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Mask-based Membership Inference Attacks for
Retrieval-Augmented Generation

Anonymous Author(s)

ABSTRACT
Retrieval-Augmented Generation (RAG) has been an effective ap-
proach to mitigate hallucinations in large language models (LLMs)
by incorporating up-to-date and domain-specific knowledge. Re-
cently, there has been a trend of storing up-to-date or copyrighted
data in RAG knowledge databases instead of using it for LLM train-
ing. This practice has raised concerns about Membership Inference
Attacks (MIAs), which aim to detect if a specific target document is
stored in the RAG system’s knowledge database so as to protect the
rights of data producers. While research has focused on enhancing
the trustworthiness of RAG systems, existingMIAs for RAG systems
remain largely insufficient. Previous work either relies solely on the
RAG system’s judgment or is easily influenced by other documents
or the LLM’s internal knowledge, which is unreliable and lacks ex-
plainability. To address these limitations, we propose aMask-Based
Membership Inference Attacks (MBA) framework. Our framework
first employs a masking algorithm that effectively masks a certain
number of words in the target document. The masked text is then
used to prompt the RAG system, and the RAG system is required
to predict the mask values. If the target document appears in the
knowledge database, the masked text will retrieve the complete
target document as context, allowing for accurate mask prediction.
Finally, we adopt a simple yet effective threshold-based method to
infer the membership of target document by analyzing the accuracy
of mask prediction. Our mask-based approach is more document-
specific, making the RAG system’s generation less susceptible to
distractions from other documents or the LLM’s internal knowl-
edge. Extensive experiments demonstrate the effectiveness of our
approach compared to existing baseline models.

CCS CONCEPTS
• Computing methodologies→ Information extraction; • Se-
curity and privacy→Human and societal aspects of security
and privacy.
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Retrieval-Augmented Generation; Membership Inference Attacks
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1 INTRODUCTION
Large languagemodels (LLMs) such as ChatGPT [3] and LLama [34],
have revolutionized natural language processing. Despite these
advancements, challenges remain, particularly in handling domain-
specific or highly specialized queries [16]. LLMs often resort to "hal-
lucinations," fabricating information outside their training data [43].

Retrieval-Augmented Generation (RAG) addresses this by inte-
grating external data retrieval into generation, improving response
accuracy and relevance [11, 19]. And RAG has been widely adopted
by many commercial question-and-answer (Q&A) systems to in-
corporate up-to-date and domain-specific knowledge. For instance,
Gemini [33] leverages the search results from Google Search to
enhance its generation, while Copilot1 integrates the documents or
pages returned by Bing search into its context.

A recent trend involves storing up-to-date or copyrighted data
in RAG knowledge databases instead of using it for LLM training.
The SILO framework [25] exemplifies this approach, training LLMs
on low-risk data (e.g., public domain or permissively licensed) and
storing high-risk data (e.g., medical text with personally identifiable
information) in the knowledge base. However, the legal implica-
tions of using data for generation models or systems are under
scrutiny, with lawsuits filed globally due to potential copyright
infringement [6, 24, 29, 30, 35]. This concern has spurred the de-
velopment of Membership Inference Attacks (MIAs) to detect if
specific data records were stored in RAG’s knowledge database
and could potentially appear in the generated texts, which raises
concerns about fair use doctrine [12] or General Data Protection
Regulation (GDPR) compliance [42].

Even though a growing body of research has focused on enhanc-
ing the trustworthiness of RAG systems [26, 36, 41, 44, 45], to the
best of our knowledge, there are only two existing works target-
ing at the MIAs in RAG system. RAG-MIAs [1] judges whether a
target document is in the knowledge database by directly asking
the RAG system (i.e., utilizing the RAG’s response (yes or no) as
the judgement). This approach relies solely on the RAG system’s
judgment, which is unreliable and lacks explainability. S2MIAs [20]
prompts the RAG system with the first half (typically the question
part) of the target document, and if the RAG’s response is seman-
tically similar to the remaining half (typically the answer part) of
the target document, the target document is judged as a member.
Several studies have focused on Membership Inference Attacks
(MIAs) for LLMs [4, 23, 39]. Among these, Min-k% Prob Attack [31]

1https://github.com/features/copilot/
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Figure 1: Distributions of Indicators for Member and Non-Member Samples in Different Methods on HealthCareMagic-100k
dataset, which are visualised by kernel density estimate (KDE) method.

is a state-of-the-art method that infers membership using the sum
of the minimum k% probabilities of output tokens. However, as
illustrated in Figure 1 (a)-(c), the indicators used to determine mem-
bership in existing methods (e.g., the similarity between the second
half of the target document and the generated response in S2MIA)
are nearly indistinguishable for member and non-member samples.
This hinders the effectiveness of MIAs in RAG systems.

To effectively and reliably detect whether a target document
resides in a RAG system’s knowledge database, we propose aMask-
Based Membership Inference Attacks (MBA) framework. The intu-
ition is that if specific words (i.e., carefully selected words) in the
document are masked, the RAG system is highly likely to predict
the mask values accurately only if it retrieves the entire document
as context. This prediction accuracy serves as our membership
indicator. To conduct the inference, we first design a mask gen-
eration algorithm, masking 𝑀 words or phrases in the original
target document, where𝑀 is a hyperparameter. This involves ex-
tracting professional terms or proper nouns and selecting the most
challenging words to predict using a pre-trained proxy language
model. After obtaining the masked texts, we present the masked
document to the RAG system and the RAG system is required to
predict the mask values. A simple yet effective threshold-based
judgement metric is adopted to determine the membership, i.e.,
if over 𝛾 · 𝑀 masked words are correctly predicted, where 𝛾 is a
hyperparameter, we judge the target document as a member of the
knowledge database. As shown in Figure 1 (d), compared to existing
methods, our mask-based method exhibits a significant gap in mask
prediction accuracy between member (avg. 0.9) and non-member
(avg. 0.2) samples. This enables our approach to effectively and
reliably determine the membership of the target document. We
open source our code online2.

To summarize, the main contributions of this paper are:

• We propose a Mask-based Membership Inference Attacks
(MBA) framework targeting at the scenario of RAG system.
Our framework is applicable to any RAG system, regardless
of its underlying LLM parameters or retrieval method.

• We design a mask generation algorithm that strategically
masks terms that would be difficult for the RAG system to
predict if the full document were not retrieved as context.

2Code available after acceptance

• We evaluated our MBA framework on three public QA
datasets. Extensive experiments demonstrated the effec-
tiveness of our framework, achieving an improvement of
approximately 50% in ROC AUC value compared to existing
methods.

2 RELATEDWORK
2.1 Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) enhances response accu-
racy and relevance by incorporating external data retrieval into
the generation process [11]. A common RAG paradigm involves
using the user query to retrieve a set of documents, which are then
concatenated with the original query and used as context [19].

Recent research has focused on various retrieval methods, in-
cluding token-based retrieval [18], data chunk retrieval [28], and
graph-based retrieval [9, 17]. Additionally, studies have explored
adaptive retrieval [15] and multiple retrieval [14]. More advanced
techniques such as query rewriting [10, 21] and alignment between
retriever and LLM [5, 40] are beyond the scope of this paper.

2.2 Membership Inference Attacks
Membership Inference Attacks (MIAs) [13, 32] are privacy threats
that aim to determine if a specific data record was used to train a
machine learning model. MIAs for language models [4, 23, 31, 39]
have been the subject of extensive research. Some representative
attacking methods are: 1) Loss Attack: A classic MIA approach
that classifies membership based on the model’s loss for a target
sample [39]; 2) Zlib Entropy Attack: It refines the Loss Attack by
calibrating the loss using zlib compression size [4]; 3) Neighbor-
hood Attack: This method targets MIAs in mask-based models by
comparing model losses of similar samples generated by replacing
words with synonyms [23]; 4) The Min-k% Prob Attack: this
approach calculates membership by focusing on the k% of tokens
with the lowest likelihoods in a sample and computing the average
probabilities. However, these works may not be directly applicable
to RAG systems. Additionally, many of them rely on the loss or
token output probabilities, which require access to LLM parameters
or intermediate outputs that may not be available in black-box RAG
systems.

Recently, there are two works targeting at the MIAs in RAG sce-
narios. RAG-MIAs [1] judges whether a target document is in the

2
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RAG system’s knowledge database by prompting the RAG system
with "Does this: {Target Document} appear in the context? Answer
with Yes or No.", then utilizing the RAG’s response (yes or no) as
the judgement result directly. This approach relies solely on the
RAG system’s judgment, which can be unreliable and lacks explain-
ability. S2MIA [20] prompts the RAG system with the first half of
the target document, and compares the semantic similarity of the
RAG’s response and the remaining half of the target document. To
enhance robustness, that work also incorporates perplexity of the
generated response. A model is trained to determine the threshold
values for similarity and perplexity. Membership is judged based on
these thresholds: a target document is considered a member if its
similarity exceeds the threshold and its perplexity falls below the
threshold. However, the RAG systemmay not always strictly adhere
to the original texts, and responses generated using internal knowl-
edge may have similar similarity scores to those generated with
retrieved documents. This can lead to unreliable and unconvincing
prediction results.

3 PRELIMINARIES
In this section, we establish the notation, provide a brief overview
of Retrieval-Augmented Generation (RAG), and outline the specific
task addressed in this paper.

3.1 RAG Overview
RAG systems typically consist of three primary components: a
knowledge database, a retriever, and a large language model (LLM).
The knowledge database, denoted as D = {𝑃1, · · · , 𝑃𝑁 }, comprises
a collection of documents sourced from authoritative and up-to-date
sources. The retriever is a model capable of encoding both queries
and documents into a common vector space to facilitate retrieval.
The LLM, such as ChatGPT or Gemini, is a trained language model
capable of generating text.

The RAG process unfolds as follows: Given a user query q, the
system retrieves 𝑘 relevant documents from D using the retriever:

P𝑘 = RETRIEVE (q,D, 𝑘) (1)

Typically, retrieval is based on similarity metrics like inner product
or cosine similarity. The retrieved documents, concatenated as
P𝑘 = [𝑝1 ⊕ · · · ⊕ 𝑝𝑘 ], are then combined with a system prompt s
and the original query to generate a response using the LLM:

r = LLM(s ⊕ q ⊕ P𝑘 ) (2)

Here, [· ⊕ ·] represents the concatenation operation.

3.2 Task Formulation
We introduce the task of Membership Inference Attacks (MIAs) in
RAG system.
Attacker’s Target: Given a target document 𝑑 , the objective is to
determine whether 𝑑 is present in the RAG system’s knowledge
database D.
Attacker’s Constraints:We target at the black-box setting in RAG
system. The attacker cannot access the RAG system’s knowledge
base (D) or the LLM’s parameters. However, they can interact with
the system freely and repeatedly. The RAG system’s response is
solely textual, providing answers to the user’s questions without
explicitly displaying the contents of the retrieved documents. This

scenario is realistic, as users typically have unrestricted access to
chatbots.
Attacker’s Task:The attacker’s task is to design aBinaryMembership
Inference Classifier (BMIC) that takes the target document (𝑑), and
the response of the RAG system (r) as input. Formally, the proba-
bility of 𝑑 being in D is calculated as:

𝑃 (𝑑 ∈ D) = BMIC (𝑑, r) ,
r = LLM (s ⊕ Q𝑑 ⊕ P𝑘 )

(3)

where r is generated by the LLM using a system prompt s, a well
designed question generated from 𝑑 (denoted as Q𝑑 ), and retrieved
documents P𝑘 . Designing a method to generate Q that can effec-
tively differentiate between responses generated with and without
the target document in the context is a key challenge in MIAs for
RAG systems.
MIAWorkflow: The MIA process involves generating questions
based on the target document 𝑑 . If the RAG system’s response
(answer) r accurately matches the original content of 𝑑 , it can be
inferred that 𝑑 is present in the knowledge databaseD. Conversely,
if there is a significant mismatch, it suggests that 𝑑 is not in D.
Designing Principals: There are three main principals on design-
ing the classifier and the adaption function:

(1) Effective Retrieval: Q𝑑 should successfully retrieve 𝑑 if
𝑑 ∈ D. Recall that in RAG, relevant documents are retrieved
based on the user query and used as context for generation.
In this context, Q𝑑 serves as the user query. If 𝑑 cannot be
successfully retrieved, it implies that 𝑑 is not in D, leading
to a negative judgment.

(2) Indirect Information: Q𝑑 shall not directly reveal the in-
formation to be verified in the BMIC. While using 𝑑 directly
as Q𝑑 might seem straightforward, it introduces bias: the
RAG system will always include 𝑑 in the context, regardless
of its presence in the knowledge base, making the inference
unreliable.

(3) Targeted Questions: Questions should be challenging for
the RAG system to answer if 𝑑 is not in the knowledge base,
and vice versa. Overly simple questions can be answered
using internal knowledge or other retrieved documents, hin-
dering judgment. Conversely, irrelevant questions may not
elicit expected responses, even if 𝑑 is successfully retrieved.

4 METHODS
4.1 Overview
This section presents our proposedMask-Based Membership Infer-
enceAttacks (MBA) framework, illustrated in Figure 2. We begin by
explaining our motivation (Section 4.2). Subsequently, we introduce
the two key components of our framework: Mask Generation
(Section 4.3), which generates𝑀 masks within the original target
document as our document-specific question (Q𝑑 ), and a Binary
Membership Inference Classifier (BMIC, Section 4.4), which
infers membership based on the masked texts. Our framework is
non-parametric and can be applied to any black-box RAG system,
regardless of LLM parameters or retrieval methods.

3
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Figure 2: Overview of the proposed MBA framework.

4.2 Motivation
We observe that when LLMs are tasked with cloze tests (predicting
masked terms or phrases in a given text), they can accurately fill in
the blanks if the complete original text is provided as a reference.
This phenomenon inspired us to conduct MIAs in RAG systems
using a cloze test approach.

Specifically, the masked target document is used as a query to
retrieve relevant documents from the knowledge database. Due to
the high similarity between the masked document and the original
one, the target document is highly likely to be retrieved if it appears
in the knowledge database. In this case, the masked words can be
accurately predicted. Conversely, if the target document is not in
the database, there is no direct information to guide mask predic-
tion, leading to inaccurate predictions. Therefore, the accuracy of
mask prediction can serve as an indicator of the target document’s
membership.

4.3 Mask Generation
The first step involves generating masked text from the original
target document, which acts as the document-specific question
(Q𝑑 ). We aim to select terms that are challenging to predict based
solely on the LLM’s internal knowledge or the context. While cloze
question generation research [22, 38] exists, these works primarily
focus on educational applications and may not be suitable for our
purposes.

While it’s tempting to use LLMs to generatemasks, their inherent
uncertainty presents two main challenges. First, LLMs may not
always follow instructions to generate the desired number of masks.
Second, the generated mask answers may not accurately align with
the original words in the target document, potentially altering the
document’s content or even resulting in completely blank masked
texts in some cases.

A straightforward approach would be to use a proxy language
model to select terms based on their prediction difficulty (i.e., the
probabilities to correctly predict them). However, we observed three
challenges:

(1) Fragmented words: Datasets often contain specialized
terms or proper nouns that may not be recognized by lan-
guage model tokenizers. For example, GPT-2 might split
"canestan" (a medicine) into "can," "est," and "an". Masking
such terms based solely on prediction probability, which
might generate "can[Mask]an", could hinder accurate pre-
diction, even with the entire text retrieved.

(2) Misspelledwords:Datasets collected fromhuman-generated
contentmay containmisspelledwords (e.g., theword "nearly"
is written as "nearlt"). If such words are masked, LLMs tend
to accurately predict the correct spelling (e.g., "nearly"),
despite prompted to follow the original text, affecting pre-
diction accuracy.

(3) Adjacentmasks:Masking two adjacent words can be prob-
lematic for LLMs. For instance, masking "walking" and "un-
steadily" in the sentence "I went to the bathroom [Mask_1]
(walking) [Mask_2] (unsteadily), as I tried to focus..." might
lead the LLM to incorrectly predict "[Mask_1]: walking
unsteadily; [Mask_2]: as I tried to focus". Specifically, the
LLM might incorrectly identify the locations of the masked
terms, despite its ability to effectively extract nearby terms
or phrases.

To address these challenges, we incorporate an fragmented tokens
extraction algorithm (Section 4.3.1), misspelled words correction
(Section 4.3.2) and rule-based filtering methods into our mask proxy
language model based generation process (Section 4.3.3).

4
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4.3.1 Fragmented words extraction. We first extract words frag-
mented by the proxy language model’s tokenizer, such as "canes-
tan." The workflow involves identifying consecutive words (without
spaces or punctuation in the middle) that are split by the tokenizer.
This process is detailed in Algorithm 2 in Appendix A.1, where
all the fragmented words are extracted and stored in the list frag-
mented_words.

4.3.2 Misspelled words correction. After extracting fragmented
words, we further check whether they are misspelled words. If yes,
their corrected words are also obtained and recorded, as detailed in
Algorithm 1.

We iterate through each extracted fragmented word (lines 2-10).
For the current word, we obtain its index in the target document
(line 3). We use a pre-trained spelling correction model to check if
the word is misspelled. We pass the current word and its preceding
two words to the model and record the corrected word (lines 4-
6). We empirically found that using three words provides the best
results, as fewer words can lead to semantic inconsistencies. The
corrected words are recorded along with the original misspelled
words in the list fragmented_words (lines 7-9).

Algorithm 1WordsCorrection
Input: 𝑑
Output: fragmented_words
1: fragmented_words← FragmentedWordExtraction(𝑑)
2: for 𝑖 ∈ {1, 2, · · · , |fragmented_words|} do
3: 𝑖𝑛𝑑𝑒𝑥 ← GETWORDINDEX

(
fragmented_words(i) , 𝑑

)
4: sub_sentence←

[
𝑑 (𝑖𝑛𝑑𝑒𝑥−2) ⊕ 𝑑 (𝑖𝑛𝑑𝑒𝑥−1) ⊕ 𝑑𝑖𝑛𝑑𝑒𝑥

]
5: corrected_words← SCLM (sub_sentence)
6: corrected_word← corrected_words(3)
7: if fragmented_words(i) ≠ word then
8: fragmented_words(i) ← {fragmented_words(i) ,

corrected_word}
9: end if
10: end for
11: return fragmented_words

4.3.3 Proxy language model based masking. To identify challenging
words for masking, we employ a proxy language model. This model
assigns a rank score to each word, reflecting its difficulty to predict.

Language models generate text by calculating the probability
of each possible token given the preceding context and selecting
the most likely one. The rank score indicates a word’s position
among these predicted candidates. For instance, in the sentence
"... I would advise you to visit a [MASK] ...", if the correct token is
"dentist" but the model predicts "doctor" (0.6), "medical" (0.25), and
"dentist" (0.15), then "dentist" would have a rank score of 3. Words
with larger rank scores are considered more challenging to predict.
Therefore, we replace words with the largest rank scores (i.e., the
words whose probabilities ranked at the back) with the "[MASK]"
token, as detailed in Algorithm 4 of Appendix A.3.

The input𝑀 represents the desired number of masks. We divide
the target document into𝑀 equal-length subtexts and distribute the
𝑀 masks evenly across these subtexts. For each subtext, we first add

the subtexts before the current subtext (i.e., 𝑑1 to 𝑑 (𝑖−1) ) as a prefix,
and iterate through its words, adding them one by one to the prefix.
We then determine whether the next word should be masked based
on several criteria: if it is a stop word, punctuation, or adjacent to
an already masked word, it is not masked, which is implemented by
assigning its probability rank as -1. If a word is eligible for masking,
we use the proxy language model to calculate its probability of
occurrence in the given context and record its rank score. For
extracted fragmented words, we first check for misspelled errors.
If found, we use the corrected word (obtained in Algorithm 1) for
probability and rank score calculations. Otherwise, we calculate
probabilities and rank scores for each token within the word, using
the largest one to represent the word’s overall rank score. For
words that are not extracted fragmented words, their probabilities
and rank scores are calculated by proxy language model directly.

The word with the largest rank score within each subtext is
then masked, and its corresponding answer is recorded (lines 26-33).
If the masked word is an misspelled word, both the original word
and the corrected word will be added to the answer set (line 28).

4.3.4 Mask integration. Finally, the masked words are integrated
and numbered. The "[Mask]" labels in the masked text are num-
bered from "[Mask_1]" to "[Mask_𝑀]". A ground truth mask answer
dictionary is maintained in the format "[Mask_i]: answer_i," where
"answer_i" is the 𝑖-th masked word.

4.4 Binary Membership Inference Classifier
The RAG system is prompted with the template shown in Figure 6
in Appendix C.1, where the masked document is obtained using the
method introduced in Section 4.3, and the {retrieved documents}
represent those retrieved from the RAG’s knowledge database.

The response will be in the format "[Mask_i]: answer_i," where
"answer_i" represents the predicted answer for "[Mask_i]". We then
compare the predicted answers with the ground truth answers and
count the number of correct predictions. If this count exceeds 𝛾 ·𝑀 ,
where 𝛾 ∈ (0, 1] is a hyperparameter, we judge the target document
as a member of the RAG’s knowledge database; otherwise, we
conclude it is not a member.

5 EXPERIMENTS
5.1 Datasets
Weevaluate ourmethod on three publicly available question-answering
(QA) datasets:

• HealthCareMagic-100k3: This dataset contains 112,165
real conversations between patients and doctors on Health-
CareMagic.com.

• MS-MARCO [2]: This dataset features 100,000 real Bing
questions with retrieved passages and human-generated
answers. We use the "validation" set (10,047 QA pairs) for
knowledge base construction. The knowledge base includes
all unique documents retrieved by at least one question.

• NQ-simplified4: This is a modified version of the Natural
Questions (NQ) dataset. Each question is paired with a

3https://huggingface.co/datasets/RafaelMPereira/HealthCareMagic-100k-Chat-
Format-en
4https://huggingface.co/datasets/LLukas22/nq-simplified
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shortened Wikipedia article containing the answer. We use
the "test" set (16,039 QA pairs) to build a knowledge base
by storing the shortened Wikipedia articles.

Following previous research [1, 20], we randomly selected 80% of
the documents as member samples (stored in the RAG’s knowledge
base) and the remaining 20% as non-member samples. We randomly
selected 1,000 instances for training (500 member and 500 non-
member) and another 1,000 for testing (500 member and 500 non-
member) to determine any necessary thresholds.

5.2 Baselines
We evaluated ourmethod against the following baseline approaches:

• Min-k% Prob Attack [31]: A state-of-the-art membership
inference attack (MIA) for LLMs. It calculates a score based
on the sum of the least likely tokens to determine member-
ship.

• RAG-MIA [1]: This method directly queries the RAG sys-
tem about the target document’s inclusion in the retrieved
context.

• S2MIA [20]: This approach divides the target document
into two halves, prompts the RAG system with the first
half, and compares the semantic similarity between the
second half and the RAG’s response. We compare 2 settings
of S2MIA:
– S2MIAs: Relies solely on semantic similarity for MIA.
– S2MIAs&p: Incorporates both semantic similarity and

perplexity for membership inference.
Of these methods, Min-k% Prob Attack and S2MIA𝑠&𝑝 require token
prediction probabilities, which may not be accessible in certain
black-box settings.

5.3 Evaluation Metric
We evaluate performance using a comprehensive set of metrics.
Notably, we introduce Retrieval Recall as a unique metric for
MIAs in RAG systems, distinguishing our work from previous stud-
ies [1, 20]. Retrieval recall measures whether the target document
is successfully retrieved from the knowledge base when it exists.
If the target document is among the top 𝐾 retrieved documents,
the recall is 1; otherwise, it is 0. We calculate the overall retrieval
recall as the average across all membership documents, excluding
non-member documents. In addition to retrieval recall, we also
employ standard metrics commonly used in MIAs [8] and binary
classification tasks, including ROC AUC, Accuracy, Precision,
Recall, and F1-score. Specifically, member documents are labeled
as 1, and non-member documents are labeled as 0. Each method
outputs a logit value between 0 and 1 (e.g., the mask prediction
accuracy), which is then used to calculate the metrics.

5.4 Settings and implementation
5.4.1 General settings. We leverage GPT-4o-mini5 as our black-
box LLM, which is accessed by OpenAI’s API. For the RAG system,
we utilize LangChain6 framework and integrate BAAI/bge-small-
en [37] as the retrieval model, which encodes both queries and

5https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
6https://github.com/langchain-ai/langchain

documents into 384-dimensional vectors. Retrieval is performed
by calculating the inner product between these vectors, and an
approximate nearest neighbor search is conducted using an HNSW
index implemented in FAISS [7]. All experiments were conducted
on a single NVIDIA RTX A5000 GPU.

5.4.2 Method-specific settings. We now detail the specific settings
used in each method:

• Min-k%ProbAttack: k is a hyperparameter in thismethod.
We varied k from 1 to 20, and selects the k with the best
performance. This method also involves calculating the
sum of minimum k% log probabilities as the indicator for
membership inference. To obtain the log probabilities, we
leverage the "logprobs" parameter within the OpenAI API7.

• S2MIA: Cosine similarity is used to measure the similarity
between the second half of the original target document
and the response generated by RAG. To calculate perplex-
ity, the "logprobs" parameter is enabled to obtain the log
probabilities of tokens, similar to the Min-k% Prob Attack
method. XGBoost, as recommended in the original paper,
is used as the binary classifier.

• Our method:
– Spelling Correction Model: We leverage the pre-

trained "oliverguhr/spelling-correction-english-base"
model (139M parameters) from Hugging Face8 to ad-
dress potential spelling errors.

– Proxy Language Model: We employ the "openai-
community/gpt2-xl" [27] model with 1.61B parameters
as a proxy language model for difficulty prediction."

– 𝑀 : The number of masks is a hyperparameter in our
method.We experimentedwith different values of𝑀 in
{5, 10, 15, 20} for each dataset and selected the optimal
𝑀 that produced the highest ROC AUC value.

– 𝛾 : The threshold for mask prediction accuracy, used
to determine membership, is a hyperparameter in our
method. We varied this threshold from 0.1 to 1 for
each dataset and selected the optimal threshold (𝛾 )
that produced the highest F1-score.

The results obtained using the optimal𝑀 are presented as
our overall results.

5.5 Overall Performance
Table 1 presents the experimental results comparing our proposed
MBA4RAG framework with baseline methods.

A key premise of MIAs in RAG is the successful retrieval of the
target document if it exists in the knowledge database. Retrieval
recall is therefore a crucial metric. Both RAG-MIA and MBA4RAG
achieve high overall retrieval recall (over 0.9) due to their use of
the full original target document or masked versions with high
similarity. In contrast, S2MIA and Min-k% Prob Attack retrieve
documents based on fragments, leading to potential discrepancies,
especially in chunked knowledge databases. These methods exhibit
lower retrieval recall, particularly in the HealthCareMagic dataset,
likely due to the similarity of many patient-doctor dialogues.

7https://cookbook.openai.com/examples/using_logprobs
8https://huggingface.co/oliverguhr/spelling-correction-english-base
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Table 1: Performance comparison of different methods on MIAs for RAG systems.

Dataset Model Retrieval Recall ROC AUC Accuracy Precision Recall F1-score

HealthCareMagic-
100k

Min-k% Prob Attack 0.65 0.38 0.60 0.75 0.75 0.75
RAG-MIA 0.93 0.49 0.75 0.80 0.91 0.86
S2MIAs 0.62 0.46 0.77 0.79 0.96 0.87
S2MIAs&p 0.62 0.57 0.78 0.85 0.92 0.89
MBA 0.87 0.88 0.85 0.97 0.81 0.89

MS-MARCO

Min-k% Prob Attack 0.82 0.44 0.65 0.71 0.67 0.69
RAG-MIA 0.98 0.52 0.75 0.81 0.90 0.85
S2MIAs 0.81 0.64 0.57 0.80 0.63 0.71
S2MIAs&p 0.81 0.69 0.66 0.84 0.61 0.71
MBA 0.97 0.86 0.81 0.91 0.85 0.88

NQ-simplified

Min-k% Prob Attack 0.81 0.65 0.58 0.79 0.68 0.73
RAG-MIA 0.97 0.52 0.79 0.82 0.95 0.88
S2MIAs 0.81 0.67 0.64 0.89 0.64 0.74
S2MIAs&p 0.81 0.68 0.66 0.87 0.68 0.76
MBA 0.98 0.90 0.85 0.90 0.91 0.90

The rows in gray indicate models that require token log probabilities for calculations, which may not be accessible in certain scenarios.
For each metric and dataset, the best performance is bolded, and the second-best is underlined.

Table 2: The ablation study of our method.

Dataset Model Retrieval Recall ROC AUC

HealthCareMagic-
100k

Random 0.88 0.68
LLM-based 0.86 0.81
MBAPLM 0.85 0.74

MBAw/o SC 0.87 0.85
MBA 0.87 0.88

MS-MARCO

Random 0.97 0.73
LLM-based 0.95 0.80
MBAPLM 0.97 0.76

MBAw/o SC 0.96 0.84
MBA 0.97 0.86

NQ-simplified

Random 0.96 0.75
LLM-based 0.97 0.86
MBAPLM 0.97 0.69

MBAw/o SC 0.99 0.84
MBA 0.98 0.90

For the specific performance, ROC AUC is a dominant metric for
evaluatingMIAs [1, 8, 20, 23]. Our method consistently outperforms
baseline methods by nearly 50% across all datasets. Even though
baseline methods may achieve notable performance on metrics like
precision and recall, these results can be attributed to arbitrary
strategies, such as judging all documents as members.

In conclusion, our mask-based MIA method effectively retrieves
the target document when it exists in the knowledge database and
focuses on the target document without being distracted by other
retrieved documents. This leads to high performance and reliability.

5.6 Ablation Study
To assess the effectiveness of our mask generation method and
its individual components, we compared it to several baseline ap-
proaches:

• Random: A simple baseline where masks are selected ran-
domly.

• LLM-based: An alternative approach using an LLM to se-
lect words or phrases for masking. The prompt template is
provided in Figure 7 in Appendix C.2.

• MBAPLM: This variant only uses the proxy language model
for word selection, omitting fragmented word extraction
(Section 4.3.1) andmisspelledword correction (Section 4.3.2).
• MBAw/o SC: This variant excludes the misspelled word

correction (Section 4.3.2) component from our full method.

The results are presented in Table 2. Due to the similarity between
the masked text and the original text (with only a few words or
phrases replaced), retrieval recall is generally high for all masking
strategies. Even randommasking achieves competitive performance
(ROC AUC of around 0.7) due to the mask-based method’s ability
to resist distractions from other retrieved documents. However,
random masking may generate masks for simple words (e.g., stop
words), which can be easily predicted by the LLM, leading to false
positives.

The LLM-based mask generation method is straightforward to
implement and achieves acceptable performance in most cases
(ROC AUC of about 0.8). However, due to the inherent uncertainty
of LLMs, the original texts may be altered, and the number of
generated masks may deviate from the desired amount.

Our proxy language-based mask generation method guarantees
stable generation, ensuring exactly 𝑀 masks are generated and
distributed evenly throughout the text. However, challenges such
as fragmented words, adjacent masks, and misspelled words can
hinder prediction accuracy. By incorporating fragmented word
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Figure 3: The performances comparison varying𝑀
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Figure 4: The performances comparison varying 𝛾

processing and misspelled word correction, our method achieves
effective and reliable MIAs for RAG systems.

5.7 Parameter Study
5.7.1 The impact of 𝑀 . To analyze the impact of 𝑀 , the num-
ber of masks generated in the target document, we varied M in
{5, 10, 15, 20} and observed the retrieval recall and ROC AUC values
(Figure 3).

As𝑀 increases, retrieval recall slightly decreases. This is because
more masked words reduce the similarity between the masked text
and the original document. The ROC AUC value also fluctuates
slightly. When 𝑀 is too small (e.g., below 5), the error tolerance
decreases, meaning mispredictions have a larger impact on the
final membership inference performance. When 𝑀 is too large
(e.g., over 20), simple words may be masked, leading to accurate
prediction without the target document being retrieved. Addition-
ally, decreased retrieval recall can lower the prediction accuracy of
member samples, impacting overall performance.

Therefore, setting𝑀 between 5 and 15 (exclusive) is an optimal
choice.

5.7.2 The impact of 𝛾 . To analyze the impact of the membership
threshold 𝛾 , we varied 𝛾 from 0.1 to 1.0. Since retrieval recall and
ROC AUC scores are independent of 𝛾 (as 𝛾 does not affect mask
generation), we focused on f1-scores.

Figure 4 illustrates the results. While the optimal 𝛾 value varies
across datasets (5, 6, and 7), performance is relatively consistent
within the range of 0.5 to 0.7. This indicates that the performance
is not highly sensitive to 𝛾 , and setting 𝛾 around 0.5 is generally a
good choice.

5.7.3 The impact of 𝐾 . 𝐾 is a system parameter representing the
number of retrieved documents in the RAG system, which may
influence performance. However, this parameter is beyond our
framework and inaccessible to users. We verified that our method
is insensitive to K in Figure 5 of Appendix B.

6 CONCLUSION
In this paper, we address the problem of membership inference
for RAG systems, and propose a Mask-Based Membership Infer-
ence Attacks (MBA) framework. Our approach involves a proxy
language-based mask generation method and a simple yet effective
threshold-based strategy for membership inference. Specifically,
we mask words that have the largest rank scores as predicted by a
proxy language model. The target RAG system would have most of
the masks correctly predicted if the document is a member. Exten-
sive experiments demonstrate the superiority of our method over
existing baseline models.
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Figure 5: The performances comparison varying the number of 𝐾

A MASK GENERATION ALGORITHMS
A.1 The detailed algorithm of Fragmented

words extraction
The workflow for extracting fragmented words is illustrated in
Algorithm 2. It iterates through all words in d (lines 4-16). If the
next word begins with a letter or certain hyphens, the words are
combined into a single word.

Algorithm 2 FragmentedWordExtraction
Input: 𝑑 ⊲ the target document
Output: fragmented_words
1: fragmented_words← ∅
2: 𝑤𝑜𝑟𝑑 ←′′ ⊲ set𝑤𝑜𝑟𝑑 as an empty string
3: 𝑓 𝑙𝑎𝑔← 𝐹𝑎𝑙𝑠𝑒

4: for 𝑗 ∈ {1, 2, · · · , |𝑑 | − 1} do
5: 𝑤𝑜𝑟𝑑 ← 𝑤𝑜𝑟𝑑 ⊕ 𝑑 𝑗
6: if 𝑑 ( 𝑗+1),0 ∈ {[a-z],[A-Z],′-′,′ /′} then
7: 𝑓 𝑙𝑎𝑔← 𝑇𝑟𝑢𝑒

8: continue
9: else
10: if flag then
11: 𝑓 𝑙𝑎𝑔← 𝐹𝑎𝑙𝑠𝑒

12: Append(fragmented_words,𝑤𝑜𝑟𝑑)
13: end if
14: 𝑤𝑜𝑟𝑑 ←′′
15: end if
16: end for
17: return fragmented_words

A.2 The processing of fragmented words
As stated in Section 4.3.3, fragmented words are treated as a single
unit. If a word is misspelled, the corrected word is used to calculate
the probability and rank score (lines 1-4). Otherwise, all tokens
within the fragmented word receive a rank score, and the lowest
rank score represents the overall rank score of the entire fragmented
word (lines 5-14).

Algorithm 3 FragmentedWordsRank
Input: 𝑑𝑖 , 𝑗, 𝑡
Output: 𝑟𝑎𝑛𝑘𝑖,( 𝑗+1)
1: if

[
𝑑𝑖,( 𝑗+1) ⊕ · · · ⊕ 𝑑𝑖,( 𝑗+𝑡 )

]
is unspelling then

2: 𝑑𝑖,( 𝑗+1) ← corrected_word
3: 𝑝𝑟𝑜𝑏𝑖,( 𝑗+1) ← PLM(𝑑𝑖,( 𝑗+1) | 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑝𝑟𝑒 𝑓 𝑖𝑥)
4: 𝑟𝑎𝑛𝑘𝑖,( 𝑗+1) ← GETRANK(𝑝𝑟𝑜𝑏𝑖,( 𝑗+1) )
5: else
6: 𝑤𝑜𝑟𝑑 ←′′
7: for 𝑘 ∈ {1, 2, · · · , 𝑡} do
8: 𝑠′ ← [𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑝𝑟𝑒 𝑓 𝑖𝑥 ⊕𝑤𝑜𝑟𝑑]
9: 𝑝𝑟𝑜𝑏𝑖,( 𝑗+𝑘 ) ← PLM(𝑑𝑖,( 𝑗+𝑘 ) | 𝑠′)
10: 𝑟𝑎𝑛𝑘𝑖,( 𝑗+𝑘 ) ← GETRANK(𝑝𝑟𝑜𝑏𝑖,( 𝑗+𝑘 ) )
11: 𝑤𝑜𝑟𝑑 ←

[
𝑤𝑜𝑟𝑑 ⊕ 𝑑𝑖,( 𝑗+𝑘 )

]
12: end for
13: 𝑟𝑎𝑛𝑘𝑖,( 𝑗+1) ← max𝑘∈[1,𝑡 ] (𝑟𝑎𝑛𝑘𝑖,( 𝑗+𝑘 ) )
14: end if
15: return 𝑟𝑎𝑛𝑘𝑖,( 𝑗+1)

A.3 Full algorithm of mask generation
The complete workflow of the mask generation is illustrated in
Algorithm 4.

You are given a text with several missing words or phrases, 
represented by placeholders in the format [Mask_i], where i is a 
unique number for each blank.  Your task is to accurately fill in each 
placeholder with the most appropriate word or phrase based on 
the context of the sentence. Provide your answers in the specified 
format: "[Mask_i]: answer_i\n" for each mask, where "answer_i" 
shall be a word or phrase.  You should strictly match the missing 
word or phrase based on the original context, without making any 
modifications, corrections, or substitutions.

The text is: {target document}
The context is: {retrieved document}

Figure 6: The prompt template to predict the masked words.
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Algorithm 4MaskGeneration
Input: 𝑑 ,𝑀
Output: 𝑑𝑀𝑎𝑠𝑘𝑒𝑑 , answers
1: fragmented_words←WordsCorrection(𝑑)
2: [𝑑1 ⊕ · · · ⊕ 𝑑𝑀 ] ← SPLIT(𝑑𝑀𝑎𝑠𝑘𝑒𝑑 ) ⊲ split into𝑀 subtexts by

length
3: 𝑝𝑟𝑒 𝑓 𝑖𝑥 ← ∅
4: for 𝑖 ∈ {1, 2, · · · , 𝑀} do
5: 𝑃𝑟𝑜𝑏_𝑅𝑎𝑛𝑘𝑖 = ∅
6: 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑝𝑟𝑒 𝑓 𝑖𝑥 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥

7: 𝑠 ← 0
8: for 𝑗 ∈ {1, 2, · · · , |𝑑𝑖 | − 1} do
9: 𝑗 ← 𝑗 + 𝑠
10: 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑝𝑟𝑒 𝑓 𝑖𝑥 ←

[
𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑝𝑟𝑒 𝑓 𝑖𝑥 ⊕ 𝑑𝑖, 𝑗

]
11: if 𝑑𝑖,( 𝑗+1) is stop word or punctuation then
12: 𝑟𝑎𝑛𝑘𝑖,( 𝑗+1) ← −1
13: else if 𝑑𝑖,( 𝑗 ) or 𝑑𝑖,( 𝑗+2) is "[Mask]" then
14: 𝑟𝑎𝑛𝑘𝑖,( 𝑗+1) ← −1 ⊲ do no mask adjacent terms
15: else
16: if

[
𝑑𝑖,( 𝑗+1) ⊕ · · · ⊕ 𝑑𝑖,( 𝑗+𝑡 )

]
in fragmented_words

then
17: 𝑠 ← 𝑠 + 𝑡
18: 𝑟𝑎𝑛𝑘𝑖,( 𝑗+1) ← FragmentedWordsRank(𝑑𝑖 , 𝑗, 𝑡 )
19: else
20: 𝑝𝑟𝑜𝑏𝑖,( 𝑗+1) ← PLM(𝑑𝑖,( 𝑗+1) | 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑝𝑟𝑒 𝑓 𝑖𝑥)
21: 𝑟𝑎𝑛𝑘𝑖,( 𝑗+1) ← GETRANK(𝑝𝑟𝑜𝑏𝑖,( 𝑗+1) )
22: end if
23: end if
24: 𝑃𝑟𝑜𝑏_𝑅𝑎𝑛𝑘𝑖 ← Append(𝑃𝑟𝑜𝑏_𝑅𝑎𝑛𝑘𝑖 , 𝑟𝑎𝑛𝑘𝑖,( 𝑗+1) )
25: end for
26: 𝑚 ← argmax(𝑃𝑟𝑜𝑏_𝑅𝑎𝑛𝑘𝑖 ) ⊲ the token to be masked
27: if 𝑑𝑖,𝑚 is misspelled word then
28: Append(answers, {𝑑𝑖,𝑚 , corrected_word})
29: else
30: Append(answers, 𝑑𝑖,𝑚)
31: end if
32: Append(answers, 𝑑𝑖,𝑚)
33: 𝑑𝑖,𝑚 ← ”[Mask]”
34: 𝑝𝑟𝑒 𝑓 𝑖𝑥 ← [𝑝𝑟𝑒 𝑓 𝑖𝑥 ⊕ 𝑑𝑖 ]
35: end for
36: 𝑑𝑀𝑎𝑠𝑘𝑒𝑑 = [𝑑1 ⊕ · · · ⊕ 𝑑𝑀 ]
37: return 𝑑𝑀𝑎𝑠𝑘𝑒𝑑 , answers

You are given a text that needs {𝑀} (strictly follow this number) 
words or phrases masked. Your task is to select words or phrases that 
would be challenging to guess if removed from the text and replace 
them with a placeholder in the format [Mask_i], where i is a unique 
number for each mask. Your answer shall be in the format of: 
Masked text:
Provide the text with masks in place of the selected words or phrases.
The answers for each mask:
[Mask_1]: answer_1\n ... [Mask_{𝑀}]: answer_{𝑀}

Figure 7: The prompt template to generate masks.

B THE IMPACT OF THE NUMBER OF
RETRIEVED DOCUMENTS

We varied 𝐾 , the number of retrieved documents, within the com-
monly adopted range of 5 to 20 in RAG systems. While increasing
𝐾 slightly improves retrieval recall, the ROC AUC value remains
relatively constant. This indicates that our method is robust, and
if the target document is retrieved, performance is guaranteed, re-
gardless of the influence of other retrieved documents on mask
prediction results.

C PROMPT TEMPLATES
C.1 Prompt template to predict mask answers
Figure 6 illustrates the prompt template used to predict mask an-
swers based on masked texts. These predicted answers are then
applied to conduct membership inference attacks as detailed in
Section 4.4.

C.2 Prompt template to generate masks
As demonstrated in the ablation study, an alternative to our pro-
posed mask generation approach is to directly leverage the LLM.
The prompt template for this direct approach is shown in Figure 7.
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