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ABSTRACT

Test-time domain generalization (TTDG) methods enhance the performance of
neural networks on target domains by transferring the feature distribution of
target samples to approximate that of the source domain, while avoiding the
computational cost associated with fine-tuning on the target domain. How-
ever, existing TTDG methods primarily rely on style transfer strategies operat-
ing at a coarse granularity, which prove ineffective for pixel-level prediction tasks
such as image super-resolution (SR). To address this limitation, we propose a
multi-codebook based test-time domain generalization framework (MC-TTDG).
Our method leverages both domain-specific and domain-invariant codebooks to
achieve fine-grained representation learning on source domains, and performs
pixel-level nearest-neighbor feature matching and transfer to accurately adjust tar-
get domain features. Furthermore, we introduce a voting-based strategy for opti-
mal domain-specific codebook selection, which improves the precision of feature
transfer through multi-party consensus. Extensive experiments across diverse data
distributions, and network architectures demonstrate that the proposed method ef-
fectively transfers feature distributions for SR networks. Our code is available at
https://github.com/ZaizuoTang/MC-TTDG.

1 INTRODUCTION

In real-world scenarios, due to variations in imaging conditions, the distribution of the test sample set
(target domain) often diverges from that of the training set (source domain) used for neural networks
(Guo et al} |2025; Deng et al., [2025). This discrepancy, commonly referred to as domain shift, can
significantly degrade the predictive performance of neural networks trained on the source domain
when applied to the target domain (Wang et al., 2025} (Choe et al.| 2025)).

As illustrated in Figure El, conventional domain generalization methods (Lee et al., 2025} [Rathore
et al.| 2025)) utilize samples from multiple source domains with divergent distributions as input. By
learning domain-invariant representations across these source domains, they enhance the model’s
robustness on target domains with differing distributions. However, these conventional methods
neglect the distribution of the target domain during testing, resulting in underutilization of target
domain information. In contrast, test-time domain generalization methods (TTDG) (Ma et al., 2024;
Meng et al., 2025; Nam & Leel [2025) preserve the distributional centroids of the source domains
during training. During testing, they perform style transfer on target domain samples to align their
distribution with these source domain centroids. By transferring the distribution of target domain
samples in this manner, TTDG methods eliminate the need for computationally expensive fine-
tuning on the target domain while simultaneously improving the model’s performance on target
domain samples.

Low-level vision tasks, such as image super-resolution (SR), are widely employed in remote sensing
imaging, image transmission, and even serve as preprocessing steps for downstream tasks. However,
due to discrepancies in imaging devices, domain shift also exists in low-level vision tasks, which
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Figure 1: Comparison of domain generalization methods. The domains 1 to 3 represent the source
domains, while domains 4 to 6 represent the target domains. Conventional domain generalization
methods optimize the source-domain network to enhance its robustness. In contrast, TTDG methods
optimize the target-domain samples by aligning their distribution with the source-domain distribu-
tion, thereby improving the performance of models trained on the source domain when applied to
target data. Existing TTDG methods typically preserve the source distribution using a single cen-
troid and perform adjustment via style transfer (As shown in Equation [T). The proposed method
(MC-TTDG) improves upon this framework by introducing domain-specific codebooks to retain
domain-specific features and enabling pixel-level highly fine-grained feature transfer.
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Figure 2: Comparison of feature transfer methods. We compare existing style transfer and the pro-
posed codebook-based transfer in aligning the target domain distribution with the source domain
distribution. Due to its inability to perform fine-grained adjustments at the pixel level, style trans-
fer proves highly ineffective for low-level vision tasks such as SR, resulting in most transformed
samples overlapping significantly with the original target domain samples. In contrast, the proposed
codebook transfer method effectively aligns the target domain distribution with the source domain.
(t-SNE (Maaten & Hinton, [2008]) is used for feature dimensionality reduction.)

hinders the performance of deep neural networks in these applications (Tang & Yang|2024;|Ai et al.,
2024).

However, applying existing TTDG methods to SR tasks faces the following three challenges:

Challengel: Low granularity in feature transfer. Existing test-time domain generalization meth-
ods utilize style transfer (Huang & Belongie] 2017) (as shown in Equation [I)) to modify the mean
and variance of target domain features, thereby approximating the feature distribution of the source
domain. Such global feature transfer is well-suited for high-level vision tasks like image classifica-
tion, which rely on abstract representations of entire images. However, as shown in Figure 2} for
pixel-level tasks such as image SR, style transfer fails to perform fine-grained adjustments for each
individual pixel. Consequently, it is difficult to accurately align the target domain feature distribution
with the source domain feature distribution in SR tasks.
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(a) Single-codebook (b) Multi-codebook

Figure 3: Distribution Comparison. We employ t-SNE (Maaten & Hinton, |2008)) to visualize the
codewords in the codebook. It can be observed that the single-codebook method (a) compresses
features from multiple source domains, resulting in the loss of domain-specific information. In
contrast, the multi-codebook representation learning method (b) allocates a dedicated feature space
for each source domain, mitigating the loss of domain-specific information caused by compression.
(In the multi-codebook visualization, red, green, and blue represent the codebook distributions for
the P, IMG, and Canon data branches, respectively, while purple indicates the distribution of the
domain-invariant codebook.)
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where p°, ut, o and o represent the mean and variance of the source domain and target domain,
respectively, while p and p’ denote the target domain sample distributions before and after transfer.

Solution 1: We introduce a codebook into the representation learning of source domain features.
During inference, pixel-level optimal codeword matching and replacement are performed on the tar-
get domain features, thereby achieving highly fine-grained feature transfer of target domain samples.

Challenge 2: Loss of domain-specific feature information

Existing domain generalization methods employ a single backbone network or codebook to learn
representations from multiple diverse source domain distributions. However, as shown in Figure [3}
such methods compress these diverse source distributions into a compact feature space, leading to
the loss of domain-specific features.

Solution 2: We extend the single codebook to a multi-codebook framework, comprising a shared
codebook (referred to as the domain-invariant codebook) for learning domain-invariant features, and
multiple domain-specific codebooks dedicated to capturing domain-specific features. This method
not only effectively preserves detailed information from each source domain, but also enhances the
robustness of deep networks through a disentangled learning strategy that separates domain-specific
and domain-invariant features. (Solution 2 extends Solution 1 and is referred to as Representation
Learning Strategy based on Multiple Codebooks, RLMC.)

Challenge 3: Optimal selection of domain-specific codebooks

The introduction of multiple domain-specific codebooks necessitates the selection of the most appro-
priate domain-specific codebook for the target domain features during testing. Existing methods in
related scenarios, such as Mixture of Experts (MoE), typically employ a gating mechanism—often
implemented as a classification network. However, these methods inadequately account for domain
shift. As a result, the classification network trained on source domain samples performs poorly
when applied to target domain samples with different distributions (as shown in Table [3)), leading
to suboptimal codebook selection and misguided representation of domain-specific features in the
target domain.

Solution 3: We propose a voting-based strategy for optimal domain-specific codebook selection,
guided by multiple source domain-specific features. This method effectively reduces the inaccuracy
of the classification network through multi-party voting.



Published as a conference paper at ICLR 2026

Our main contributions can be summarized as follows:

* We introduce a codebook to perform pixel-level, highly fine-grained feature transfer on the
target domain samples, significantly enhancing the efficiency of feature transfer for low-
level vision tasks (SR tasks). To the best of our knowledge, the proposed method is the first
test-time domain generalization method designed for low-level vision tasks, and also the
first to incorporate a codebook into test-time domain generalization.

* We propose a Representation Learning Strategy based on Multiple Codebooks (RLMC),
which mitigates the loss of domain-specific information from the source domains. Addi-
tionally, to address the challenge of selecting the optimal domain-specific codebook during
testing, we introduce a voting-based strategy for optimal domain-specific codebook selec-
tion.

» Extensive experiments have been conducted to evaluate the proposed method across various
network architectures and diverse sample distributions. The results demonstrate that our
method significantly improves the efficiency of feature transfer in target domains for low-
level vision tasks.

Refer to the Appendix [A|for related work on codebook and TTDG methods.

2 PROPOSED METHOD

2.1 PROBLEM SETTING

Given a source domain set D? consisting of multiple source domains with diverse data distributions,
denoted as D* = {D7, D3, ..., D;, }. Each source domain comprises paired LR and HR images:

D} = {LR]‘”T7 HR; }’jl. Similarly, the target domain set D7 contains multiple target domains with
varying distributions: DT = {D{ DY ...| DZ; }. Unlike the source domains, each target domain

contains only LR images: D! = {LR]-T}?;tl, and the source and target domain sets are disjoint:
DN DT = (). n, and ny represent the number of source domains and target domains, respectively.
nss and Ny denote the number of samples in the source domain and target domain, respectively. A

model M ¥ is trained on the source domain set D*.

Consistent with existing TTDG methods, our goal is to transfer the distribution of the target samples
(LRT) to approximate that of the source domain samples (L RR*), thereby enhancing the performance
of the source domain-trained model M*® on the target domain.

2.2 OVERVIEW

As shown in Figure ] the overall pipeline of the proposed method consists of two stages: During
the training stage on the server side, pre-trained network weights (comprising Conv1, Backbone,
and Decoder, which together form a complete network architecture) are first loaded and frozen. The
proposed Representation learning strategy based on multiple codebooks (RLMC) (Section [2.3) is
then applied to implicitly learn both domain-invariant features and domain-specific features from
the source domains. (It is worth noting that the primary optimization objective during the training
stage is to endow RLMC with the ability to reconstruct source domain features.) In the testing stage
on the edge device side (Section @, the learned domain-invariant codebook is utilized to transfer
the domain-invariant features within the target domain sample distribution. Meanwhile, a voting-
based optimal domain-specific codebook selection strategy (Section [2.5) is employed to choose the
most suitable domain-specific codebook for the target domain samples, followed by corresponding
transfer of the domain-specific features in the target domain.

2.3 TRAINING STAGE (REPRESENTATION LEARNING STRATEGY BASED ON MULTIPLE
CODEBOOKS, RLMC)

Existing methods typically employ a single backbone network or a single codebook to represent
features from multiple source domains with different distributions. This practice compresses the
features of various domains into a constrained space (as shown in Figure 3], resulting in the loss of
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Figure 4: Overall Framework. n, denotes the number of source domains. LR, SR; and HR;
denote the LR image, super-resolution image, and ground-truth HR image of the ¢-th source do-
main, respectively. LRT and SR represent the LR image and super-resolution image of the target
domain. Codebook%*¢ and Codebook®>P¢ refer to the domain-invariant codebook and domain-
specific codebook, respectively. Definitions of other variables can be found in Equations |I|to

domain-specific features. To mitigate this issue, we introduce multiple domain-specific codebooks
to represent and learn features from the diverse source domains, thereby avoiding feature loss caused
by excessive compression of source domain features.

Additionally, to enhance the network’s efficiency in learning both domain-invariant and domain-
specific features, we introduce an additional shared codebook, termed the domain-invariant code-
book. Using this domain-invariant codebook as a base representation and the domain-specific code-
books as offsets, each source domain can be represented efficiently and discriminatively.

As shown in Figure a), the LR image subset of the i-th source domain, denoted as LRf , 1s first
fed into a shallow feature extractor (Conv 1) to obtain shallow features f;. These features are then

decomposed via convolutional operations (Conv 2) into fZ%5¢ and fiSp °. The feature f595¢ is trans-

ferred using the shared codebook (Domain-invariant codebook), while fis P¢ is transferred via the
domain-specific codebook. This method implicitly guides the convolutional (Conv 2) decomposition

such that f34¢ captures domain-invariant features—encoding cross-domain shared features—and

S . . .
17P€ retains domain-specific features.

fi = Convl(LR?), (2)
[P = Conv2(fy), (3)
£ = fi— 1P, (4)
fZ-BQ = Transfer(f2¢, CodebookB**°), ®)
f59 = Transfer(f°7¢, Codebook. ™), (6)

where both Convl and C'onv2 denote convolutional operations, and T'rans fer refers to the fea-
ture transfer operation. Further details of the transfer process are elaborated in Equation [I3]

CodebookBe5¢ denotes the domain-invariant codebook, while C’odebookf P¢ represents the domain-
specific codebook corresponding to the i-th source domain. Both codebooks consist of multiple

codewords, with CodebookB*¢ = {Codeword; € RP };y:cl, where N, is the number of codewords
in Codebook®2%¢, and D denotes the dimensionality of each codeword, which matches the number
of channels in the target domain sample features. The structure of Codebookf P€ is defined similarly
to that of CodebookBs¢.
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The transferred domain-invariant features fiB ? and domain-specific features fo are combined via
element-wise summation and then passed into subsequent network layers to generate the correspond-
ing SR image SR,

SR = Decoder(Backbone(fiBQ + fZ-SQ)), (7
where Backbone and Decoder denote the backbone network and the decoder module, respectively.

Additionally, we introduce an auxiliary classification branch that utilizes the input domain-specific
features fiSp ° to identify the category of the current domain (as formulated in Equation . It is
worth noting that the predictions from this classification network are not utilized during the training
stage.

Pre = CN(f77¢), (8)

where Pre € RP™ represents the category information predicted by the classification network
CN, with B and n denoting the batch size and the number of source domains, respectively.

The overall training loss consists of four components: the image SR loss Loss®%, the quantization
loss Loss?9, the commitment loss Loss®®™", and the classification loss Loss®!*, formulated as
follows:

Loss™ = Loss®T + ALossV9 4+ BLoss®°™™ + ~Loss®'*, 9
Loss®f = |SRY — HR?|, (10)
Loss"? = [|sg(f7*°) = £7°l + Isg(£77) = 179, (1D
Loss@m™ = [| £ — sg(fFON+ 1177 = sg(f7 I, (12)
loss®!® = CrossEntropy(Pre, 1), (13)

where SR? and H R? denote the predicted SR image and the corresponding ground-truth HR image
of the i-th source domain, respectively. The operator sg() represents the gradient stop operation.
Loss¥? denotes the quantization loss, which is used to train the codewords in the codebook, while
Loss®™™ constrains the network layers to align with the codewords. The terms A, 5, and -y are
constant weighting coefficients.

2.4 TESTING STAGE

Existing test-time domain generalization methods typically rely on global style transfer to align
the feature distribution of the target domain with that of the source domain. However, such global
adjustment operates at a low granularity, making it difficult to perform effective feature transfer for
pixel-level tasks like image SR. To address this limitation, we employ a codebook to represent the
source domain and propose a nearest-neighbor matching strategy to achieve pixel-level transfer of
target domain samples.

As shown in Figure Ekb), the target domain image LR” is fed into a shallow feature extractor
(Convl) to generate shallow features. Convolutional operations (Conv2) then decompose these
shallow features into domain-invariant features and domain-variant features. The domain-invariant
codebook is utilized to perform pixel-level feature transfer on the domain-invariant features of the
target domain samples,

f}gﬁget = Transfer(ffgfgeet, C’odebookBase), (14)

where fEase ¢ RE.CHW 'with B, C, H, and W denoting the batch size, number of channels,
height, and width of the feature, respectively.

The feature transfer operation computes the most similar (nearest-neighbor) codeword in the code-
book to each pixel feature and replaces the corresponding target domain feature at that pixel location
using the retrieved codeword. Taking the transfer of the pixel feature f, , at position z, y as an ex-
ample, where x € {1,2,...,H} andy € {1,2,..., W}, the procedure is as follows:

Transfer(fyy, Codebook) = Cy, where k= argmini ||fyz, — Cillz, (15)
C;eCodebook

where C}, and C; represent the k-th and i-th codewords in the codebook.
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For the domain-specific features, we employ the proposed voting-based domain-specific codebook
selection strategy (Section to choose the optimal domain-specific codebook, which is then used
to perform feature transfer on the domain-specific features,

159 = Vote(fiFe ), (16)

Target — Target
where Vote denotes the proposed voting-based domain-specific codebook selection strategy.

Finally, the transferred domain-specific features and domain-invariant features are combined via
element-wise summation and fed into subsequent network layers to generate the SR image SR” for
the target domain.

SRT = Decoder(Backbone(f5°, , + 59 ). (17)

Target Target

2.5 VOTING-BASED DOMAIN-SPECIFIC CODEBOOK SELECTION STRATEGY

The presence of multiple domain-specific codebooks raises the challenge of selecting the optimal
codebook for feature transfer of target domain-specific features. Existing methods in related scenar-
i0s, such as Mixture of Experts (MoE) (Yang et al.,[2025} Zhu et al., 2025; |[Zamfir et al., 2024), fail to
account for domain shift. These methods typically employ a classification network to discriminate
among experts and select the one with the highest confidence score as the optimal choice. How-
ever, we observe that due to the distributional discrepancy between the target and source domains,
the classification network trained on source domain samples tends to yield significant prediction er-
rors (Table [3). This leads to the selection of a suboptimal domain-specific codebook, consequently
guiding the transfer of target domain-specific features in an erroneous direction.

Therefore, we propose to leverage multiple domain-specific codebooks to perform preliminary trans-
fer on the target domain features, generating multiple sample features that approximate the distri-
bution of the source domain features. Since the quality of these transferred features varies, we
introduce a voting strategy to stabilize the predictions of the classification network.

As shown in Figure [fc), the target domain-specific features are transferred using multiple source
domain-specific codebooks and then fed into the classification network. The highest domain cate-
gory corresponding to each transferred feature is counted. The domain-specific codebook with the
highest number of votes is selected as the final choice. In the event of a tie (i.e., equal votes for
multiple domain categories), the voting result of the original untransferred feature is adopted as the
final prediction. The overall procedure is summarized in Appendix [B]

3 EXPERIMENTS

3.1 EXPERIMENT DETAILS

Datasets, Evaluation, and Network Architecture: We extensively validate the proposed method
on the DRealSR (Wei et al.| 2020)), Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al.,[2010), B100
(Martin et al) [2001), Urban (Huang et al., 2015), Mangal09 (Matsui et al., 2017), and DIV2K
(Timofte et al.l 2017) datasets. The DRealSR (Wei et al., |2020) dataset comprises multiple data
branches—P, IMG, Canon, Pan, Sony, and DSC—each captured by different cameras with distinct
data distributions, making it widely adopted in domain generalization and domain adaptation re-
search. For performance evaluation, we employ PSNR, SSIM, and LPIPS metrics. To demonstrate
the architectural generalization capability of the proposed method, we further verify its effective-
ness on the AdaCode (Liu et al.,[2023), HAT (Chen et al .l [2023)), and MambalR (Guo et al., 2024a)
network architectures.

Training Details: We train the network using the Adam optimizer with an input image size of 48 x
48 pixels. The batch size is set to 16. The training is conducted on 4 x V100 GPUs.

3.2 ABLATION EXPERIMENT
3.2.1 ABLATION EXPERIMENTS ON DIFFERENT CODEBOOK SETTINGS.

To validate the effectiveness of the proposed method, we conducted an ablation study on the code-
book configuration. As shown in Table |I} we used the performance of the MambalR (Guo et al.,
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Table 1: Ablation experiments on different codebook settings

Pan Sony DSC
Method PSNRT  SSIMT PSNRtT SSIMtT PSNRT  SSIM?T
Baseline 31.0263 0.8580 30.7220 0.8645 309117 0.8816
One codebook 31.1111  0.8573  31.1411 0.8750 30.9640 0.8776

w/o Domain invariant codebook  30.9097  0.8552 31.0144 0.8749 30.9043 0.8782
Domain specific codebook
& Domain invariant codebook 31.1571  0.8594 31.2937 0.8791 31.2118 0.8836

Table 2: Ablation experiments on different feature transfer methods

Pan Sony DSC
Methods PSNR{T  SSIM{T PSNRT  SSIM{ PSNRT  SSIMfT
Baseline 31.0263  0.8580 30.7220 0.8645 309117 0.8816
One center style transfer 31.0262 0.8580 30.7171 0.8644 309131 0.8816
Multi center style transfer 31.0261 0.8580 30.7166 0.8644 309118 0.8816

Codebook-based transfer (Ours) 31.1571 0.8594 31.2937 0.8791 31.2118 0.8836

2024a) network—trained on the source domain set (P, IMG, and Canon data branches)—on the test
domain as the baseline.

We first evaluated the method that employs only a single codebook to represent all source do-
main features (One Codebook). It can be observed that the codebook-based representation learn-
ing method effectively improves the network’s performance on the target domain. By performing
pixel-level feature transfer on the target domain samples, the distribution of the target domain can
be transferred with relative effectiveness. However, using a single codebook to represent multiple
source domains inevitably leads to the loss of domain-specific information (as shown in Figure [3)),
while the performance metrics are also lower compared to the multi-codebook method.

To validate the effectiveness of the domain-invariant codebook, we evaluated the performance of
the SR network in the absence of this component (denoted as w/o Domain-Invariant Codebook),
where only a domain-specific codebook was used for each source domain. However, such meth-
ods overlook the inherent correlations among source domains and weaken the network’s ability to
discriminate between domain-specific and domain-invariant features.

The proposed feature representation learning method, which jointly leverages domain-invariant and
domain-specific codebooks, enables fine-grained feature representation for each source domain and
avoids the loss of domain-specific information associated with single-codebook designs. By disen-
tangling the representations of domain-invariant and domain-specific features, the method enhances
the robustness of the domain-invariant codebook to diverse input features, while the domain-specific
codebook becomes more specialized in capturing domain-specific features, leading to improved ef-
ficiency in target domain feature transfer. The proposed method achieves notable performance gains
across all three data branches, with PSNR improvements of 0.1308 dB, 0.5717 dB, and 0.3001 dB
on the Pan, Sony, and DSC branches, respectively.

3.3 ABLATION EXPERIMENTS ON DIFFERENT FEATURE TRANSFER METHODS

As shown in Table 2] we evaluated the transfer efficiency of different feature transfer methods on
the target domain features. First, we tested the single-center style transfer method, which employs a
unified style center across all source domains and adjusts the target domain distribution via mean and
variance matching (as formulated in Equation[I). We also evaluated the multi-center style transfer
method, where each source domain is represented by its domain-specific mean and variance. During
inference, the nearest source domain style is selected to transfer the target domain features. The
results indicate that style transfer is highly inefficient for low-level vision tasks, with almost no
improvement in performance metrics.

In high-level vision tasks, the features learned by the network represent abstract interpretations of the
entire image, and predictions rely heavily on the global style of these features. Style transfer can thus
effectively influence the model’s predictions. However, low-level vision tasks require pixel-wise
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Table 3: Ablation experiments on different domain-specific codebook selection methods

Pan Sony DSC
Methods Topl? Top2t Toplt Top2t Toplt Top2t
Maximum predicted score  0.2907 0.5673 0.0596 0.1391 0.1660 0.3868
Voting selection (Ours) 0.3726 0.7838 0.3545 0.8757 0.4922 0.7800

Table 4: Performance comparison with other methods

Pan Sony DSC
Methods PSNRT SSIMt LPIPS| PSNRT SSIM{ LPIPS] PSNRT SSIMt LPIPS]
TF-Cal (Zhao et al.|[2022) 28.85  0.7862  0.4318 2792 0.7787  0.4387 29.51  0.8485  0.3690
TSB (Park et al.[[2023) 30.15  0.8315 0.4155 29.28  0.8044  0.4309 30.78  0.8739  0.3709
DG-PIC (Jiang et al.|[2024)  29.71 0.8135  0.4130 30.06  0.8305  0.4455 29.88  0.8470  0.4463
TTDG (Zhou et al.[[2024) 29.71  0.8135  0.4463 30.06  0.8305  0.4455 29.88  0.8470  0.4130
TTMG (Nam & Lee[[2025)  30.26  0.8411  0.4523 30.56  0.8541  0.4069 30.70  0.8776  0.4128
MC-TTDG (Ours) 31,15 0.8594  0.3593 3129  0.8791  0.3157 31.21  0.8836  0.3583

predictions, depending on fine-grained features of each individual pixel. Style transfer, operating
at a coarse granularity, fails to transfer pixel-level features effectively. In contrast, the proposed
codebook-based feature transfer strategy computes the nearest codeword in the codebook for each
pixel feature and replaces the target domain feature at the corresponding pixel location using the
retrieved codeword, thereby achieving extremely high granularity in feature transfer. As a result, the
codebook-based method proves far more efficient for low-level vision tasks.

3.4 ABLATION EXPERIMENTS ON DIFFERENT DOMAIN-SPECIFIC CODEBOOK SELECTION
METHODS

As shown in Table [3] we evaluated the accuracy of different strategies for selecting the optimal
domain-specific codebook. We first tested the performance of each target domain image when using
different domain-specific codebooks, then ranked the results. The domain-specific codebook that
yielded the highest performance was defined as the optimal one.

Subsequently, we evaluated the accuracy of directly using a classification network to select the op-
timal domain-specific codebook—that is, choosing the codebook with the highest prediction score.
However, due to the distribution shift between the target and source domains, the classification net-
work trained on the source domain exhibits low accuracy on the target distribution. This leads to
misguided transfer of the target features and poor performance of the neural network on the target
domain (Line 2 of Appendix Table [5).

The proposed voting-based strategy for optimal domain-specific codebook selection leverages mul-
tiple domain-specific codebooks to perform preliminary transfer on the target domain features,
thereby facilitating more reliable predictions by the classification network. By aggregating mul-
tiple predictions through voting, this method enhances the accuracy of the selection process.

3.5 COMPARATIVE EXPERIMENT

As shown in Table ] we implemented existing test-time domain generalization methods for low-
level vision tasks, including TF-Cal (Zhao et al., [2022), TSB(Park et al.l [2023), DG-PIC(Jiang
et al., [2024), TTDG(Zhou et al.| [2024), and TTMG(Nam & Lee, [2025). These methods employ
style transfer—an operation with coarse granularity—for target domain feature distribution transfer.
Consequently, they are unsuitable for low-level vision tasks requiring pixel-level predictions. In
contrast, the proposed MC-TTDG method utilizes a shared domain-invariant codebook and domain-
specific codebooks to achieve pixel-level feature representation and transfer, significantly enhancing
the performance of SR networks on the target domain.

4 CONCLUSION

In this paper, we propose a test-time domain generalization method for SR tasks, which employs a
codebook strategy to achieve pixel-level transfer of target domain sample features. Our proposed
representation learning strategy based on multiple codebooks utilizes a domain-invariant codebook
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and multiple domain-specific codebooks to enable fine-grained representation of source domain
samples. This method not only prevents the loss of domain-specific features but also enhances the
robustness of the domain-invariant codebook and improves the domain specificity of the domain-
specific codebooks. Furthermore, the introduced voting-based strategy for optimal domain-specific
codebook selection effectively mitigates the inaccuracy of the classification network caused by do-
main shift through multi-party voting, thereby providing stable and appropriate transfer directions
for target domain sample features.
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A RELATED WORK

A.1 CODEBOOK

Chen et al.| (2022) first proposed a codebook-based SR network. During training, high-resolution
(HR) image features were quantized and stored in the codebook. At inference, the network retrieved
quantized HR features that closely matched the input low-resolution (LR) image features, signifi-
cantly improving the SR performance of the SR network. [Zhou et al.| (2022) proposed a codebook-
based face reconstruction network that utilized a Transformer to predict the optimal codebook entry
for each pixel feature. They further introduced a residual structure to incorporate LR image fea-
tures into the decoding module, effectively preventing the loss of texture details. |Liu et al.| (2023))
argued that existing methods employed a single codebook for all scenarios, where one codebook
needed to simultaneously encode diverse scenes (e.g., indoor, outdoor, and facial images), result-
ing in feature confusion. To address this, they proposed a multi-codebook strategy that assigned a
dedicated codebook to each specific scene, significantly improving the feature encoding efficiency
of the codebooks. [Lu et al.| (2024) addressed the image compression-decompression problem by
proposing a HybridFlow dual-stream framework. This method combined a discrete stream based
on high-quality codebook (ensuring perceptual quality) with an ultra-low bitrate continuous feature
stream, achieving high-fidelity image reconstruction at high compression ratios. Zhang et al.| (2024)
incorporated codebook into vision-language models, where the codebook effectively modeled the
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correlation between image features and semantic features, thereby significantly enhancing the ro-
bustness of VLM models. L1 et al.| (2024b) introduced codebook into the fake face detection task
by comparing the discrepancies between codebook-reconstructed faces and authentic faces, which
enabled effective identification of synthetic faces. [Wen et al.| (2025) identified that existing meth-
ods faced two key limitations: (1) nearest-neighbor-based feature matching methods suffered from
erroneous feature matching, and (2) multi-codebook methods tended to produce over-smoothed fea-
tures. To address these issues, they first employed Top-K feature matching to retrieve the K most
relevant codebooks, then performed feature fusion across these K codebooks before conducting fi-
nal feature matching. Wu et al.| (2025)) introduced codebook into the low-light image enhancement
task. [Long et al.| (2025) applied codebook to domain generalization tasks, where they theoretically
demonstrated that discretized features from codebook exhibited superior robustness compared to
continuous features.

Although a few multi-codebook methods (Liu et al. 2023} [Wen et al.| [2025) have been proposed,
they learned representations sequentially—training only one codebook at a time for each source do-
main. Furthermore, these methods did not explicitly incorporate the concepts of domain-specific and
domain-invariant features. In contrast, the proposed method (MC-TTDG) performed representation
learning simultaneously across multiple source domains (i.e., training all codebooks concurrently).
It implicitly disentangled the features into domain-specific and domain-invariant representations,
which not only enhanced the robustness of the network but also significantly reduces the training
time required for the codebooks.

A.2 DOMAIN GENERALIZATION

Domain generalization methods enhanced model robustness by either explicitly or implicitly learn-
ing domain-invariant and domain-specific features (Hu et al.l 2023} |Guo et al., [2023} |Vidit et al.,
2023} [Li et al., [2024a; |Cheng et al. |2024), or by constraining the consistency between network
outputs before and after augmentation (Chattopadhyay et al.l 2023} Wang et al.| 2024} Long et al.,
2024} \Guo et al., 2024bj [Ahn et al., 2024} Danish et al., |2024)), thereby improving the network’s
generalization capability against input degradations.

The Test-Time Domain Generalization (TTDG) method enhanced the performance of a source
domain-trained network on target domains by aligning the target domain distribution with the source
distribution during testing, while circumventing the substantial computational overhead associated
with fine-tuning on target domain samples.

Zhao et al.| (2022) postulated that amplitude features extracted through Fourier analysis represent
domain-specific features. Consequently, they transferred the amplitude features of target domain
samples toward the centroid of the source domain’s amplitude distribution. [Jiang et al.| (2022) em-
ployed a meta-learning framework to partition the source domain into a meta-source domain and a
meta-target domain. Using individual meta-target domain samples along with the meta-source do-
main, they predicted the overall distribution (mean and variance) of the meta-target domain. This
method enabled the estimation of the real target domain’s distribution, thereby facilitating feature
normalization. [Park et al.| (2023) addressed the issue of imbalanced sample sizes across source
domains by first performing category-aware transfer between these domains. During testing, style
transfer was applied exclusively to target domain samples that exhibited a large distributional dis-
tance from the source domains, while those closer to the source domains were left unmodified. Jiang
et al.| (2024) incorporated both global and local style transfer by applying global pooling to source
domain point clouds to extract global features, while also dividing the point clouds into patches to
capture local features. Through dual global and local adjustment of target domain point clouds, this
approach effectively enhanced the efficiency of style transfer for target domain data. [Yu & Hwang
(2024) trained expert prompts using contextual image data and enhanced test samples by incorpo-
rating these pre-trained prompts to guide the network toward accurate image classification. Zhou
et al.| (2024) imposed constraints on the styles generated from the source domain to ensure orthogo-
nality among them, thereby promoting diversity. [Ma et al.|(2024) reduced the distributional distance
between the target and source domains by applying noisy masks to target domain samples. Meng
et al.| (2025) projected both source domain and target domain into a shared feature space, which
enhanced the performance of deep neural networks on the target domain. Nam & Lee|(2025) iden-
tified domain-specific features through covariance analysis and adjusted the feature distribution of
the target domain via style transfer.
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The aforementioned methods primarily targeted high-level vision tasks such as image and point
cloud classification, where features represent abstract interpretations of the entire image. By ap-
plying style transfer—namely, adjusting the mean and variance—these methods successfully trans-
ferred key predictive features in the target domain to align with the source domain distribution. How-
ever, such global style transfer proved ineffective for low-level vision tasks like image SR, which
require per-pixel prediction and are sensitive to fine-grained local features. To address this limita-
tion, we introduced a codebook-based framework into test-time domain generalization. Specifically,
we constructed a domain-specific codebook to achieve high-fidelity representation of each source
domain at a fine-grained level. During testing, pixel-level feature transfer was applied to the target
domain samples, which significantly improved both the efficiency of distribution transfer and the
performance of deep networks on the target domain for low-level vision tasks.

B ALGORITHM

As shown in Algorithm |1} we provide a detailed presentation of the voting-based domain-specific
codebook selection strategy using pseudocode.

Ns

Input: Classification network C'N; domain-specific codebooks Codebook ?¢ € {Codebook P} ;
domain-specific features f-° et
vector;

Output: The transferred domain-specific features ffl?r gt

Vote counter Co € R"*, where Co is initialized as an all-zero

fiSQ = Transfer(f3re Codebookfpe);

Target?
Pre; = CN(f79);
Index; = Argmax(Pre;);
ColIndex;] +=1;
end
if A tie in votes then
P?"@ = CN(f’ISJS:get)
Indexpest = Argmax(Pre)

end
else

| Indexpess = Argmaxz(Co)
end

SQ _ Spe Spe
fTa'rget - TTanSfer(deTget’ COdebOOk[’ﬂdﬁzBest)

sSQ .
return fr.< .

Algorithm 1: Voting-based domain-specific codebook selection strategy

C ADDITIONAL ABLATION EXPERIMENTS

C.1 ABLATION EXPERIMENTS ON DIFFERENT DOMAIN-SPECIFIC CODEBOOK SELECTION
METHODS

Table 5: Ablation experiments on different domain-specific codebook selection methods

Pan Sony DSC
Methods PSNR1  SSIMt PSNR{  SSIMt PSNRT  SSIM{T
Baseline 31.0263 0.8580 30.7220 0.8645 30.9117 0.8816
Maximum predicted score  31.0495 0.8584 30.6124 0.8667 30.9339 0.8799
Minimum distance 31.0203 0.8573 30.6992 0.8675 30.9578 0.8794

Voting selection (Ours) 31.1571 0.8594 31.2937 0.8791 31.2118 0.8836

As shown in Table [5] we evaluate the performance of the SR network under different domain-
specific codebook selection strategies. First, we test the performance when using a classification
network to select the optimal domain-specific codebook (denoted as Maximum Predicted Score).
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Table 6: Ablation experiments on domain-specific features

Pan Sony DSC
Methods PSNRT SSIMf PSNRT SSIMtT PSNRT  SSIMft
Baseline 31.0263  0.8580 30.7220 0.8645 30.9117 0.8816
w/o domain-specific feature 30.3096  0.8452  30.8673 0.8743  30.2964 0.8671
w/o domain-specific feature transfer  30.9597  0.8586  30.9966 0.8726 31.1124  0.8831
Ours 31.1571  0.8594 31.2937 0.8791 31.2118 0.8836

Due to the significant domain shift between the target domain and source domain distributions, the
classification network trained on the source domain exhibits low accuracy on target domain samples
(Line 1 of Table [3). This results in incorrect transfer of the target sample distribution, ultimately
degrading the performance of the SR network on the target domain.

Additionally, we evaluated the method of directly computing the minimum-distance codeword
across all codebooks for each target domain pixel feature and replacing the current pixel feature
accordingly (Minimum distance). However, this method demonstrated poor performance, as the
fusion of features from multiple domains disrupts the prediction behavior of the network.

Our proposed voting-based domain-specific codebook selection strategy first pre-transfers the target
domain distribution to approximate that of the source domain. Through multi-party voting, it sig-
nificantly enhances the accuracy of domain-specific codebook selection (Line 2 of Table [3), thereby
effectively improving the performance of the SR network on the target domain.

C.2 ABLATION EXPERIMENTS ON DOMAIN-SPECIFIC FEATURES

As shown in Table @ to validate the effectiveness of domain-specific features, we first evaluated
the performance metrics of the network in the absence of these features (w/o domain-specific fea-
ture). As illustrated in the first row of Figure [5] the SR image becomes blurred when domain-
specific features are removed, whereas incorporating them significantly enhances high-frequency
details. This indicates that, for image SR networks, high-frequency textual details constitute a major
part of domain-specific features. Introducing domain-specific features effectively improves the net-
work’s capability to reconstruct fine textual details. Furthermore, we conducted an ablation study
on whether feature transfer is necessary for domain-specific features, specifically testing the per-
formance when using untransferred domain-specific features directly (w/o domain-specific feature
transfer). Since the target domain-specific features were not transferred to approximate the source
domain distribution, the subsequent source-domain-trained network layers were incompatible with
these features, leading to degraded performance.

C.3 ABLATION EXPERIMENTS ON DOMAIN-INVARIANT AND DOMAIN-SPECIFIC FEATURE
SEPARATION STRATEGIES

As shown in Table [/| we evaluate the impact of different separation strategies for domain-invariant
and domain-specific features on network performance. Existing domain generalization methods
for SR typically define high-frequency information as domain-specific features and low-frequency
information as domain-invariant features, employing explicit separation strategies such as Fourier
transforms, wavelet transforms, or downsampling/upsampling operations. However, due to distribu-
tion shifts between test and training samples, these pre-defined separation strategies often demon-
strate poor adaptability to domain shift, frequently leading to incorrect feature partitioning. In
contrast, our implicit feature separation strategy—implemented through one-to-one domain-specific
codebooks for each source domain alongside a shared domain-invariant Codebook—enables the net-
work to adaptively separate domain-invariant and domain-specific features. This approach demon-
strates stronger adaptability to domain shift compared to explicit separation methods.

C.4 ABLATION EXPERIMENTS ON THE NUMBER OF DOMAIN-SPECIFIC CODEBOOKS
As shown in Table 8] we evaluate the effect of varying the number of domain-specific codebooks

on network performance. Since MC-TTDG requires a one-to-one correspondence between source
domains and domain-specific codebooks for implicit separation of domain-specific and domain-
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Table 7: Ablation experiments on domain-invariant and domain-specific feature separation strategies

Pan Sony DSC
Methods PSNRT  SSIMtT  PSNRT  SSIMtT  PSNRtT  SSIM?T
Downsampling/upsampling  30.5356  0.8468  30.7316  0.8762 30.5960 0.8699
Wavelet transforms 30.6811 0.8479 31.0207 0.8746  30.8287  0.8737
Fourier transforms 31.1054 0.8548 30.9231 0.8767 30.1373  0.8792
Ours 31.1571 0.8594 31.2937 0.8791 31.2118 0.8836

Table 8: Ablation experiments on the number of domain-specific codebooks

Pan Sony DSC
Number PSNRT  SSIMf PSNRT SSIMtT PSNRT  SSIM?T
Baseline 31.0263  0.8580 30.7220 0.8645 309117 0.8816
1 31.0815 0.8582 31.0125 0.8708 31.0912 0.8824
2 31.1012 0.8586 31.2891 0.8732 31.1593 0.8831
3 31.1571  0.8594 31.2937 0.8791 31.2118 0.8836
5 31.1783  0.8592 31.3129 0.8795 31.2482 (.8834

invariant features, and considering that the DRealSR dataset contains a maximum of six camera
branches, we configure up to five camera branches as source domains and one as the target domain.
The MC-TTDG method exhibits strong robustness to the number of domain-specific codebooks,
consistently improving performance on the target domain across different codebook quantities.

C.5 ABLATION EXPERIMENTS ON THE NUMBER OF CODEWORDS

As shown in Table[9] we evaluate the impact of varying the number of codewords on network perfor-
mance. Reducing the number of codewords inevitably diminishes the representational capacity of
the codebook, thereby lowering the transformation accuracy of target domain features. In contrast,
increasing the number of codewords enhances the diversity of preserved source domain features in
the codebook, leading to improved network performance metrics.

Table 9: Ablation experiments on the number of codewords

Pan Sony DSC
Number PSNRT SSIMT PSNRT SSIMT PSNRtT  SSIMft
128 31.1054 0.8589 31.1052 0.8710 31.1723  0.8821
256 31.1571  0.8594 312937 0.8791 31.2118 0.8836
512 31.1612  0.8599 31.3001 0.8788 31.2192 0.8841

C.6 ABLATION EXPERIMENTS ON FINE-TUNING EXTENT

As shown in Table [I0] we compare the effects of fine-tuning the entire network versus fine-tuning
only the codebook on overall performance. Since the codebook is not initialized from pre-trained
weights, full-network fine-tuning would allow the uninitialized parameters to disrupt the pre-trained
backbone. In contrast, our MC-TTDG method keeps all other network layers frozen, which ef-
fectively preserves the backbone’s stability while improving the codebook’s learning efficiency for
source domain features.

C.7 COMPUTATIONAL EFFICIENCY COMPARISON WITH TEST-TIME DOMAIN ADAPTATION
METHODS

As shown in Table [IT] we compare MC-TTDG with methods that similarly leverage test samples
to enhance performance—such as test-time adaptation approaches (e.g., SRTTA, IODA, DASR)
that fine-tune the network using test data. Our method demonstrates significantly lower compu-
tational demands. These alternative approaches require substantial training time, making network
fine-tuning particularly challenging for edge devices in practical applications.
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Table 10: Ablation experiments on Fine-tuning Extent

Pan Sony DSC
Fine-tuning Extent  PSNRT _ SSIMT  PSNRT _ SSIMT _ PSNRT _ SSIMT
Entire network 30.8873 08559 30.6771 0.8695 30.7417 0.8777
Codebook 31.1571  0.8594 31.2937 0.8791 312118 0.8836
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Figure 5: Visual comparison. The first and second rows show the images generated without and with
the transferred domain-specific features, respectively. The third row displays a visual representation
of the difference between the first and second rows.

In contrast, MC-TTDG operates by aligning the target domain distribution with the source domain
distribution. It performs only inference on target domain samples without network fine-tuning,
substantially reducing computational overhead in real-world scenarios. This design makes MC-
TTDG particularly suitable for resource-constrained environments compared to test-time domain
adaptation methods.

Table 11: Computational Efficiency Comparison with Test-Time Domain Adaptation Methods. The
computations were performed on a single V100 GPU with a patch size of 48x48. Abbreviations: FT
(Fine-Tuning), TTDA (Test-Time Domain Adaptation), TTDG (Test-Time Domain Generalization).

Methods Methods Time (Min) Need Training
FT Fine-Tuning 1380 Yes
DASR (Wei et al.;[2021) 19.33 Yes
TTDA IODA (Tang & Yang, 2024 9.01 Yes
SHm}ﬂﬁﬁiﬁﬁ&ﬁ$ 10.75 Yes
TTDG MC-TTDG 0.00135 No

C.8 ABLATION EXPERIMENTS ON DIFFERENT SAMPLE DISTRIBUTIONS

As shown in Table [T2] we validated the effectiveness of the proposed method across diverse data
distributions, including the Set5 (Bevilacqua et al.} , Set14 (Zeyde et al,2010), B100 (Martin
et al., 2001), Urban (Huang et al., |2015), Mangal09 (Matsui et al., 2017), and DIV2K (Timofte
et al., 2017) datasets. MC-TTDG achieves consistent performance improvements across all data
distributions.
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Table 12: Ablation experiments on different sample distributions

B100 Mamgal09 Set14
Methods PSNR?T  SSIMfT PSNRT  SSIMT  PSNR?T  SSIM?T
Baseline 23.5493  0.6216 22.1986 0.7440 23.3874 0.6426
MC-TTDG 23.8877 0.6260 22.6995 0.7482 23.7331 0.6507
DIV2K Urban100 Set5
Methods PSNR{T  SSIMtT PSNRT  SSIM{T PSNRT  SSIM?T
Baseline 21.5490 0.5731 20.5615 0.5904 24.9639 0.7586
MC-TTDG 22.2340 0.6341 21.0803 0.6056 25.2720 0.7546

C.9 ABLATION EXPERIMENTS ON DIFFERENT NETWORK ARCHITECTURES

The SR network consists of two branches: one prioritizing pixel fidelity and the other emphasizing
visual perception. We conducted experimental analyses on both branches. As shown in Tables [I3]
and [14] the proposed method effectively enhances the performance of the SR network on the target
domain.

Table 13: Ablation experiments on perception-oriented SR Networks

Pan Sony
Methods LPIPS] Dists] FID] LPIPS| Dists) FID]
AdaCode (Liu et al.l[2023)  0.2688 0.1451 25.12  0.2755 0.1594 30.47
AdaCode + MC 0.2634 0.1438 2375 0.2579 0.1450 31.39
DSC
Methods LPIPS| Dists| FIDJ]
AdaCode (Liu et al.;[2023)  0.2480 0.1340 25.70
AdaCode + MC 0.2417 0.1302 23.79

Table 14: Ablation experiments on fidelity-Oriented SR Networks

Pan Sony DSC
Methods PSNR1T SSIM{T PSNR{T SSIM{T PSNRT  SSIMf
HAT(Chen et al.,[2023) 31.0249 0.8607 31.0376 0.8763 30.9813 0.8837
HAT + MC 31.0379 0.8593 31.1766 0.8779 31.1334 0.8826
MambalR (Guo et al.;[2024a) 31.0263 0.8580 30.7220 0.8645 30.9117 0.8816
MambalR + MC 31.1571 0.8594 31.2937 0.8791 31.2118 0.8836

D VISUALIZATION RESULTS

As shown in Figure [6] and Figure [7]] we compared the proposed MC-TTDG with other test-time
domain generalization methods. MC-TTDG demonstrated superior detail restoration and noise sup-
pression.

E STATEMENT ON LLM USAGE

We used a Large Language Model (LLM), specifically ChatGPT, solely for language polishing and
improving the readability of the manuscript. The LLM was not used to generate ideas, conduct
experiments, analyze results, or contribute to the research methodology. All scientific content, in-
cluding the conceptualization, design, implementation, and validation of the work, was entirely
carried out by the authors.

19



Published as a conference paper at ICLR 2026

TF-Cal: 29.71, TSB: 32.42,
DG-PIC: 30.87, TTDG: 33.00,
TTMG: 30.87, MC-TTDG: 33.72
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Figure 6: Part 1 of the visualization display diagram. The large image on the left is the LR image,
and the sub-images on the right are LR, TF-Cal(Zhao et al.}[2022)), TSB(Park et al.}[2023)) and DG-
PIC 2024)(first row), GT, TTDG(Zhou et al., 2024), and TTMG(Nam & Lee| 2025)
and MC-TTDG (Ours) (second row). The values following the name represent the PSNR metric of
the current patch. Please zoom-in on screen. Please zoom-in on screen.
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TF-Cal: 28.17, TSB: 30.59,
DG-PIC: 31.10, TTDG: 32.00,
TTMG: 31.10, MC-TTDG: 32.67
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Figure 7: Part 2 of the visualization display diagram. The large image on the left is the LR image,
and the sub-images on the right are LR, TF-Cal(Zhao et al,[2022), TSB(Park et al.,[2023)) and DG-
PIC 2024)(first row), GT, TTDG(Zhou et al., 2024), and TTMG(Nam & Lee| 2025)
and MC-TTDG (Ours) (second row). The values following the name represent the PSNR metric of
the current patch. Please zoom-in on screen. Please zoom-in on screen.
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