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Abstract

What should a function that extrapolates beyond known input/output examples
look like? This is a tricky question to answer in general, as any function matching
the outputs on those examples can in principle be a correct extrapolant. We argue
that a “good” extrapolant should follow certain kinds of rules, and here we study
a particularly appealing criterion for rule-following in list functions: that the
function should behave predictably even when certain elements are removed. In
functional programming, a standard way to express such removal operations is by
using a filter function. Accordingly, our paper introduces a new semantic class
of functions – the filter equivariant functions. We show that this class contains
interesting examples, prove some basic theorems about it, and relate it to the well-
known class of map equivariant functions. We also present a geometric account
of filter equivariants, showing how they correspond naturally to certain simplicial
structures. Our highlight result is the amalgamation algorithm, which constructs
any filter-equivariant function’s output by first studying how it behaves on sublists
of the input, in a way that extrapolates perfectly.

1 Introduction

We want to mathematically characterise functions with certain kinds of rule-following behaviour. The
nature of rule-following is a longstanding philosophical riddle: given some pattern of behavior, what
exactly does it mean to extend or extrapolate it consistently? While intuitively clear, the notion of
extrapolation has been shown to be difficult or impossible to define in general.

Given an example behaviour like reverse [2, 3] = [3, 2], why prefer the extrapolation reverse [2,
4, 3] = [3, 4, 2] over, say, reverse [2, 4, 3] = [2, 4, 3]? We identify cases where this question has a
precise answer based on certain symmetries, without relying on any implied semantics of reverse.

A practical motivation for our work comes from machine learning. In 2025, it is difficult to find tasks
that neural network models do not do well, but length-based generalisation remains one such case. For
example, one can train a neural network model to operate on lists of length up to 20, but still expect to
see failures of generalisation at length 20, 000, or even before. In many other domains – image, audio,
etc – symmetries have been a crucial tool in supporting out-of-distribution generalisation. While we
do not develop this line of work here, we propose that the symmetries we identify for list functions
could play a similar role for length generalisation of neural networks.

∗Work performed while the author was at Google DeepMind.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Differentiable Learning
of Combinatorial Algorithms (DiffCoALG).
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Figure 1: We leverage filter equivariance as a way to express functions which are length-invariant
through removing items by value. A filter-equivariant (FE) function f may be composed with filter
in any order, yielding the same results.

2 Symmetries of list functions, and filter equivariance

We study symmetries of list functions, i.e. functions of the form f : [a] → b, mapping lists of
elements of type a – which we denote using [a] – to an output of type b.

As will be shown, the specific kind of symmetric behaviour we will study here – which we call
equivariance – necessarily implies that b = [a], i.e., the function must map from lists to lists, without
changing the underlying type of the elements. This allows the composition of these functions in
arbitrary order. We define list function equivariance as follows:

Definition 2.1 We say that a list function f : [a]→ [a] is equivariant2 with respect to a particular
transformation g : [a]→ [a] if, when composing f with g, the composition order does not matter.

Our work is not the first to study list function symmetries. In particular, a well studied symmetry
is with respect to the map : (a → b) → [a] → [b] function. For a given element-wise function
ψ : a→ b, map ψ : [a]→ [b] applies ψ to each element of the input independently. It is a standard
result that we can characterise all functions that commute with map as natural transformations
from the list functor to itself, and the idea may be generalized to other functors too, such as trees.
While map-equivariant functions are certainly important and elegant, they have no direct bearing on
length-general extrapolation; as map does not change the length of the list it operates over. To go
further in our objective, we need to study operators that perturb a list’s length.

This can usually be done either by adding or removing elements from it. In general, removals tend to
be easier to reason about, as they constrain the space of possible elements that can be transformed.
Further, removals based on element position (e.g. removing the last element) would exclude several
important rule-following functions from consideration, such as reverse and sort. This motivates us
to consider removals by value.

2.1 Equivariance to filter

The canonical way to remove elements by value is to apply the function filter : (a→ Bool)→ [a]→
[a] that selects just those elements from a list that match a predicate function ϕ : a→ Bool:

filter even [1, 2, 3] = [2] filter odd [1, 2, 3, 4] = [1, 3]

For a function to be symmetric to all kinds of value-based removals, we need it to remain equivariant
across all choices of predicates ϕ, as follows (see Figure 1):

2Readers familiar with geometric deep learning [1, GDL] will likely recognise that this definition of
equivariance is weaker than usual, as g is not constrained by a group structure. This means it does not need to be
a lossless transformation. In this sense, the functions we study here are more easily expressed by frameworks
going beyond GDL, such as categorical deep learning [2, CDL].
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Figure 2: The process of amalgamating the output of f [x1, x2, x3, x4, x5] = [y1, y2, y3, y4, y5], for
the same filter-equivariant function f and input as presented in Figure 1.

Definition 2.2 We say that a list function f : [a]→ [a] is filter-equivariant (FE) if, for all choices of
ϕ : a→ Bool, composing f with filter ϕ gives the same result in either order:

∀ϕ : a→ Bool. (filter ϕ) · f = f · (filter ϕ) (1)

Further, f : [a]→ [a] is natural filter-equivariant (NFE) if it is both map- and filter-equivariant.

It’s worth briefly surveying a few prominent examples of (N)FEs. Namely, key NFEs are reverse
and inflate n, where inflate : Nat → [a] → [a] repeats each element in the list n times. These
two functions turn out to be the only important basis functions for NFEs, as all other NFEs can be
obtained by function composition and concatenation of these primitive functions. For reasons of
brevity we cannot derive this here, but leave it to Appendix A3.

Clearly, all NFEs are also FEs, but the converse does not hold. The sort function, as well as filter ϕ
itself, are filter equivariant but not NFEs. Intuitively, map equivariants cannot depend on inputs’
values – otherwise there would exist a ψ for which map ψ would modify their behaviour. An example
of a function that is map equivariant, but is not FE is triangle, which repeats the ith element of an
input list i times, e.g. triangle [3, 7, 5] = [3, 7, 7, 5, 5, 5]. This is due to the fact FEs cannot depend
on elements’ absolute position (which filter may easily displace).

3 Amalgamation

Now we demonstrate our key result, showing exactly how filter equivariance supports length general-
isation. In particular, we show how an FE’s behavior on any list is determined by its behaviour on all
of that list’s sublists with two unique elements.

For example, if a function f : [a]→ [a] is FE, and we know the following:

f [2, 1, 2] = [1, 2, 2] f [3, 2, 2] = [2, 2, 3] f [3, 1] = [1, 3]

we can deduce f [3, 2, 1, 2] = [1, 2, 2, 3]—we extrapolated sort-like behaviour from small examples!

For a given input list xs, one needs to apply all necessary filters to reduce xs to two unique elements.
Then, we compute f on these smaller lists, and ‘glue’ the results together. This process of gluing
partial results together we call amalgamation, and it is depicted in Figure 2.

Firstly, we need a way to reason about these collections of filtered lists. Let X be the set of all
possible values in our input list, and let X \ zs be the set X with elements in zs : [X] removed. Then
we can reason about filtered collections as χ : [X]→ [X] such that χ zs ∈ [X \ zs]. Intuitively, χ zs
may represent the result of f when filtering out elements in zs, e.g. χ zs = f (filter (/∈ zs) xs).

Clearly, not every such collection of lists can be amalgamated into one unique list. Therefore, we
need to carve out a subtype of [X]→ [X \ zs] containing only amalgamable collections—collections
for which only one, unique and correct way to amalgamate exists.

3We can also reason about the more general case of FEs, but the derivation is less clean—see Appendix B.
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We can define this subtype recursively. Firstly, we can define the predicate AM0 X , of collections,
χ : [X]→ [X\zs], from which the first element, x0 : X , is amalgamable:

χ ∈ AM0 X ⇐⇒ ∃x0 ∈ X. ∀zs : [X]. x0 /∈ zs =⇒ head (χ zs) = x0,

where head : [a]→ a returns the first element (“head”) of its input list. This means that all lists in
the collection that still have x0 must put it at the first position.

Now, we must ensure the amalgamability is also maintained across the rest of the list, and using AM0,
we can ground a recursive procedure to do so. We define a new predicate, AM X , by:

χ ∈ AM X ⇐⇒ (∀zs : [X]. χ zs = [])

∨ (χ ∈ AM0 X ∧ δχ ∈ AM X)

where δχ : [X]→ [X\zs] is defined as follows:

δχ zs =

{
χ zs x0(χ) ∈ zs
tail (χ zs) x0(χ) /∈ zs

where x0(χ) is the unique head element of xs (which must exist if χ ∈ AM0 X). The definition of
AM X entails that amalgamable collections either have no elements left to amalgamate, or they can
uniquely amalgamate the first element x0, and the remaining collection of lists, δχ – obtained by
removing x0(χ) from the head of all relevant lists, by the use of tail – is amalgamable.

Using this definition, we can establish an isomorphism between [X] and AM X , via the function
amal : AM X → [X] which repeatedly extracts the first element until convergence:

amal χ =

{
[] ∀zs : [X]. χ zs = []

x0(χ) :: amal δχ otherwise
(2)

This can be interpreted as iteratively searching for x0(χ) by majority voting across the first elements
of the outputs of f , as in the following pseudocode:

Input: filter-equivariant f : [X]→ [X], xs : X , |X| ≥ 3
χ← []
for X ′ ⊂ X s.t. |X ′| = |X| − 2 do

χ← (f (filter (/∈ X ′) xs)) :: χ
end
ys← []
while ∃l ∈ χ s.t. len l > 0 do

for x ∈ X do
score(x)← 0

end
for l ∈ χ do

if len l > 0 then
score(head l)← score(head l) + 1

end
end
x0 ← argmaxx∈X score(x)
ys← x0 :: ys
for l ∈ χ do

if len l > 0 then
if head l = x0 then

l← tail l
end

end
end

end
return reverse ys

With this framework in place, all that remains is to prove that applying f to all sublists of xs with two
unique elements forms an amalgamable collection—this is our key theorem, which we prove in full.
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4 Outputs on lists of two unique elements are amalgamable

To lay the groundwork for proving our work’s key Theorem, we first establish an isomorphism between
[X] and AM X . Specifically, in one direction, we can map lists in X to amalgamable collections in
AM X by way of the filter collection, π : [X]→ X → [X \ x], defined by π xs x = filter (̸= x) xs.
In the other direction, as already hinted in the main text, we can invert this function by amalgamating—
so long as the input list xs : [X] has at least three elements:

Lemma 4.1 Let xs : [X] be a list with at least three unique elements. Then π xs ∈ AM X . Further,
π is an isomorphism with amal as its inverse.

Proof: The first statement (on amalgability of π xs) holds by induction on xs, noting that π · tail =
δ · π. This statement can also be used to prove amal · π = identity. □

It will also be useful to note that this same logic allows us to amalgamate π (f xs), for any filter-
equivariant f : [X]→ [X]:

Lemma 4.2 Let f : [X]→ [X] be a filter-equivariant function, and xs : |X| be a list with at least
three unique elements. Then, π (f xs) ∈ AM X .

Proof: If f does not reduce the size of xs – i.e., |xs| = |f xs| – then surely f xs has at least three
unique elements, and Lemma 4.1 applies. If, instead, |xs| > |f xs| – for example, if f is a filter – we
need to apply more care if |f xs| < 3.

When |f xs| = 0, f xs = [], therefore (π (f xs)) x = [] for all x : X , and hence π (f xs) ∈ AM X .

Otherwise, let χ x = π (f xs) be our collection of outputs of f . We first show that x0(χ) =
head (f xs). Now, since χ x = filter (̸= x) (f xs), we can conclude that head (χ x) = head (f xs)
whenever x ̸= head (f xs). And since |X| – the number of collections in χ – is at least 3, this
element is uniquely specified. Any other candidate x′ for x0(χ) would not be the head of the list χ z,
for z ̸= x′, z ̸= x (which must exist since |X| ≥ 3). Therefore, π (f xs) ∈ AM0 X

It is possible to show (just like for Lemma 4.1) that π · tail = δ · π, and we are done. □

Now we can use this to show our key result:

Theorem 4.3 Let f : [X] → [X] be filter-equivariant, and xs : [X] be a list with at least three
unique elements. Then, amal can perfectly reconstruct f xs from knowledge of the collection {f ys},
where ys ranges over all sublists of xs with two unique elements.

Proof: First, we show that we can correctly amalgamate f xs from the collection of all outputs of f
where one input element had been filtered out, i.e., {f (filter (̸= x) xs)}x:X :

f xs = amal (π (f xs)) = amal (λx→ filter (̸= x) (f xs)) = amal (λx→ f (filter (̸= x) xs))

where we exploited Lemma 4.2 in the first step, and the fact that f is filter-equivariant in the end.

Now we observe that, if filter ( ̸= x) xs has more than two unique elements, those can be themselves
reconstructed from collections obtained by filtering an additional element, using exactly the same
argument:

f xs = amal
(
λx→

{
f (filter (̸= x) xs) |filter ( ̸= x) xs| ≤ 2

amal (λy → f (filter ( ̸= y) (filter ( ̸= x) xs))) otherwise

)
This is sufficient to prove our Theorem – as we continue to stack nested filter and amal calls until
we have only lists of no more than two unique elements, from which we can reconstruct everything
needed. However, it’s arguably not very satisfying, as it requires multiple nested calls to amal.

Conveniently, we can prove a lemma that implies it is sufficient to just amalgamate once:
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Lemma 4.4 Let f : [X]→ [X] be filter equivariant, and xs : [X] be a list with at least four unique
elements. Then it is true that:

amal (λx→ amal (λy → f (filter (̸= {x, y}) xs))) = amal (λ(x, y)→ f (filter (̸= {x, y}) xs))
where, in the right hand side, we set X ′ = X ×X and χ′ : X ′ → [X] to represent our collection of
lists, indexed over tuples (x, y) where x ̸= y.

Proof: We have already showed that the left-hand side is equal to f xs. First, we can show that the
first element of the right-hand side matches this, i.e., x0(χ′) = head (f xs).

Whenever head (f xs) ̸= x ∧ head (f xs) ̸= y, head (f (filter ( ̸= {x, y}) xs)) = head (f xs),
which satisfies the constraints needed for x0(χ′). The only thing left is to show it is unique. For any
other candidate head x′ ̸= head (f xs), it will not be the head element in all lists where it appears
– particularly, any list indexed by (x′, y′) where y′ ̸= head (f xs). Therefore, it must hold that
x0(χ

′) = head (f xs).

Now, we must show that applying δχ′ allows us to continue amalgamating in a way that gradually
reconstructs f xs. Note that, because χ′ uses a slightly modified input space, we need to redefine
how δ applies here, by simply extending the check of which lists contain x0(χ′):

δχ′ (x, y) =

{
χ′ (x, y) x = x0(χ

′) ∨ y = x0(χ
′)

tail (χ′ (x, y)) x ̸= x0(χ
′) ∧ y ̸= x0(χ

′)

Now, we can show that this collection is equivalent to the collections we would get by processing the
tail of our desired list with the same two-element filtering, i.e.:

δχ′ (x, y) = filter (̸= {x, y}) (tail (f xs))

To see this, let us examine both cases: when x = x0(χ
′) ∨ y = x0(χ

′), then we return χ′ (x, y) =
filter ( ̸= {x, y}) (f xs) = filter (̸= {x, y}) tail (f xs), since the head element of (f xs) will
be filtered out in this case. When x ̸= x0(χ

′) ∧ y ̸= x0(χ
′), then we return tail (χ′ (x, y)) =

tail (filter ( ̸= {x, y}) (f xs)) = filter (̸= {x, y}) (tail (f xs)), where the final swap is possible
because we know the first element of f xs will not be filtered out by the filter call.

Now, it holds (by induction on f xs, as in Lemma 4.1) that amal δχ′ = tail (f xs), and we are done.

4.1 NFEs are amalgamable from a single example

Our arguments above show that any FE function output f xs is determined by {f ys}, where ys
ranges over all sublists of xs with two unique elements. To specialise this to NFEs, first recall from
Appendix A.1 that we can assume an input list to an NFE has unique elements – if it doesn’t already,
we can uniquify with enumerate without changing f ’s behavior. Thus, this section’s “sublists with
two unique elements” become precisely the sublists of length two.

Further, given a length-two list [x, y] with x ̸= y, for any other length-two list [p, q], there exists
some function g : X → X with [p, q] = map g [x, y]. Then, map equivariance implies that
f [p, q] = (map g) (f [x, y]), meaning that if we know a single length-two example f [x, y] it
suffices to determine every other length-two example, and hence to determine f ’s global behavior by
amalgamation. Hence, if we know our function is an NFE, we can reconstruct its behaviour on any
input from observing just a single example!

A brief counterexample shows how analogous reasoning fails for general FEs. Consider a function
f : [a]→ [a] that, for each unique element x ∈ xs postpends |x|2 copies of x to an initially-empty
output list, where |x| is the number of times x appears in xs. For example,

f [4, 7, 4, 7, 8] = [4, 4, 4, 4, 7, 7, 7, 7, 8]

We can see that f is not map equivariant because, for example, it does not commute with mapping a
constant function. Further, we can see that f acts as the identity function on any two-element list
with unique elements, and hence its general behavior cannot be deduced by such examples.
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A Characterising all NFEs

As hinted in the main body of the paper, there is a neat way in which we can express the collection of
all natural filter equivariant functions (NFEs) – this Appendix explores this in greater depth.

Firstly, we can create new (N)FEs by combining existing ones via concatenation and composition. In
other words, (N)FEs possess the following two monoid structures:

Lemma A.1 NFEs (and FEs) form a monoid with unit being the constant function mapping every
list to the empty list, and with addition defined by pointwise list concatenation:

(f ++ g) xs = (f xs) ++ (g xs)

Lemma A.2 NFEs (and FEs) form another monoid with the unit being the identity function and the
composition of two (N)FEs giving an (N)FE.

Given a list xs :: [a], we denote by |xs| the elements occurring in xs. This function may be defined,
for example, in Haskell, as follows:

|-| :: [a] -> [a]
| [] | = []
|x:xs| = x : | filter (/= x) xs |

Note that | − | : [a] → [a] is FE but not NFE. Our first insight is that FE functions do not add any
new values to the input list. (As a corollary, FE functions must map the empty list to the empty list.)

Lemma A.3 Let f : [a]→ [a] be filter-equivariant. Then, for all input lists xs : [a], |f xs| ⊆ |xs|.

Proof: Let xs be a list, assume y /∈ |xs| and we can show y /∈ |f xs|. Define the predicate ϕ by
ϕ z := (z ̸= y). Then f xs = (f · filter ϕ) xs = (filter ϕ · f) xs = filter ϕ (f xs). Therefore,
y /∈ |f xs|.

A.1 Properties of (k-)NFE functions

Recall that natural filter equivariants (NFEs) are functions that are equivariant to both map and filter.
This is a very strong pair of constraints: it implies that the function must both behave predictably
across various lengths and its behaviour must not depend on the values of the items inside the list.
We begin by studying NFEs, as these constraints will more easily yield interesting mathematical
structure.

As a general note for what follows, we may assume without loss of generality that the input list to any
NFE has unique elements. One way to force the elements of an input list xs to be unique by “tagging”
each element with its index:

enumerate [x0, x1, . . . , xn] = [(x0, 0), (x1, 1), . . . , (xn, n)]
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This operation can be undone by:

unenumerate [(x0, 0), (x1, 1), . . . , (xn, n)] = [x0, x1, . . . , xn]

Noting that unenumerate = map first, we can see that uniquification of input elements preserves
the operation of any natural transformation f , in the following sense:

unenumerate · f · enumerate = (map first) · f · enumerate

= f · (map first) · enumerate

= f · unenumerate · enumerate

= f

The first result we show for NFEs is that they must replicate each element a consistent number of
times—if a particular element is replicated k times by an NFE, all of them must be replicated k times.

Lemma A.4 Let f : [a]→ [a] be natural filter-equivariant and let k = len(f [∗]) where ∗ : 1. Then,
for all inputs xs : [a], we have len (f xs) = k × (len xs). Further, if x occurs m times in xs, then
x occurs k ×m times in f xs.

Proof: First, we use the map equivariance of f to show that, when applied to any singleton list, it
must return a list of length k. Further, we know – due to Lemma A.3 – that this list can only contain
the singleton element in the original input list. Now, we can use the filter equivariance of f to extend
the result for singletons to arbitrary lists with no repeated elements. For the case where the input list
contains repeated elements, we can apply enumerate as described above, apply the previous result,
and then use map equivariance to conclude the proof.

We call a function f : [a]→ [a] a k-NFE if it is an NFE that maps singletons to lists of length k. We
first describe 1-NFEs and then tackle the general case. Since Lemma A.4 implies that 1-NFEs do
not modify the overall collection of values in the input, they are nothing more than a pre-defined
permutation of the input elements—a standard example of which is reverse. By map equivariance, a
1-NFE must therefore be given by a family of permutations t :

∏
n:Nat Perm(n) where Perm maps

every natural number n to the set of permutations on the set {0, .., n− 1}. For the specific case of
reverse, these permutations are

treverse = [[], [0], [1, 0], [2, 1, 0], [3, 2, 1, 0] . . . ]

While this approach will allow us to define 1-NFEs, we still need to include the coherence conditions
relating the various permutations (t 0 to t 1 to t 2, etc.). This is the essence of length-generality: the
permutations at longer lengths need to be systematically related to the ones at shorter lengths. To
define this coherence, we leverage simplicial algebra:

Definition A.5 Let ∆ be the semi-simplicial category. Its objects are the finite natural numbers
(thought of as sets {0, 1, . . . , n − 1} for n : Nat), and its morphisms n → m are inclusions.
A semi-simplical set is a functor F : ∆op → Set, i.e. a family of sets F (n) with functions
F (f) : F (m)→ F (n) for every inclusion f : n→ m, obeying the functoriality laws.

With the concept of semi-simplicial sets handy, we can define two particularly important semi-
simplicial sets: the terminal set and the permutation set:

Example A.6 The terminal semi-simplicial set, 1, is the functor that maps every object to the
one-element set. The functor Perm is the semi-simplicial set that maps n to the set Perm(n) of
permutations on n. Given any inclusion f : n → m, define Perm(f) : Perm(m) → Perm(n) to
map a permutation on m elements to the permutation on n elements, by simply removing the elements
in m that are not in n.

Using these two semi-simplicial sets, we can formally, coherently define a 1-NFE:
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Lemma A.7 A 1-NFE is exactly the natural transformation 1→ Perm. That is, a 1-NFE is a family
of permutations tn : Perm(n) such that for every inclusion f : n→ m, tn = Perm(f) tm. We call
such families semi-simplicial permutations.

Indeed, those familiar with the terminology of category theory will note that a 1-NFE is simply a
cone over the functor Perm and that the set of 1-NFEs is limn→∞ Perm(n). Below we will refer to
families like this as cones, for brevity.

Next, we turn to the general case of k-NFEs, where a similar story can be told. We know – by
Lemma A.4 – that a k-NFE maps lists of length n to lists of length k × n, by mapping a list xs to a
permutation of inflate k xs. Because of the map equivariance of NFEs, this data is given through a
permutation of k × n, i.e., an element of Perm(k × n). Thus, we define:

Definition A.8 The semi-simplicial set of k-permutations is defined by the functor

∆op −×k−→ ∆op Perm−→ Set

A cone for the above functor is called a k-semi-simplicial permutation.

Using k-semi-simplicial permutations, we can extend our definition of 1-NFEs to k-NFEs analo-
gously:

Lemma A.9 A particular k-NFE is a k-semi-simplicial permutation, and hence the set of all k-NFEs
is limn→∞ Perm(n× k).

Just as natural transformations give a categorical interpretation of map equivariance, semi-semplicial
permutations develop the category theory for filter equivariance. In the next section, we turn to type
theory.

A.2 Inductive characterisation of NFEs

Given the relationship between k-semi-simplicial permutations and 1-semi-simplicial permutations,
one may wonder if k-NFEs can be built from 1-NFEs. A positive answer would hint at a compositional
semantics for NFEs where k-NFEs are built from k′-NFEs for k′ ≤ k.

This claim turns out to be true, and it is possible to provide an inductive presentation of the set of
NFEs as an inductive data type. Concretely, in Haskell, we have:

data NFE = Z
| P Nat NFE
| N Nat NFE

To be clear, the data type NFE contains only the unique representations of NFEs 4 and is a drastic
simplification of the formal definition of NFEs, which consists of data (as above) which must obey
equivariance constraints (missing from the above).

Rather than providing NFEs as an inductive data type, we could give k-NFEs a definition as an
inductive family, by defining NFE : Nat→ Set mapping k to the set of k-NFEs. The only reason
why we chose not to do so is because we have currently found no use for such a presentation.

To understand the inductive type NFE, consider it as a defining lists of natural numbers with two
different ways to construct them. Indeed,

Lemma A.10 There is a bijection between NFE and List(Nat + Nat).

4The constructors P and N are assumed to have their first input as n : Nat, where n ≥ 1.
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We now explain how NFE represents an NFE by giving a function mapping every element of the data
type NFE to an actual NFE. Since NFE is the free monad on Nat + Nat, and NFEs form a monoid,
it suffices to map Nat + Nat to the class of NFEs. We do this by sending an element n of the first
injection to the NFE inflate n and an element n of the second injection to reverse · (inflate n). This
gives the following function

[[ - ]] :: NFE -> [a] -> [a]
[[ Z ]] xs = []
[[ P n m ]] xs = inflate n xs ++ [[ m ]] xs
[[ N n m ]] xs = reverse (inflate n xs) ++ [[ m ]] xs

That every element of NFE generates an NFE is clear, since we have already seen that NFEs contain
the constant function returning the empty list [], contain reverse and inflate n, and are closed under
function composition and under concatenation. To see these are the only NFEs, we can first leverage
map equivariance to show that the only 1-NFEs are the identity and reverse.

This result scales to k-NFEs by enumeration across k; it further shows the following:

Lemma A.11 The number of k-NFEs is 2× 3k−1 when k ≥ 1.

For example, the only 2-NFEs are inflate 2, reverse · (inflate 2), identity ++ identity, reverse ++
identity, identity ++ reverse, and reverse ++ reverse – six functions in total.

B Characterising filter equivariants

Having established the foundations that allowed us to characterise all NFEs, we are ready to relax the
map equivariance constraint, and refine our analysis for the case of FEs – the crux of our paper.

Recall how we characterised NFEs by the fact they will inflate the input list by a certain constant k
(leading to k-NFEs). It is possible to generalise this to the FE case—however, when doing so, not all
elements will necessarily be replicated by the same amount, leading to the following result:

Lemma B.1 Given a filter-equivariant function f : [a] → [a], there is an underlying function
Φ : a→ Nat→ Nat such that if x occurs n times in xs, then x occurs Φ(x, n) times in f xs

Proof: The proof of the above defines
Φ(x, n) = len(f (repeat n x))

To prove the lemma, use filter equivariance for the specific function filter ϕ keeping only the element
of interest, i.e., ϕ z := (z = x). □

With knowledge of the occurrence function Φ, we can characterise the final output of any FE as
follows:

Lemma B.2 Let f be filter-equivariant. Then, if the distinct elements of xs are [x1, . . . , xn] and xi
occurs ni times in xs, then f xs is a permutation of

concat [ repeat Φ(xi, ni) xi | 1 ≤ i ≤ n ]

These permutations must be coherent with respect to the same semi-simplicial structure used to
describe NFEs. To formalise this statement, we can generalise the idea of k-NFEs to Φ-FEs, where
Φ : a→ Nat→ Nat is the corresponding occurrence function of the FE.

We characterised k-NFEs via functors whose domain was the semi-simplicial category ∆, because
all we needed to know was the length of the list – map equivariance meant we could assume, without
loss of generality, that all elements were distinct. This is not the case for Φ-FEs where we need to
know which elements are in the input list and what is their multiplicity (the two inputs for Φ). This is
a setting suitable for multisets (also known as bags), and hence we define category Bag as follows
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Definition B.3 The category Bag is defined as follows

• Objects are tuples (n, f) with finite numbers n : Nat and functions f : Fin n→ Nat.5

• Morphisms (n, f)→ (n′, f ′) are inclusions i : n→ n′ such that f = f ′ · i

The idea is that an object (n, f) represents a multiset of n distinct elements, where the ith element
(0 ≤ i ≤ n − 1) occurs f i times. Using this structure – which entirely represents our input list’s
item counts – we can now map it into the semi-simplicial category ∆:

Definition B.4 Given an occurrence function Φ as above, there is an induced functor Φ̂ : Bag→ ∆
sending (n, f) to (

∑
i : Fin n) Φ(i, f i).

Now we can use this mapping to characterise all Φ-FEs, just as we did for k-NFEs before. A Φ-FE
will be a family of permutations which are coherent to ensure filter equivariance. This is exactly a
Φ̂-cone.

Lemma B.5 A Φ-FE function is a cone over the functor Perm · Φ̂.

What is pleasing about this construction is that we have a very similar characterisation for Φ-FEs as
we had for k-NFEs. Indeed, the characterisations coincide on NFEs. Using this, we can enumerate
specific mechanisms for defining filter-equivariant functions. The most interesting is the clause
showing how recursive functions defined by iteration may be filter equivariant.

Lemma B.6 The following claims are all true:

• If f ∈ FE and f ′ ∈ FE, then f ++ f ′ ∈ FE and f · f ′ ∈ FE.

• If f ∈ NFE then f ∈ FE.

• If α : a→ [a]→ [a] is such that

filter ϕ (α(x, xs)) = filter ϕ xs ϕ x = false
filter ϕ (α(x, xs)) = α(x, filter ϕ xs) ϕ x = true

then foldr α [] ∈ FE, where foldr is the right fold6, such that, for a given list xs =
[x1, . . . , xn]:

foldr α [] xs = α (x1, α (x2, α(. . . , α(xn−1, α(xn, []))))) .

Note this example covers sort, reverse and filter ϕ, most of the specific FEs we discussed
before.

5Here Fin : Nat → Set explicitly transforms a number to a set of that size.
6The general signature of the right fold is foldr : (a → b → b) → b → [a] → b. foldr f z : [a] → b is a

standard way to represent iterative computation: the function f is applied iteratively to the entries of the input
list in [a], with the value of z : b used to “seed” the computation.
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