reasoning-
intensive task, particularly mathematical reasoning. Detailed results are in Table 7 in Appendix E. A
close alternative is 5-4*2-7, which performs comparably on most tasks but falls short in mathemat-
ics. Performance on Factual Knowledge tasks is stable across configurations, which aligns with the
intuition discussed earlier. Interestingly, for reading comprehension, the 3-4*2-9 configuration per-
forms best. This block of layers (4-7) overlaps with layers just before the identified “thinking” block
(8-11), aligning with our earlier intuition that early-to-middle layers are important for context un-
derstanding. These findings are consistent with our layer-role analysis, though further investigation
is needed to establish stronger causal links.

4.4 HOW DOES THE SIZE OF RECURSIVE ”THINKING” BLOCK CHANGE THE PERFORMANCE?

To ensure a controlled comparison, we vary the size of the recursive block by symmetrically adding
or removing layers around the original 7–4×2–5 configuration, keeping its center fixed while chang-
ing its extent. Figure 3 shows that performance increases as more layers are included in the recursive
block up to a point, after which it begins to decline. Notably, for mathematical reasoning, and even
under the same FLOP budget, looping more times over a compact set of layers (7–4×k–5) outper-
forms looping fewer times over a larger set of layers.This suggests that the placement and structure
of the recursive computation are key drivers of performance, not just the amount of extra compute4.

4.5 COMPARISON WITH LARGER MODEL WITH SAME EFFECTIVE DEPTH

We perform an iso-FLOPs comparison by matching the effective depth of ETD with k=2. The
7-4*2-5 configuration has an effective depth of 22, so we construct a non-recurrent baseline with
the same budget by stacking the 4-layer block twice—yielding a 7–8×1–5 configuration that mim-
ics two iterations without recurrence. Both configurations perform identically before mid-training.
However, results in Table 5 show that the larger iso-FLOPs model underperforms both the original

4Detailed results are in in Appendix G.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Results of the ETD method when varying the number of layers in the recursive block. We
report accuracy (Acc.) when changing the size of the latent encoder D between 2,4,6,8, and 12, for
each of 6 task categories (as defined in Sec. 3.2). Each color represents different configuration of
NE-NT *k-ND.

non-recurrent baseline and the ETD (k=2) model, highlighting the importance of reusing reasoning-
critical layers rather than expanding the network.

Table 5: Results with larger model and same FLOPs

Model Params/
FLOPs

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

OLMo 2 16 / 16 37.55 52.19 65.29 45 31.8 24.31

7-8-5 20 / 20 31.78 52.03 62.45 44.42 30.21 21.68
7-4*2-5 16 / 20 38.1 56.14 66.74 48.41 31.67 28.27

4.6 SCALING FROM 1B PARAMETERS TO 7B PARAMETERS

Table 6: Results of the ETD method on OLMo-
2 7B base model. Reported metrics are accuracy
(Acc.) and relative improvement (∆, in %) with
respect to the baseline.

GSM8K MATH

Model Params/FLOPs Acc. ∆(%) Acc. ∆(%)

OLMo 2 7B (k=1) 32 / 32 66.18 - 17.07 -
ETD (k=2) 32 / 42 67.02 (+1.29%) 18.26 (+6.38%)

We extend our experiments from the 1B model
to the 7B model. Applying the configuration
selection procedure from Section 2.1 yields the
16–10*2–6 layer assignment, which we train
using the same mid-training ETD integration
described in Section 3.1. The 7B experiments
follow the same qualitative trends observed at
1B scale: as shown in Table 6, ETD consis-
tently improves mathematical reasoning perfor-
mance, while gains on other task categories are less pronounced (see Appendix H). We note that
mid-training of both 1B and 7B models uses the same amount of data, meaning that 1B was exposed
to more data per parameter.

5 ADAPTIVE TEST-TIME SCALING

We observed significant improvements of iterating over recursive blocks. The general trend is that
the model benefits from more iterations. However, different problems demand different levels of
reasoning effort: not all tokens or sequences require the same number of iterations to reach an
accurate prediction, and in some cases the marginal benefit of additional iterations may not justify
the extra computation. Adaptive computation (Bengio et al., 2013; 2015) is often used for efficiency
by early-exiting on simpler tokens (Elhoushi et al., 2024). In contrast, our goal is to adaptively
allocate computation at test time to enhance reasoning capability, rather than to reduce cost.

5.1 METHODOLOGY

In our architecture of the form E→T ∗k→D, instead of fixing the number of recursive iterations k,
we adopt the Adaptive Computation Time (ACT) mechanism (Graves, 2016), allowing each token
to dynamically determine how many applications of the recursive block T are necessary. A router
evaluates the hidden state after each iteration and decides whether further computation is required.
This enables allocating more steps to tokens that demand deeper reasoning, while those not meeting
the selection criteria bypass further processing and retain their previous representation.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

At each iteration t, after computing the hidden representation ht with the recursive block, a router
predicts a halting values wt ∈ (0, 1) for each token. These values are accumulated across iterations:

Ht =

t∑
j=1

wj . (3)

Computation for a token is stopped once Ht ≥ 1−ϵ, with ϵ is a small constant (e.g. 0.01). Intuitively,
each wt represents the confidence of the latent “thought”, as produced by the recursive block T .
Until sufficient confidence is accumulated, the latent ”thought” state continues to be updated. The
final representation passed to D is the output of “thinking” block T after final iteration. 5

Despite its simplicity, this design proved effective in practice. Compared to a fixed-depth design,
ACT introduces per-token dynamic depth, enabling more efficient and adaptive use of the recursive
block. Full details are provided in Appendix D.

Figure 4: Results of fixed-depth ETD with varying numbers of recursive “thinking” iterations com-
pared to adaptive-depth ETD. For fixed-depth ETD, we report accuracy (Acc.) at each iteration
count. For adaptive-depth ETD, we report accuracy and the average number of iterations per task.

5.2 RESULTS

We outlined the difference in architecture between fixed- and adaptive-depth approaches, while we
follow the same training pipeline discussed in Section 3.1. Figure 4 reports the performance of
fixed-depth ETD and adaptive-depth ETD, together with the average number of loops per task.6

From Figure 4, we make three key observations. First, this exploratory approach in the direction
of adaptive test-time compute approach shows clear improvement over baseline with no recursive
iterations. Second, looking at the performance on DROP and OpenbookQA, both of which are
reading comprehension tasks, we see that adaptive-depth ETD outperforms the ETD with fixed
k=5 iterations. Moreover, it also achieves this with fewer iterations on average. Third, for the
remaining tasks, adaptive-depth ETD follows the empirical accuracy–iteration tradeoff of the fixed-
depth baselines. In particular, its accuracy matches the trend observed for increasing iteration counts,
suggesting that performance is well-aligned with its average effective depth. Notably, in these tasks,
the adaptive method halts additional iterations once further computation yields only marginal gains.

6 RELATED WORK

Recursive architectures Recurrence has long been a foundational concept, from RNNs to efforts
to incorporate it into transformers. In transformers, recurrence has been explored by iteratively
refining representations across all tokens in parallel (Dehghani et al., 2018; Lan et al., 2019), and
applied to algorithmic tasks such as arithmetic (Schwarzschild et al., 2021; Bansal et al., 2022; Bear
et al., 2024; McLeish et al., 2024). Other works offered theoretical and small-scale analyses of
looped transformers (Giannou et al., 2023; Gatmiry et al., 2024; Yang et al., 2023; Fan et al., 2024).

Beyond fully recurrent-depth architectures, several hybrid designs have also been proposed, includ-
ing latent sub-networks (Li et al., 2020), Mixture-of-Experts structures (Tan et al., 2023; Csordás
et al., 2024), and dynamic weight-tying (Hay & Wolf, 2024; Liu et al., 2024b). The major motivation
of many works mentioned above was inspired by efficiency based on utilizing shared parameters.

5We also tried to follow Graves (2016) to represent final representation as the weighted mixture of the
outputs after each iteration, but found it less effective.

6We selected these tasks because they exhibit the largest relative gains from the recursive approach. See
Appendix F for results on the six tasks with the highest relative improvement of ETD (k=5) over baseline.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Latent Reasoning Chain-of-thought prompting has been a central focus in recent studies of rea-
soning (Merrill & Sabharwal, 2024; Feng et al., 2023; Li et al., 2024). In contrast, our proposal
follows the alternative line of latent reasoning, where reasoning unfolds in the model’s hidden rep-
resentations rather than explicit textual traces. Related efforts on learning to reason in continuous
spaces include Hao et al. (2024); Cheng & Durme (2024); Liu et al. (2024a); Geiping et al. (2025);
Saunshi et al. (2025). Chen & Zou (2024); Ye et al. (2024); Petty et al. (2023) have shown the
importance of model depth for reasoning. Further analysis on Coconut (Hao et al., 2024), show
that continuous thought vector is a superposition state that encodes multiple search frontiers si-
multaneously (Zhu et al., 2025b;a). We step further showing that larger depth leads to reasoning
improvements also when it is achieved via looping, without increasing the number of parameters.

Adaptive Computation Dynamic compute allocation has been shown to substantially reduce
training and inference costs, spanning from early neural networks (Bengio et al., 2015; Huang et al.,
2016; Teerapittayanon et al., 2016; Panda et al., 2015) to LLMs (Hou et al., 2020; Elbayad et al.,
2019; Fedus et al., 2021; Bae et al., 2023; Elhoushi et al., 2024). A prominent line of work, early
exiting, learns to terminate computation on “easy” inputs by skipping subsequent layers (Elbayad
et al., 2019; Schuster et al., 2022; Bae et al., 2023; Elhoushi et al., 2024). Adaptive depth can be
also formulated as a routing problem: each layer’s router selects a subset of tokens for full compu-
tation while others bypass the layer, enabling token-level conditional compute (Raposo et al., 2024;
Luo et al., 2024). Extending this idea, Bae et al. (2025) applied conditional routing to recursive
transformers, but restricted recursion to a small, fixed maximum of three iterations.

Key Differences from Prior Work Our approach differs from prior work in several important
ways. First, most recursive-depth methods have been studied primarily as a means of improv-
ing parameter efficiency (Lan et al., 2019; Bae et al., 2024), i.e., reducing parameter count while
maintaining performance, whereas our focus is on enhancing reasoning capability. Second, to our
knowledge, we are the first to propose a recursive approach guided by interpretability: rather than
choosing the recursive configuration heuristically, we iterate specifically over layers critical for rea-
soning. Third, our method is simple and requires no additional components such as extra latent states
for recursive blocks and very large of number of iterations (Geiping et al., 2025), LoRA adapters
(Bae et al., 2024), regularization terms (Saunshi et al., 2025), or input injections (Aleksandrov et al.,
2025). Unlike methods such as Coconut (Hao et al., 2024), which introduce a separate language
and latent mode, and multi-stage training, ETD preserves the standard forward pass and applies re-
currence only to a small reasoning-critical block—yielding stronger reasoning gains. Fourth, unlike
most prior work that evaluated recurrence under simplified setups, we show that recursive depth
improves advanced open-source models trained with state-of-the-art practices in architecture, train-
ing recipes, and pretraining mixtures, validating our approach extensively on real-world reasoning
tasks. Speaking of adaptive-depth recursive model, in our formulation we advocate for open-ended
test-time compute scaling: after each iteration, the model should autonomously decide whether to
continue or halt, without being constrained by a predefined cap (Bae et al., 2025).

7 CONCLUSIONS

We introduced Encode–Think–Decode (ETD), a paradigm that enhances the reasoning abilities of
LLMs by performing latent-space reasoning. Unlike approaches that depend on scaling model size
or externalizing reasoning through CoT prompting, ETD amplifies reasoning-relevant computa-
tions within the model itself, without altering its architecture, parameters, data, or hyperparame-
ters. Across 17 benchmarks, ETD consistently improved performance, with substantial gains on
reasoning-intensive tasks such as GSM8K and MATH. Our analysis underscores the importance of
iterating over deeper, reasoning-relevant layers, and adaptive depth strategies further show how ETD
can dynamically allocate compute based on task difficulty.

Overall, recursive latent reasoning emerges as a simple, effective, and broadly applicable approach
for strengthening reasoning. By integrating interpretability insights with recursive computation,
ETD illustrates how leveraging depth and structure can advance reasoning in language models.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our study focuses on methodological contributions for enhancing reasoning in large language mod-
els and relies exclusively on publicly available datasets and open-source pretrained models. We do
not introduce new data, nor do we involve human subjects. We do not foresee direct societal risks
beyond those already associated with language models. At the same time, we hope that improving
the reasoning ability of models can lead to safer and more reliable applications by reducing errors
in reasoning-intensive domains.

REPRODUCIBILITY STATEMENT

We build on openly released models, which provide full access to weights, data mixtures, and train-
ing recipes. Our modifications involve only the mid-training stage, where we re-run training with
the same data and hyperparameters, adding recursive iterations without introducing new parameters
or datasets. All evaluations use widely available benchmarks. We report full configuration details,
including recursive block structure and iteration counts in the main text and appendices. These
choices ensure that our results can be reproduced by others with access to the training pipeline and
publicly available evaluation benchmarks.

REFERENCES

Preslav Aleksandrov, Meghdad Kurmanji, Fernando Garcı́a-Redondo, David O’Shea, William F.
Shen, Alexandru Iacob, Lorenzo Sani, Xinchi Qiu, Nicola Cancedda, and Nicholas Don-
ald Lane. Abbie: Autoregressive block-based iterative encoder for efficient sequence mod-
eling. ArXiv, abs/2507.08567, 2025. URL https://api.semanticscholar.org/
CorpusID:280293934.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scal-
ing laws. ArXiv, abs/2404.05405, 2024. URL https://api.semanticscholar.org/
CorpusID:269005957.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and SeYoung Yun. Fast and robust early-
exiting framework for autoregressive language models with synchronized parallel decod-
ing. ArXiv, abs/2310.05424, 2023. URL https://api.semanticscholar.org/
CorpusID:263830054.

Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schus-
ter. Relaxed recursive transformers: Effective parameter sharing with layer-wise lora. ArXiv,
abs/2410.20672, 2024. URL https://api.semanticscholar.org/CorpusID:
273654907.

Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr
Harutyunyan, Ziwei Ji, Aaron Courville, and SeYoung Yun. Mixture-of-recursions: Learning
dynamic recursive depths for adaptive token-level computation. ArXiv, abs/2507.10524, 2025.
URL https://api.semanticscholar.org/CorpusID:280151550.

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Ali Sami Emam, Furong Huang, Micah
Goldblum, and Tom Goldstein. End-to-end algorithm synthesis with recurrent networks: Ex-
trapolation without overthinking. In Neural Information Processing Systems, 2022. URL
https://api.semanticscholar.org/CorpusID:258509719.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 3319–3327, 2017. URL https://api.
semanticscholar.org/CorpusID:378410.

Jay Bear, Adam Prügel-Bennett, and Jonathon Hare. Rethinking deep thinking: Stable learning of
algorithms using lipschitz constraints. ArXiv, abs/2410.23451, 2024. URL https://api.
semanticscholar.org/CorpusID:273707386.

11

https://api.semanticscholar.org/CorpusID:280293934
https://api.semanticscholar.org/CorpusID:280293934
https://api.semanticscholar.org/CorpusID:269005957
https://api.semanticscholar.org/CorpusID:269005957
https://api.semanticscholar.org/CorpusID:263830054
https://api.semanticscholar.org/CorpusID:263830054
https://api.semanticscholar.org/CorpusID:273654907
https://api.semanticscholar.org/CorpusID:273654907
https://api.semanticscholar.org/CorpusID:280151550
https://api.semanticscholar.org/CorpusID:258509719
https://api.semanticscholar.org/CorpusID:378410
https://api.semanticscholar.org/CorpusID:378410
https://api.semanticscholar.org/CorpusID:273707386
https://api.semanticscholar.org/CorpusID:273707386


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
in neural networks for faster models. ArXiv, abs/1511.06297, 2015. URL https://api.
semanticscholar.org/CorpusID:16049527.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. ArXiv, abs/1308.3432, 2013. URL
https://api.semanticscholar.org/CorpusID:18406556.

Cody Blakeney, Mansheej Paul, Brett W. Larsen, Sean Owen, and Jonathan Frankle. Does
your data spark joy? performance gains from domain upsampling at the end of train-
ing. ArXiv, abs/2406.03476, 2024. URL https://api.semanticscholar.org/
CorpusID:270258382.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Ma teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. ArXiv, abs/2005.14165, 2020. URL https://api.semanticscholar.org/
CorpusID:218971783.

Xingwu Chen and Difan Zou. What can transformer learn with varying depth? case stud-
ies on sequence learning tasks. ArXiv, abs/2404.01601, 2024. URL https://api.
semanticscholar.org/CorpusID:268856974.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reason-
ing through dense representations. ArXiv, abs/2412.13171, 2024. URL https://api.
semanticscholar.org/CorpusID:274789675.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no ques-
tions. ArXiv, abs/1905.10044, 2019. URL https://api.semanticscholar.org/
CorpusID:165163607.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/
CorpusID:3922816.

Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
Training verifiers to solve math word problems. ArXiv, abs/2110.14168, 2021. URL https:
//api.semanticscholar.org/CorpusID:239998651.

Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber, Christopher Potts, and Christopher D. Manning.
Moeut: Mixture-of-experts universal transformers. ArXiv, abs/2405.16039, 2024. URL https:
//api.semanticscholar.org/CorpusID:270063139.

Guy Davidson, Todd M Gureckis, Brenden M Lake, and Adina Williams. Do different prompt-
ing methods yield a common task representation in language models? arXiv preprint
arXiv:2505.12075, 2025.

DeepSeek-AI et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learn-
ing, 2025. URL https://arxiv.org/abs/2501.12948.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Univer-
sal transformers. ArXiv, abs/1807.03819, 2018. URL https://api.semanticscholar.
org/CorpusID:49667762.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
North American Chapter of the Association for Computational Linguistics, 2019. URL https:
//api.semanticscholar.org/CorpusID:67855846.

12

https://api.semanticscholar.org/CorpusID:16049527
https://api.semanticscholar.org/CorpusID:16049527
https://api.semanticscholar.org/CorpusID:18406556
https://api.semanticscholar.org/CorpusID:270258382
https://api.semanticscholar.org/CorpusID:270258382
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:268856974
https://api.semanticscholar.org/CorpusID:268856974
https://api.semanticscholar.org/CorpusID:274789675
https://api.semanticscholar.org/CorpusID:274789675
https://api.semanticscholar.org/CorpusID:165163607
https://api.semanticscholar.org/CorpusID:165163607
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:270063139
https://api.semanticscholar.org/CorpusID:270063139
https://arxiv.org/abs/2501.12948
https://api.semanticscholar.org/CorpusID:49667762
https://api.semanticscholar.org/CorpusID:49667762
https://api.semanticscholar.org/CorpusID:67855846
https://api.semanticscholar.org/CorpusID:67855846


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Abhimanyu Dubey et al. The llama 3 herd of models. ArXiv, abs/2407.21783, 2024. URL https:
//api.semanticscholar.org/CorpusID:271571434.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. ArXiv,
abs/1910.10073, 2019. URL https://api.semanticscholar.org/CorpusID:
204824061.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, T. J. Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Baker Grosse, Sam Mc-
Candlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Chris Olah. Toy models of su-
perposition. ArXiv, abs/2209.10652, 2022. URL https://api.semanticscholar.org/
CorpusID:252439050.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi
Chen, and Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative de-
coding. ArXiv, abs/2404.16710, 2024. URL https://api.semanticscholar.org/
CorpusID:269362647.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
generalization. ArXiv, abs/2409.15647, 2024. URL https://api.semanticscholar.
org/CorpusID:272831982.

William Fedus, Barret Zoph, and Noam M. Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. ArXiv, abs/2101.03961, 2021. URL
https://api.semanticscholar.org/CorpusID:231573431.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. ArXiv, abs/2305.15408, 2023.
URL https://api.semanticscholar.org/CorpusID:258865989.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar.
Can looped transformers learn to implement multi-step gradient descent for in-context learn-
ing? ArXiv, abs/2410.08292, 2024. URL https://api.semanticscholar.org/
CorpusID:272330312.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Angeliki Giannou, Shashank Rajput, Jy yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. ArXiv, abs/2301.13196, 2023.
URL https://api.semanticscholar.org/CorpusID:256389656.

Alex Graves. Adaptive computation time for recurrent neural networks. ArXiv, abs/1603.08983,
2016. URL https://api.semanticscholar.org/CorpusID:8224916.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hanna Hajishirzi.
Olmes: A standard for language model evaluations. ArXiv, abs/2406.08446, 2024. URL
https://api.semanticscholar.org/CorpusID:270391754.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason E. Weston, and Yuan-
dong Tian. Training large language models to reason in a continuous latent space. ArXiv,
abs/2412.06769, 2024. URL https://api.semanticscholar.org/CorpusID:
274610816.

Tamir David Hay and Lior Wolf. Dynamic layer tying for parameter-efficient transform-
ers. ArXiv, abs/2401.12819, 2024. URL https://api.semanticscholar.org/
CorpusID:267095141.

13

https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:204824061
https://api.semanticscholar.org/CorpusID:204824061
https://api.semanticscholar.org/CorpusID:252439050
https://api.semanticscholar.org/CorpusID:252439050
https://api.semanticscholar.org/CorpusID:269362647
https://api.semanticscholar.org/CorpusID:269362647
https://api.semanticscholar.org/CorpusID:272831982
https://api.semanticscholar.org/CorpusID:272831982
https://api.semanticscholar.org/CorpusID:231573431
https://api.semanticscholar.org/CorpusID:258865989
https://api.semanticscholar.org/CorpusID:272330312
https://api.semanticscholar.org/CorpusID:272330312
https://api.semanticscholar.org/CorpusID:256389656
https://api.semanticscholar.org/CorpusID:8224916
https://api.semanticscholar.org/CorpusID:270391754
https://api.semanticscholar.org/CorpusID:274610816
https://api.semanticscholar.org/CorpusID:274610816
https://api.semanticscholar.org/CorpusID:267095141
https://api.semanticscholar.org/CorpusID:267095141


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong
Song, and Jacob Steinhardt. Measuring massive multitask language understanding. ArXiv,
abs/2009.03300, 2020. URL https://api.semanticscholar.org/CorpusID:
221516475.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xi-
aodong Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
dataset. ArXiv, abs/2103.03874, 2021. URL https://api.semanticscholar.org/
CorpusID:232134851.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aure-
lia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and
L. Sifre. Training compute-optimal large language models. ArXiv, abs/2203.15556, 2022. URL
https://api.semanticscholar.org/CorpusID:247778764.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, and Qun Liu. Dynabert: Dynamic bert with adaptive
width and depth. ArXiv, abs/2004.04037, 2020. URL https://api.semanticscholar.
org/CorpusID:215415863.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. In European Conference on Computer Vision, 2016. URL https://api.
semanticscholar.org/CorpusID:6773885.

Adam Ibrahim, Benjamin Th’erien, Kshitij Gupta, Mats L. Richter, Quentin Anthony, Tim-
othée Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continu-
ally pre-train large language models. ArXiv, abs/2403.08763, 2024. URL https://api.
semanticscholar.org/CorpusID:268379604.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. ArXiv, abs/1705.03551, 2017. URL
https://api.semanticscholar.org/CorpusID:26501419.

Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language
models. ArXiv, abs/2001.08361, 2020. URL https://api.semanticscholar.org/
CorpusID:210861095.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. ArXiv, abs/2205.11916, 2022. URL https://api.
semanticscholar.org/CorpusID:249017743.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc V. Le,
and Slav Petrov. Natural questions: A benchmark for question answering research. Trans-
actions of the Association for Computational Linguistics, 7:453–466, 2019. URL https:
//api.semanticscholar.org/CorpusID:86611921.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
Radu Soricut. Albert: A lite bert for self-supervised learning of language representa-
tions. ArXiv, abs/1909.11942, 2019. URL https://api.semanticscholar.org/
CorpusID:202888986.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin
Wattenberg. Emergent world representations: Exploring a sequence model trained on a syn-
thetic task. ArXiv, abs/2210.13382, 2022. URL https://api.semanticscholar.org/
CorpusID:253098566.

Xian Li, Asa Cooper Stickland, Yuqing Tang, and X. Kong. Deep transformers with latent
depth. ArXiv, abs/2009.13102, 2020. URL https://api.semanticscholar.org/
CorpusID:221970592.

14

https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:247778764
https://api.semanticscholar.org/CorpusID:215415863
https://api.semanticscholar.org/CorpusID:215415863
https://api.semanticscholar.org/CorpusID:6773885
https://api.semanticscholar.org/CorpusID:6773885
https://api.semanticscholar.org/CorpusID:268379604
https://api.semanticscholar.org/CorpusID:268379604
https://api.semanticscholar.org/CorpusID:26501419
https://api.semanticscholar.org/CorpusID:210861095
https://api.semanticscholar.org/CorpusID:210861095
https://api.semanticscholar.org/CorpusID:249017743
https://api.semanticscholar.org/CorpusID:249017743
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:202888986
https://api.semanticscholar.org/CorpusID:202888986
https://api.semanticscholar.org/CorpusID:253098566
https://api.semanticscholar.org/CorpusID:253098566
https://api.semanticscholar.org/CorpusID:221970592
https://api.semanticscholar.org/CorpusID:221970592


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. ArXiv, abs/2402.12875, 2024. URL https://api.
semanticscholar.org/CorpusID:267760184.

Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur D. Szlam. Deliberation in latent
space via differentiable cache augmentation. ArXiv, abs/2412.17747, 2024a. URL https:
//api.semanticscholar.org/CorpusID:274992824.

Zechun Liu, Changsheng Zhao, Forrest N. Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yun-
yang Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and
Vikas Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device
use cases. ArXiv, abs/2402.14905, 2024b. URL https://api.semanticscholar.org/
CorpusID:267898017.

Yaxin Luo, Gen Luo, Jiayi Ji, Yiyi Zhou, Xiaoshuai Sun, Zhiqiang Shen, and Rongrong
Ji. γ-mod: Exploring mixture-of-depth adaptation for multimodal large language mod-
els. ArXiv, abs/2410.13859, 2024. URL https://api.semanticscholar.org/
CorpusID:273403699.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Trans-
formers can do arithmetic with the right embeddings. ArXiv, abs/2405.17399, 2024. URL
https://api.semanticscholar.org/CorpusID:270062339.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of
thought. ArXiv, abs/2310.07923, 2024. URL https://api.semanticscholar.org/
CorpusID:263909434.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Conference on Empirical Methods
in Natural Language Processing, 2018. URL https://api.semanticscholar.org/
CorpusID:52183757.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. ArXiv, abs/2301.05217, 2023. URL https://
api.semanticscholar.org/CorpusID:255749430.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind
Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi,
Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Ma-
lik, William Merrill, Lester James Validad Miranda, Jacob Daniel Morrison, Tyler C. Murray,
Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David
Wadden, Christopher Wilhelm, Michael Wilson, Luke S. Zettlemoyer, Ali Farhadi, Noah A.
Smith, and Hanna Hajishirzi. 2 olmo 2 furious. ArXiv, abs/2501.00656, 2024. URL https:
//api.semanticscholar.org/CorpusID:275213098.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova Dassarma, T. J. Henighan,
Benjamin Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, John Kernion,
Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom B. Brown, Jack Clark, Jared Kaplan, Sam
McCandlish, and Chris Olah. In-context learning and induction heads. ArXiv, abs/2209.11895,
2022. URL https://api.semanticscholar.org/CorpusID:252532078.

OpenAI et al. Gpt-4 technical report. 2023. URL https://api.semanticscholar.org/
CorpusID:257532815.

Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for energy-
efficient and enhanced pattern recognition. 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 475–480, 2015. URL https://api.semanticscholar.org/
CorpusID:8798529.

15

https://api.semanticscholar.org/CorpusID:267760184
https://api.semanticscholar.org/CorpusID:267760184
https://api.semanticscholar.org/CorpusID:274992824
https://api.semanticscholar.org/CorpusID:274992824
https://api.semanticscholar.org/CorpusID:267898017
https://api.semanticscholar.org/CorpusID:267898017
https://api.semanticscholar.org/CorpusID:273403699
https://api.semanticscholar.org/CorpusID:273403699
https://api.semanticscholar.org/CorpusID:270062339
https://api.semanticscholar.org/CorpusID:263909434
https://api.semanticscholar.org/CorpusID:263909434
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:255749430
https://api.semanticscholar.org/CorpusID:255749430
https://api.semanticscholar.org/CorpusID:275213098
https://api.semanticscholar.org/CorpusID:275213098
https://api.semanticscholar.org/CorpusID:252532078
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:8798529
https://api.semanticscholar.org/CorpusID:8798529


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Jackson Petty, Sjoerd van Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, and Tal Linzen. The
impact of depth and width on transformer language model generalization. CoRR, 2023.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2019. URL https://api.
semanticscholar.org/CorpusID:204838007.

David Raposo, Sam Ritter, Blake Richards, Timothy P. Lillicrap, Peter Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
models. ArXiv, abs/2404.02258, 2024. URL https://api.semanticscholar.org/
CorpusID:268876220.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Ville A. Satopaa, Jeannie R. Albrecht, David E. Irwin, and Barath Raghavan. Finding a ”knee-
dle” in a haystack: Detecting knee points in system behavior. 2011 31st International Con-
ference on Distributed Computing Systems Workshops, pp. 166–171, 2011. URL https:
//api.semanticscholar.org/CorpusID:67623.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. ArXiv, abs/2207.07061, 2022. URL
https://api.semanticscholar.org/CorpusID:250526382.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. In Neural Information Processing Systems, 2021. URL https://api.
semanticscholar.org/CorpusID:235368338.

Guangyuan Shi, Zexin Lu, Xiaoyu Dong, Wenlong Zhang, Xuanyu Zhang, Yujie Feng, and Xiao-
Ming Wu. Understanding layer significance in llm alignment. arXiv preprint arXiv:2410.17875,
2024.

Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, and Jianfeng Gao. Rethinking
interpretability in the era of large language models. ArXiv, abs/2402.01761, 2024. URL https:
//api.semanticscholar.org/CorpusID:267412530.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and
Ravid Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language mod-
els. ArXiv, abs/2502.02013, 2025. URL https://api.semanticscholar.org/
CorpusID:276107264.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of arith-
metic reasoning in language models using causal mediation analysis. In Conference on Empirical
Methods in Natural Language Processing, 2023. URL https://api.semanticscholar.
org/CorpusID:258865170.

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2022. URL https://api.semanticscholar.org/
CorpusID:252917648.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. ArXiv, abs/1811.00937, 2019. URL
https://api.semanticscholar.org/CorpusID:53296520.

16

https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:268876220
https://api.semanticscholar.org/CorpusID:268876220
https://api.semanticscholar.org/CorpusID:67623
https://api.semanticscholar.org/CorpusID:67623
https://api.semanticscholar.org/CorpusID:250526382
https://api.semanticscholar.org/CorpusID:235368338
https://api.semanticscholar.org/CorpusID:235368338
https://api.semanticscholar.org/CorpusID:267412530
https://api.semanticscholar.org/CorpusID:267412530
https://api.semanticscholar.org/CorpusID:276107264
https://api.semanticscholar.org/CorpusID:276107264
https://api.semanticscholar.org/CorpusID:258865170
https://api.semanticscholar.org/CorpusID:258865170
https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:53296520


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Shawn Tan, Yikang Shen, Zhenfang Chen, Aaron C. Courville, and Chuang Gan. Sparse universal
transformer. ArXiv, abs/2310.07096, 2023. URL https://api.semanticscholar.org/
CorpusID:263834790.

Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference via early
exiting from deep neural networks. 2016 23rd International Conference on Pattern Recog-
nition (ICPR), pp. 2464–2469, 2016. URL https://api.semanticscholar.org/
CorpusID:2916466.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:13756489.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max W.F. Ku, Kai Wang, Alex Zhuang,
Rongqi ”Richard” Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. ArXiv, abs/2406.01574, 2024. URL https:
//api.semanticscholar.org/CorpusID:270210486.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, F. Xia, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language mod-
els. ArXiv, abs/2201.11903, 2022. URL https://api.semanticscholar.org/
CorpusID:246411621.

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
better at learning learning algorithms. ArXiv, abs/2311.12424, 2023. URL https://api.
semanticscholar.org/CorpusID:265308959.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part
2.1, grade-school math and the hidden reasoning process. ArXiv, abs/2407.20311, 2024. URL
https://api.semanticscholar.org/CorpusID:271544257.

Zeping Yu, Yonatan Belinkov, and Sophia Ananiadou. Back attention: Understanding and enhancing
multi-hop reasoning in large language models. ArXiv, abs/2502.10835, 2025. URL https:
//api.semanticscholar.org/CorpusID:276409219.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
ArXiv, abs/1311.2901, 2013. URL https://api.semanticscholar.org/CorpusID:
3960646.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Annual Meeting of the Association for Computational Lin-
guistics, 2019. URL https://api.semanticscholar.org/CorpusID:159041722.

Zheng Zhao, Yftah Ziser, and Shay B. Cohen. Layer by layer: Uncovering where multi-task learning
happens in instruction-tuned large language models. ArXiv, abs/2410.20008, 2024. URL https:
//api.semanticscholar.org/CorpusID:273654756.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied Sanosi
Saied, Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foun-
dation models. In NAACL-HLT, 2023. URL https://api.semanticscholar.org/
CorpusID:258108259.

Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Emer-
gence of superposition: Unveiling the training dynamics of chain of continuous thought. ArXiv,
abs/2509.23365, 2025a. URL https://api.semanticscholar.org/CorpusID:
281675453.

Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reasoning by
superposition: A theoretical perspective on chain of continuous thought. ArXiv, abs/2505.12514,
2025b. URL https://api.semanticscholar.org/CorpusID:278740606.

17

https://api.semanticscholar.org/CorpusID:263834790
https://api.semanticscholar.org/CorpusID:263834790
https://api.semanticscholar.org/CorpusID:2916466
https://api.semanticscholar.org/CorpusID:2916466
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:270210486
https://api.semanticscholar.org/CorpusID:270210486
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:265308959
https://api.semanticscholar.org/CorpusID:265308959
https://api.semanticscholar.org/CorpusID:271544257
https://api.semanticscholar.org/CorpusID:276409219
https://api.semanticscholar.org/CorpusID:276409219
https://api.semanticscholar.org/CorpusID:3960646
https://api.semanticscholar.org/CorpusID:3960646
https://api.semanticscholar.org/CorpusID:159041722
https://api.semanticscholar.org/CorpusID:273654756
https://api.semanticscholar.org/CorpusID:273654756
https://api.semanticscholar.org/CorpusID:258108259
https://api.semanticscholar.org/CorpusID:258108259
https://api.semanticscholar.org/CorpusID:281675453
https://api.semanticscholar.org/CorpusID:281675453
https://api.semanticscholar.org/CorpusID:278740606


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A COMPUTING ANGULAR DISTANCE

Elaborating on the computation of angular distance in Section 2.1, the angular distance for a single
sequence of length T is defined as

d
(
x(ℓ), x(ℓ+n)

)
=

1

π
arccos

(
x
(ℓ)
T · x(ℓ+n)

T

∥x(ℓ)
T ∥ ∥x(ℓ+n)

T ∥

)
,

where the inner product is taken over the hidden dimension of the model for the last token T of the
sequence, ∥ ·∥ denotes the L2 norm, and the factor 1/π normalizes the distance to [0, 1]. We average
this distance over 10,000 examples to obtain a stable estimate. We focus on the final token since,
under a causal attention mask, its embedding is the only one that depends on the entire sequence.
We use the same definition of angular distance as Gromov et al. (2024).

B DETAILED EVALUATION BENCHMARKS

To capture broad conceptual nature of reasoning, we consider 17 real-world benchmarks grouped
into six categories, ordered along a spectrum from less to more reasoning intensive tasks, i.e. from
factual recall to systematic symbolic reasoning: factual knowledge, reading comprehension, com-
monsense reasoning, multi-disciplinary Reasoning, BIG-Bench Hard (BBH), and mathematical rea-
soning. This progression reflects increasing reliance on reasoning rather than memorization.

• Factual Knowledge: Tasks that test the model’s ability to recall information without addi-
tional context, thus primarily measuring memorization. We include TriviaQA (Joshi et al.,
2017) and NaturalQuestions (Kwiatkowski et al., 2019).

• Reading Comprehension: Tasks requiring the model to infer answers from a given pas-
sage, involving text understanding and light reasoning (e.g., multi-hop). Benchmarks in-
clude BoolQ (Clark et al., 2019), OpenBookQA (Mihaylov et al., 2018), and DROP (Dua
et al., 2019).

• Commonsense Reasoning: Tasks that evaluate human-like capacity to make assumptions
and inferences about the nature and characteristics of everyday scenarios, including Com-
monSenseQA (Talmor et al., 2019), HellaSwag (Zellers et al., 2019), SocialQA (Sap et al.,
2019), WinoGrande (Sakaguchi et al., 2021).

• Multi-Disciplinary Reasoning: Benchmarks testing both factual knowledge and reason-
ing across broad academic and multi-disciplinary domains. We include ARC-Easy and
ARC-Challenge (Clark et al., 2018), MMLU (Hendrycks et al., 2020), MMLU-Pro (Wang
et al., 2024), and AGIEval-English (Zhong et al., 2023).

• BIG-Bench Hard (BBH): A collection of 23 diverse tasks spanning math, logic puzzles,
symbolic and social reasoning (Suzgun et al., 2022). Many tasks are synthetic, and BBH
serves as a cross-cutting benchmark for compositional reasoning that does not fit neatly
into the other categories.

• Mathematical Reasoning: We finally test the model on solve math word problem
benchmarks to evaluate systematic reasoning and symbolic manipulation, represented by
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021).

C ALGORITHM FOR CHOOSING THE OPTIMAL CONFIGURATION

To automatically identify the point at which a curve transitions from a rapid to a gradual decrease, we
employ the Kneedle algorithm (Satopaa et al., 2011). The difference function Di is then evaluated
on (x, ỹ(x)), providing a smooth approximation that avoids spurious local variations.

Formally, let the curve be represented as a sequence of points:

C = {(xi, yi)}ni=0,

where x corresponds to the layer index l and y to the angular distance d(l, l + 1).The key steps
underlying Kneedle Algorithm are:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1. Smooth and normalize the data into [0, 1]2: (x̂i, ŷi).
2. Compute the deviation Di = ŷi − (1− x̂i) from the diagonal.
3. Identify local maxima of the difference curve as candidate knees.
4. Apply a threshold-based rule (with sensitivity parameter S) to declare knees when the

difference drops below threshold.

To improve robustness against noise, we apply a polynomial interpolation of degree 2 to the data:

ỹ(x) = a0 + a1x+ a2x
2,

fitted via least squares. This provides a smooth approximation that avoids spurious local variations.

The details of Kneedle Algorithm can be summarized as follows:

1. Normalization: Scale both axes to [0, 1]:

x̂i =
xi −min(x)

max(x)−min(x)
, ŷi =

yi −min(y)

max(y)−min(y)
.

2. Difference curve: Compute the deviation between the normalized curve and the diagonal
y = 1− x̂:

Di = ŷi − (1− x̂i).

3. Local maxima: Candidate knees are local maxima of Di, i.e.

Di−1 < Di ∧ Di+1 < Di.

4. Threshold rule: For each local maximum, define a threshold

Ti = Di − S ·∆x, ∆x = 1
n−1

n−1∑
j=1

(x̂j+1 − x̂j),

where S > 0 is a sensitivity parameter. A knee is declared at i∗ if Dj < Ti for some j > i
before the next local maximum is reached.

We run the above procedure using the KneeLocator package:

kneedle = KneeLocator(
x, y,
curve=’convex’,
direction=’decreasing’,
interp_method=’polynomial’,
polynomial_degree=2,
online=True

)

The returned index
i∗ = kneedle.knee

is taken as the transition point from steep to gradual decline.

D DETAILS ON ADAPTIVE-DEPTH ETD TRAINING

In Section 5, we introduce the mechanism that allows the model to adaptively determine the number
of recursive iterations per input token—referred to as adaptive-depth ETD. This subsection provides
full implementation details covering the architecture, training, and inference procedure.

Architecture. We keep the general architecture of the model the same and add a lightweight router.
The router is implemented as a linear projection of the hidden state followed by a sigmoid activation.
The input to the router is the hidden representation that is output by the recursive T block, and the
output of the router is the halting value between 0 and 1. The router is randomly initialized, i.e. we
do not use the insights from fixed-depth ETD to set some priors for the router.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Training stage. Adaptive-depth ETD undergoes mid-training in the same way as fixed-depth ETD.
We train the router to learn how to allocate resources, i.e. iterations, for different input tokens, at the
same time as we mid-train the other model parameters.

At each iteration t, after computing the hidden representation ht with the recursive block, the router
outputs a halting values wt ∈ (0, 1) for each token. These values are accumulated across iterations:

Ht =

t∑
j=1

wj . (4)

For each input, the initial value of Ht is zero. Computation for a token is stopped once Ht ≥ 1− ϵ,
with ϵ = 0.01. However, early during training the router may output extremely small halting values,
causing excessively many iterations. To avoid this, we cap the maximum number of iterations dur-
ing training to Nmax=10. During training we use the same hyperparameters as during fixed-depth
ETD training. We do not provide auxiliary losses (e.g., intermediate losses after each iteration) nor
we introduce any regularizers. Hyperparameters—including optimizer, learning rate, and sched-
uler—remain identical to fixed-depth ETD. The router is trained end-to-end jointly with the model.

At test-time. The test time regime is very similar to the training regime, except that once the
model is trained we remove the cap on the number of iterations. The model determines on its own
the number of iterations: after each iteration the router uses the output of the recursive block to
predict the halting value for the iteration, and stops as soon as the cumulated halting values exceed
1− ϵ:

∑K
j=1 wj > 1− ϵ, where K is the number of iterations.

Intuitively, until sufficient confidence is accumulated, the latent ”thought” state continues to be up-
dated. The final representation passed to latent deocder is the output of “thinking” block T after the
final iteration. For easy tokens, the computation halts after few iterations, whereas difficult tokens
may trigger more recursive reasoning steps. This design enables test-time computation scaling: the
model dynamically allocates additional reasoning depth where beneficial

E RESULTS WITH ITERATIONS OVER DIFFERENT LAYERS

We fix the recursive “thinking” block size and vary its starting position from layer 2 to 12 in steps
of 2, which is equivalent to increasing the size of the latent encoder NE from 1 to 11 in steps of 2.

Table 7: Results of the Encode–Think–Decode (ETD) method when varying the subset of layers in
the recursive block. We report accuracy (Acc.) when increasing the size of the latent encoder NE

from 1 to 11 in steps of 2, for each of six task categories (as defined in Sec. 3.2).

Model Params/
FLOPs

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

1-4*2-11 16 / 20 37.92 55.53 64.82 44.99 31.23 25.6
3-4*2-9 16 / 20 37.43 56.93 65.87 46.9 29.80 27.31
5-4*2-7 16 / 20 37.58 56.51 66.86 49.03 32.21 26.8
7-4*2-5 16 / 20 38.1 56.14 66.74 48.41 31.67 28.27
9-4*2-3 16 / 20 37.7 53.46 65.52 45.71 31.05 27.35

11-4*2-1 16 / 20 37.67 54.79 64.45 45.18 30.93 24.63

F PERFORMANCE OF ETD ON EACH TASK

Table 2 reports the results of the Encode–Think–Decode (ETD) method with varying numbers of
iterations over recursive “thinking” blocks, compared to the OLMo 2 1B baseline on 6 categories of
tasks described in Sec. 3.2. In this section, we share the results for each individual tasks in Tables 8.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: Results of the Encode–Think–Decode (ETD) method with varying numbers of iterations
over recursive “thinking” blocks, compared to the OLMo 2 1B baseline. Reported metrics include
accuracy (Acc.) and relative improvement (∆, in %) with respect to the baseline. Parameter counts
denote the number of distinct layers, while FLOPs correspond to the number of effective forward-
pass layers.

Natural Questions TriviaQA BoolQ OpenbookQA DROP HellaSwag

Model Params/FLOPs Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Baseline 16 / 16 20.98 - 54.12 - 72.0 - 52.8 - 31.761 - 69.7 -
Ours (k=2) 16 / 20 20.76 (-1.01%) 55.43 (+2.43%) 75.7 +(5.14%) 57.0 (+7.95%) 35.73 (+12.5%) 69.8 (+0.14%)
Ours (k=3) 16 / 24 19.97 (-4.78%) 55.13 (+1.88%) 76.0 (+5.56%) 57.4 (+8.71%) 34.82 (+9.64%) 69.6 (-0.14%)
Ours (k=4) 16 / 28 20.35 (-2.99%) 55.13 (+1.8%)8 78.0 (+8.33%) 58.8 (+11.36%) 36.47 (+14.81%) 71.0 (+1.87%)
Ours (k=5) 16 / 32 20.53 (-2.12%) 55.93 (+3.36%) 76.4 (+6.11%) 61.0 (+15.53%) 38.086 (+19.91%) 70.4 (+1%)

Social IQa WinoGrande CommonsenseQA ARC-Easy ARC-Challenge MMLU

Model Params/FLOPs Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Baseline 16 / 16 58.1 - 66.69 - 66.67 - 78.5 - 50.85 - 44.52 -
Ours (k=2) 16 / 20 62.9 (+8.26%) 66.85 (+0.24%) 67.40 (+1.11%) 78.4 (-0.13%) 58.36 (+14.77%) 47.59 (+6.9%)
Ours (k=3) 16 / 24 63.9 (+9.98%) 68.19 (+2.25%) 69.29 (+3.93%) 79.7 (+1.53%) 60.24 (+18.46%) 49.40 (+10.96%)
Ours (k=4) 16 / 28 65.0 (+11.88%) 68.51 (+2.72%) 68.14 (+2.21%) 79.8 (+1.66%) 62.03 (+21.98%) 49.84 (+11.95%)
Ours (k=5) 16 / 32 66.2 (+13.94%) 68.59 (+2.84%) (+68.47%) (+2.7%) 80.4 (+2.42%) 61.43 (+20.81%) 49.95 (+12.19%)

MMLU Pro AGIEval English BBH GSM8K MATH

Model Params/FLOPs Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Baseline 16 / 16 15.55 - 35.58 - 31.8 - 44.05 - 4.57 -
Ours (k=2) 16 / 20 17.53 (12.72%) 40.16 (12.86%) 31.67 (-0.4%) 51.10 (+16.01%) 5.45 (19.22%)
Ours (k=3) 16 / 24 18.13 (+16.57%) 40.27 (+13.2%) 32.62 (+2.58%) 54.36 (+23.41%) 6.22 (+36.04%)
Ours (k=4) 16 / 28 18.37 (+18.12%) 40.88 (+14.89%) 33.01 (+3.82%) 55.50 (+25.99%) 3.73 (-18.28%)
Ours (k=5) 16 / 32 19.07 (+22.66%) 42.07 (+18.24%) 33.49 (+5.3%) 56.56 (+28.4%) 4.33 (-5.17%)

G RESULTS WITH ITERATIONS OVER VARYING RECURSIVE BLOCK SIZE

We vary the block size by removing and adding layers symmetrically around the originally selected
7–4*2–5 configuration, keeping the recursive block centered in the same region of the model while
changing its extent. We report the performance with sizes of recursive block of 2,4,6,8, and 12.

Table 9: Results of the Encode–Think–Decode (ETD) method when varying the number of layers
in the recursive block. We report accuracy (Acc.) when the size of the recursive block T is 2, 4,6,8,
and 12, for each of six task categories (as defined in Sec. 3.2).

Model Params/
FLOPs

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

8-2*2-6 16 / 18 37.99 55.23 65.88 47.00 30.98 26.63
7-4*2-5 16 / 20 38.10 56.14 66.74 48.41 31.67 28.27
6-6*2-4 16 / 22 38.37 57.43 67.01 49.09 31.81 29.04
5-8*2-3 16 / 24 37.00 57.67 67.73 49.54 33.71 29.35

2-12*2-2 16 / 28 37.70 56.44 67.73 47.58 32.30 29.27

H RESULTS ON OLMO-2 7B MODEL

I TRAINING COMPUTE OVERVIEW

We run all our experiments on a node with 8 A100 80GB GPUs. Table ?? we report training time of
experiments presented in Table 2.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 10: Results with larger model and same FLOPs

Model Params/
FLOPs

Factual
Knowledge

Reading
Comprehension

Commonsense
Reasoning

Multi-Disciplinary
Reasoning BBH Math.

Reasoning

OLMo 2 7B 32 / 32 56.63 74.68 76.73 62.9 48.18 41.63
16-10*2-6 32 / 40 56.89 75.05 76.82 62.95 49.77 42.64

Table 11: Compute cost of experiments (GPU hours per full training run).

Model GPUs Hours / run GPU hours
OLMo2 (k=1) 8 × A100 ∼116 ∼928
ETD (k=2) 8 × A100 ∼137 ∼1,096
ETD (k=3) 8 × A100 ∼170 ∼1,360
ETD (k=4) 8 × A100 ∼195 ∼1,560
ETD (k=5) 8 × A100 ∼220 ∼1,760

J FUTURE WORK

Future work spans several directions. Extending ETD to multimodal models could establish recur-
sive latent reasoning as a general principle of representation learning across domains. Designing
more efficient training strategies, together with refining adaptive depth mechanisms, may yield bet-
ter compute–performance trade-offs. Assessing the impact of ETD on instruct models will require
integration at the post-training stage, which we leave for future investigation. Last but not least,
conducting interpretability studies could clarify how recursive latent reasoning interacts with model
circuits and representations, offering deeper insights into the structure of reasoning in LLMs.

K USAGE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used large language models (LLMs) solely as writing assistants, to
improve grammar, style, and clarity. The authors retain full responsibility for the content and any
remaining errors.

22


	Introduction
	On the Roles of Layers for Reasoning
	Choosing the optimal configuration for latent reasoning

	Experimental Setup
	Training Pipeline
	Evaluation Benchmarks

	Evaluating Recursive ``Thinking'' Blocks
	Performance Gains from Iterating over ``Thinking'' Blocks
	Comparison with alternative recursive frameworks
	How does the choice of recursive layers change performance?
	How does the size of Recursive "Thinking" block change the performance?
	Comparison with larger model with same effective depth
	Scaling from 1B parameters to 7B parameters

	Adaptive test-time scaling
	Methodology
	Results

	Related Work
	Conclusions
	Computing Angular Distance
	Detailed Evaluation Benchmarks
	Algorithm for choosing the optimal configuration
	Details on Adaptive-depth ETD training
	Results with iterations over different layers
	Performance of ETD on each task
	Results with iterations over varying recursive block size
	Results on OLMo-2 7B model
	Training Compute Overview
	Future Work
	Usage of Large Language Models

