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Abstract

Event cameras are bio-inspired sensors that are capable of
capturing motion information with high temporal resolution,
which show potential in aiding image motion deblurring re-
cently. Most existing methods indiscriminately handle fea-
ture fusion of two modalities with symmetric unidirection-
al/bidirectional interactions at different-level layers in feature
encoder, while ignoring the different dependencies between
cross-modal hierarchical features. To tackle these limitations,
we propose a novel Asymmetric Hierarchical Difference-
aware Interaction Network (AHDINet) for event-based mo-
tion deblurring, which explores the complementarity of two
modalities with differential dependence modeling of cross-
modal hierarchical features. Thereby, an event-assisted edge
complement module is designed to leverage event modality
to enhance the edge details of the image features in low-level
encoder stage, and an image-assisted semantic complement
module is developed to transfer contextual semantics of im-
age features to event branch in high-level encoder stage. Ben-
efiting from the proposed differentiated interaction mode, the
respective advantages of image and event modalities are fully
exploited. Extensive experiments on both synthetic and real-
world datasets demonstrate that our method achieves state-of-
the-art performance.

Code — https://github.com/wyang-vis/AHDINet

Introduction
Motion blur often occurs due to the fast motion of the object
and/or the camera over the period of exposure time. Mo-
tion deblurring, a classical yet challenging problem, aims
to restore sharp image from blurry input. It is an ill-posed
inverse problem, due to the existence of many possible so-
lutions. Traditional methods for accomplishing this task rely
heavily on manually crafted image priors and various con-
straints (Bar et al. 2007; Cho, Wang, and Lee 2012; Ba-
hat, Efrat, and Irani 2017; Kotera, Šroubek, and Milanfar
2013) , which limit the model capacity. With the develop-
ment of deep neural network (DNN), DNN has also been ap-
plied for motion deblurring task to directly learn the relation
from blurry images to sharp images under the supervision
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Figure 1: Cross-modal fusion strategies of existing event-
based motion deblurring models: (a) Unidirectional interac-
tion; (b) Symmetric bidirectional interaction; (c) Asymmet-
ric bidirectional interaction (Ours). And (d): Some compar-
ison of visualized deblurring results from REFID (Sun et al.
2023), STCNet (Yang et al. 2024), and our AHDINet.

of a large-scale dataset of blurry-sharp image pairs (Nah,
Hyun Kim, and Mu Lee 2017; Zamir et al. 2021; Park et al.
2020; Dong et al. 2023; Kong et al. 2023; Zhang, Xie, and
Yao 2024; Liang et al. 2024). Although DNN-based deblur-
ring methods have achieved promising improvements, they
may fail to deal with severe blur due to the significant loss
of motion information.

Event cameras are bio-inspired sensors that can record
per-pixel intensity changes asynchronously with high tem-
poral resolution and output a stream of events encoding
time, location and polarity of intensity changes (Gallego
et al. 2020) if the intensity changes surpass a threshold.
Due to the strong connection they possess with motion in-
formation, events have been used for motion deblurring re-
cently. Early methods establish a mathematical event-based
model mapping blurry frames to sharp frames (Pan et al.
2019; Scheerlinck, Barnes, and Mahony 2018) ,which are
susceptible to sensor noise. Thus, some efforts utilize deep
neural network to deal with noise corruption. Mainstream
deep learning-based approaches are to model complemen-
tarity by elaborating cross-modal fusion schemes in fea-
ture encoder, which can be broadly classified into two cate-
gories: i) Unidirectional single/multi-level interaction shown
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in Figure 1(a) , which uses the event information as auxil-
iary information to supplement the image modality at sin-
gle or multiple-level layers of encoder networks (Chen et al.
2022; Sun et al. 2022, 2023; Cao et al. 2022). ii) Symmetric
bidirectional single/multi-level interaction shown in Figure
1(b), which treats image and event cues equally to achieve
cross-modality interaction at single or multiple-level layers
of encoder networks (Yang et al. 2024; Chen and Yu 2024;
Yang et al. 2022). However, these methods only adopt an
indistinguishable way of integrating multilevel features of
two modalities. They overlook a pivotal property that unique
characteristics of low-level and high-level features have not
been developed and effectively utilized to improve the per-
formance of event-based motion deblurring.

In this paper, we reconsider the interaction patterns of the
hierarchical features of the two modalities to fully explore
the complementary integration of the them. Because of the
differences in imaging principles, image data and event data
have their own unique characteristics, even when capturing
targets in the same scene. In highly dynamic scenes, event
cameras can effectively capture low-level texture details but
are insensitive to high-level semantics that are easy for hu-
mans to understand, while conventional frame-based cam-
eras are prone to lose low-level texture details by motion
blur but can well capture rich high-level semantic informa-
tion. Hereby, the hierarchical features of the two modalities
indicate different complementary directions between them.
We argue that the interaction of the hierarchical features of
the two modalities should take place in an independent and
differential manner, i.e., low-level event features can help
image features obtain clear edge texture, while high-level
image features can further enrich semantics of event and
refine background information. Our expectation is to con-
struct asymmetric bi-directional hierarchical difference in-
teractions (shown in Figure 1(c)) to model the complemen-
tary features of the different levels between the two modal-
ities, taking full advantage of the respective strengths of the
different modalities.

Based on the above analysis, we propose an asym-
metric hierarchical difference-aware interaction network
(AHDINet) for event-based motion deblurring, which con-
siders the discrepant dependence in multi-level features of
two modalities to conduct cross-modal complementary fu-
sion. First, an event-assisted edge complement (EEC) mod-
ule is designed to supplement the edge features of event to
image in shallow feature encoding. EEC could adaptively
control the reliably edge message passing based on event-
driven confidence mask. Second, an image-assisted seman-
tic complement (ISC) module is designed to supplement se-
mantic information of image branch to the event features in
deep feature encoding. ISC uses semantic enhancement and
semantic injection based on channel-spatial attention for se-
lective feature fusion. Thanks to this differentiated interac-
tion mode, image and event can give full play to their respec-
tive advantages for motion deblurring. And our framework
achieves state-of-the-art performance of event-based motion
deblurring (some visual comparisons are shown in Figure
1(d)). The main contributions of our work are as follows.

• We propose a novel asymmetric hierarchical difference-
aware interaction network (AHDINet) for event-based
motion deblurring, which explores the complementarity
of two modalities by modeling the different dependence
in cross-modal hierarchical features. Our method outper-
forms previous state-of-the-art works.
• We design an event-assisted edge complement (EEC)

module, containing an event-driven detail message pass-
ing controller supplemented by cross-modal channel at-
tention, to adaptively transfer finer edges from events to
image in low-level encoder.
• We develop an image-assisted semantic complement

(ISC) module to assist event modality in capturing global
context semantic attributes from image, by the semantic
enhancement followed semantic injection with channel-
spatial attention in high-level encoder.

Related Work
Image Deblurring
Image deblurring is a challenge task because it requires
extracting clear latent images from blurred ones. Conven-
tional methods for accomplishing this task rely heavily on
manually crafted a priori and hypotheses (Cho, Wang, and
Lee 2012; Hyun Kim and Mu Lee 2015; Bahat, Efrat, and
Irani 2017; Kotera, Šroubek, and Milanfar 2013; Levin et al.
2009), which, although insightful, tend to limit their gener-
alizability and representativeness. However, the emergence
of deep neural networks (DNNs) has revolutionized image
deblurring by implicitly discovering the intricate relation-
ship between blurred and clear images. 1) Single-Stage Ap-
proaches. These methods (Zhang et al. 2020; Kupyn et al.
2018, 2019) strive to produce hyper-realistic images by
leveraging sophisticated network architectures tailored for
high-level vision tasks. 2) Multi-Stage Approaches. These
techniques (Nah, Hyun Kim, and Mu Lee 2017; Tao et al.
2018; Zamir et al. 2021; Chen et al. 2021) break down
the complexity problem into simpler, more manageable sub-
tasks. By progressively restoring an image at multiple scales,
these techniques can gradually reveal clearer, sharper ver-
sions. 3) Coarse-to-Fine Strategies. These methods (Park
et al. 2020; Cho et al. 2021; Dong et al. 2023) can gradu-
ally restore a sharp image with multiple input images on dif-
ferent resolutions. 4) Attention Modules. To further improve
performance, spatial and/or channel attention modules are
also integrated (Suin, Purohit, and Rajagopalan 2020; Tsai
et al. 2022; Purohit and Rajagopalan 2020; Liang et al. 2021;
Kong et al. 2023; Zhang, Xie, and Yao 2024; Liang et al.
2024). These mechanisms allow the network to selectively
attend to relevant information and filter noise and interfer-
ence, thus perfecting the deblurring process.

Despite good performance, these learning-based deblur-
ring methods fail to deal with severe blur, as deblurring is a
highly ill-posed problem with infinite feasible solutions that
cannot be trivially addressed from only the blur set of input.

Event-based Motion Deblurring
Event cameras provide visual information with low latency
and with strong robustness against motion blur, which of-
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fers great potential for motion deblurring. Early works (Pan
et al. 2019; Scheerlinck, Barnes, and Mahony 2018) suc-
ceeded in modeling relationships between a sharp image and
a blurry image using the physical model-based formulation.
Regrettably, there is inevitable noise in events due to the
non-ideality of physical sensors (Zhang and Yu 2022), re-
sulting in degraded performance.

In recent works, data-driven methods tackle above lim-
itations by learning-based approaches (Lin et al. 2020).
Some efforts have been directed towards designing more ad-
vanced architecture for better integration strategies. On the
one hand, some methods take event as auxiliary informa-
tion for image branch, forming the unidirectional interaction
mode. Several approaches fuse single-level event features
into image branches with simple integration strategies (Chen
et al. 2022; Shang et al. 2021; Jiang et al. 2020; Wang et al.
2020). And to improve the effectiveness of cross-modal fu-
sion, cross-modal attention modules applied at multiple lev-
els of event features are designed to complement the image
information (Sun et al. 2022, 2023; Cao et al. 2022). On
the other hand, some researchers are accustomed to treat the
two modalities as equal, forming undifferentiated bidirec-
tional interaction mode. Several works design the symmet-
ric single-level bidirectional interactions (Yang et al. 2023,
2024; Chen and Yu 2024) and multi-level bidirectional in-
teractions (Yang et al. 2022) to model cross-modal comple-
mentarities. Moreover, some endeavors have been focused
on addressing real-world scenarios (Cho et al. 2023; Zhang
and Yu 2022; Xu et al. 2021; Zhang et al. 2023; Sun et al.
2023; Kim, Cho, and Yoon 2024), including challenges such
as videos with unknown exposure time (Kim et al. 2022).

Crucially, there are different dependencies between the
hierarchical features of the event modality and the image
modality. Existing methods take unidirectional or bidirec-
tional undifferentiated hierarchical feature interactions, fail-
ing to adequately model cross-modal complementarities.
Unlike these works, we propose a method that combines
complementary information between the two modalities in
an asymmetric bidirectional hierarchical difference interac-
tion manner.

Method
Problem Statement
Given a blurry image B and the corresponding event stream
ET , {(xi, yi, pi, ti)}ti∈T containing all asynchronous
events triggered during exposure time T , where p = ±1 is
polarity, which denotes the direction (increase or decrease)
of the intensity changes at that pixel (x, y) and time t, the
proposed method is to recover a sharp image I by exploit-
ing both blurry image B and event stream ET , which can
be modeled as I = gθ∗ (B,ET ), where gθ∗ is deep learning
model.

Overall Framework
Figure 2 illustrates the overall framework of the proposed
AHDINet, in which differential dependence in hierarchical
features of image and event is considered for cross-modal

complementary modeling. Specifically, our method first ex-
tracts target features fb and fe via two parallel backbones
from blurry image and its corresponding events, separately.
Next, we design an event-assisted edge complement (EEC)
module to transfer detail supplement information from im-
age modality to event modality in the low-level feature en-
coding stage (i.e., the first two ConvBlock of backbone),
thereby enhancing the edge information of image features.
Besides, we develop an image-assisted semantic comple-
ment (ISC) module to utilize the rich color appearance
and global scene context of image to assist event branch
in capturing fine-grained semantic attributes. Finally, the
attention-based averaging module aims to optimally com-
bine the event branch-based and image branch-based results.
Below we detail the main parts: EEC and ISC module. More
details about our AHDINet can be found in the supplement.

Event-assisted Edge Complement (EEC)
Compared with the blurry image, event modality contains
complex texture information and can intuitively describe the
shape and position of the moving objects. In this way, for
the low-level encoder features that contain more detailed
information (such as boundaries and edges), event features
can provide more straightforward and instructive details than
blurry image features. Thus, we design the EEC module
hoping to transfer event features to image features at the
low-level encoder to replenish them with missing edge in-
formation. To reliably complement information from event
features to image features, an event-driven detail message
passing controller (DMPC) is first proposed to control the
edges passing between two modalities in the feature map,
and then channel-wise attention is employed to further boost
discriminative channels of controlled event features. Finally,
the boosted event features are injected into the image fea-
tures. The structure of the EEC is shown in top of Figure
2.
Detail Message Passing Controller (DMPC). Event data
can accurately capture objects in degraded scenarios like
high-speed motion or large dynamic range scenes, providing
sharper edges. However, event data often contains various
types of noise. To maximize the advantages of event data,
we design an event-driven detail message passing controller
to highlight reliable event features. The detail message pass-
ing controller is realized by an appropriate Gaussian blur to
the event data, which helps eliminate noise while retaining
essential information. Specifically, the detail message pass-
ing controller MD can be represented as:

MD = G ∗ (G ∗ ET ) , (1)

where G is a Gaussian kernel with variance 3 and support
7 × 7; ∗ denotes the convolution operator, which is used to
propagate the influence of the sparsely distributed events to
their neighboring regions.

To guide the transfer of event edge features with a smaller
spatial size (in the first two ConvBlock of backbone), the
values of MD is propagated according to the receptive field
of each ConvBlock. Specifically,

M
(0)
D = MD, M

(i)
D = GKi ∗M

(i−1)
D , (2)
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Figure 2: Framework of our AHDINet, containing two parts: event-assisted edge complement module and image-assisted
semantic complement module.

where GKi
denotes a Gaussian kernel with variance 3 and

support Ki × Ki whose size is the same as the i-th Con-
vBlock.
Edge Injection. Based on the detail message passing con-
troller MD, as well as channel attention mechanism, the
edge features extracted from the event branch are injected
into the image branch, which can adaptively boost discrim-
inative channels of event features, while suppressing those
non-discriminative ones. More specifically, given the event
features f ie and image features f ib from i-th ConvBlock, the
M

(i)
D is employed as the spatial edge prior to weigh the event

features, thus obtaining the initial spatially-enhanced event
features f̂ ie:

f̂ ie = f ie ⊗M
(i)
D ⊕ f ie, (3)

where ⊗ and ⊕ refer to the element-wise multiplication and
element-wise addition.

On after of that, the channel weights of controlled event
features f̂ ie are calculated from the interaction of the two
features f̂ ie and f ib , and guides their fusion:

f̃ ib = CA(Conv(Cat(f̂ ie, f
i
b)))� f̂ ie ⊕ f ib , (4)

where f̃ ib denotes the image features that incorporates event
edge features, CA(·) refers to channel attention, Conv(·) is

convolution operation, and � is the channel-wise multipli-
cation.

Image-assisted Semantic Complement (ISC)
For blurred image, despite the loss of local edge details, it
still contains rich color appearance and global scene con-
tent, i.e., its global semantic information is also more com-
prehensive than the event modality. In the high-level layers
of encoder stage, the learned features of the network contain
more semantic information. Therefore, we design the ISC
module in the high-level encoder stage to enrich the event se-
mantic features with the help of the image modality. ISC re-
quires highlighting meaningful high-level image semantics
and suppressing distracting event high-level semantics. In-
spired by the self-attention mechanism, we propose a global
semantic enhancement (GSE) module with channel-spatial
attention to enhance image semantic features and introduce
a semantic injection module to transfer image features into
event branch. The detailed ISC architecture is shown in the
bottom of Figure 2.
Global Semantic Enhancement (GSE). To enhance image
semantic features, we use channel-spatial attention to model
the spatial information of the global context to extract rich
semantic information, and weight the channel information of
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the global context to decrease information loss in the chan-
nels.

Specifcally, channel-spatial attention has two branches.
The first branch is the channel-attention branch that weights
the channel information in the global context. Given the im-
age features f ib from i-th ConvBlock (i.e., the last two Con-
vBlock of backbone), the channel attention module is used
to generate the channel weight wic of f ib . This process can be
expressed as:

wic = Sig(Avg(Conv(f ib))), (5)
where Avg(·) is the global average pooling, Sig(·) denotes
sigmoid function, Conv(·) refers to the convolution layer.

The second branch is spatial-attention branch, which uses
the powerful long-range dependencies modelling capabil-
ity of self-attention to model the global context to enhance
global semantic information. Specifically, the image features
f ib are first transformed into Query Q, Key K, and Value V ,
then spatial attention maps wis of f ib can be calculated as:

wis = Softmax
(
QKT

)
. (6)

Finally, we use channel-space attention to weight and
globally model image features to enhance semantic infor-
mation:

f̂ ib = V ⊗ wis � wic ⊕ f ib , (7)
where f̂ ib denotes semantic-enhanced image features.
Semantic Injection. Different channels in features maps
usually represent different semantics. We expect to high-
lighting meaningful high-level image semantics and sup-
pressing distracting event high-level semantics. And chan-
nel attention could select and reweight the channels of each
modality features to improve feature representation. In this
step, we design cross-modal interaction module based on
channel attention to adaptively enhance or suppress bimodal
channel semantic features and remix them into new event
high-level semantic features.

Specifcally, we first obtain the channel weights of each
modality from the concatenated multi-modal features, then
adjust the channelwise relationships of each modality fea-
tures, and finally aggregate these features into cross-modal
features by weighted summation. This process can be ex-
pressed as:

wif = MLP (Cat(GAP (f̂ ib), GAP (f ie))),

f̃ ie = f̂ ib � wif ⊕ f ie � (1− wif )
(8)

where f̃ ie refers to semantic-enhanced event features,
MLP (·) denotes two linear units with Sigmoid activation
function, GAP (·) denotes the global average pooling oper-
ation.

Loss Function
In this paper, we use the Charbonnier loss (Charbonnier et al.
1994) to train our network in an end-to-end fashion:

Lchar =
1

CHW

√
‖I −G‖2 + ε2, (9)

where I and G is deblurred out and ground truth, respec-
tively, C, H , W are dimensions of frame, and constant ε is
empirically set to 10−3 as in (Zamir et al. 2021).

Experiments
Experimental Settings
Datasets. Our AHDINet is evaluated on 1) Synthetic
dataset. GoPro (Nah, Hyun Kim, and Mu Lee 2017) and
DVD (Su et al. 2017) datasets are widely adopted for image-
only and event-based deblurring such as (Sun et al. 2022),
which contains synthetic blurring images and sharp clear
ground-truth images, as well as synthetic events generated
by simulation algorithm ESIM (Rebecq, Gehrig, and Scara-
muzza 2018). 2) Authentic dataset. REBlur (Sun et al. 2022)
is a genuine event deblurring dataset collected by DAVIS,
with an image resolution of 360 × 260. This dataset com-
prises 1,389 sample pairs encompassing diverse 12 distinct
types of linear and nonlinear motions, for three different
moving patterns and the camera itself. Among these sam-
ples, there are 486 training sets and 903 test sets. The scenes
depicted in this dataset accurately capture regular indoor
movements.
Implementation Details. Our method is implemented using
Pytorch on NVIDIA RTX 3090 GPU. The size of training
patch is 300 × 300 with minibatch size of 8. The optimizer
is ADAM (Kingma and Ba 2015), and the learning rate is
initialized at 2 × 10−4 and decreased by the cosine learn-
ing rate strategy with a minimum learning rate of 10−6. For
data augmentation, each patch is horizontally flipped with
the probability of 0.5. The training ends after 200k iterations
for GoPro dataset and 100k iterations for REBlur dataset.
The Peak Signal-to-Noise Ratio (PSNR) and the Structural
Similarity Index (SSIM) are adopted as the evaluation met-
rics.

We compare the proposed AHDINet to state-of-the-art
event-based deblurring methods, including RED (Xu et al.
2021), eSL-Net (Wang et al. 2020), D2Nets (Shang et al.
2021), LEBMD (Jiang et al. 2020), EVDI (Zhang and Yu
2022), DS-Deblur (Yang et al. 2022), MADANET+ (Yang
and Yamac 2022), ERDNet (Chen et al. 2022), EFNet (Sun
et al. 2022), REFID (Sun et al. 2023), EIFNet (Yang et al.
2023), STCNet (Yang et al. 2024) and FAEVD (Kim, Cho,
and Yoon 2024).

GoPro: Table 1 reports the quantitative results on syn-
thetic GoPro dataset. Compared to the best existing event-
based deblurring methods, our method achieves outstand-
ing performance improvements (0.39 dB improvement in
terms of PSNR), showing the superiority of our symmet-
ric bidirectional hierarchical difference-aware fusion strate-
gies. We show in Figure 3 a visual comparison between our
method and several state-of-the-art methods. Overall, visual
quality comparisons demonstrate that our method can re-
cover sharper texture details that are closer to the ground-
truth, while the results restored by other methods still suffer
from motion blur, losing sharp edge information. More vi-
sual comparisons are available in the supplement.

DVD: To prove the generalization ability of the pro-
posed AHDINet, cross-database experiments are conducted.
The AHDINet is trained on GoPro dataset and tested on
DVD dataset. Table 2 reports the quantitative results on the
DVD dataset. Our method significantly outperforms other
state-of-the-art competitors (0.4dB improvement in terms of
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Method RED LEBMD eSL-Net EVDI D2Nets DS-Deblur MADANET+
PSNR 28.98 29.67 30.23 30.40 31.76 33.13 33.84
SSIM 0.8499 0.9270 0.8703 0.9058 0.9430 0.9465 9640

Method ERDNet EFNet REFID EIFNet STCNet FAEVD AHDINet
PSNR 34.25 35.46 35.91 35.99 36.45 36.70 37.09
SSIM 0.9534 0.9720 0.9730 0.9785 0.9809 0.9780 0.9820

Table 1: Comparison of event-based motion deblurring methods on GoPro dataset.

Blurry D2Nets DS-Deblur ERDNet EFNet

Blurry Image Ground-truth REFID EIFNet STCNet AHDINet

Figure 3: Visual comparisons on GoPro datatset. Best viewed on a screen and zoomed in.

Method D2Nets eSL-Net DS-Deblur ERDNet EFNet REFID STCNet AHDINet
PSNR 26.64 27.50 31.63 32.29 32.85 33.15 33.94 34.34
SSIM 0.8819 0.8914 0.9436 0.9506 0.9571 0.9611 0.9692 0.9712

Table 2: Comparison of event-based motion deblurring methods on DVD dataset.

Method D2Nets eSL-Net ERDNet EFNet REFID STCNet AHDINet
PSNR 35.10 35.50 37.98 38.12 38.34 38.98 40.85
SSIM 0.9621 0.9563 0.9506 0.975 0.9752 0.9820 0.9900

Table 3: Comparison of event-based motion deblurring methods on REBlur dataset.

PSNR over best event-based methods), demonstrating the
superior generalization ability of the proposed framework.

REBlur: Real events dataset is more challenging than
synthetic events dataset because the former has more noise
than the latter due to the non-ideality of physical sensors.
To further verify the superiority of our model, we com-
pare the performances of the proposed AHDINet on real
events dataset with other state-of-the-art competitors. Ta-
ble 3 shows the quantitative comparison results on REBlur
dataset. Note that for a fair comparison, we retrain sev-
eral event-guided methods using the publicly available code
provided by the authors. Compared with other methods,
AHDINet achieves the best performance, outperforming the
second best method by a remarkable improvement of 1.87dB
in terms of PSNR. Moreover, we show the qualitative vi-
sual quality comparisons on REBlur dataset in Figure 4. We
can see that the proposed method can achieve higher recon-
struction quality and recover more details of the textures and
edges than other methods.

EEC ISC Gropo
PSNR SSIM

7 7 33.40 0.9615
3 7 36.50 0.9808
7 3 36.08 0.9788
3 3 37.09 0.9820

Table 4: Ablation study on EEC and ISC in AHDINet.

Ablation Study
To evaluate the effectiveness of the key components (EEC
and ISC) in our model, we conduct ablation studies on Go-
Pro dataset. A baseline is first experimented with, which
simply concatenates image features f4

b and event features
f4
e . First row of Table 4 shows the performance of baseline.

Effectiveness of EEC and ISC module. First, we verify
the effectiveness of EEC. We append it to Baseline to com-
plement the event’s edge texture features to the image. There
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Figure 4: Visual comparisons on REBlur datatset. Best viewed on a screen and zoomed in.

DMPC Gropo
PSNR SSIM

7 36.14 0.9791
3 36.50 0.9808

Table 5: Ablation study on DMPC in EEC module.

GSE Gropo
PSNR SSIM

7 35.76 0.9772
3 36.08 0.9788

Table 6: Ablation study on GSE in ISC module.

Fusion Type Gropo
PSNR SSIM

UMI 35.95 0.9775
SBMI 36.61 0.9797
ABMI 37.09 0.9820

Table 7: Ablation study on asymmetric structure in
AHDINet.

is a great performance gap in the first two rows of Table 4,
which shows the effectiveness of the event modality to sup-
plement the image modality with its edge features through
the EEC module. Then we verify the effectiveness of ISC.
We also directly delete the ISC module in our complete
AHDINet. The results in the third row of Table 4 demon-
strate the positive effect of the ISC module. Further, from
this we can see the importance of low-level edge features
for motion deblurring.

Ablation study on detail message passing controller
(DMPC) in EEC module. Event data often contains vari-
ous types of noise. The DMPC is designed to control the
edge message passing from event branch to image branch.
Thus, we validate the importance of DMPC strategy in EEC.

We delete the DMPC module in EEC to allow uncontrolled
transfer of spatial event features to the image branch. Table 5
shows that DMPC can effectively attenuate the interference
of noise in the event.

Ablation study on global semantic enhancement
(GSE) in ISC module. The GSE is designed to use channel-
spatial attention to weight the semantic information of the
global context for information enhancement. Thus, we val-
idate the importance of GSE strategy in ISC. We delete the
GSE module in ISC and do not enhance the image semantic
information. Table 6 shows the effectiveness of GSE.

Ablation study on asymmetric structure in AHDINet.
In our work, we consider the different dependence in cross-
modal hierarchical features of two modalities to model the
complementary fusion, and propose an asymmetric hierar-
chical difference-aware fusion method. In order to validate
the basic idea of the proposed method, the different fusion
strategies, i.e., unidirectional multi-level interaction (UMI),
symmetric bidirectional multi-level interaction (SBMI), our
asymmetric bidirectional multi-level interaction (ABMI),
are verified. In this experiment, the fusion between cross-
modal hierarchical features is accomplished with EEC or
ISC. Table 7 summarizes the experimental results on differ-
ent fusion type, demonstrating that our qualitative analysis
is correct.

Conclusion
In this work, we propose an asymmetric hierarchical
difference-aware interaction network (AHDINet) for event-
based motion deblurring, which models the different depen-
dence in hierarchical features of two modalities for com-
plementary fusion. Specifically, we first employ an event-
assisted edge complement (EEC) module in the early layers
of the encoding network, which can supplement more de-
tailed information of event to enhance the image features.
Then, we design an image-assisted semantic complement
(ISC) module in later layers of feature encoding to enhance
the event features with image semantics. Both subjective and
objective experiments on synthetic datasets and real-world
datasets have demonstrated the effectiveness of our method.
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