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Figure 1: Left: Performance plot on First-Sentence-
Retrieval task revealing compact nature of image tokens
in representing long content. Right: Radar chart demonstrat-
ing the superior performance of the SEEKER (ours) model
across both short and long-context multimodal tasks.

Abstract

The rapid progress in Multimodal Large Lan-
guage Models (MLLMs) has significantly ad-
vanced their ability to process and understand
complex visual and textual information. However,
the integration of multiple images and extensive
textual contexts remains a challenge due to the in-
herent limitation of the models’ capacity to handle
long input sequences efficiently. In this paper, we
introduce SEEKER, a multimodal large language
model designed to tackle this issue. SEEKER
aims to optimize the compact encoding of long
text by compressing the text sequence into the
visual pixel space via images, enabling the model
to handle long text within a fixed token-length
budget efficiently. Our empirical experiments on
six long-context multimodal tasks demonstrate
that SEEKER can leverage fewer image tokens to
convey the same amount of textual information
compared with the OCR-based approach, and is
more efficient in understanding long-form mul-
timodal input and generating long-form textual
output, outperforming all existing proprietary and
open-source MLLMs by large margins.
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1. SEEKER: Long-context Vision and
Language Understanding

We propose SEEKER, a multimodal large language model
designed to handle long-context images and texts. In Sec-
tion 1.1, we discuss the innovative use of image tokens to
represent lengthy textual data compactly. Then we intro-
duce long-context multimodal task and instruction data in
Section 1.2. Finally, in Section 1.3, we illustrate the archi-
tecture of our SEEKER to support both long-context and
short-context multimodal understanding.

1.1. Using Image Tokens to Encode Text Helps Context
Length Extrapolation

We follow the approach outlined in (Xiong et al., 2023)
to evaluate model’s extrapolation capability in the First-
Sentence-Retrieval task. In this task, models are required
to retrieve the first sentence at a specific length. We con-
duct this synthetic task on various numbers of documents
with different page counts. We probe the performance of
GPT-4-Vision Image by feeding its images of documents
and compare it with GPT-4-Vision Text and GPT-4, which
receive extracted text using the OCR model Nougat (Blecher
et al., 2023). Nougat achieves over a 90 BLEU score on
OCR text from scientific documents. All these models have
a context length limit of 128k tokens.

On the left side of Figure 1, we visualize the Rouge-L (Lin,
2004) score in relation to the total number of pages of input
documents, which range from 1 (approximately 1k text to-
kens) to 448 (approximately 500k text tokens). We observe
a significant performance degradation in models fed with
text input. In contrast, without any additional changes, we
see improved extrapolation when representing length text
content with visual tokens by feeding images of documents
directly to the model.

1.2. Long-Context Multimodal Task

We mainly consider two categories of long-context multi-
modal capabilities, as outlined in Table 1: 1) Long-form
multimodal input: This involves multiple text-rich images
interleaved with text as the input context. 2) Long-form text
output: This requires generating long text.
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Table 1: Long-Context Multimodal Task. Img/#In: the
number of input images, Text Tok/#In and #Out: the
number of input and output text tokens. Full examples are
presented in Appendix D.1.

Task Prompt Example Img Text Tok

#In. #In. #Out.

Long-Form Multi-Image Input

Index Which Image contains the given sentence? 6.6 100.4 1.0
SentRetrie What is the first sentence on the first image? 1.0 23.0 35.5
ArxivQA What is the main purpose of the article as stated in the abstract? 8.2 13.9 35.0
PassKey What is the ¡PASSKEY¿ in the provided images? 4.0 95.4 2.6

Long-Form Text Output

ArxivVerb Read the text in the image verbatim. 1.0 10.0 1301.6
WikiVerb Read the text in the image verbatim. 1.0 16.0 1107.1

Instruction Data for Long-Form Multi-Image Input
First, we combine an arbitrary number of single-image vi-
sual instruction data (Liu et al., 2023c) sourced from CC3M
into the multi-image format for the intra-image reasoning
task. This helps initiate model’s capability of understand-
ing sequences of images (e.g., img1 This image depicts a...
img2 This image shows a...). To enable understanding of
long-form text-rich image sequences, we collect compiled
PDFs from arXiv documents. Each page from these docu-
ments is processed as images, ranging from 4 to 24 pages.
We use GPT-4V to generate descriptive or conversational
instruction data for these scientific documents. To further
improve the model’s understanding of each provided image,
we create a multi-image text grounding task, requiring the
model to ground the question to the referred image (e.g.,
img1 img2 ... img8 Which image contains the answer to
the question / Which image contains the sentence...).

Instruction Data for Long-Form Text Output To en-
hance long-form text generation capabilities related to the
given image, we propose a task that involves reading the
text in the image verbatim (e.g., img1 Quote the text in the
image verbatim.). This challenging task requires the vision
backbone to encode character-level image details and the
language backbone to attend to the image token while pro-
ducing very long text without hallucinating on previously
generated content.

1.3. Long-Context Multimodal Large Language Model

To enable long-context multimodal reasoning, our model
architecture should: 1) encode multiple images interleaved
with text, 2) align images and text at a fine-grained level,
and 3) decode long texts that attend to extended multimodal
contexts. The following paragraphs illustrate the design of
our proposed SEEKER for this purpose.

Long-Context Multi-Image Encoding For effective fea-
ture integration in scenarios involving multiple images, it is
crucial to include image separators to concatenate text and

image sequences as:

Query = Querysystem +

N∑
i=1

(Qimg,i +Qtxt,i)

Qimg,i = start(img, i) + content(img, i) + end(img, i)
(1)

Specifically, we use start(img,i) and end(img,i) as special
tokens ‘|startofimgi| ’ and ‘|endofimgi| ’ to distinguish
the start and end of each image, respectively. We observe
this strategy is essential for maintaining model performance,
especially when training is limited to a small dataset of
long-context multimodal instructions. The encoding process
and the concatenation of the feature vectors of the input
sequence can be described as:

ti = Enct(Ti), vi = MLPv→t(Encv(Ii))

Q = [t0; v1; t1; v2; t2; . . . ; vn; tn]
(2)

Here, Encv encodes each image i into a feature vector and
projects it to the word embedding space. The concatenated
vector Q integrates sequences of image and text feature
vectors, where [; ] denotes concatenation along the feature
dimension.

Dense Image-Text Alignment We inherit the general
image-text alignment from the pre-training image-text pairs.
To enhance the visual representation of dense text in images,
and improve the alignment between image and text repre-
sentation of rendered text, we curate a visual-embedded task
that renders text into visual space.

Supervised Fine-tuning Strategy We aim to leverage
sequential data processing to fine-tune models on a combi-
nation of textual and visual inputs, enabling them to generate
coherent and contextually relevant responses based on both
text and image data, using autoregressive training objective.

2. Main Results
2.1. Long Image and Text Context

Long-Form Multi-Image Input In Table 3,
SEEKER achieves significantly surpassing larger
open-source MLLMs across all four long-form multi-image
input tasks. We concatenate the images for models that
can not handle image sequences. Additionally, SEEKER-
TINY ranks second best. On average, our models also
outperform the proprietary GPT-4V model. This indicates
our auxiliary tasks, as detailed in Section 1.2, enhance the
models’ reasoning across multiple images and grounding
content to specific images. Thus our models excel at
handling long-context tasks involving long-form multiple
text-rich image inputs.
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Table 2: Short Image and Text Context. : proprietary models, : the proposed models.

Models Multi-Image Single-Image

NLVR2 BLINK Avg MMB MMC SEED CCBench AI2D LLaVAB ChartQA TextVQA Avg

Close-source MLLMs
GPT-4V (OpenAI, 2023b) 71.7 51.1 61.4 75.1 74.4 71.6 46.5 75.9 93.1 78.5 78.0 60.3

Open-source MLLMs
Qwen-VL-Chat (Bai et al., 2023b) 30.8 28.1 29.5 60.6 56.3 64.8 41.2 63.0 67.7 49.8 60.7 58.0
LLaVA-1.5-7B (Liu et al., 2023a) 61.7 37.1 49.4 65.2 59.0 65.8 27.5 55.5 61.8 17.8 45.4 49.8
LLaVA-Next-7B (Liu et al., 2024) 58.7 41.2 49.9 67.4 62.3 69.6 24.3 67.0 72.7 55.4 64.4 60.4
LLaVA-Next-7B (Mistral) (Liu et al., 2024) 43.5 37.5 40.5 69.5 61.3 72.4 30.0 69.0 67.8 51.8 65.2 63.1
DeepSeek-VL-7B (Lu et al., 2024) 46.6 40.9 43.7 74.1 71.4 70.4 51.7 65.3 77.8 59.1 64.9 66.8
IDEFICS2-8B (Laurençon et al., 2024) 79.9 46.8 63.4 75.3 67.3 71.9 37.6 72.3 49.1 24.36 68.9 66.3
Monkey-Chat-10B (Li et al., 2023) 66.0 40.5 53.3 71.0 65.8 68.9 48.4 68.5 60.5 59.5 65.5 63.5
LLaVA-1.5-13B (Liu et al., 2023a) 66.2 42.7 54.4 69.2 65.0 68.2 30.4 61.1 66.1 18.2 48.9 53.4
LLaVA-Next-13B (Liu et al., 2024) 64.3 42.6 53.4 70.7 79.0 71.9 28.8 72.2 73.9 61.4 66.9 65.6

Open-source Tiny MLLMs
DeepSeek-VL-1.3B (Lu et al., 2024) 61.3 38.8 50.1 64.0 62.9 66.0 37.6 51.5 51.1 47.4 57.8 54.8
MiniCPM-V-3B (Hu et al., 2024) 63.1 40.0 51.5 67.9 62.6 65.6 41.4 56.3 51.3 44.2 56.6 55.7

Ours
SEEKER-TINY -1.3B 69.9 40.5 55.2 64.8 63.7 66.0 37.3 49.0 81.7 45.4 56.3 58.0
SEEKER -7B 72.4 42.1 57.2 74.0 72.6 71.1 52.0 64.6 79.3 58.3 65.3 67.1

Long-Form Text Output In Table 3, our
SEEKER achieves the best performance for long-
context tasks requiring long-form text output. On average,
LLaVA-Next (Liu et al., 2024)-13B also performs well,
likely because these tasks usually require a single image.
Its feature of splitting images into four tiles as additional
2304 image tokens, combined with the original image,
greatly enhances its ability to capture visual details. This is
particularly beneficial for verbatim tasks involving Arxiv
and Wikipedia content rendered in the image. Meanwhile,
DeepSeek-VL (Lu et al., 2024) achieves the best scores
among other open-source 7B MLLMs , primarily due to
its alignment of image and text by enforcing text reading
from a large scale of visual-situated real-world data, such
as documents and PDFs. By incorporating our small-scale
verbatim task data, which includes images rendered with
text of various font sizes, into the instruction-tuning stage,
our models achieve a 38.1% performance improvement.

Fix-length Image Tokens are more Expressive than Text
Tokens If a model can interpret text within images, it con-
firms that this method is a valid way to present information.
Additionally, if the model requires fewer image tokens than
text tokens to understand the text, this indicates that pixels
can represent text more compactly. To investigate this, we
conduct a probing task involving question-answering using
various pages of documents fed into the model, as shown
in Table 4. Notably, in this task, we use a version of our
SEEKER with the same context length as the compared
model, which is 4,096 tokens. Our observations indicate
that when the text token count is up to around 4,000, the
response accuracy remains within the context length limit
of 4,096 tokens without performance degradation for the
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Figure 2: Density plot comparing token counts for image
token (blue) and OCR-text (orange) representations. Image
tokens are more compact than text, fitting well within 8192
context length.

language model (LLM). When the text token count exceeds
4,000 but the image token count remains below 4,000, the
vision-language model (VLM) outperforms the LLM by 4 to
8 percentage points. However, when the image token count
exceeds 4,000, the performance of the VLM also declines,
though it remains slightly superior to that of the LLM.

3. Analysis
3.1. Context Length Extrapolation

We analyze the effectiveness of using image tokens versus
OCR text tokens for image representation. The density plot
in Figure 2 illustrates the distribution of token counts for
both methods. The Image token representation is notably
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Table 3: Long Image and Text Context. : proprietary models, : the proposed models, #Tok/Img: the number of
tokens per image. We report accuracy on multiple-choice task Index, and Rouge-L score for other tasks.

Models Params #Tok/Img Long-Form Multi-Image Input Long-Form Text Output

Index SentRetrie ArxivQA PassKey Avg ArxivVerb WikiVerb Avg

Close-source MLLMs
GPT-4V (OpenAI, 2023b) − 85 32.50 71.10 45.19 27.16 43.98 32.58 5.96 19.27

Open-source MLLMs
Qwen-VL-Chat (Bai et al., 2023b) 7B − 2.49 25.05 8.24 0.00 8.94 4.90 5.41 5.15
LLaVA-1.5 (Liu et al., 2023b) 7B 576 23.74 30.61 35.60 0.00 22.48 4.14 3.80 3.97
LLaVA-Next (Liu et al., 2024) 7B 2880 17.49 34.35 20.50 0.00 18.08 22.33 22.94 22.63
LLaVA-Next (Mistral) (Liu et al., 2024) 7B 2880 17.49 34.45 21.39 0.00 18.33 20.11 20.92 20.51
DeepSeek-VL (Lu et al., 2024) 7B 576 13.74 10.37 19.83 0.17 11.02 31.59 16.48 24.03
IDEFICS2 (Laurençon et al., 2024) 8B 64 10.83 63.46 9.68 0.13 21.02 12.12 5.93 9.02
Monkey-Chat (Li et al., 2023) 10B − 16.24 23.65 17.90 0.00 14.44 5.82 2.08 3.95
LLaVA-1.5 (Liu et al., 2023a) 13B 576 22.49 41.02 32.31 0.00 23.95 9.57 7.12 8.34
LLaVA-Next (Liu et al., 2024) 13B 2880 11.24 37.55 15.60 0.00 16.09 27.14 31.05 29.09

Open-source Tiny MLLMs
DeepSeek-VL (Lu et al., 2024) 1.3B 576 14.99 10.46 21.29 0.15 11.72 20.06 10.43 15.24
MiniCPM-V (Hu et al., 2024) 3B − 8.74 12.01 31.42 0.00 13.04 1.50 2.98 2.24

Ours
SEEKER-TINY 1.3B 576 33.74 66.99 42.68 24.99 42.10 23.52 25.33 24.42
SEEKER 7B 576 27.49 71.33 42.35 37.91 44.77 31.85 34.98 33.41

Table 4: Probing Question Answering with Varying Page
Context: Our SEEKER model seeks more accurate text
answers within compact image tokens of image sequences
compared to OCR-based approaches with the same context
length.

Models Input Type ArxivQA
p=4:6 p=6:8 p=8:10 p=10:12 Avg

LLM

DeepSeek-LLM OCR Txt 35.79 35.74 36.00 29.99 34.38
SEEKER -LLM OCR Txt 45.26 46.17 50.57 39.18 45.29

MLLM

DeepSeek-VL Seq Img 29.30 37.97 36.67 28.38 33.08
SEEKER Seq Img+OCR Txt 35.30 41.22 40.73 33.49 37.68
SEEKER Seq Img 44.43 50.81 58.10 39.95 48.32

more compact, with a significant peak at lower token counts,
whereas the OCR-text displays a broader distribution with
higher counts. This variation shows that OCR-text length
can be vulnerable and uncontrollable in images rich in text,
often leading to wide-ranging token counts. In contrast,
image tokens maintain a consistent token length regardless
of textual density. With a model context length set to 8192
tokens, image tokens are handled 100% of the time without
truncation, whereas OCR-text frequently exceeds this limit,
achieving only 66.25% execution success without truncation.
Meanwhile, truncating OCR text compromises performance
as shown in Table 4. This highlights the advantages of
image tokens for predictable and efficient encoding of long
multimodal contexts.

3.2. Inference Efficiency

In addition to its context length extrapolation capability,
our model SEEKER solves long-context multimodal tasks
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Figure 3: Generation times for SEEKER and SEEKER-
TINY with and without OCR.

more efficiently compared to the OCR-based approach.
For example, when comparing the inference time cost of
SEEKER with and without OCR, the latter first extracts
long text from multiple images and then feeds text into
SEEKER . By eliminating the time-consuming OCR step,
our model achieves a significant reduction in inference time.
Specifically, in the longest context scenario, SEEKER is
approximately three times faster than OCR-based approach,
showcasing the substantial time efficiency.

4. Conclusion
Our SEEKER advances the field of long-context comprehen-
sion in multimodal large language models. By enhancing
the processing of lengthy texts presented in visual formats
and continual instruction-tuning on extended context tasks,
SEEKER surpasses existing multimodal large language mod-
els in handling extensive multimodal contexts.
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A. Background

Multimodal Large Language Model Recent advance-
ments of proprietary Large Language Models, GPT-
4 (OpenAI, 2023a), Gemini (Team et al., 2023), Claude,
QWen (Bai et al., 2023a), and open-source ones,
LLaMA (Touvron et al., 2023a;b), Mistral, have shown
groundbreaking applications. Their counterparts in the
visual domain are followed up, including GPT-4V (Ope-
nAI, 2023b), Gemini-Vision (Team et al., 2023), Claude3-
Opus-VL, Qwen-VL (Bai et al., 2023b), InstructBLIP (Dai
et al., 2023), LLaVA (Liu et al., 2023d). Some work (Lu
et al., 2023; Wu et al., 2024) reveals the deficit of these
MLLMs in multiple images reasoning, and recent mod-
els (McKinzie et al., 2024; Laurençon et al., 2024; Jiang
et al., 2024) improve such capabilities. Other work(Rust
et al., 2023; Gao et al., 2024) explore to process both text and
images within pixels via task-specific finetuning. However,
the long-context capabilities of these MLLMs are underex-
plored. Our proposed SEEKER advances the long-context
multimodal understanding of MLLMs from two aspects,
long-form image inputs and long-form text outputs.

Long Context Transformer The Transformer-dominated
LLMs have struggled with long context length as studied
in (Liu et al., 2023e). LongLLaMA (Tworkowski et al.,
2023), Self-Extend (Jin et al., 2024) have been proposed to
increase the effective context length by either fine-tuning or
training-free approach based on pre-trained LLMs . When
it comes to MLLMs, additional long-context issues are in-
troduced from Vision Transformers (ViTs) (Dosovitskiy
et al., 2021) for image processing, and connecting with the
LLMs. The concept of Dynamic Tokens (Wang et al., 2021)
introduces a novel approach where the allocation of compu-
tational resources is adapted dynamically, emphasizing that
not all image parts equally contribute to the recognition task.
Additionally, the development of the Self-slimmed Vision
Transformer (Zong et al., 2022) introduces a mechanism
for model slimming during the inference phase, reducing
computational overhead without significant loss in accuracy.
In contrast, our proposed SEEKER utilizes image tokens as
compact representations for image and text, alleviating the
context length required for the same amount of semantic in-
formation in the language model backbone when processing
multimodal content.
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B. Implementation Details of SEEKER

B.1. Training Loss Curve

In Figure 6, we show the training loss curve of our
SEEKER and SEEKER-TINY . Though both model have a
quick loss drop initially, we observe a smoother and more
consistent decrease of SEEKER than SEEKER-TINY . In the
end, SEEKER stabilizes at a lower loss value, suggesting its
potentially better generalization capabilities than SEEKER-
TINY .

B.2. Evaluation Benchmarks and Metrics

We consider four long-form multi-image input tasks: 1)
Index: the multiple-choice image indexing task, given a
sequence of images and a question, the model selects the
option with the index of the image that contains the answer,
2) SentRetrie: the sentence retrieval task, given a se-
quence of images of rendered text sampled from Wikipedia,
the model is required to retrieve the first sentence from the
first image, 3) ArxivQA: the question answering on arxiv
documents, the model is required to answer the question ac-
cording to visual image of arxiv documents. 4) PassKey:
the passkey retrieval task slightly modified for multimodal
model, given the sentence with a masked word, the model
need to answer what is the masked word by reading the
visually-situated text content from arxiv document. We
consider two long-form text output tasks: 1) ArxivVerb:
extract text from the image of arxiv documents verbatim, 2)
WikiVerb: extract text from the image of rendered text
from Wikipedia verbatim.

8
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Figure 4: SEEKER Figure 5: SEEKER-TINY

Figure 6: Training Loss Curve.
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C. More Analysis
C.1. Tradeoff of Compact Context Length and High

Resolution

In Figure 7, we show GPT-4-Vision with low and high
resolution setting on first-sentence-retrieval. With high-
resolution mode, more tokens will be used to represent the
same image. Although high-resolution usually brings more
details and better performance, we can see it tradeoffs capa-
bility of extrapolating long page document understanding.
And thus only GPT-4-Vision low-resolution model preserves
the performance in this probing task. On the right we can
see that high-resolution usually take more image tokens to
represent text-rich image than text tokens of OCR-extracted
content, and thus even drops more quickly than feeding text.
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Figure 7: Performance plot on First-Sentence-Retrieval task.
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D. Long-Context Multimodal Tasks
D.1. Task Examples

In Section 1.2, we first introduce multimodal long-context
tasks categorized in long-form multi-image input and long-
form text output. And in Figure 8-13, we visualize full task
examples.
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Question: In this task, please reply with the option letter of which Image  
contains the given Sentence. Sentence:'Next we consider a direct corollary  
of this result by applying to prime number theorem' Instruction: Which Image  
contains the above Sentence? Select from these options: (A) Image 1 (B)  
Image 2 (C) Image 3 (D) Image 4 (E) Image 5 (F) Image 6.

Answer: (C) Image 3

Figure 8: Task Index.
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Question: In this task, please follow the instruction to answer what is the  
word or sentence replaced by <PASSKEY> in the given Sentence according to  
images. Sentence: 'The inset shows <PASSKEY> measured in different shells of  
the same thickness \(20\) for \(t_{\rm collapse}=20\) and \(t_{\rm  
max}=20\).'. Instruction: 'What is the <PASSKEY> in the sentence according  
to the document?'

Answer: \(N_{\epsilon}\)

Figure 9: Task PassKey.
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Question: What is the definition of a Latin square according to Definition  
1.1?

Answer: According to Definition 1.1, a Latin square of order n is an n × n  
matrix where each row and each column is a permutation of elements of [n].

Figure 10: Task ArxivQA.
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Question: Read the text in the  
image verbatim.

Answer: free, but as the  
temperature increases the network  
loses its metric structure and  
its hierarchical heterogeneous  
organization, becoming a  
classical random network.  
Considering that many real  
complex networks are scale-free  
while others are not (see for  
example [16]), we deem that the  
proposed fermionic model can be  
considered a good candidate for  
representing their evolution, at  
low and high temperatures. As  
shown in Figure 5, we analyzed  
also the dynamics of particles  
during both processes. In each  
simulation we observed that the  
cooling process takes more time  
to allow the particles to get to  
their final positions. During the  
cooling process, the number of  
particles changing position is  
very high from the first time  
step. In contrast, during the  
heating process, we found  
that,...

Figure 11: Task ArxivVerbatim.
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Answer: Aristotle (; Aristotélēs, ; 384–322 BC) was a  
Greek philosopher and polymath during the Classical  
period in Ancient Greece. Taught by Plato, he was the  
founder of the Lyceum, the Peripatetic school of  
philosophy, and the Aristotelian tradition. His  
writings cover many subjects including physics,  
biology, zoology, metaphysics, logic, ethics,  
aesthetics, poetry, theatre, music, rhetoric,  
psychology, linguistics, economics, politics,  
meteorology, geology and government. Aristotle  
provided a complex synthesis of the various  
philosophies existing prior to him.

Question: Read the text in the image verbatim.

Figure 12: Task WikiVerbatim.16
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Answer: An American in Paris is a jazz-influenced  
orchestral piece by American composer George Gershwin  
first performed in 1928.

Question: What is the first sentence in the image?

Figure 13: Task SentRetrie.
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E. Discussion
E.1. Limitations

While our model, SEEKER, has made significant strides in
processing extended-context multimodal inputs, it encoun-
ters several critical limitations that require deeper investiga-
tion. The process of compressing textual information into
visual tokens, although efficient, may inadvertently over-
look precise textual understanding. Future endeavors should
focus on developing hybrid encoding strategies that bal-
ance token compression with the preservation of essential
information. Additionally, SEEKER could inadvertently
learn and perpetuate biases present in its training data. It
is imperative that further research is conducted to identify,
understand, and address these biases, ensuring the model’s
equity and inclusiveness.

E.2. Societal Impact

By integrating visual tokens with textual data, SEEKER
addresses the limitations of traditional models and supports
the handling of longer input sequences. This innovation
could transform various sectors, improving information ac-
cessibility and retrieval systems across academic research,
legal document analysis, and extensive data processing tasks.
Particularly beneficial in educational and professional envi-
ronments, SEEKER enables rapid and accurate extraction of
vast informational content, fostering better decision-making
and knowledge dissemination. However, this advancement
might exacerbate information disparities if not equitably
accessible. Steps should be taken to make sure it is both
affordable and available to everyone.
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