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Abstract

Large language models (LLMs) often struggle001
with zero-shot generalization, and several mod-002
ular approaches have been proposed to address003
this challenge. Yet, we hypothesize that a key004
limitation remains: the entanglement of gen-005
eral knowledge and task-specific adaptations.006
To overcome this, we propose a modular frame-007
work that disentangles these components by008
constructing a library of task-specific LoRA009
modules alongside a general-domain LoRA.010
By subtracting this general knowledge compo-011
nent from each task-specific module, we obtain012
residual modules that focus more exclusively013
on task-relevant information—a method we call014
general knowledge subtraction (GenKnowSub).015
Leveraging the refined task-specific modules016
and the Arrow routing algorithm (Ostapenko017
et al., 2024), we dynamically select and com-018
bine modules for new inputs without additional019
training. Our studies on the Phi-3 model and020
standard Arrow as baselines reveal that using021
general knowledge LoRAs derived from di-022
verse languages, including English, French,023
and German, yields consistent performance024
gains in both monolingual and cross-lingual set-025
tings across a wide set of benchmarks. Further026
experiments on Phi-2 demonstrate how Gen-027
KnowSub generalizes to weaker LLMs.028

1 Introduction029

The rapid advancement of large language models030

(LLMs) has led to their widespread adoption in var-031

ious NLP tasks, ranging from text generation to ma-032

chine translation and question-answering (Brown033

et al., 2020; Raffel et al., 2020). Despite their re-034

markable performance, a key challenge remains:035

ensuring effective generalization to unseen tasks036

without the need for extensive retraining (Bom-037

masani et al., 2022; Wei et al., 2022).038

In modular zero-shot transfer approaches (Pfeif-039

fer et al., 2023), a two-stage process is typically040

followed: (i) task-specific modules are obtained041

via parameter-efficient fine-tuning (PEFT) meth- 042

ods, such as LoRA (Hu et al., 2021), Adapters 043

(Houlsby et al., 2019), and (IA)3 (Liu et al., 2022), 044

on a multitask dataset (ii) a routing function is 045

used to select and combine task-specific modules 046

to address a new task. While some routing func- 047

tions require joint training alongside task-specific 048

modules (Fedus et al., 2022; Caccia et al., 2023; 049

Ponti et al., 2023), recent approaches employ post- 050

hoc routing methods that require no further train- 051

ing (Chronopoulou et al., 2023; Ostapenko et al., 052

2024). Hybrid approaches also exist, where the 053

routing function is trained separately on a down- 054

stream dataset after freezing task-specific modules 055

(Muqeeth et al., 2024; Huang et al., 2024). 056

In this paper, we adopt LoRA as the PEFT mod- 057

ule and Arrow (Ostapenko et al., 2024) as the rout- 058

ing function. We choose Arrow for its ability to 059

dynamically route each input token—rather than 060

the entire input—to the most relevant task-specific 061

modules in a post-hoc manner, without requiring 062

additional training. We hypothesize that redundant 063

general knowledge within task-specific modules 064

hampers generalization. To mitigate that, we build 065

a general knowledge LoRA using a general corpus, 066

and then subtract it from each task LoRA. We call 067

this process GenKnowSub, general knowledge sub- 068

traction. The Arrow algorithm then dynamically 069

selects and integrates the most relevant LoRAs for 070

each input token. An overview of the proposed 071

method can be found in Figure 1. 072

The core intuition behind GenKnowSub is 073

that reducing redundant general knowledge while 074

preserving essential task-specific knowledge im- 075

proves the model’s effectiveness in zero-shot trans- 076

fer learning. By disentangling task-specific and 077

general-domain knowledge, we prevent redundancy 078

and enable better adaptation. Additionally, remov- 079

ing redundant knowledge enhances the distinctive- 080

ness of residual modules, ensuring that routing 081

mechanisms can more effectively select and com- 082
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(a) Training the Modules and General Knowledge Subtraction (b) Dynamic Task Adaptation via Arrow Routing

Figure 1: Overview of our proposed approach. (a) illustrates the process of training task-specific and general
modules, followed by performing general knowledge subtraction, or GenKnowSub. (b) represents the dynamic task
adaptation stage in a model layer, where the Arrow algorithm selects and combines the most relevant task-specific
modules for each input token.

pose appropriate modules for solving new tasks.083

We evaluate our approach mainly on Phi-3 (Ab-084

din et al., 2024) in a large set of benchmarks across085

English, German, and French. Experimental results086

demonstrate noticeable performance gains when087

compared to the base and Arrow models, underscor-088

ing the effectiveness of GenKnowSub in reducing089

redundancy and enhancing task-specific generaliza-090

tion. We further experiment with Phi-2 (Javaheripi091

et al., 2023) model and show how our findings ex-092

tend to this model which is more English-focused093

with less general capabilities.094

Here are our key contributions: (i) We propose095

GenKnowSub, a novel approach for general knowl-096

edge disentanglement by subtracting a general097

LoRA from task-specific LoRAs. GenKnowSub is098

simple, scalable, and seamlessly adaptable, making099

it applicable to broader modular LLM frameworks.100

(ii) We experimentally show that GenKnowSub im-101

proves the standard Arrow method and the Phi-3102

baseline performance across multiple benchmarks103

and languages.104

2 Method105

In this work, we address zero-shot transfer learn-106

ing problem, where the goal is to transfer knowl-107

edge from a multitask dataset to solve unseen tasks108

without requiring labeled data for further training.109

Modular approaches have emerged as promising110

solutions for this problem. These methods oper-111

ate by first training task-specific modules and then112

combining them to solve unseen tasks. Here, we113

propose to use general knowledge modules to en-114

hance modularity detailed in the following sections. 115

2.1 Training Modules and General 116

Knowledge Subtraction 117

LoRA (Hu et al., 2021) is a PEFT method (Han 118

et al., 2024) that updates only a small set of low- 119

rank trainable parameters while keeping the pre- 120

trained model weights frozen. By training LoRA 121

modules on a diverse set of tasks, we enable the 122

acquisition of distinct task-specific skills. To ef- 123

fectively isolate the task-specific knowledge within 124

each LoRA module, we leverage the principle of 125

forgetting via negation (Ilharco et al., 2023) in 126

module-level (Zhang et al., 2023). Specifically, 127

we define Residual LoRA as follows: 128

LoRAi
res = LoRAi

ts − LoRAg (1) 129

where LoRAi
ts denotes the module trained on task 130

i and LoRAg represents the general knowledge 131

module. We name this approach as GenKnowSub 132

representing general knowledge subtraction. 133

We hypothesize that fine-tuning the model with 134

LoRA on even a small Wikipedia-like dataset with 135

a causal language modeling objective could act as 136

a bridge or a flashback for the model, bringing 137

forth the general knowledge it acquired during pre- 138

training. This allows the LoRA module to represent 139

broader linguistic and factual knowledge embedded 140

in the base model. This knowledge is redundant 141

since the base model already contains it. Further, 142

we assume that task-specific modules include some 143

of these redundant knowledge alongside their spe- 144

cific functionality. Consequently, GenKnowSub ef- 145

fectively removes unnecessary general knowledge 146

2



influence, isolating the unique task-specific charac-147

teristics essential for solving new unseen tasks.148

2.2 Dynamic Task Adaptation149

To enhance the adaptation to unseen tasks, we em-150

ploy the Arrow routing algorithm introduced in151

Ostapenko et al. (2024), which dynamically selects152

the k best task-specific modules for each input to-153

ken in each layer and integrates them to construct154

an optimal LoRA module for solving unseen tasks,155

based on the learning via addition principle (Il-156

harco et al., 2023). Arrow computes the SVD of157

each LoRA, extracts the top right singular vector as158

a prototype, and projects input tokens onto it. The159

top k coefficients are selected, softmax-normalized,160

and others set to zero.161

Formally, we define the computed LoRA module162

in each layer of the model for each input token as:163

LoRAl
t =

n∑
i

ci,lt LoRAi,l
res (2)164

where n is the number of trained task-specific165

modules, LoRAi,l
res represents the residual LoRA166

trained on task i within layer l of the model, and167

ci,lt indicates the importance of LoRAi,l
res for the168

input token t, which is calculated using the Arrow169

algorithm based on the input in a zero-shot manner.170

Given LoRAl
t, the forward path for token t171

within layer l of the model is formulated as: ylt =172

W l
0x

l
t + Bl

tA
l
tx

l
t where W l

0 ∈ Rd×k denotes the173

base model weights in layer l, xlt ∈ Rk is the174

input representation of token t entering layer l,175

Al
t ∈ Rr×k, Bl

t ∈ Rd×r are the corresponding176

LoRA parameter matrices associated with LoRAl
t,177

and r ≪ min(d, k) is the rank of low-rank decom-178

position. Figure 1 shows the overview of our pro-179

posed framework, including Training the Modules,180

General Knowledge Subtraction (GenKnowSub),181

and Dynamic Task Adaption stages.182

3 Experimental Setup and Results183

Here, we first discuss some specifications of our184

experimental setup including how we build our185

LoRA modules, and then overview the results.186

3.1 Constructing Task-Specific Modules187

As stated earlier, the initial step for our proposed188

method, GenKnowSub, involves training modules,189

each tailored to a specific task or functionality. To190

avoid an excessive number of specialized modules,191

we utilize clustered Flan dataset (Longpre et al.,192

2023) proposed by (Ostapenko et al., 2024), which 193

contains only English tasks. This dataset was con- 194

structed using a model-based clustering approach, 195

where independent LoRAs were initially trained 196

for each task and then clustered using the K-means 197

algorithm. We assume that the clustering within 198

this dataset effectively captures the relationships be- 199

tween tasks, regardless of the base model on which 200

the LoRAs are trained. This assumption allows us 201

to dedicate a single LoRA for each cluster of tasks, 202

thereby reducing the number of experts required 203

without compromising task-specific performance. 204

We select Phi-3-mini-4k-instruct (Abdin et al., 205

2024), a 3.8-billion-parameter model, for its strong 206

instruction-following abilities and reasonable mul- 207

tilingual proficiency. To address hardware limi- 208

tations, we use only 20% of each cluster’s data 209

(∼2,000 samples) to improve training efficiency. 210

The details regarding the setup and hyperparame- 211

ters can be found in Appendix A. 212

3.2 Creating General Knowledge Modules 213

To obtain a module that effectively captures the 214

general knowledge of a language, we train Lo- 215

RAs on small Wikipedia corpora using causal lan- 216

guage modeling. We select three higher-resource 217

languages for Phi-3 model: English, French, and 218

German. We assess their impact on GenKnow- 219

Sub through various combinations across mul- 220

tilingual zero-shot benchmarks. For the Equa- 221

tion (1), we define LoRAg as follows: LoRAg = 222

{LoRAen, LoRAde, LoRAfr, LoRAavg}. Each 223

LoRA is trained on 5,000 Wikipedia samples per 224

language (details in Appendix A), with LoRAavg 225

as their average. 226

3.3 Results 227

Table 1 presents the performance of the Phi-3 228

model, Arrow, and our method, on nine English rea- 229

soning benchmark datasets, including PIQA (Bisk 230

et al., 2019), BoolQ (Clark et al., 2019), SWAG 231

(Zellers et al., 2018), HellaSwag (Zellers et al., 232

2019), ARC-Easy and ARC-Challenge (Clark et al., 233

2018), WinoGrande (Sakaguchi et al., 2021), BIG- 234

Bench Hard (Suzgun et al., 2023), and Open- 235

BookQA (Mihaylov et al., 2018). We evaluate the 236

impact of the different configurations of GenKnow- 237

Sub on dynamic task adaptation. 238

As shown in Table 1, on average, Arrow en- 239

hances the performance of Phi-3 by more than 2%, 240

confirming its effectiveness. Our contribution, Gen- 241

KnowSub, further improves the result by around 242
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Method Setting PIQA BOOLQ SWAG HSWAG ARC-E ARC-C WG OQA BBH Avg

Phi-3 78.24 81.47 68.99 73.59 71.75 44.48 65.98 42.80 42.83 63.35
Arrow 80.20 80.00 68.95 71.89 80.53 53.85 65.98 47.40 41.23 65.56

GenKnowSub

En 80.20 81.96 70.00 73.36 82.11 53.85 64.72 48.40 43.30 66.43
De 80.30 82.01 73.30 72.79 81.75 54.85 63.30 49.80 42.04 66.68
Fr 78.78 82.11 71.64 74.02 81.75 57.19 64.40 49.00 44.40 67.03
Avg 80.03 82.45 72.70 73.45 82.28 55.85 64.64 49.60 43.51 67.17

Table 1: Comparison of accuracy across different methods using Phi-3 as the base model on English datasets in a zero-shot
setting. Various configurations of GenKnowSub are evaluated, with accuracy as the reported metric.

Method Setting HSWAG ARC-C XNLI MMLU Avg

G
er

m
an

Phi-3 52.48 36.24 36.02 33.82 39.64
Arrow 48.58 40.94 43.45 35.40 42.09

GenKnowSub

En 51.16 40.60 50.14 36.85 44.69
De 50.58 42.95 50.42 37.00 45.24
Fr 50.58 42.62 49.17 37.17 44.88
Avg 51.08 42.62 52.33 37.92 45.99

Fr
en

ch

Phi-3 57.67 34.56 50.75 33.33 44.08
Arrow 55.33 41.61 44.38 34.79 44.02

GenKnowSub

En 56.08 41.95 50.66 36.69 46.34
Fr 57.83 42.95 53.65 36.13 47.64
De 56.42 42.28 46.33 35.58 45.15
Avg 57.08 42.62 52.92 35.58 47.05

Table 2: Performance comparison of different methods with
Phi-3 as the base model in a zero-shot setting for German and
French lagnuages. Various configurations of GenKnowSub
are evaluated, with accuracy as the reported metric.

1.5% when the average of LoRAs is subtracted.243

Such improvements are observed when we subtract244

LoRAs in individual languages as well, indicating245

that these modules share common knowledge de-246

spite incorporating language-specific information.247

To evaluate GenKnowSub in other languages, we248

use XNLI (Conneau et al., 2018), the translated ver-249

sions of the HellaSwag, MMLU (Hendrycks et al.,250

2021), and ARC-Challenge datasets provided by251

(Lai et al., 2023). Table 2 indicates that, on aver-252

age, the Arrow method outperforms the base Phi-3253

model only in German. GenKnowSub improves254

Arrow and Phi-3 by more than 2%, effectively en-255

hancing zero-shot cross-lingual transfer learning.256

The improvement is observed when subtracting257

each separated general module, further suggesting258

that the foundation of this general knowledge is259

the most important factor, and it is largely shared260

across these languages.261

A key factor in cross-lingual transfer learning is262

the base model’s ability to encode at least a mini-263

mal level of multilinguality. To assess its impact264

more precisely, we run an additional experiment265

using Phi-2, which is weaker than Phi-3 in both266

multilingual and instruction-following capability.267

Following (Ostapenko et al., 2024), we use unquan-268

tized Phi-2 here, with task modules trained on the269

full task cluster data. As shown in Table 3 in Ap- 270

pendix, GenKnowSub, after subtracting the English 271

general knowledge module, improves performance 272

on English benchmark datasets in a zero-shot set- 273

ting, increasing the average score by 1.1%. How- 274

ever, in German and French experiments (Table 4 275

in Appendix), both the base Phi-2 model and its 276

combination with Arrow perform poorly—around 277

13% lower than Phi-3 in a similar setting—due 278

to Phi-2’s weak multilingual capabilities. Conse- 279

quently, GenKnowSub achieves only comparable 280

results, underperforming Arrow by 0.3%. These 281

findings further confirm that our approach can en- 282

hance performance, provided the base model has at 283

least a minimal level of multilinguality. Additional 284

details and results are provided in Appendix B. 285

4 Conclusion 286

In this work, we propose a modular approach to 287

zero-shot transfer learning, leveraging task-specific 288

and general knowledge modules to enhance adapt- 289

ability to unseen tasks. Our method first isolates 290

task-relevant representations through GenKnow- 291

Sub, then dynamically adapts these modules us- 292

ing the Arrow routing algorithm. By minimizing 293

redundancy in task representations, our approach 294

improves both efficiency and transferability. We 295

demonstrate that GenKnowSub before task adap- 296

tation leads to better generalization in zero-shot 297

settings for both Phi-3 and Phi-2. Our results show 298

that this method not only enhances performance 299

in monolingual tasks but also facilitates effective 300

cross-lingual transfer when the language is highly 301

present in the base model. Future work includes 302

exploring alternative task adaptation methods, ex- 303

tending our approach to additional languages, es- 304

pecially low-resource ones, and testing it on other 305

models. Furthermore, evaluating our method on 306

broader benchmarks with open-ended tasks will 307

further validate its effectiveness. 308
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Limitations309

One limitation of this study is the restricted task310

scope, as experiments were conducted exclusively311

on multiple-choice question-answering tasks and312

did not extend to open-ended tasks such as SNLI.313

Additionally, the evaluation was limited to a small314

number of large language models, primarily Phi-315

3 and Phi-2, due to hardware constraints, includ-316

ing limited GPU VRAM and slower processing317

speeds. These constraints prevented the testing318

of larger models and more extensive experimen-319

tation, thereby reducing the diversity of models320

evaluated and the number of tests performed. More-321

over, while the study included multilingual settings,322

it was restricted to high-resource languages (e.g.,323

English, French, German), leaving the effective-324

ness of the approach in lower-resource languages325

unexplored. Future work should address these lim-326

itations by expanding the range of tasks, models,327

and languages evaluated.328

Ethics329

Our research utilizes publicly available datasets330

and pre-trained models, ensuring compliance with331

ethical data usage practices and avoiding the use332

of private, proprietary, or personally identifiable in-333

formation. All models and associated code will be334

made publicly available under permissive licenses,335

promoting accessibility, reproducibility, and unre-336

stricted use for research and application develop-337

ment. However, we acknowledge that pre-trained338

language models (PLMs) and large language mod-339

els (LLMs) have been shown to exhibit biases, as340

highlighted in prior work (Liang et al., 2021; He341

et al., 2023). Users should be mindful of these342

limitations when applying such models in practice.343

Our work does not introduce additional fairness or344

privacy concerns.345
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A Implementation Details649

A.1 Base Model650

We utilize Phi-3-mini-4k-instruct (Abdin et al.,651

2024) with 4-bit quantization to reduce memory us-652

age while maintaining strong performance. We se-653

lected this model due to its exceptional instruction-654

following capabilities and its acceptable multilin-655

gual proficiency. Additionally, with only 3.8 billion656

parameters, Phi-3-mini strikes an effective balance657

between model size and performance, allowing for658

efficient fine-tuning and deployment in resource-659

constrained environments while still demonstrating660

competitive reasoning and generalization abilities.661

A.2 PEFT Structure662

As the PEFT structure, we employ LoftQ (Li et al.,663

2024) with a rank of r = 4. LoftQ extends LoRA664

by integrating low-rank adaptation directly into665

the quantization process, thereby optimizing both666

fine-tuning and inference through rank-wise quan-667

tization, which minimizes precision loss while up-668

dating quantized model weights. We applied our669

PEFT modules to both the QKV components (con-670

catenation of Query, Key, and Value matrices in671

the self-attention block) and the output projection672

layer of the multi-head attention.673

A.3 Arrow Routing674

To incorporate the Arrow routing algorithm, we im-675

plemented it from scratch using PyTorch (Paszke676

et al., 2019) and the PEFT library from Hugging-677

Face (Wolf et al., 2020). We trained 10 task-678

specific modules, and selected the 3 best modules679

for each input token in each layer of the model to680

be combined.681

A.4 Module Training682

To train the LoRA modules representing gen-683

eral knowledge, we fine-tuned the model on a684

Wikipedia dataset using a causal language mod-685

eling objective on Quadro RTX 6000 GPUs. The686

dataset, sourced from Wikipedia articles, initially687

was downloaded from (WikimediaFoundation),688

then was formatted into prompt-completion pairs to689

ensure an effective learning structure. The prompt 690

length varied by language while maintaining a total 691

sequence length of 512 tokens. Specifically, En- 692

glish and German prompts consisted of 507 tokens 693

followed by a 5-token completion, whereas French 694

prompts contained 511 tokens with a 1-token com- 695

pletion. 696

For task-specific LoRA modules, we employed 697

a supervised fine-tuning approach. Given the pres- 698

ence of relatively long examples in our dataset, we 699

set the maximum sequence length to 4000 tokens 700

to accommodate the full input structure. 701

Both the task-specific and general knowledge 702

LoRA modules were trained for one epoch with 703

a learning rate of 1e−4, using cosine scheduling 704

with a warmup start. To stabilize training, we ap- 705

plied gradient clipping. Additionally, to optimize 706

memory efficiency, we utilized the Paged AdamW 707

8-bit optimizer (Dettmers et al., 2022), a quantized 708

variant of AdamW (Loshchilov and Hutter, 2019), 709

designed to reduce GPU memory consumption. 710

The batch size was set to 16 for training gen- 711

eral knowledge modules and 1 for task-specific 712

modules, due to the long input lengths. To further 713

improve memory efficiency, we applied gradient 714

checkpointing and gradient accumulation, enabling 715

support for larger batch sizes when training task- 716

specific modules. 717

B Experiments on Phi-2 718

B.1 Implementation Details 719

For conducting experiments using Phi-2, the base- 720

line in Ostapenko et al. (2024), we used the LoRA 721

modules they trained to evaluate their proposed 722

routing algorithm, Arrow (the implementation de- 723

tails of Arrow are provided in Appendix A.3). 724

Specifically, we used task LoRA modules trained 725

by Ostapenko et al. (2024), available on Hugging 726

Face.1 These modules are obtained by fine-tuning 727

Phi-2 on clustered Flan datasets (explained in Sec- 728

tion 3.1) and are provided in PyTorch Lightning for- 729

mat.2 Since our models are trained using the PEFT 730

library,3 we converted the existing LoRA weights 731

into the PEFT format to ensure compatibility. Our 732

implementation loads expert weights following the 733

PEFT framework, and, consistent with their setup, 734

the Phi-2 experiment weights remain unquantized. 735

1Library of LoRAs: https://huggingface.co/zhan1
993/mbc_library_phi2_icml

2PyTorch Lightning: https://github.com/Lightning
-AI/pytorch-lightning

3PEFT: https://github.com/huggingface/peft
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Method Setting PIQA BOOLQ SWAG HSWAG ARC-E ARC-C WG OQA BBH Avg

Phi-2 78.99 81.16 63.50 66.75 82.11 53.51 56.51 44.00 48.00 63.84
Arrow 79.65 81.13 65.75 66.41 83.38 54.84 60.85 48.60 54.75 65.15

GenKnowSub En 79.97 80.12 65.58 66.75 84.38 54.51 61.24 49.80 54.00 66.26
Avg 80.47 78.47 66.10 67.96 84.03 56.19 60.69 47.80 54.00 66.19

Table 3: Comparison of accuracy across different methods using Phi-2 as the base model on English datasets in a zero-shot
setting, with Accuracy as the reported metric.

Method Setting HSWAG ARC-C XNLI MMLU Avg

G
er

m
an

Phi-2 28.78 23.84 34.50 24.19 27.83
Arrow 28.75 24.83 32.50 26.91 28.25

GenKnowSub En 28.33 24.55 33.33 24.91 27.78
Avg 28.42 23.49 34.33 25.50 27.93

Fr
en

ch

Phi-2 33.33 26.84 34.16 24.77 29.77
Arrow 32.91 27.51 34.16 25.68 30.06

GenKnowSub En 33.50 25.50 31.83 26.11 29.23
Avg 32.25 24.16 37.50 25.00 29.73

Table 4: Performance comparison of different methods using
Phi-2 as the base model on multilingual datasets in a zero-shot
setting for German and French, with Accuracy as the reported
metric.

Additionally, we obtained general knowledge736

LoRA modules by fine-tuning Phi-2 in a setup737

aligned with the task-specific LoRA modules. The738

training process was similar to that of the Phi-3739

version, as detailed in Appendix A.4.740

B.2 Resutls741

We demonstrated that with a sufficiently strong742

multilingual base model, we can effectively lever-743

age its multilingual capabilities to generalize better744

to unseen tasks across different languages. The745

Phi-2 experiments further highlight the importance746

of base model strength and knowledge. As shown747

in Table 3, GenKnowSub, with subtracting the En-748

glish general knowledge module, outperforms other749

settings, whereas averaging modules across differ-750

ent languages is less effective than using English751

alone. Additionally, Table 4 shows that all settings,752

including Phi-2 and Arrow, perform poorly in Ger-753

man and French. The improvement of our method754

on the English zero-shot dataset, along with its755

performance in the multilingual setting, demon-756

strates that our method can significantly enhance757

results—provided the base model exhibits at least758

a minimal level of cross-lingual capability.759
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