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ABSTRACT

Existing fine-grained hashing methods typically lack code interpretability as they
compute hash code bits holistically using both global and local features. To
address this limitation, we propose ConceptHash, a novel method that achieves
sub-code level interpretability. In ConceptHash, each sub-code corresponds to
a human-understandable concept, such as an object part, and these concepts are
automatically discovered without human annotations. Specifically, we leverage a
Vision Transformer architecture and introduce concept tokens as visual prompts,
along with image patch tokens as model inputs. Each concept is then mapped to a
specific sub-code at the model output, providing natural sub-code interpretability.
To capture subtle visual differences among highly similar sub-categories (e.g.,
bird species), we incorporate language guidance to ensure that the learned hash
codes are distinguishable within fine-grained object classes while maintaining
semantic alignment. This approach allows us to develop hash codes that exhibit
similarity within families of species while remaining distinct from species in other
families. Extensive experiments on four fine-grained image retrieval benchmarks
demonstrate that ConceptHash outperforms previous methods by a significant
margin, offering unique sub-code interpretability as an additional benefit.

1 INTRODUCTION

Learning to hash is an effective approach for constructing large-scale image retrieval systems (Luo
et al., 2020). Previous methods primarily use pointwise learning algorithms with efficient hash
center-based loss functions (Su et al., 2018; Yuan et al., 2020; Fan et al., 2020; Hoe et al., 2021).
However, these methods mainly focus on global image-level information and are best suited for
distinguishing broad categories with distinct appearance differences, like apples and buildings. In
many real-world applications, it’s essential to distinguish highly similar sub-categories with subtle
local differences, such as different bird species. In such scenarios, the computation of hash codes that
capture these local, class-discriminative visual features, like bird beak color, becomes crucial.

Recent fine-grained hashing methods (Cui et al., 2020; Wei et al., 2021a; Shen et al., 2022) extract
local features and then combine them with global features to compute hash codes. However, this
approach lacks interpretability because hash codes are derived from a mix of local and global features.
As a result, it becomes challenging to establish the connection between human-understandable
concepts (e.g., tail length and beak color of a bird) and individual or blocks of hash code bits (sub-
codes). These concepts are typically local, as globally fine-grained classes often share similar overall
characteristics (e.g., similar body shapes in all birds).

The importance of model interpretability is growing in practical applications. Interpretable AI models
boost user confidence, assist in problem-solving, offer insights, and simplify model debugging
(Molnar, 2020; Lundberg & Lee, 2017; Van der Velden et al., 2022). In the context of learning-to-
hash, interpretability pertains to the clear connection between semantic concepts and hash codes. For
instance, a block of hash code bits or sub-code should convey a specific meaning that can be traced
back to a local image region for visual inspection and human comprehension. While the methods
introduced in previous works (Wei et al., 2021a; Shen et al., 2022) were originally conceived with
interpretability in mind, they have made limited progress in this regard. This limitation stems from
the fact that their hash codes are computed from aggregated local and global feature representations,
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Figure 1: In the proposed ConceptHash, a set of concept tokens (3 tokens in this illustration) are
introduced in a vision Transformer to discover automatically human understandable semantics (e.g.,
bird head by the first concept token for generating the first two-bit sub-code 00).

making it challenging to establish a direct association between a sub-code and a local semantic
concept.

To address the mentioned limitation, we present an innovative concept-based hashing approach named
ConceptHash, designed for interpretability (see Fig. 1). Our architecture builds upon the Vision
Transformer (ViT) (Dosovitskiy et al., 2021). To enable semantic concept learning, we introduce
learnable concept tokens, which are combined with image patch tokens as input to ViT. At the
ViT’s output, each query token corresponds to a sub-code. Concatenating these sub-codes yields
the final hash code. Notably, the visual meaning of each concept token is evident upon inspection.
This intrinsic feature makes our model interpretable at the sub-code level since each sub-code
directly corresponds to a concept token. Additionally, we harness the rich textual information from a
pretrained vision-language model (CLIP (Radford et al., 2021)) to offer language-based guidance.
This ensures that our learned hash codes are not only discriminative within fine-grained object classes
but also semantically coherent. By incorporating language guidance, our model learns hash codes
that exhibit similarity within species’ families while maintaining distinctiveness from species in other
families. This approach enhances the expressiveness of the hash codes, capturing nuanced visual
details and meaningful semantic distinctions, thereby boosting performance in fine-grained retrieval
tasks.

Our contributions are as follows. (1) We introduce a novel ConceptHash approach for interpretable
fine-grained hashing, where each sub-code is associated with a specific visual concept automatically.
(2) We enhance the semantics of our approach by incorporating a pretrained vision-language model,
ensuring that our hash codes semantically distinguish fine-grained classes. (3) Extensive experiments
across four fine-grained image retrieval benchmarks showcase the superiority of ConceptHash over
state-of-the-art methods, achieving significant improvements of 6.82%, 6.85%, 9.67%, and 3.72% on
CUB-200-2011, NABirds, Aircraft, and CARS196, respectively

2 RELATED WORK

Learning to hash. Deep learning-based hashing (Xia et al., 2014; Lai et al., 2015; Wang et al.,
2016b; Cao et al., 2017; 2018) has dominated over conventional counterparts (Indyk & Motwani,
1998; Gionis et al., 1999; Kulis & Grauman, 2009; Weiss et al., 2009; Kulis & Darrell, 2009; Gong
et al., 2012; Kong & Li, 2012; Norouzi & Fleet, 2011; Norouzi et al., 2012). Recent works focus
on a variety of aspects (Luo et al., 2020), e.g., solving vanishing gradient problems caused by the
sign function sign (Su et al., 2018; Li & van Gemert, 2021), reducing the training complexity from
O(N2) to O(N) with pointwise loss (Su et al., 2018; Yuan et al., 2020; Fan et al., 2020; Hoe et al.,
2021) and absorbing the quantization error objective (Fan et al., 2020; Hoe et al., 2021) into a single
objective. These works usually consider the applications for differentiating coarse classes with clear
pattern differences (e.g., houses vs. cars), without taking into account hash code interpretability.

Fine-grained recognition. In many real-world applications, however, fine-grained recognition for
similar sub-categories is needed, such as separating different bird species (Wei et al., 2021b). As
the class discriminative parts are typically localized, finding such local regions becomes necessary.
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Typical approaches include attention mechanisms (Zheng et al., 2017; 2019b;a; Jin et al., 2020; Chang
et al., 2021; Peng et al., 2017; Wang et al., 2018; Yang et al., 2022a), specialized architectures/modules
(Zheng et al., 2018; Weinzaepfel et al., 2021; Wang et al., 2021; He et al., 2022; Behera et al., 2021;
Lin et al., 2015; Zeng et al., 2021; Huang & Li, 2020; Sun et al., 2020), regularization losses (Du
et al., 2020; Dubey et al., 2018; Chen et al., 2019; Sun et al., 2018; Chang et al., 2020), and finer-
grained data augmentation (Du et al., 2020; Lang et al., 2022). They have been recently extended to
fine-grained hashing, such as attention learning in feature extraction (Wang et al., 2020; Lu et al.,
2021; Jin et al., 2020; Lang et al., 2022; Chen et al., 2022c; Xiang et al., 2021) and feature fusion
(Shen et al., 2022; Wei et al., 2021a; Cui et al., 2020). However, in this study we reveal that these
specialized methods are even less performing than recent coarse-grained hashing methods, in addition
to lacking of code interpretability. Both limitations can be addressed with the proposed ConceptHash
method in a simpler architecture design.

Model interpretability. Seeking model interpretability has been an increasingly important research
topic. For interpretable classification, an intuitive approach is to find out the weighted combinations
of concepts (Kim et al., 2018; Koh et al., 2020; Zhou et al., 2018; Stammer et al., 2022; Sawada &
Nakamura, 2022; Wu et al., 2023; Yuksekgonul et al., 2022; Yang et al., 2022b) (a.k.a. prototypes
(Rymarczyk et al., 2021; Nauta et al., 2021; Arik & Pfister, 2020)). This is inspired by human’s way
of learning new concepts via subconsciously discovering more detailed concepts and using them in
varying ways for world understanding (Lake et al., 2015). The concepts can be learned either through
fine-grained supervision (e.g., defining and labeling a handcrafted set of concepts) (Zhang et al.,
2018; Rigotti et al., 2022; Koh et al., 2020; Yang et al., 2022b), or weak supervision (e.g., using weak
labels such as image-level annotations) (Wang et al., 2023; Oikarinen et al., 2023), or self-supervision
(e.g., no any manual labels) (Alvarez Melis & Jaakkola, 2018; Wang et al., 2023).

In this study, we delve into the realm of semantic concept learning within the context of learning-to-
hash, with a distinct emphasis on achieving sub-code level interpretability. While A2-Net Wei et al.
(2021a) has asserted that each bit encodes certain data-derived attributes, the actual computation of
each bit involves a projection of both local and global features, making it challenging to comprehend
the specific basis for the resulting bit values. In contrast, our approach, ConceptHash, takes a different
approach. It begins by identifying common concepts (e.g., head, body) and subsequently learns the
corresponding sub-codes within each concept space. Besides, our empirical findings demonstrate that
ConceptHash outperforms previous methods in terms of performance.

Language guidance. Vision-language pretraining at scale (Radford et al., 2021) has led to a surge of
exploiting semantic language information in various problems (Wang et al., 2016a; Yang et al., 2016;
Chen et al., 2020; Kim et al., 2021; Li et al., 2021b; 2019; 2020). For example, text embedding has
been used to improve dense prediction (Rao et al., 2022), interpretability (Yang et al., 2022b), metric
learning (Roth et al., 2022; Kobs et al., 2023), self-supervised learning (Banani et al., 2023), and
visual representations (Sariyildiz et al., 2020; Huang et al., 2021). For the first time, we explore the
potential of language guidance for fine-grained hashing, under the intuition that semantic information
could complement the subtle visual differences of sub-categories while simultaneously preserving
similarity within species belonging to the same family.

3 METHODOLOGY

We denote a training dataset with N samples as D = {(xi, yi)}Ni=1, where xi is the n-th image with
the label yi ∈ {1, ..., C}. Our objective is to learn a hash function H(x) = h(f(x)) that can convert
an image xi into a K-bits interpretable hash code b ∈ {−1, 1}K in a discriminative manner, where f
is an image encoder (e.g., a vision transformer) and h is a hashing function. To that end, we introduce
a novel interpretable hashing approach, termed ConceptHash, as illustrated in Fig. 2.

3.1 LEARNING TO HASH WITH AUTOMATICALLY DISCOVERED CONCEPTS

Given an image, our ConceptHash aims to generate an interpretable hash code composed by concate-
nating M sub-codes {b1, ..., bM}. Each sub-code bm ∈ {−1, 1}K/M expresses a particular visual
concept discovered automatically, with K the desired hash code length. To achieve this, we employ a
Vision transformer (ViT) architecture denoted as f . At the input, apart from image patch tokens, we
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Figure 2: Overview of our ConceptHash model in a Vision Transformer (ViT) framework. To enable
sub-code level interpretability, (i) we introduce a set of M concept tokens along with the image patch
tokens as the input. After self-attention based representation learning, (ii) each of these concept
tokens is then used to compute a sub-code, all of which are then concatenated to form the entire hash
code. (iii) To compensate for limited information of visual observation, textual information of class
names is further leveraged by learning more semantically meaningful hash class centers. For model
training, a combination of classification loss Lclf, quantization error Lquan, concept spatial diversity
constraint Lcsd, and concept discrimination constraint Lcd is applied concurrently. To increase training
efficiency, Adapter (Houlsby et al., 2019) is added to the ViT instead of fine-tuning all parameters.

introduce a set of M learnable concept tokens:

Z(0) = concat(x1, ..., xHW, [V 1], ..., [V M ]), (1)

where concat denotes the concatenation operation, [V m] is the m-th concept token, xi is the i-th
image patch token with HW the number of patches per image (commonly, HW = 7 ∗ 7 = 49). With
this augmented token sequence Z(0), we subsequently leave the ViT model to extract the underlying
concepts via the standard self-attention-based representation learning:

Z(L) = f(Z(0)) ∈ R(HW+M)×D,

where Z(l) = MSA(l)(Z(l−1)), (2)

in which Z(l) is the output of the l-th layer in a ViT and MSA(l) is the self-attention of l-th layer
in f (the MLP, Layer Normalization (Ba et al., 2016), and the residual adding were omitted for
simplicity). The last M feature vectors of Z(L) (denoted as Z for simplicity), Z[HW+1:HW+M ], is
the representation of the concepts discovered in a data-driven fashion, denoted as Z[V 1], ..., Z[V M ].

Interpretable hashing. Given each concept representation Z[V m], we compute a specific sub-code
bm. Formally, we design a concept-generic hashing function as

bm = h(Z[V m] + Em), b = concat(b1, ..., bM ), (3)

where Em ∈ RM×D is the m-th concept specificity embedding that enables a single hashing function
to be shared across different concepts. In other words, the concept specificity embedding serves the
purpose of shifting the embedding space of each specific concept to a common space, allowing a
single hashing function to be applied to all concepts and convert them into hash codes. Note that b
(the concatenation of all sub-codes) is a continuous code. To obtain the final hash code, we apply a
sign function b̂ = sign(b).

3.2 LANGUAGE GUIDANCE

Most existing fine-grained hashing methods rely on the information of visual features alone (Shen
et al., 2022; Wei et al., 2021a; Cui et al., 2020). Due to the subtle visual difference between sub-
categories, learning discriminative hashing codes becomes extremely challenging. We thus propose
using the readily available semantic information represented as an embedding of the class names as
an auxiliary knowledge source (e.g., the semantic relation between different classes).
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More specifically, in contrast to using random hash class centers as in previous methods (Yuan
et al., 2020; Fan et al., 2020; Hoe et al., 2021), we learn to make them semantically meaning-
ful under language guidance. To that end, we utilize the text embedding function g(·) of a pre-
trained CLIP (Radford et al., 2021) to map a class-specific text prompt (P ∈ {Pc}Cc=1 where
Pc = "a photo of a [CLASS]") to a pre-trained embedding space, followed by a learnable
projection function t(·) to generate the semantic class centers:

ec = g(Pc), oc = t(ec). (4)

The class centers o = {oc}Cc=1 ∈ RC×K then serve as the hash targets for the classification loss
in Eq. 6 and 7. This ensures that the learned hash codes are not only discriminative within fine-
grained object classes but also semantically aligned. More specifically, the integration of language
guidance guides the model to output hash codes that exhibit similarity within families of species
while preserving discriminativeness from species belonging to other families (see Sec. 4.3 and Fig. 5).

3.3 LEARNING OBJECTIVE

The objective loss function to train our ConceptHash model is formulated as:

L = Lclf + Lquan + Lcsd + Lcd. (5)

with each loss term as discussed below.

The first term Lclf is the classification loss for discriminative learning:

Lclf = − 1

N

N∑
i=1

log
exp(cos(oyi

, bi)/τ)∑C
c=1 exp(cos(oc, bi)/τ)

, (6)

where τ is the temperature (τ = 0.125 by default), C is the number of classes, and cos computes the
cosine similarity between two vectors. This is to ensure the hash codes are discriminative.

The second term Lquan is the quantization error:

Lquan = − 1

N

N∑
i=1

log
exp(cos(ôyi

, bn)/τ)∑C
c=1 exp(cos(ôc, bi)/τ)

,

where {ôc}Cc=1 = {sign(oc)}Cc=1. (7)

Instead of directly minimizing the quantization error, we use the set of binarized class centers ô as
the classification proxy, which is shown to make optimization more stable (Hoe et al., 2021).

The third term Lcsd is a concept spatial diversity constraint:

Lcsd =
1

NM(M − 1)

∑
i ̸=j

cos(Ai, Aj), (8)

where Ai ∈ RN×HW is the attention map of the i-th concept token in the last layer of the self-
attention MSA(L) of f , obtained by averaging over the multi-head axis, The idea is to enhance
attention map diversity (Weinzaepfel et al., 2021; Li et al., 2021a; Chen et al., 2022b), thereby
discouraging concepts from focusing on the same image region.

The forth term Lcd is the concept discrimination constraint:

Lcd = − 1

NM

N∑
i=1

M∑
m=1

log
exp(cos(Ŵyi , Ẑ[V m]i)/τ)∑C
c=1 exp(cos(Ŵc, Ẑ[V m]i)/τ)

,

where Ẑ[V m]i = Z[V m]i + Em, (9)

where {Ŵc}Cc=1 ∈ RC×D are learnable weights and E ∈ RM×D is the concept specificity embedding
(same as E in Eq. 3). The feature-to-code process incurs substantial information loss (i.e., the
projection from Z[V ] to b), complicating the optimization. This loss serves a dual purpose: promoting
discriminative concept extraction and supplying additional optimization gradients.
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Table 1: Comparing with prior art hashing methods. Note, ITQ is an unsupervised hashing method
considered as the baseline performance. †: Originally reported results. Bold: The best performance.

Dataset CUB-200-2011 NABirds FGVC-Aircraft Stanford Cars

Method 16 32 64 16 32 64 16 32 64 16 32 64

ITQ Gong et al. (2012) 7.82 11.53 15.42 3.40 5.50 7.60 8.12 9.78 10.87 7.80 11.41 15.16

HashNet Cao et al. (2017) 14.45 23.64 32.76 6.35 8.93 10.21 20.36 27.13 32.68 18.23 25.54 32.43
DTSH Wang et al. (2016b) 25.16 27.18 27.89 3.35 6.00 7.87 21.32 25.65 36.05 20.48 27.40 28.34
GreedyHash Su et al. (2018) 73.87 81.37 84.43 54.63 74.63 79.61 49.43 75.21 80.81 75.85 90.10 91.98
CSQ Yuan et al. (2020) 69.61 75.98 78.19 62.33 71.24 73.61 65.94 72.81 74.05 82.16 87.89 87.71
DPN Fan et al. (2020) 76.63 80.98 81.96 68.82 74.52 76.75 70.86 74.04 74.31 87.67 89.46 89.56
OrthoHash Hoe et al. (2021) 75.40 80.23 82.33 69.56 75.32 77.41 73.09 75.95 76.08 87.98 90.42 90.68

ExchNet† Cui et al. (2020) 51.04 65.02 70.03 - - - 63.83 76.13 78.69 40.28 69.41 78.69
A2-Net Wei et al. (2021a) 69.03 79.15 80.29 59.60 73.59 77.69 71.48 79.11 80.06 81.04 89.34 90.75
SEMICON Shen et al. (2022) 73.61 81.85 81.84 57.68 71.75 76.07 60.38 73.22 76.56 73.94 85.63 89.08

ConceptHash (Ours) 83.45 85.27 85.50 76.41 81.28 82.16 82.76 83.54 84.05 91.70 92.60 93.01

4 EXPERIMENTS

Datasets We evaluate our method on four fine-grained image retrieval datasets: CUB-200-2011,
NABirds, Aircraft, and CARS196. CUB-200-2011 (Wah et al., 2011) has 200 bird species and
5.9K training/5.7K testing images. NABirds (Van Horn et al., 2015) has 555 bird species and 23K
training/24K testing images. FGVC-Aircraft (Maji et al., 2013) has 100 aircraft variants and 6.6K
training/3.3K testing images. Stanford Cars (Krause et al., 2013) has 196 car variants and 8.1K
training/8.0K testing images. The experiment setting is exactly the same as those in previous works
(Cui et al., 2020; Wei et al., 2021a; Shen et al., 2022).

Implementation details We use the pre-trained CLIP (Radford et al., 2021) for our image encoder (a
ViT/B-32 (Dosovitskiy et al., 2021)) and text encoder (a 12-stacked layers Transformer). The SGD
optimizer is adopted with a momentum of 0.9 and a weight decay of 0.0001. The training epoch is
100 and the batch size is 32. We use a cosine decay learning rate scheduler with an initial learning
rate of 0.001 and 10 epochs of linear warm-up. We adopt standard data augmentation strategies in
training (i.e., random resized crop and random horizontal flip only). For training efficiency, we insert
learnable Adapters (Houlsby et al., 2019) to the frozen image encoder (see supplementary material for
details). We use the same backbone, adapters, and training setting to fairly compare all the methods.

Performance metrics We adopt mean average precision which is the mean of average precision
scores of the top R retrieved items, denoted as mAP@R. We set R = full retrieval size following
previous works (Cui et al., 2020; Wei et al., 2021a; Shen et al., 2022).

4.1 COMPARISON WITH THE STATE-OF-THE-ART METHODS

For comparative evaluation of ConceptHash, we consider both state-of-the-art coarse-grained (Hash-
Net (Cao et al., 2017), DTSH (Wang et al., 2016b), GreedyHash (Su et al., 2018), CSQ (Yuan et al.,
2020), DPN (Fan et al., 2020), and OrthoHash (Hoe et al., 2021)) and fine-grained (A2-Net (Wei et al.,
2021a) and SEMICON (Shen et al., 2022)) methods. For fair comparisons, the same CLIP pre-trained
image encoder (ViT/B-32) is used in all methods for feature extraction. Our implementation is based
on the original source code.

Results. The fine-grained image retrieval results are reported in Table 1. We make several observa-
tions. (1) Among all the competitors, our ConceptHash achieves the best accuracy consistently across
all the hash code lengths and datasets, particularly in the case of low bits (e.g., 16 bits). This suggests
the performance advantage of our method in addition to the code interpretability merit. In particular,
it exceeds over the best alternative by a margin of up to 6.82%, 6.85%, 9.67%, and 3.72% on CUB-
200-2011, NABirds, Aircraft, and CARS196, respectively. (2) Interestingly, previous coarse-grained
hashing methods (e.g., OrthoHash) even outperform the latest fine-grained hashing counterparts
(e.g., SEMICON). This suggests that their extracted local features are either not discriminative or
uncomplimentary to the global features.
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(a) Bird wing (b) Bird head (c) Bird body

(d) Headlight/Tail light (e) Side mirror/Window/Wheels (f) Front bumper/Grill

Figure 3: We visualize the discovered concepts by our ConceptHash: (a, b, c) The bird body parts
discovered on CUB-200-2011. (d, e, f) The car parts discovered on Stanford Cars. Setting: 6-bit hash
codes where M = 3 concepts are used each for 2-bit sub-code. Bottom-left, top-left, top-right, and
bottom-right regions represent the sub-codes 00, 01, 11, and 10 respectively.

4.2 INTERPRETABILITY ANALYSIS

To examine what concepts our ConceptHash can discover, we start with a simple setting with 3
concepts each for 2-bit sub-code (i.e., totally 6-bit hash code). We train the model on CUB-200-2011
and Standford Cars, respectively. For each concept, we find its attention in the attention map A
and crop the corresponding heat regions for visual inspection. As shown in Fig. 3, our model can
automatically discover the body parts of a bird (e.g., head, body, and wings) and car parts (e.g.,
headlight, window, wheels, grill) from the images without detailed part-level annotation. This
validates the code interpretability of our method.

Attention quality. Although fine-grained hashing methods (e.g., A2-Net (Wei et al., 2021a) and
SEMICON (Shen et al., 2022)) lack the code interpretability, local attention has been also adopted.
We further evaluate the quality of attention with our ConceptHash and these methods. As shown in
Fig. 4, we observe that while A2-Net and SEMICON both can identify some discriminative parts of
the target object along with background clutters, our model tends to give more accurate and more
clean focus. This is consistent with the numerical comparison in Table 1, qualitatively verifying our
method in the ability to identify the class discriminative parts of visually similar object classes.

4.3 FURTHER ANALYSIS

Impact of language guidance. We evaluate the effect of language guidance (Eq. 4) by comparing
with two alternative designs without using the language information: (i) Random vectors: Using
random orthogonal centers (Hoe et al., 2021) without using visual information; (ii) Learnable

Table 2: Effect of language guidance in forming the hash class centers.

Dataset CUB-200-2011 NABirds FGVC-Aircraft Stanford Cars

Hash centers 16 32 64 16 32 64 16 32 64 16 32 64

Random vectors 77.00 79.61 82.12 71.93 73.66 76.20 71.22 77.28 79.19 88.57 87.17 88.46
Learnable vectors 81.55 82.39 83.86 75.80 79.76 81.66 82.08 83.43 83.62 91.03 91.92 92.84

Language (Ours) 83.45 85.27 85.50 76.41 81.28 82.16 82.76 83.54 84.05 91.70 92.60 93.01
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Figure 5: tSNE of the hash centers. The top 10 families of fine-grained classes in CUB-200-2011 are
plotted for clarity.

vectors: Learning the class centers with discrete labels thus using the visual information. We
observe from Table 2 that: (1) Our language-guided hash centers yield the best performance, validating
our consideration that using extra textual information is useful for visually challenging fine-grained
image recognition. (2) Among the two compared designs, Learnable vectors is significantly
superior, suggesting that hash class centers are a critical component in learning to hash and also that
imposing the language information into class centers is a good design choice. (3) It is worth noting
that, even without any language guidance (the Learnable vectors row of Table 2), our results
are clearly superior to the compared alternatives (see Table 1).

For visual understanding, we plot the distribution of class centers on CUB-200-2011 using the tSNE
(Van der Maaten & Hinton, 2008). For clarity, we select the top-10 families of bird species. As
shown in Fig. 5, the class centers do present different structures. Using the visual information
by Learnable vectors, it is seen that some classes under the same family are still farther
apart (e.g., the kingfisher family, gold colored). This limitation can be mitigated by our language
guidance-based design. Furthermore, the class centers present more consistency with the family
structures. For example, tern and gull are both seabirds, staying away from the other non-seabird
families. This further validates that the semantic structural information captured by our ConceptHash
could be beneficial for object recognition.

(a) With Lcsd (b) Without Lcsd

Figure 6: Effect of concept spatial diversity Lcsd: The attention maps at the last layer of the Vision
Transformer. Setting: M = 4.
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Table 3: Loss ablation: The effect of adding gradually different loss terms of ConceptHash.

Lquan Lcsd Lcs
CUB-200-2011 Stanford Cars

16 64 16 64

✗ ✗ ✗ 68.65 82.00 81.85 91.20

✓ ✗ ✗ 81.12 84.14 90.03 92.72
✓ ✓ ✗ 81.63 84.79 90.63 92.82
✓ ✗ ✓ 83.02 85.10 91.57 92.75
✓ ✓ ✓ 83.45 85.50 91.70 93.01
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Figure 7: The correlation matrix between atten-
tion maps at the last layer of the vision trans-
former when training with (left) and without
(right) the proposed concept spatial diversity con-
straint Lcsd. This is averaged over all training
images of CUB-200-2011 with M = 4.
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Figure 8: Impact of the concept number M . Set-
ting: 64 bits.

Loss design. We examine the effect of key loss terms. We begin with the baseline loss Lclf (Eq. 6).
We observe in Table 3 that: (1) Without the quantization loss Lquan (Eq. 7), a significant performance
drop occurs, consistent with the conventional findings of learning to hash. (2) Adding the concept
spatial diversity constraint Lcsd (Eq. 8) is helpful, confirming our consideration on the scattering
property of underlying concepts. We find that this term helps to reduce the redundancy of attention
(see Fig. 6 and Fig. 7). (3) Using the concept discrimination loss Lcd (Eq. 9) further improves the
performance, as it can increase the discriminativeness of the extracted concepts.

5 CONCLUSION

In this work, we have introduced a novel concept-based fine-grained hashing method called Con-
ceptHash. This method is characterized by learning to hash with sub-code level interpretability, along
with leveraging language as extra knowledge source for compensating the limited visual information.
Without manual part labels, it is shown that our method can identify meaningful object parts, such as
head/body/wing for birds and headlight/wheel/bumper for cars. Extensive experiments show that our
ConceptHash achieves superior retrieval performance compared to existing art methods, in addition
to the unique code interpretability.

Limitations It is noted that increase in the number of concepts M can lead to overfitting and
negatively impact interpretability, resulting in attention maps being scattered randomly around (see
Fig. 8 and Fig. 9). The discovered concepts require manual inspection as the general clustering
methods. Addressing these limitations will be the focus of our future work.

Figure 9: Example attention maps. Setting: M = 8.

9



Under review as a conference paper at ICLR 2024

REFERENCES

David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining neural
networks. In Advances in neural information processing systems, 2018.

Sercan Ö Arik and Tomas Pfister. Protoattend: Attention-based prototypical learning. Journal of
Machine Learning Research, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Mohamed El Banani, Karan Desai, and Justin Johnson. Learning visual representations via language-
guided sampling. arXiv preprint arXiv:2302.12248, 2023.

Ardhendu Behera, Zachary Wharton, Pradeep RPG Hewage, and Asish Bera. Context-aware at-
tentional pooling (cap) for fine-grained visual classification. In AAAI Conference on Artificial
Intelligence, 2021.

Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang. Deep cauchy hashing for hamming space
retrieval. In Computer Vision and Pattern Recognition, 2018. doi: 10.1109/CVPR.2018.00134.

Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S. Yu. Hashnet: Deep learning to hash by
continuation. In International Conference on Computer Vision, 2017.

Dongliang Chang, Yifeng Ding, Jiyang Xie, Ayan Kumar Bhunia, Xiaoxu Li, Zhanyu Ma, Ming Wu,
Jun Guo, and Yi-Zhe Song. The devil is in the channels: Mutual-channel loss for fine-grained
image classification. IEEE Transactions on Image Processing, 2020.

Dongliang Chang, Kaiyue Pang, Yixiao Zheng, Zhanyu Ma, Yi-Zhe Song, and Jun Guo. Your"
flamingo" is my" bird": Fine-grained, or not. In Computer Vision and Pattern Recognition, 2021.

Shoufa Chen, Chongjian GE, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022a.

Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, and Zhangyang Wang. The principle
of diversity: Training stronger vision transformers calls for reducing all levels of redundancy. In
Computer Vision and Pattern Recognition, 2022b.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. Uniter: Universal image-text representation learning. In European Conference on
Computer Vision, 2020.

Yue Chen, Yalong Bai, Wei Zhang, and Tao Mei. Destruction and construction learning for fine-
grained image recognition. In Computer Vision and Pattern Recognition, 2019.

Zhen-Duo Chen, Xin Luo, Yongxin Wang, Shanqing Guo, and Xin-Shun Xu. Fine-grained hashing
with double filtering. IEEE Transactions on Image Processing, 2022c.

Quan Cui, Qing-Yuan Jiang, Xiu-Shen Wei, Wu-Jun Li, and Osamu Yoshie. Exchnet: A unified
hashing network for large-scale fine-grained image retrieval. In European Conference on Computer
Vision. Springer, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Ruoyi Du, Dongliang Chang, Ayan Kumar Bhunia, Jiyang Xie, Zhanyu Ma, Yi-Zhe Song, and Jun
Guo. Fine-grained visual classification via progressive multi-granularity training of jigsaw patches.
In European Conference on Computer Vision. Springer, 2020.

Abhimanyu Dubey, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Maximum-entropy fine grained
classification. In Advances in Neural Information Processing Systems, 2018.

10



Under review as a conference paper at ICLR 2024

Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, and Chee Seng Chan. Deep polarized network
for supervised learning of accurate binary hashing codes. In International Joint Conference on
Artificial Intelligence, 2020.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via hashing.
In International Conference on Very Large Data Bases, 1999.

Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iterative quantization: A
procrustean approach to learning binary codes for large-scale image retrieval. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2012.

Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, and Changhu Wang.
Transfg: A transformer architecture for fine-grained recognition. In AAAI Conference on Artificial
Intelligence, 2022.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jiun Tian Hoe, Kam Woh Ng, Tianyu Zhang, Chee Seng Chan, Yi-Zhe Song, and Tao Xiang. One
loss for all: Deep hashing with a single cosine similarity based learning objective. In Advances in
Neural Information Processing Systems, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, 2019.

Zhicheng Huang, Zhaoyang Zeng, Yupan Huang, Bei Liu, Dongmei Fu, and Jianlong Fu. Seeing
out of the box: End-to-end pre-training for vision-language representation learning. In Computer
Vision and Pattern Recognition, 2021.

Zixuan Huang and Yin Li. Interpretable and accurate fine-grained recognition via region grouping.
In Computer Vision and Pattern Recognition, 2020.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Annual ACM Symposium on Theory of Computing, 1998.

Sheng Jin, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, Lei Zhang, and Xiansheng Hua. Deep
saliency hashing for fine-grained retrieval. IEEE Transactions on Image Processing, 2020.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, 2018.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convolu-
tion or region supervision. In International Conference on Machine Learning, 2021.

Konstantin Kobs, Michael Steininger, and Andreas Hotho. Indirect: Language-guided zero-shot deep
metric learning for images. In Winter Conference on Applications of Computer Vision, 2023.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International Conference on Machine Learning, 2020.

Weihao Kong and Wu-jun Li. Isotropic hashing. In Advances in Neural Information Processing
Systems, 2012.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In International Conference on Computer Vision Workshops, 2013.

Brian Kulis and Trevor Darrell. Learning to hash with binary reconstructive embeddings. In Advances
in Neural Information Processing Systems, 2009.

Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image search.
In International Conference on Computer Vision, 2009.

11



Under review as a conference paper at ICLR 2024

Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simultaneous feature learning and hash coding
with deep neural networks. In Computer Vision and Pattern Recognition, 2015.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 2015.

Wenxi Lang, Han Sun, Can Xu, Ningzhong Liu, and Huiyu Zhou. Discriminative feature mining hash-
ing for fine-grained image retrieval. Journal of Visual Communication and Image Representation,
2022.

Jian Li, Xing Wang, Zhaopeng Tu, and Michael R Lyu. On the diversity of multi-head attention.
Neurocomputing, 2021a.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. In Advances in neural information processing systems, 2021b.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple
and performant baseline for vision and language. arXiv preprint arXiv:1908.03557, 2019.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training for vision-language
tasks. In European Conference on Computer Vision, 2020.

Yunqiang Li and Jan van Gemert. Deep unsupervised image hashing by maximizing bit entropy. In
AAAI Conference on Artificial Intelligence, 2021.

Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for fine-grained
visual recognition. In International Conference on Computer Vision, 2015.

Di Lu, Jinpeng Wang, Ziyun Zeng, Bin Chen, Shudeng Wu, and Shu-Tao Xia. Swinfghash: Fine-
grained image retrieval via transformer-based hashing network. In British Machine Vision Confer-
ence, 2021.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances
in Neural Information Processing Systems, 2017.

Xiao Luo, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang, and Xian-Sheng Hua. A
survey on deep hashing methods. arXiv preprint arXiv:2003.03369, 2020.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Christoph Molnar. Interpretable machine learning. Lulu.com, 2020.

Meike Nauta, Ron van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-grained
image recognition. In Computer Vision and Pattern Recognition, 2021.

Mohammad Norouzi and David J. Fleet. Minimal loss hashing for compact binary codes. In
International Conference on Machine Learning, 2011.

Mohammad Norouzi, David J Fleet, and Russ R Salakhutdinov. Hamming distance metric learning.
In Advances in Neural Information Processing Systems, 2012.

Tuomas Oikarinen, Subhro Das, Lam M. Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck
models. In International Conference on Learning Representations, 2023.

Yuxin Peng, Xiangteng He, and Junjie Zhao. Object-part attention model for fine-grained image
classification. IEEE Transactions on Image Processing, 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
2021.

12



Under review as a conference paper at ICLR 2024

Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou,
and Jiwen Lu. Denseclip: Language-guided dense prediction with context-aware prompting. In
Computer Vision and Pattern Recognition, 2022.

Mattia Rigotti, Christoph Miksovic, Ioana Giurgiu, Thomas Gschwind, and Paolo Scotton. Attention-
based interpretability with concept transformers. In International Conference on Learning Repre-
sentations, 2022.

Karsten Roth, Oriol Vinyals, and Zeynep Akata. Integrating language guidance into vision-based
deep metric learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16177–16189, 2022.

Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz Zieliński. Protopshare: Prototypical
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Figure 10: Two adapters are added after the multi-head self-attention layer (MSA) and the feedforward
network (MLP). LN denotes layer normalization for each block of a standard vision transformer.

A IMPLEMENTATION OF ADAPTER

To increase training efficiency, we add adapters to the vision transformer instead of fine-tuning all
parameters. We adopt the architecture in AdaptFormer Chen et al. (2022a) and define our adapter as:

adapter(z) = s ·Wup · GELU(Wdown · LN(z)), (10)

where LN is a layer normalization layer Ba et al. (2016), Wdown ∈ RDdown×D is the weights of down
projection and Wup ∈ RD×Ddown is the weights of up projection, GELU is the non-linear activation
function Hendrycks & Gimpel (2016), and s ∈ R is a learnable scaling factor. Ddown is set as 384.

We added two adapters for each block of the vision transformer, one after multi-head self-attention
(MSA) layer and one after feedforward network (MLP). The output of l-th block of the vision
transformer is computed as:

Ẑ(l) = MSA(LN(Z(l−1))),

ˆ̂
Z(l) = adapter(Ẑ(l)) + Ẑ(l) + Z(l−1),

Z̃(l) = MLP(LN(
ˆ̂
Z(l))),

Z(l) = adapter(Z̃(l)) + Z̃(l) +
ˆ̂
Z(l). (11)

See Fig. 10 for the detail of the computational graph. We follow Houlsby et al. (2019) to insert our
adapters.

B RETRIEVAL ON FAMILY SPECIES

In this section, we evaluate the methods by replacing the fine-grained labels with family labels
in order to assess the semantic ability of the hash codes. The CUB-200-2011 dataset is chosen
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Table 4: Performance (mean average precision) of retrieval by family species on CUB-200-2011.

CUB-200-2011

Methods 16 32 64

ITQ Gong et al. (2012) 20.00 23.46 27.09

HashNet Cao et al. (2017) 24.40 35.62 38.13
DTSH Wang et al. (2016b) 36.96 37.81 39.49
GreedyHash Su et al. (2018) 44.46 55.62 60.98
CSQ Yuan et al. (2020) 31.62 34.47 35.25
DPN Fan et al. (2020) 34.09 36.28 36.84
OrthoHash Hoe et al. (2021) 34.16 36.95 37.61

A2-Net Wei et al. (2021a) 45.62 50.93 52.95
SEMICON Shen et al. (2022) 43.10 53.24 56.80

ConceptHash (Ours) 60.54 63.44 67.20

as the benchmark. Table 4 presents two key observations: (i) Our ConceptHash outperforms
previous methods by a significant margin, highlighting the effectiveness of our approach. This result
underscores the superiority of our methods in capturing the semantic information encoded within the
hash codes. (ii) Random-center-based hashing methods like CSQ Yuan et al. (2020) perform worse
than older hashing methods such as DTSH Wang et al. (2016b), even though they outperform them in
fine-grained retrieval (Table 1 in the main paper). A likely explanation is that the training objective of
random-center-based hashing primarily focuses on learning to generate the fixed target hash codes,
thereby ignoring the semantic relationships (such as family information) between the fine-grained
classes.
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