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Abstract

Motivation

Automated machine learning (AutoML) solutions can bridge the gap between new computational advances and their
real-world applications by enabling experimental scientists to build their own custom models. We examine different steps
in the development life-cycle of peptide bioactivity binary predictors and identify key steps where automation can not
only result in a more accessible method, but also more robust and interpretable evaluation leading to more trustworthy
models.

Results

We present a new automated method for drawing negative peptides that achieves better balance between specificity and
generalisation than current alternatives. We study the effect of homology-based partitioning for generating the training
and testing data subsets and demonstrate that model performance is overestimated when no such homology correction is
used, which indicates that prior studies may have overestimated their performance when applied to new peptide sequences.
We also conduct a systematic analysis of different protein language models as peptide representation methods and find
that they can serve as better descriptors than a naive alternative, but that there is no significant difference across models
with different sizes or algorithms. Finally, we demonstrate that an ensemble of optimised traditional machine learning
algorithms can compete with more complex neural network models, while being more computationally efficient. We
integrate these findings into AutoPeptideML, an easy-to-use AutoML tool to allow researchers without a computational
background to build new predictive models for peptide bioactivity in a matter of minutes.

Availability and Implementation

Source code, documentation, and data are available at https://github.com/IBM/AutoPeptideML and a dedicated web-
server at http://peptide.ucd.ie/AutoPeptideML.

Contact and Supplementary Information

raul.fernandezdiaz@ucdconnect.ie or denis.shields@ucd.ie. Supplementary Information can be accessed from Zenodo:
https://zenodo.org/records/13363975

Introduction

Peptides are short amino acid chains with 3 to 50 residues

with a great variety of therapeutical properties. They have

gained a lot of attention from the pharmaceutical and food

industries, as their versatility makes them excellent candidates

for drug or nutraceutical discovery (Wang et al., 2022). In this

context, there is a growing demand for predictive models that

can accelerate the discovery or design of peptides targeting new

properties or bioactivities (Attique et al., 2020).

Novel developments in machine learning algorithms have

offered new models for predicting protein structure (Lin et al.,
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Fig. 1. Integration of AutoPeptideML in an experimental

workflow. AutoPeptideML allows experimental researchers to build new

custom models from their data. These models can then be used to propose

new experiments. The data generated from these experiments can, in turn,

be used to generate a new improved model. This leads to a feedback loop

where the experimentation is guided towards more relevant peptides with

each iteration.

2022) or different molecular properties (Dara et al., 2022).

Despite these advancements, developing and evaluating new

models is still an arduous process that requires both domain

expertise and technical skills (Attique et al., 2020). Thus,

most predictive models target broad and general applications,

while solutions for more narrow use cases, like specific peptide

bioactivities, remain underdeveloped (Attique et al., 2020).

Here, we propose building an automated machine learning

(AutoML) system to automate the development of custom

bioactivity predictors. There are several benefits that the

introduction of such a system would provide. First, AutoML

solutions can reduce the time required for model development

from weeks to hours (He et al., 2021). Second, they help

democratize machine learning by enabling researchers without a

computational background to build effective models (He et al.,

2021). Third, they help to ensure that best practices are

followed, which can lead to increased trust in ML predictors

within the field (Amirian et al., 2021). Fourth, they can

greatly simplify and accelerate current strategies that require

not only strong computational skills, but also very tedious

experimentation through extensive trial-and-error (Attique

et al., 2020). Overall, an AutoML tool for building peptide

bioactivity predictors will allow experimental researchers to

seamlessly introduce advanced modelling techniques into their

experimental workflows in a matter of hours (see Figure 1).

A review of the existing literature revealed five key steps

in the development of a peptide bioactivity predictor that

could be benefited by this automation: 1) data gathering for

negative peptides, 2) dataset partitioning, 3) computational

representation of the peptides, 4) model training and

hyperparameter optimisation, and 5) reporting of model

evaluation.

1) Data gathering for the negative peptides. Binary

classifiers require both positive and negative examples. Finding

positive examples for peptide bioactivity is relatively simple as

there is prior literature describing the function and role of a

multitude of peptides (Quiroz et al., 2021). However, there are

few repositories enumerating peptides that do not present a

certain function or property (Attique et al., 2020). Further,

there is no consensus in the literature as to how negative

peptides should be chosen: some works opt for choosing

fragments of proteins (Agrawal et al., 2021; Manavalan et al.,

2019; Bin et al., 2020), others look for actual peptides (Agrawal

et al., 2021; Pinacho-Castellanos et al., 2021; Pang et al., 2022;

Charoenkwan et al., 2022c), and yet others use peptides with a

known bioactivity that is different from their target (Agrawal

et al., 2021; Charoenkwan et al., 2020a; Olsen et al., 2020).

If we consider the first and second approaches, the

model learns to differentiate between peptides with the target

bioactivity and random sequences (either protein fragments or

peptides). However, the problem is that the model can exploit

multiple confounding factors that do not have a direct bearing

on the specific bioactivity, but that are related to the differences

between generally bioactive peptides and random sequences. In

the third approach, the opposite is true, positive and negative

peptides may be so similar to each other that the model will

be biased towards specific differential features between both

bioactivities, hindering its ability to generalise.

In this paper, we explored introducing an intermediate

solution: to draw the negative peptides from a database with

multiple bioactivities. This approach generates a distribution of

negative peptides that is as unbiased as possible (by covering

several distinct bioactivities) as to generalise adequately, but

that is similar enough to the positive peptide distribution

(by also being bioactive peptides) as to minimise confounding

factors.

2) Dataset partitioning. To evaluate predictive models

it is necessary to divide the data into at least three distinct

subsets: training, validation, and testing. The independence

between the training and testing subsets is essential to obtain

a reliable estimation of the future model performance (Walsh

et al., 2021). To achieve this independence, community

guidelines recommend building testing sets that do not share

homologous sequences with the training set either by homology

reduction (Walsh et al., 2021) or homology partitioning (Teufel

et al., 2023; Fernández-Dı́az et al., 2024). Despite this, most

of the peptide bioactivity predictors reviewed (Agrawal et al.,

2021; Bin et al., 2020; Pinacho-Castellanos et al., 2021;

Charoenkwan et al., 2022c, 2020a, 2021; Xiao et al., 2021;

Charoenkwan et al., 2022b; Rajput et al., 2015; Wei et al., 2020;

Charoenkwan et al., 2020b) do not introduce any correction for

homology when partitioning their datasets and those that do

(Manavalan et al., 2019; Olsen et al., 2020; Zhang et al., 2022;

Dai et al., 2021; Charoenkwan et al., 2022a; Chen et al., 2022),

use high thresholds (80-90% of sequence identity, Table S1),

still allowing for similar sequences to be in different sets, which

could lead to the overestimation of model performance due to

data leakage.

The main difference between homology-based reduction

and homology-based partitioning is that in homology-based

reduction a first clustering step is performed and only

the centroids of the clusters are preserved. In partitioning

algorithms, clusters are moved to different partitions so that

the sequences within each partition do not have any neighbours

in other partitions (e.g., no sequences in the testing set can

have a neighbour in the training set). While previous methods

(Teufel et al., 2023) removed a minimal number of sequences

to ensure that partitions are completely independent. We rely

on CCPart (Fernández-Dı́az et al., 2024), a recently developed

algorithm that is able to generate independent test sets without

sequence removal. With this in mind, we explored the effects

of introducing this homology-based dataset partitioning for

building testing subsets more suited for evaluating model

generalisation.

3) Computational representation of the peptides. For

a predictive model to be able to interpret the peptide sequences,

they need to be translated into mathematical objects (vectors
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or matrices). The reviewed literature offers different options

for performing this transformation that include statistics of:

residue composition (Bin et al., 2020; Olsen et al., 2020;

Charoenkwan et al., 2021), evolutionary profile (Wei et al.,

2021), or physico-chemical properties (Bin et al., 2020; Pinacho-

Castellanos et al., 2021; Charoenkwan et al., 2020b, 2022a).

The consensus that can be drawn from the variety of different

descriptor combinations is that each predictive task will require

a different set of descriptors. Finding the optimal combination

is a crucial and intricate step in the modelling process (Attique

et al., 2020).

The advent of Protein Language Models (PLMs) like the

ESM (evolutionary scale modelling) (Rao et al., 2020; Lin

et al., 2023) or RostLab (ProtBERT, Prot-T5-XL, or ProstT5)

(Elnaggar et al., 2021; Heinzinger et al., 2023) families has

allowed for much simpler and richer protein representations.

Given a sequence s, these models have learned the probability

that a residue will appear in position i given the rest of the

sequence {s − ri}, P (ri|{s − ri}). This probability is related

to the concept of conserved and unconserved positions that is

often used when analysing multiple sequence alignments (Lin

et al., 2022). The models are trained on a vast set of sequences

from the UniRef (Suzek et al., 2007) or BFD (Steinegger et al.,

2019) databases which include not only protein sequences,

but also peptides. Moreover, at least, two prior studies have

demonstrated that they can be used for representing peptides

outperforming traditional description strategies (Du et al.,

2023; Dee, 2022). However, there are many PLMs varied both in

terms of size and learning method and it is not clear which may

be the optimal choice for computing peptide representations.

In this paper, we continue this line of research by addressing

two questions: does model size have an impact on how suitable

their representations are for describing peptides? and is there

any significant difference between different classes of models?

4) Model training and hyperparameter optimisation.

There are many different algorithms for fitting predictive

models to a binary classification task and choosing between

them is an extended trial-and-error task. Here, we considered

an alternative approach: to use standard tools in the AutoML

domain for performing hyperparameter bayesian optimisation

of simple machine learning models and ensembling them.

5) Model evaluation reporting. The final step in the

development of any predictive model is to report how reliable

the future predictions of the method are going to be. The main

goal of our automated process is to enable researchers without

a computational background to leverage the tools, therefore,

we structure the output of the pipeline to provide all necessary

information for reproducing the training of the model and a

summary that offers guidance in how to interpret the different

evaluation scores of the model.

These contributions have been integrated into a computational

tool and webserver, named AutoPeptideML, that allows any

researcher to build their own custom models for any arbitrary

peptide bioactivity they are interested in. The webserver

requires only minutes to build a predictor and its use is

as simple as uploading a dataset with positive examples. It

provides an output summary that facilitates the interpretation

of the reliability of the predictor generated and it has an

additional window supporting the use of the generated models

for predicting the bioactivity of any given set of peptides.

Materials and methods

Data acquisition. 18 different peptide bioactivity datasets

containing positive and negative samples were used to evaluate

the effect of the different methods. These datasets were selected

from a previous study, considering the use of the ESM2-8M

PLM for general peptide bioactivity prediction (Du et al.,

2023). The datasets ranged in size from 200 to 20,000 peptides

(see Table 1). Here, they are referred to as the “original”

datasets.

Dataset with new negative peptides. For each of the

original datasets, a new version was constructed using the

new definition of negative peptides, termed “NegSearch”. The

negative peptides were drawn from a curated version of the

Peptipedia database “APML-Peptipedia” comprised of 92,092

peptides representing 128 different activities (see Figure S1).

To avoid introducing false negative peptides into the negative

subset, all bioactivities that may overlap with the bioactivity

of interest were excluded (see Table S1). To ensure that the

negative peptides were drawn from a similar distribution to the

positive peptides and thus minimise the number of confounding

factors, for each dataset we calculated a histogram of the

lengths of its peptides with bin size of 5. Then, for each bin

in the histogram, we queried APML-Peptipedia for as many

peptides as present in the bin, with lengths between its lower

and upper bounds. If there were not enough peptides, the

remaining peptides were drawn from the next bin.

Dataset partitioning. Two different partitioning strategies

were used to generate the training/testing subsets: A) random

partitioning and B) CCPart (Fernández-Dı́az et al., 2024), a

novel homology-based partitioning algorithm which creates an

independent testing set ensuring that there are no homologous

sequences between training and testing. Briefly, the algorithm

calculates pairwise alignments among all dataset sequences

to form a pairwise similarity matrix. It then clusters these

sequences based on the similarity matrix using the connected

components algorithm (Fernández-Dı́az et al., 2024). Lastly, it

iteratively transfers the smallest clusters to the testing set until

it reaches the desired size (in our case, 20% of total sequences).

This process ensures that there are no sequences in the testing

set similar to those in the training set. The datasets generated

through this strategy are referred to as “NegSearch+HP”.

The CCPart algorithm (Fernández-Dı́az et al., 2024)

achieves two main objectives: 1) it creates a test set completely

independent from training, insofar there are no sequences in the

test set that are similar (as defined by the threshold) to those

in the training set, and 2) it selects a test set that is as different

from the training distribution as possible. This second objective

is achieved by selecting the smallest clusters. The advantage of

this decision is that because the clusters selected are small, we

can fit more of them into the test set improving its diversity. On

the other hand, the smaller a cluster is, the fewer neighbours it

has and, consequently, the more unique the sequence is within

the dataset. Overall, the algorithm attempts to simulate the

real world scenario where the model is used to predict sequences

different from those in the training set.

In both cases, A) randomly partitioned or B) homology

partitioned, the training set is further subdivided into 10 folds

for cross-validation. This second division relies on random

stratified partitioning, to create 10 cross-validation folds.

Pairwise sequence alignments. The pairwise sequence

alignments were calculated using the MMSeqs2 software with

prior k-mer prefiltering (Steinegger and Söding, 2017). We
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Table 1. Original benchmark datasets. SOTA Ref: Reference to best reported model in the literature.

Dataset Negative Class Partitioning Number
positives

SOTA Ref

Antibacterial

(Pinacho-Castellanos et al., 2021)

Random peptides Homology maximisation 8,278 (Pinacho-Castellanos

et al., 2021)
ACE inhibitor

(Manavalan et al., 2019)

Random protein

fragments

Homology reduction

(90%)

1,299 (Manavalan et al.,

2019)
Anticancer 1
(Agrawal et al., 2021)

Antimicrobial
peptides

Random 861 (Charoenkwan et al.,
2021)

Anticancer 2

(Agrawal et al., 2021)

Random protein

fragments

Random 970 (Agrawal et al., 2021)

Antifungal

(Pinacho-Castellanos et al., 2021)

Random peptides Homology maximisation 993 (Pinacho-Castellanos

et al., 2021)
Antimalarial 1
(Xiao et al., 2021)

Random peptides Random 139 (Charoenkwan et al.,
2022c)

Antimalarial 2

(Agrawal et al., 2021)

Random protein

fragments

Random 139 (Charoenkwan et al.,

2022c)
Antimicrobial

(Pinacho-Castellanos et al., 2021)

Random peptides Homology maximisation 6,460 (Pinacho-Castellanos

et al., 2021)
Antioxidant

(Olsen et al., 2020)

Experimental +

random peptides

Homology reduction

(90%)

728 (Olsen et al., 2020)

Antiparasitic
(Zhang et al., 2022)

Random peptides Homology reduction
(90% for positives and

60% for negatives)

301 (Zhang et al., 2022)

Antiviral
(Pinacho-Castellanos et al., 2021)

Random peptides Homology maximisation 2,944 (Pinacho-Castellanos
et al., 2021)

Brain-blood barrier crossing

(Dai et al., 2021)

Random peptides Homology reduction

(90%)

119 (Dai et al., 2021)

DPPIV inhibitors

(Charoenkwan et al., 2020a)

Random + Bioactive Random 665 (Charoenkwan et al.,

2022b)
Anti-MRSA

(Charoenkwan et al., 2022a)

Random peptides Homology reduction

(80%)

148 (Charoenkwan et al.,

2022a)
Neuropeptide
(Bin et al., 2020)

Random protein
fragments

Homology reduction
(90%)

2,425 (Chen et al., 2022)

Quorum sensing

(Rajput et al., 2015)

Random peptides Random 220 (Wei et al., 2020)

Toxic (Wei et al., 2021) Random peptides Random 1,932 (Wei et al., 2021)

Tumor T-cell antigens

(Charoenkwan et al., 2020b)

T-cell antigens not

associated to disease

Random 592 (Charoenkwan et al.,

2020b)

considered that two peptides were similar if they had a sequence

identity above 30% using the longest sequence as denominator.

Peptide representations. In order to evaluate the

PLM peptide representations, the following methods (Rao

et al., 2020; Lin et al., 2023; Elnaggar et al., 2021;

Heinzinger et al., 2023) were evaluated: ESM2-8M, ESM2-35M,

ESM2-150M, ESM2-650M, ESM1b, ProtBERT, Prot-T5-XL-

UniRef50, ProstT5 (sequence mode), and one-hot encoding as

a non-PLM-based baseline.

PLMs generate as output a matrix M with shape n × e,

where n is the number of residues in the peptide and e is the

model embedding size (in this study e ∈ [320, 1280], depending

on the model). Each row in this matrix corresponds to a residue-

level representation. We obtain a peptide-level representation r

by averaging across all residues: r = 1
n

∑n
i=1 Mi (Du et al.,

2023; Dee, 2022). Please note that r is a vector with e

dimensions.

Model training and hyperparameter optimisation.

In order to evaluate the model training and hyperparameter

optimisation step, hyperparameter optimisation through

bayesian optimisation (Akiba et al., 2019) was performed

separately for K-nearest neighbours (KNN), light gradient

boosting machine (LightGBM) and random forest classifier

(RFC) and all models were ensembled (see Table S2 for

more details about the hyperparameter optimisation). The

optimisation aims to maximise model performance (measured

as the average Matthew’s correlation coefficient (Chicco et al.,

2021) across the 10 cross-validation folds). The optimisation

was conducted separately for each of the three models, leading

to one optimal hyperparameter configuration per algorithm

(three in total). After hyperparameter optimisation, each of the

three models was trained against each of the 10 cross-validation

folds using the optimal configuration. Thus, the final ensemble

contained 10 instances (one per cross-validation fold) of each of

the three models for a total of 3 × 10 = 30 models.

Final ensemble predictions were the average of all 30

individual predictions. This strategy is referred to as

“Optimised ML Ensemble” or OMLE throughout the text. The

three learning algorithms we used were chosen to provide a

diverse representation of simple machine learning algorithms

with computationally efficient implementations. We decided to

use an ensemble, because it has been shown that for small

datasets it leads to more robust predictors (Dvornik et al.,

2019).

Our system was compared against an amended version of the

UniDL4BioPep (Du et al., 2023) framework, which we named

“UniDL4BioPep-A” (more details about the architecture of the

model can be found in the original publication (Du et al., 2023)
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and are summarised in Table S3). This amendment differs from

the original in that, following community guidelines (Walsh

et al., 2021), it used 10-fold cross-validation to determine the

best possible checkpoint, instead of the hold-out testing set.

Every training experiment was run three times in order to

get a crude estimation of the variability between experiment

replications. The number of replicates is too small for proper

statistical significance comparison, but the experimental design

was constrained by the computational cost of each individual

experiment run.

Model evaluation metrics. Model performance was

measured in terms of Matthew’s correlation coefficient (MCC),

which is a binary classification metric that is specially

recommended for measuring model performance in datasets

with imbalanced labels (different number of positive and

negative samples) (Chicco et al., 2021; Chicco and Jurman,

2023). Most datasets considered in the study have a balanced

number of positive and negative labels. Therefore, for the

purposes of model evaluation, we have defined any prediction

with a probability score greater than 0.5 as positive and lower

or equal as negative.

Calculation of peptide physico-chemical properties.

To better describe the composition of the datasets used

throughout the study we calculated the distribution of different

physico-chemical properties of the peptides. The properties

considered were: the aliphatic index using the method described

by (Ikai, 1980); the Boman potential interaction index using the

method described by (Boman, 2003); the charge and isolectric

point using the methods described by (Sillero and Maldonado,

2006); the hydrophobic moment using the method described by

(Eisenberg et al., 1984); and the predicted structural class using

the method described by (Zhou and Assa-Munt, 2001). The

calculations of all aforementioned algorithms were performed

using the corresponding implementations available in (Larralde,

2024) with default settings.

Results and Discussion

We have focused our study of peptide bioactivity prediction

in the binary classification task of discriminating between

peptides that show a specific biologically-relevant property or

function and those which do not. There are three reasons

informing this choice: i) there are more datasets available for

binary classification than regression, making the benchmarking

more comprehensive, ii) the intepretation of regression metrics

like root mean squared error (RMSE) is less intuitive than

metrics for binary classification in balanced datasets, and

therefore less suitable for the target non-expert audience, and

iii) multi-class or multi-label problems can be formalised as

sets of binary classification problems (Garćıa-Pedrajas and

Ortiz-Boyer, 2011).

Effect of the sampling strategy for gathering negative
peptides
We started by examining the effect of the new sampling strategy

for gathering negative peptides.

The new negative peptides have a distribution

of physico-chemical properties more similar to that

of the positives. We have first examined the hypothesis

that sampling negative peptides from the APML-Peptipedia

database of bioactive peptides would lead to negative peptides

with distributions more similar to those of the positive peptides.

We calculated the distributions for different physico-chemical

properties of the datasets and compared the positives with the

original negatives and the new negatives (see Figures S2-S17).

The results show that, generally, the distribution of the

new negatives is closer to the distribution of the positive

peptides, specifically in the cases of the Antibacterial,

ACE inhibitor, Antifungal, Antimalarial, Antimicrobial,

Antioxidant, Antipara-sitic, Brain-blood barrier crossing,

DPPIV inhibitor, and Toxicity. In the rest of the datasets, the

distribution resembles much more closely that of the original

negatives.

The introduction of the new negative peptides

leads to more challenging modelling problems. We then

examined the effect that the introduction of the new negative

peptides had in the complexity of the modelling problem. With

everything else being identical, Figure 2 clearly shows how

the introduction of the new negative peptides leads to a more

challenging modelling problem, this is most likely due to the

reduction of confounding factors that the model can exploit to

discriminate between the positive and negative classes.

Fig. 2. Evaluation of AutoPeptideML’s dataset construction

modules. Error bars reflect the standard deviation across three

replicates. OMLE: Optimised ML ensemble; Original: Original

benchmark; NegSearch: Dataset with new negative peptides; HP:

Homology-based dataset partitioning module.

It is particularly interesting to consider the change in the

dataset pairs Anticancer 1 and 2, and Antimalarial 1 and

2 as the original datasets were built from the same sets of

positive peptides, but relied on different sampling strategies

for obtaining the negative peptides. Briefly, Anticancer 1 drew

its negatives from a database of antimicrobial peptides (which

are known to overlap with the anticancer peptides (Tornesello

et al., 2020)) and Anticancer 2 drew them from a database of

random protein fragments. This is reflected in Figure 2 where

Anticancer 1 - Original demonstrates lower performance than

Anticancer 2 - Original. It is noteworthy that the NegSearch

dataset achieves an intermediate performance between them,

as was to be expected from the NegSearch negative sampling

being an intermediate definition between a specific bioactivity

and random peptide sequences. Similarly, Antimalarial 1 -

Original draws its negative peptides from a collection of random

peptides, while Antimalarial 2 - Original draws them from a

collection of protein fragments. Figure 2 shows how the more

restrictive that the negative peptide sampling is the lower the

model apparent performance, with Antimalarial 2 - Original

achieving the highest apparent performance and Antimalarial -

NegSearch the lowest.
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Overall, the results indicate that the choice of sampling

method for acquiring the negative peptides has an important

effect on the perceived model performance. In the end, the

optimal sampling method will depend in the intended use for

the model and whether it will be applied to protein fragments,

random peptides or to distinguish between different peptide

bioactivities. However, our experiments suggest that sampling

from a collection with peptides with diverse bioactivities

offers a balance between specificity and future generalisation,

particularly, when the future target distribution is unknown at

time of model development.

Effect of homology-based partitioning.
We next examined the effect of introducing the homology-based

partitioning algorithm for generating the training and test sets.

The training and test sets are not independent

in the original datasets. We started by analysing the

interdependence between training and test sets in the original

datasets. We measured interdependence as the proportion of

peptides in the training set with at least one similar peptide

in the test set. We classified two peptides as similar if they

have more than 30% sequence identity in the pairwise local

alignment. The results compiled in Table 2 indicate that for

13 of the 18 original datasets, at least 10% of the peptides

in the training set are similar to sequences in the testing set,

compromising their independence. If we consider the datasets

(see Table 1) for which homology-based correction was used

(ACE inhibitor, Antioxidant, Antiparasitic, Anti-MRSA, and

Neuropeptide), we observe that only two of them have less than

10% interdependence, which highlights the need for introducing

similarity correction techniques at low thresholds.

The introduction of the new negatives does not reduce the

interdependence between training and test sets, but it can even

increase in some cases. The biggest increments are observed

in the Antibacterial, Antifungal, Antimicrobial, Antiviral, and

Antiviral datasets. These datasets all have been partitioned

using a homology maximisation algorithm (see Table 1) that

creates a test set with representatives from all clusters in

training, this representatives are evenly sampled and thus the

interdependence between the two subsets while not reduced

it is bounded. In the “NS” datasets, training and test sets

are randomly partitioned, and therefore members from highly

connected clusters can be overrepresented in the test set, thus

leading to the observed increase in the interdependence.

Independent test sets lead to more challenging

evaluation. Table 2 shows how that the training and test sets

are completely independent from each other when the CCPart

algorithm is used for homology-based dataset partitioning.

Figure 2 clearly shows how the independent test sets lead to

a much more challenging evaluation with a significant drop in

model performance in most datasets. This result suggests that

previous studies have tended to overestimate the performance

of the models when applied to real-world sequences different

from those present in their training set.

In this study, we have considered as similarity metric the

sequence identity in local pairwise alignments when performing

the homology-based partitioning, following the prior studies

that introduced any type of homology-based correction

technique referenced in Table 1, which all use sequence identity.

The results obtained showcase the importance of accounting for

the similarity between training and test partitions to properly

evaluate model out-of-distribution generalisation. Peptides

being entities halfway between proteins and small molecules,

Table 2. Training-testing interdependence analysis of all

datasets. The percentages correspond to the proportion of training

sequences with at least one similar sequence (sequence identity

> 30%) in the testing set. Columns correspond to the different

datasets constructed: Original datasets, the NegSearch datasets

(NS) and the NegSearch datasets with homology-based partitioning

(NS+HP). *: Equivalent to Anticancer 1 for NS and NS+HP; **:

Equivalent to Antimalarial 1 for NS and NS+HP

Dataset Original NS NS+HP

Antibacterial 36% 64% 0%

ACE inhibitor 1% 3% 0%

Anticancer 1 59% 50% 0%

Anticancer 2∗ 30% ∼ ∼
Antifungal 34% 58% 0%

Antimalarial 1 41% 15% 0%

Antimalarial 2∗∗ 10% ∼ ∼
Antimicrobial 47% 63% 0%

Antioxidant 1% 0% 0%

Antiparasitic 11% 32% 0%

Antiviral 26% 44% 0%

Blood-brain barrier 4% 4% 0%

DPPIV inhibitor 5% 4% 0%

Anti-MRSA 15% 34% 0%

Neuropeptide 24% 24% 0%

Quorum sensing 18% 9% 0%

Toxicity 56% 56% 0%

Tumor T-cell antigens 0% 3% 0%

also support other similarity metrics based on their physico-

chemical properties or chemical structure that may be more

suitable for partitioning (Fernández-Dı́az et al., 2024; Orsi

and Reymond, 2024). We keep the exploration of alternative

similarity metrics for peptide dataset partitioning for future

work.

Homology-based partitioning generates sufficiently

diverse test sets. One possible problem with homology-based

partitioning is that it may lead to the creation of test sets with

very few similarity clusters, thus compromising evaluation. A

comparison of the number of clusters present in the training and

test set before and after the introduction of new negatives and

homology-based partitioning (see Table S4) shows that though

the number of clusters in the test set always diminishes, in

most cases the number of clusters in the test set still represents

approximately 20% of the number of clusters in training, and it

never represents less than 10%. This confirms that the CCPart

algorithm is able to generate sufficiently diverse test sets.

Protein Language Models as peptide representation
methods
Recent studies have reported the use of PLMs for predicting

peptide bioactivity (Du et al., 2023; Dee, 2022), however, they

have not been compared to a naive baseline representation

like one-hot encoding; nor has there been an evaluation on

which PLM may be more suited for peptide representation. All

experiments are conducted with the NegSearch+HP datasets to

ensure that we were properly evaluating model generalisation.

Baseline. First, we compare the PLMs to a naive

baseline representation (one-hot encoding). Figure 3 shows that

generally PLMs are significantly better representation methods

across datasets, though in specific cases one-hot encoding

appears to achieve similar performance. There are different

idiosyncrasies within those datasets that may explain the

behaviour, for example in the Blood-brain barrier experiments
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Fig. 3. Evaluation of different protein language models. Error bars reflect the standard deviation across three replicates.

the number of training peptides is really small (∼200, see Table

1) which leads to a lot of instability between the different runs

(as can be seen by the size of the error bars).

Model size. We evaluated four different PLM models from

the ESM family with increasing size: ESM2-8M (8 million

parameters), ESM2-35M (35 million parameters), ESM2-

150M (150 million parameters), ESM2-650M (650 million

parameters). We also evaluated ESM1b-650M (650 million

parameters), from a previous version of ESM. Figure 3

shows that there is no significant difference between models

across all datasets and no correlation between model size and

performance.

This observation appears contrary to the established

consensus that bigger PLMs tend to perform better (Lin et al.,

2023; Elnaggar et al., 2021; Rao et al., 2019). It is important

to note that those studies focused on a very particular use

of the PLMs known as full-model transfer learning (Li et al.,

2024). However, in our experiments, we relied on representation

transfer instead (Li et al., 2024; Unsal et al., 2022). The main

difference between both regimes is that in full-model transfer

learning every parameter in the model is adjusted (fine-tuned)

for the downstream task, whereas in representation transfer,

the internal parameters of the model do not change. There are

two main consequences that derive from this distinction.

First, full-model fine-tuning tuning requires the model to

run several times through the training data to iteratively

optimise its internal parameters. This is a computationally

intensive operation, and the cost increases with model size.

Representation transfer, in contrast, only requires a single run

through the training data to compute the representations and is

thus much faster and does not require specialised hardware like

GPUs. Furthermore, when working with small datasets sizes

(like most peptide datasets), there is less risk of overfitting with

representation transfer (only the parameters of the downstream

model are optimised) than with full-model fine-tuning (where

both the model parameters, 8−650×106, and the downstream

models are optimised). We decided to focus on representation

transfer for this study because of these two reasons.

Second, the more parameters a model has, the greater

its learning capacity will be. This learning capacity can

only be accessed in full-model fine-tuning as it allows for

the optimisation of the internal parameters of the model.

Thus, observing no correlation between model size and

downstream performance in a representation transfer setting

is not necessarily inconsistent with the prior literature. The

question of whether the established PLM scaling rules for

full-model transfer learning when modelling peptide sequences

remains unanswered and is left for future work.

Type of model. We further compared the ESM models to

the main models from the RostLab family: ProtBERT, Prot-T5-

XL-UniRef50, and Prost-T5. Figure 3 shows that even though

for certain datasets there might be significantly better models,

when the effect is analysed across all datasets there is no

significant difference between the different models or families.

All things considered, the ESM2-8M model achieves a

commendable balance between enhanced performance relative

to one-hot encoding and minimal computational requirements.

In any case, the optimal performance will likely be achieved

when traditional representation methods are combined with

PLM representations. A systematic study on the optimal way

to combine these types of features is kept for future work.

Optimised Machine Learning Ensemble and PLM
representations as an alternative to highly engineered
approaches
We compared the performance of two general purpose

frameworks: a deep learning based model (UniDL4BioPep-A

(Du et al., 2023) and Table S3) and our optimised machine

learning ensemble (OMLE).

Comparison to handcrafted models. Figure 4.A (see

Table S8 for alternative metrics) shows that when applied

to a literature derived benchmark set of datasets, the two

general purpose PLM-enabled bioactivity predictors have a

performance comparable with the self-reported performance

of the best handcrafted models for each specific dataset (see

Table 1 for the reference of each of the models). Moreover, our

proposed AutoML solution (OMLE) was able to out-perform

the handcrafted models on 6 out of 17 benchmark datasets for

which data was available and was not significantly different for

another 2.
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Fig. 4. A: Comparison of training strategies on original datasets.

B: Comparison of training strategies with different dataset

construction modules. Error bars reflect the standard deviation

across three replicates. OMLE: Optimised ML ensemble; UD4BP-A:

UniDL4BioPep-A

These results show that the combination of the PLM

representations and the OMLE learning strategy, provide

a fast, convenient, and competitive alternative to highly

engineered approaches with handcrafted models and peptide

representations that require both domain and technical

expertise.

In any case, the results obtained with our approach,

though solid with the out-of-the-box configuration, can be

further improved by combining the PLM representations with

traditional representations and defining OMLEs with wider

or narrower sets of learning algorithms and hyperparameter

spaces.

Comparison of an optimised ML ensemble with a

neural network. When compared with Fig 4.A, Figure 4.B

(see Table S9) shows that when the new sampling strategy

for gathering negative peptides is introduced, both ML and

neural network general purpose models show an equivalent

drop in apparent performance, reflecting the more challenging

task of predicting a specific bioactivity against peptides from

a diverse collection of bioactivities. The performance drops

further in both models when homology-based partitioning is

introduced. Remarkably, there is no significant evidence of

greater overfitting on the part of the DL model, despite the

small dataset sizes, this might be due to the relatively small

size of UniDL4BioPep-A. Overall, these results allow us to

conclude that OMLE achieves comparable performance to a

more complex neural network model, while being both more

user-friendly and computationally efficient.

AutoPeptideML
All the findings described thus far, were used to guide the

development of AutoPeptideML, a computational tool and

webserver that allows researchers to easily build strong peptide

bioactivity predictors and provide a robust evaluation that

complies with community guidelines. Figure 5 provides an

overview of the final AutoPeptideML workflow.

Fig. 5. Visual summary of the AutoPeptideML workflow.
*: Steps based on the results showcased in Figure 2. **: Step

based on the results showcased in Figure 3. ***: Step based on
the results showcased in Figure 4.

The primary objective behind the design of AutoPeptideML

is to provide a user-friendly tool that does not require extensive

technical knowledge to use, while still remaining highly

versatile. This is achieved through a pipeline that guarantees

compliance with community guidelines such as DOME (Data,

Optimisation, Model, and Evaluation) (Walsh et al., 2021),

ensuring a robust scientific validation (see Supplementary G).

Users are free to define the number of models that should

be included in the hyperparameter optimization, as well as

their hyperparameter search space. AutoPeptideML supports

the following algorithms: K-nearest neighbours (KNN), light

gradient boosting (LightGBM), support vector machine (SVM),

random forest classification (RFC), extreme gradient boosting

(XGBoost), simple neural networks like the multi-layer

perceptron (MLP), and 1D-convolutional neural networks (1D-

CNN). Model selection and HPO are conducted simultaneously

in a cross-validation regime so that the metric to optimise is

the average across n folds. Thus, the system is never exposed

to the testing set, which is kept unseen until the final model

evaluation (Walsh et al., 2021). The system also supports all

PLM models used throughout the study.

AutoPeptideML can be used in two regimes: Model builder

and Prediction. In the first mode new predictive models are

created automatically from a single file with known positive

peptides for the bioactivity of interest. In the second mode, any

predictive model generated through the model builder can then

be used to predict for each peptide in a dataset the likelihood

that it possesses the desired bioactivity.

The outputs that the program generates are:

• Model builder: When used to develop new predictors,

AutoPeptideML outputs a model fitted to predict the

bioactivity of interest, a folder with all information

necessary for reproducing the model, and an interpretable

summary of the model capabilities see Supplementary G.
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• Prediction: AutoPeptideML can also be used to leverage

existing predictors. In this case, it outputs a list of the

problem peptides sorted in descending order of predicted

bioactivity (higher bioactivity first) and a measure of the

uncertainty of each prediction.

AutoPeptideML is a tool that enables teams of experimental

researchers without access to modelling expertise to quickly

and easily build and interpret custom models to integrate

into their experimental workflows. It can also be helpful

for computational researchers to generate quick and robust

baselines at the early stages of a new modelling project

against which to compare any new methods. Moreover, the

AutoPeptideML Python API allows for using any combination

of representations that the researcher may desire to include

(both traditional and PLM-based). Thus, it can assist both

domain experts and computational scientists by providing a

flexible and easy-to-use end-to-end modelling pipeline, allowing

the former to easily construct new models and the latter

to quickly run experiments and compare between different

representation methods or modelling algorithms within a robust

and reproducible environment.

Conclusions

The definition of the negative class used for building peptide

bioactivity predictors has a significant impact on the model

performance of up to 40% and has to be controlled in order

to properly interpret model predictions. Here we introduced

a negative sampling strategy that gathers negative peptides

from a collection of peptides with diverse bioactivities which

has been shown to achieve a balance between the strengths

and weaknesses of current methods in terms of the specificity

and interpretability of the predictions, and the reliability of the

estimation of future model performance.

The partitioning strategy used to generate training and

test subsets impacts the evaluation of model generalisation

significantly and the introduction of homology-based partitioning

algorithms can lead to a drop in perceived model performance

of up to 50% when compared to random partitioning. The

magnitude of these effects suggests that the model performance

has been overestimated in most previous studies.

Using protein language models (PLMs) for computing

peptide representations is a significantly better strategy than

using a one-hot encoding (a naive representation) for most

of the datasets considered. This underscores the potential of

PLMs to compute peptide representations, in line with previous

studies. Surprisingly, there is no significant correlation between

model size and the performance observed, nor among different

models. This marks a first step towards understanding the

limitations of PLM scaling rules as it pertains their use for

modelling peptide sequences.

The combination of PLM peptide representations and an

optimised ensemble of simple ML models reaches state-of-the-

art performance when compared both to an alternative general-

purpose-framework and dataset-specific, handcrafted models

across a set of 18 different datasets. Furthermore, there is no

significant difference between using an ensemble of simple ML

algorithms and more complex DL algorithms (UniDL4BioPep-

A), even though the former is more computationally efficient.

We present AutoPeptideML as a computational tool and

webserver that allows researchers without technical expertise to

develop predictive models for any custom peptide bioactivity.

It also facilitates compliance with community guidelines

for predictive modelling in the life-sciences. It is able to

handle several key steps in the peptide bioactivity predictor

development life-cycle including: 1) data gathering, 2)

homology-based dataset partitioning, 3) model selection and

hyperparameter optimisation, 4) robust evaluation, and 5)

prediction of new samples. Further, the output is generated in

the form of a PDF summary easily interpretable by researchers

not specialised in ML; alongside a directory that ensures

reproducibility by containing all necessary information for re-

using and re-training the models. All data and code are made

available to enable the reproducibility of the results in this

work.

The foundational principles underlying the issues described

and solutions implemented throughout this study are relevant

for the application of trustworthy ML predictors for any

other biosequence (e.g., DNA, RNA, proteins, peptides, DNA

methylation, etc.) and their automation facilitates the rigorous

evaluation and development of new models by researchers not

specialised in ML.
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A. APML-Peptipedia

The original Peptipedia database integrates information from 30 peptide bioactivity databases collecting almost 97,331 bioactive

peptides labelled with 128 bioactivities (version 29_03_2023). APML-Peptipedia is the result of removing all sequences with non-

standard residues or without any known bioactivity and contains 92,092 peptides (see Supplementary). Figure 1 describes the

distribution of the physicochemical properties of the peptides comprising APML-Peptipedia.

Fig. 1. Histograms describing the physicochemical properties of the Antiviral dataset. Curves represent the kernel density estimators of the

different underlying distributions.

B. Search for Negative Peptides

Table S1 compiles the bioactivity tags excluded from the negative set when building the “NegSearch” datasets. The meaning behind

these tags can be further expanded in the original publication (Quiroz et al., 2021).
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Table 1. Overlapping classes excluded from the negative set for each of the benchmark datasets.

Dataset Overlapping bioactivities

Antibacterial Antibacterial/antibiotic

ACE inhibitor Blood pressure,Blood processes,Vasodilator,Vascular

Anticancer Anicancer,Cytotoxic,Antitumour

Antifungal Antifungal

Antimalarial Antimalarial/antiplasmodial

Antimicrobial Antimicrobial

Antioxidant Antioxidant

Antiparasitic Antiparasitic

Antiviral Antiviral

Blood-brain barrier Neuropeptide,Blood-brain barrier crossing

DPPIV inhibitor Diabetic

Anti-MRSA Antibacterial/antibiotic

Neuropeptide Neuropeptide

Quorum sensing Quorum sensing

Toxicity Cytotoxic,Neurotoxin,Toxic,Toxins

Tumour T-cell antigens Immunological activity

C. Default hyperparameter search space

Table S2 describes the hyperparameter space defined for all experiments using the “Optimised ML ensemble”.

Table 2. Default hyperparameter search space for the ensemble used throughout the paper.

Model Trials Hyperparameter search space

Name Type Range Log-scale

KNN 10
K integer 1-30 No

Weights categorical uniform or distance No

RFC 10
Max depth integer 2-20 No

Number of estimators integer 10-100 No

LightGBM 10

Max depth integer 1-30 Yes

Number of leaves integer 5-50 Yes

Learning rate float 10e-3 - 0.3 Yes

D. UniDL4BioPep model architecture

UniDL4BioPep (Du et al., 2023) computes the peptide-level representations using ESM2-8M in the same way as described in

Methods, by averaging across all residue-level representations. It then uses a 1D-convolutional neural network (1D-CNN) to make

the predictions. The architecture for this 1D-CNN are fixed and are described in Table S3.

Table 3. UniDL4BioPep architecture.

Layer Type of layer Input Size Output

1 Conv1D 320 32 32 × 320

2 MaxPool 32 × 320 ∼ 32 × 160

3 Flatten 32 × 160 ∼ 5,120

4 Dense 5,120 64 64

5 Output 64 2 2

E. Dataset diversity

The effect of the homology-based diversity of the training and testing subsets is represented in Table S4. Figures S2-S17 describe

the physicochemical composition of all the datasets, showing the differences between positive and negative peptides.
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Table 4. Number of connected components clusters per dataset. Original: refers to the dataset with original set of negatives; New:

refers to the datasets with the new negatives.

Dataset Original Training NegSearch+HP Training Original Test NegSearch+HP Test

Antibacterial 1,339 3,288 6,642 2,229

Inhibitor of ACE enzyme 1,570 421 1,749 763

Anticancer 372 344 440 179

Antifungal 297 348 940 341

Antimalarial 173 55 1,389 278

Antimicrobial 1,087 2,276 9,880 6,827

Antioxidant 694 174 1,119 240

Antiparasitic 234 120 1,362 77

Antiviral 1,690 1,174 3,242 1,003

Brain-blood barrier 173 47 157 36

Inhibitor of DPPIV enzyme 1,014 265 868 261

Anti-MRSA 100 59 752 195

Neuropeptide 2,331 968 2,601 816

Quorum sensing 301 87 236 38

Toxicity 754 717 811 334

Tumor T-cell antigen 885 236 850 195

Fig. 2. Histograms describing the physicochemical properties of the Antibacterial dataset. Curves represent the kernel density estimators of

the different underlying distributions.



AutoPeptideML 15

Fig. 3. Histograms describing the physicochemical properties of the ACE inhibitor dataset. Curves represent the kernel density estimators

of the different underlying distributions.

Fig. 4. Histograms describing the physicochemical properties of the Anticancer dataset. Curves represent the kernel density estimators of

the different underlying distributions.
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Fig. 5. Histograms describing the physicochemical properties of the Antifungal dataset. Curves represent the kernel density estimators of

the different underlying distributions.

Fig. 6. Histograms describing the physicochemical properties of the Antimalarial dataset. Curves represent the kernel density estimators of

the different underlying distributions.



AutoPeptideML 17

Fig. 7. Histograms describing the physicochemical properties of the Antimicrobial dataset. Curves represent the kernel density estimators

of the different underlying distributions.

Fig. 8. Histograms describing the physicochemical properties of the Antioxidant dataset. Curves represent the kernel density estimators of

the different underlying distributions.
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Fig. 9. Histograms describing the physicochemical properties of the Antiparasitic dataset. Curves represent the kernel density estimators of

the different underlying distributions.

Fig. 10. Histograms describing the physicochemical properties of the Antiviral dataset. Curves represent the kernel density estimators of the

different underlying distributions.
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Fig. 11. Histograms describing the physicochemical properties of the Brain-blood barrier crossing dataset. Curves represent the kernel

density estimators of the different underlying distributions.

Fig. 12. Histograms describing the physicochemical properties of the DPPIV inhibitor dataset. Curves represent the kernel density estimators

of the different underlying distributions.
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Fig. 13. Histograms describing the physicochemical properties of the Anti-MRSA dataset. Curves represent the kernel density estimators of

the different underlying distributions.

Fig. 14. Histograms describing the physicochemical properties of the Neuropeptide dataset. Curves represent the kernel density estimators

of the different underlying distributions.
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Fig. 15. Histograms describing the physicochemical properties of the Quorum sensing dataset. Curves represent the kernel density estimators

of the different underlying distributions.

Fig. 16. Histograms describing the physicochemical properties of the Toxicity dataset. Curves represent the kernel density estimators of the

different underlying distributions.
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Fig. 17. Histograms describing the physicochemical properties of the Tumor T-cell antigen dataset. Curves represent the kernel density

estimators of the different underlying distributions.
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F. Metrics for model performance

This sections contains alternative metrics for all experimental results shown throughout the text.

Evaluation of AutoPeptideML’s dataset construction modules
This subsection focuses on expanding on Figure 3. It includes Tables S5.

Table 5. Alternative metrics for the evaluation of AutoPeptideML’s dataset construction modules. Errors represent the standard

error of the mean across three different runs. Original: Original benchmark; NegSearch: Dataset with new negative peptides; HP: Homology-

based dataset partitioning module; ACC: Accuracy; MCC: Mathew’s correlation coeficient; AUROC: Area Under the ROC curve; F1: F1

score; BBBC: Brain-blood barrier crossing; TTCA: Tumor T-cell antigens.

Dataset Metric Original NegSearch NegSearch+HP

Antibacterial ACC 0.9289 ± 0.0009 0.70 ± 0.02 0.717 ± 0.007

MCC 0.858 ± 0.001 0.42 ± 0.02 0.45 ± 0.01

AUROC 0.9770 ± 0.0006 0.767 ± 0.008 0.790 ± 0.005

F1 0.926 ± 0.001 0.65 ± 0.03 0.67 ± 0.01

ACE inhibitor ACC 0.855 ± 0.007 0.80 ± 0.01 0.783 ± 0.007

MCC 0.71 ± 0.01 0.61 ± 0.03 0.57 ± 0.01

AUROC 0.922 ± 0.008 0.87 ± 0.01 0.85 ± 0.01

F1 0.856 ± 0.007 0.80 ± 0.01 0.786 ± 0.006

Anticancer ACC 0.83 ± 0.05 0.63 ± 0.01 0.65 ± 0.01

MCC 0.7 ± 0.1 0.30 ± 0.03 0.33 ± 0.01

AUROC 0.88 ± 0.04 0.687 ± 0.006 0.707 ± 0.009

F1 0.83 ± 0.05 0.55 ± 0.01 0.57 ± 0.03

Antifungal ACC 0.947 ± 0.002 0.61 ± 0.01 0.594 ± 0.009

MCC 0.895 ± 0.005 0.0.26 ± 0.02 0.20 ± 0.02

AUROC 0.991 ± 0.002 0.63 ± 0.02 0.62 ± 0.02

F1 0.944 ± 0.002 0.51 ± 0.02 0.49 ± 0.02

Antimalarial ACC 0.984 ± 0.002 0.66 ± 0.02 0.69 ± 0.03

MCC 0.89 ± 0.03 0.33 ± 0.04 0.39 ± 0.06

AUROC 0.98 ± 0.01 0.74 ± 0.03 0.752 ± 0.003

F1 0.90 ± 0.03 0.66 ± 0.04 0.0692 ± 0.009

Antimicrobial ACC 0.953 ± 0.001 0.656 ± 0.008 0.645 ± 0.004

MCC 0/887 ± 0.003 0.32 ± 0.01 0.292 ± 0.009

AUROC 0.9860 ± 0.0008 0.736 ± 0.008 0.723 ± 0.007

F1 0.919 ± 0.002 0.60 ± 0.02 0.628 ± 0.005

Antioxidant ACC 0.83 ± 0.02 0.66 ± 0.02 0.63 ± 0.03

MCC 0.67 ± 0.02 0.34 ± 0.05 0.26 ± 0.06

AUROC 0.897 ± 0.002 0.71 ± 0.03 0.71 ± 0.03

F1 0.814 ± 0.008 0.67 ± 0.04 0.64 ± 0.03

Antiparasitic ACC 0.76 ± 0.02 0.700 ± 0.03 0.71 ± 0.04

MCC 0.56 ± 0.02 0.40 ± 0.06 0.41 ± 0.07

AUROC 0.930 ± 0.004 0.75 ± 0.03 0.76 ± 0.04

F1 0.70 ± 0.03 0.69 ± 0.03 0.71 ± 0.03

Antiviral ACC 0.828 ± 0.005 0.74 ± 0.02 0.760 ± 0.005

MCC 0.659 ± 0.009 0.49 ± 0.05 0.520 ± 0.009

AUROC 0.898 ± 0.005 0.82 ± 0.01 0.840 ± 0.005

F1 0.821 ± 0.007 0.73 ± 0.03 0.764 ± 0.003

BBBC ACC 0.80 ± 0.02 0.74 ± 0.02 0.54 ± 0.04

MCC 0.60 ± 0.05 0.19 ± 0.06 0.08 ± 0.08

AUROC 0.907 ± 0.008 0.65 ± 0.08 0.55 ± 0.06

F1 0.79 ± 0.03 0.60 ± 0.03 0.0.56 ± 0.02

DPPIV inhibitor ACC 0.83 ± 0.02 0.60 ± 0.03 0.74 ± 0.01

MCC 0.67 ± 0.04 0.56 ± 0.04 0.47 ± 0.03

AUROC 0.927 ± 0.002 0.84 ± 0.02 0.816 ± 0.008

F1 0.83 ± 0.02 0.78 ± 0.02 0.73 ± 0.02

Anti-MRSA ACC 0.998 ± 0.001 0.78 ± 0.02 0.60 ± 0.04

MCC 0.993 ± 0.007 0.49 ± 0.03 0.41 ± 0.09

AUROC 1.0000 ± 0.0000 0.82 ± 0.01 0.789 ± 0.009

F1 0.994 ± 0.006 0.69 ± 0.02 0.65 ± 0.03

Neuropeptide ACC 0.850 ± 0.002 0.853 ± 0.004 0.817 ± 0.007

MCC 0.705 ± 0.003 0.708 ± 0.008 0.64 ± 0.01

AUROC 0.937 ± 0.001 0.919 ± 0.002 0.908 ± 0.004

F1 0.858 ± 0.002 0.852 ± 0.004 0.830 ± 0.05

Quorum sensing ACC 0.908 ± 0.008 0.839 ± 0.007 0.82 ± 0.04

MCC 0.82 ± 0.02 0.68 ± 0.01 0.65 ± 0.08

AUROC 0.967 ± 0.005 0.934 ± 0.008 0.93 ± 0.02

F1 0.908 ± 0.008 0.842 ± 0.005 0.83 ± 0.03

Toxicity ACC 0.914 ± 0.004 0.684 ± 0.006 0.628 ± 0.003

MCC 0.828 ± 0.009 0.39 ± 0.01 0.26 ± 0.006

AUROC 0.9677 ± 0.0007 0.756 ± 0.001 0.736 ± 0.005

F1 0.919 ± 0.004 0.727 ± 0.006 0.670 ± 0.004

TTCA ACC 0.689 ± 0.009 0.900 ± 0.008 0.869 ± 0.009

MCC 0.33 ± 0.02 0.80 ± 0.02 0.74 ± 0.02

AUROC 0.70 ± 0.01 0.95 ± 0.02 0.93 ± 0.01

F1 0.753 ± 0.008 0.899 ± 0.007 0.877 ± 0.007

Evaluation of different protein language models
This subsection focuses on expanding on Figure 3. It includes Tables S6-S7.
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Table 6. Alternative metrics for the evaluation for different protein language models. Errors represent the standard error of the

mean across three different runs. ACC: Accuracy; MCC: Mathew’s correlation coeficient; AUROC: Area Under the ROC curve; F1: F1 score;

BBBC: Brain-blood barrier crossing; TTCA: Tumor T-cell antigens.

Dataset Metric ESM2 8M ESM2 35M ESM2 150M ESM2 650M ESM1b 650M ProtBERT Prot-T5-XL Prost-T5

Antibacterial ACC 0.717 ± 0.007 0.720 ± 0.002 0.726 ± 0.002 0.719 ± 0.002 0.699 ± 0.005 0.711 ± 0.001 0.70 ± 0.01 0.67 ± 0.02

MCC 0.45 ± 0.01 0.457 ± 0.005 0.465 ± 0.003 0.459 ± 0.005 0.42 ± 0.01 0.43 ± 0.02 0.41 ± 0.02 0.35 ± 0.04

AUROC 0.790 ± 0.005 0.794 ± 0.003 0.799 ± 0.005 0.796 ± 0.003 0.793 ± 0.005 0.780 ± 0.007 0.787 ± 0.006 0.754 ± 0.009

F1 0.67 ± 0.01 0.677 ± 0.002 0.689 ± 0.002 0.670 ± 0.005 0.65 ± 0.01 0.679 ± 0.01 0.639 ± 0.02 0.60 ± 0.04

ACE inhibitor ACC 0.783 ± 0.007 0.79 ± 0.01 0.77 ± 0.01 0.776 ± 0.002 0.79 ± 0.02 0.72 ± 0.01 0.7561 ± 0.0008 0.7593 ± 0.007

MCC 0.57 ± 0.1 0.58 ± 0.02 0.53 ± 0.03 0.552 ± 0.003 0.589 ± 0.03 0.44 ± 0.02 0.513 ± 0.001 0.52 ± 0.01

AUROC 0.85 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.854 ± 0.007 0.86 ± 0.02 0.78 ± 0.02 0.833 ± 0.005 0.83 ± 0.01

F1 0.786 ± 0.006 0.79 ± 0.01 0.78 ± 0.01 0.776 ± 0.005 0.79 ± 0.01 0.72 ± 0.01 0.760 ± 0.004 0.764 ± 0.006

Anticancer ACC 0.65 ± 0.01 0.65 ± 0.01 0.64 ± 0.01 0.0612 ± 0.009 0.616 ± 0.004 0.63 ± 0.01 0.62 ± 0.01 0.620 ± 0.007

MCC 0.33 ± 0.02 0.33 ± 0.02 0.30 ± 0.03 0.26 ± 0.02 0.27 ± 0.01 0.28 ± 0.02 0.26 ± 0.03 0.25 ± 0.02

AUROC 0.707 ± 0.009 0.73 ± 0.02 0.73 ± 0.01 0.73 ± 0.02 0.72 ± 0.02 0.71 ± 0.02 0.71 ± 0.01 0.680 ± 0.009

F1 0.57 ± 0.03 0.57 ± 0.04 0.54 ± 0.05 0.47 ± 0.02 0.472 ± 0.007 0.56 ± 0.01 0.51 ± 0.03 0.546 ± 0.004

Antifungal ACC 0.594 ± 0.009 0.62 ± 0.01 0.64 ± 0.01 0.651 ± 0.009 0.60 ± 0.02 0.62 ± 0.02 0.749 ± 0.007 0.611 ± 0.01

MCC 0.20 ± 0.02 0.25 ± 0.04 0.28 ± 0.03 0.33 ± 0.02 0.22 ± 0.05 0.23 ± 0.04 0.31 ± 0.01 0.23 ± 0.03

AUROC 0.62 ± 0.02 0.67 ± 0.01 0.71 ± 0.02 0.72 ± 0.01 0.69 ± 0.02 0.68 ± 0.03 0.72 ± 0.01 0.66 ± 0.2

F1 0.49 ± 0.02 0.564 ± 0.009 0.587 ± 0.004 0.56 ± 0.02 0.517 ± 0.008 0.60 ± 0.02 0.59 ± 0.02 0.547 ± 0.009

Antimalarial ACC 0.63 ± 0.03 0.63 ± 0.03 0.66 ± 0.04 0.72 ± 0.03 0.69 ± 0.02 0.648 ± 0.03 0.67 ± 0.02 0.70 ± 0.05

MCC 0.39 ± 0.06 0.27 ± 0.06 0.32 ± 0.07 0.43 ± 0.07 0.38 ± 0.04 0.30 ± 0.05 0.33 ± 0.03 0.4 ± 0.1

AUROC 0.752 ± 0.003 0.72 ± 0.02 0.72 ± 0.03 0.80 ± 0.01 0.74 ± 0.02 0.72 ± 0.04 0.70 ± 0.02 0.74 ± 0.03

F1 0.692 ± 0.009 0.64 ± 0.04 0.66 ± 0.04 0.72 ± 0.03 0.68 ± 0.02 0.61 ± 0.04 0.62 ± 0.02 0.68 ± 0.06

Antimicrobial ACC 0.645 ± 0.005 0.6494 ± 0.0009 0.649 ± 0.005 0.64 ± 0.1 0.638 ± 0.009 0.619 ± 0.004 0.659 ± 0.009 0.640 ± 0.006

MCC 0.292 ± 0.009 0.300 ± 0.002 0.30 ± 0.01 0.29 ± 0.02 0.28 ± 0.02 0.239 ± 0.008 0.32 ± 0.02 0.28 ± 0.01

AUROC 0.723 ± 0.007 0.722 ± 0.004 0.723 ± 0.004 0.731 ± 0.007 0.723 ± 0.007 0.682 ± 0.007 0.74 ± 0.01 0.737 ± 0.008

F1 0.628 ± 0.005 0.632 ± 0.003 0.627 ± 0.005 0.62 ± 0.01 0.61 ± 0.01 0.617 ± 0.005 0.644 ± 0.009 0.621 ± 0.005

Antioxidant ACC 0.63 ± 0.03 0.632 ± 0.008 0.62 ± 0.03 0.63 ± 0.03 0.66 ± 0.03 0.59 ± 0.04 0.068 ± 0.03 0.65 ± 0.03

MCC 0.27 ± 0.06 0.29 ± 0.02 0.25 ± 0.02 0.27 ± 0.06 0.31 ± 0.06 0.18 ± 0.07 0.37 ± 0.06 0.31 ± 0.05

AUROC 0.71 ± 0.03 0.71 ± 0.02 0.69 ± 0.04 0.70 ± 0.02 0.72 ± 0.03 0.66 ± 0.04 0.74 ± 0.05 0.70 ± 0.03

F1 0.64 ± 0.03 0.66 ± 0.01 0.63 ± 0.03 0.66 ± 0.03 0.65 ± 0.04 0.59 ± 0.04 0.69 ± 0.04 0.66 ± 0.03

Antiparasitic ACC 0.71 ± 0.03 0.70 ± 0.02 0.69 ± 0.02 0.700 ± 0.01 0.70 ± 0.03 0.71 ± 0.04 0.714 ± 0.003 0.69 ± 0.02

MCC 0.41 ± 0.07 0.41 ± 0.04 0.37 ± 0.04 0.40 ± 0.02 0.41 ± 0.06 0.43 ± 0.07 0.428 ± 0.006 0.37 ± 0.03

AUROC 0.76 ± 0.04 0.77 ± 0.03 0.77 ± 0.03 0.79 ± 0.02 0.78 ± 0.04 0.80 ± 0.04 0.79 ± 0.01 0.77 ± 0.02

F1 0.71 ± 0.03 0.70 ± 0.02 0.716 ± 0.004 0.715 ± 0.004 0.71 ± 0.02 0.73 ± 0.03 0.715 ± 0.005 0.69 ± 0.02

Antiviral ACC 0.760 ± 0.005 0.739 ± 0.003 0.737 ± 0.004 0.749 ± 0.008 0.745 ± 0.008 0.69 ± 0.02 0.747 ± 0.009 0.710 ± 0.007

MCC 0.520 ± 0.009 0.470 ± 0.005 0.474 ± 0.008 0.50 ± 0.02 0.49 ± 0.02 0.38 ± 0.03 0.50 ± 0.02 0.42 ± 0.01

AUROC 0.840 ± 0.005 0.811 ± 0.003 0.819 ± 0.002 0.825 ± 0.005 0.821 ± 0.006 0.77 ± 0.01 0.831 ± 0.05 0.80 ± 0.01

F1 0.764 ± 0.003 0.745 ± 0.002 0.742 ± 0.004 0.760 ± 0.006 0.751 ± 0.008 0.70 ± 0.01 0.749 ± 0.007 0.712 ± 0.007

BBBC ACC 0.54 ± 0.04 0.61 ± 0.05 0.56 ± 0.01 0.60 ± 0.01 0.62 ± 0.02 0.60 ± 0.03 0.72 ± 0.03 0.60 ± 0.09

MCC 0.08 ± 0.08 0.22 ± 0.1 0.12 ± 0.03 0.21 ± 0.02 0.25 ± 0.04 0.21 ± 0.05 0.43 ± 0.05 0.19 ± 0.2

AUROC 0.55 ± 0.06 0.58 ± 0.07 0.627 ± 0.006 0.64 ± 0.03 0.66 ± 0.03 0.64 ± 0.04 0.74 ± 0.02 0.64 ± 0.08

F1 0.56 ± 0.02 0.61 ± 0.04 0.55 ± 0.5 0.60 ± 0.03 0.64 ± 0.02 0.57 ± 0.03 0.72 ± 0.03 0.59 ± 0.09

DPPIV inhibitor ACC 0.75 ± 0.01 0.76 ± 0.02 0.731 ± 0.003 0.766 ± 0.008 0.76 ± 0.01 0.75 ± 0.01 0.77 ± 0.01 0.757 ± 0.007

MCC 0.47 ± 0.03 0.52 ± 0.04 0.462 ± 0.007 0.53 ± 0.02 0.52 ± 0.02 0.50 ± 0.02 0.54 ± 0.03 0.52 ± 0.01

AUROC 0.815 ± 0.008 0.84 ± 0.01 0.81 ± 0.1 0.834 ± 0.006 0.83 ± 0.01 0.82 ± 0.02 0.860 ± 0.006 0.836 ± 0.008

F1 0.73 ± 0.02 0.76 ± 0.02 0.733 ± 0.007 0.77 ± 0.01 0.75 ± 0.02 0.75 ± 0.02 0.77 ± 0.02 0.75 ± 0.01

Anti-MRSA ACC 0.69 ± 0.04 0.73 ± 0.01 0.64 ± 0.03 0.69 ± 0.04 0.68 ± 0.02 0.71 ± 0.04 0.66 ± 0.03 0.71 ± 0.03

MCC 0.41 ± 0.09 0.48 ± 0.01 0.31 ± 0.08 0.42 ± 0.09 0.41 ± 0.06 0.43 ± 0.09 0.34 ± 0.07 0.44 ± 0.05

AUROC 0.779 ± 0.009 0.81 ± 0.2 0.727 ± 0.005 0.81 ± 0.02 0.79 ± 0.03 0.80 ± 0.04 0.74 ± 0.03 0.76 ± 0.04

F1 0.65 ± 0.03 0.70 ± 0.02 0.54 ± 0.04 0.60 ± 0.07 0.622 ± 0.002 0.685 ± 0.05 0.61 ± 0.05 0.67 ± 0.04

Neuropeptide ACC 0.817 ± 0.007 0.82 ± 0.02 0.81 ± 0.01 0.833 ± 0.01 0.829 ± 0.007 0.77 ± 0.01 0.823 ± 0.003 0.78 ± 0.02

MCC 0.64 ± 0.01 0.65 ± 0.03 0.63 ± 0.02 0.67 ± 0.02 0.66 ± 0.01 0.55 ± 0.02 0.654 ± 0.005 0.58 ± 0.03

AUROC 0.908 ± 0.004 0.90 ± 0.01 0.90 ± 0.01 0.918 ± 0.008 0.905 ± 0.007 0.86 ± 0.01 0.912 ± 0.006 0.865 ± 0.01

F1 0.830 ± 0.005 0.83 ± 0.01 0.82 ± 0.01 0.84 ± 0.01 0.839 ± 0.005 0.786 ± 0.009 0.836 ± 0.002 0.80 ± 0.01

Quorum sensing ACC 0.82 ± 0.04 0.82 ± 0.03 0.82 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.75 ± 0.04 0.831 ± 0.004 0.83 ± 0.03

MCC 0.65 ± 0.08 0.64 ± 0.05 0.65 ± 0.02 0.67 ± 0.02 0.71 ± 0.03 0.51 ± 0.08 0.686 ± 0.003 0.66 ± 0.05

AUROC 0.93 ± 0.02 0.92 ± 0.02 0.920 ± 0.006 0.938 ± 0.008 0.93 ± 0.02 0.85 ± 0.04 0.934 ± 0.004 0.90 ± 0.02

F1 0.83 ± 0.03 0.82 ± 0.02 0.823 ± 0.003 0.836 ± 0.007 0.85 ± 0.02 0.76 ± 0.03 0.842 ± 0.001 0.84 ± 0.02

Toxicity ACC 0.63 ± 0.01 0.627 ± 0.007 0.629 ± 0.003 0.63 ± 0.02 0.638 ± 0.007 0.62 ± 0.01 0.68 ± 0.01 0.640 ± 0.002

MCC 0.264 ± 0.006 0.26 ± 0.01 0.264 ± 0.007 0.28 ± 0.03 0.28 ± 0.02 0.25 ± 0.03 0.36 ± 0.02 0.288 ± 0.004

AUROC 0.736 ± 0.005 0.726 ± 0.009 0.721 ± 0.003 0.74 ± 0.01 0.74 ± 0.01 0.715 ± 0.009 0.793 ± 0.005 0.733 ± 0.004

F1 0.670 ± 0.004 0.672 ± 0.005 0.666 ± 0.002 0.68 ± 0.02 0.674 ± 0.006 0.651 ± 0.01 0.706 ± 0.009 0.679 ± 0.004

TTCA ACC 0.869 ± 0.009 0.86 ± 0.01 0.85 ± 0.01 0.87 ± 0.01 0.86 ± 0.01 0.82 ± 0.02 0.85 ± 0.02 0.8386 ± 0.02

MCC 0.74 ± 0.02 0.72 ± 0.02 0.71 ± 0.02 0.74 ± 0.03 0.73 ± 0.02 0.64 ± 0.04 0.70 ± 0.03 0.74 ± 0.05

AUROC 0.93 ± 0.01 0.92 ± 0.02 0.92 ± 0.01 0.926 ± 0.008 0.929 ± 0.008 0.88 ± 0.02 0.92 ± 0.02 0.93 ± 0.0.009

F1 0.877 ± 0.007 0.87 ± 0.01 0.86 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.83 ± 0.01 0.86 ± 0.01 0.8884 ± 0.02

Comparison of training strategies on original datasets
This subsection contains alternative metrics for the results in Figure 4.A. Figures S18-S35 represent the ROC curves corresponding

to one of the three experiments. Table S8 contains alternative metrics for the comparison of training strategies on the original

datasets.

Alternative metrics for the comparison of training strategies in the new datasets.
This subsection reflects the results in Figure 4.B. It includes Table S9.
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Table 7. Metrics for one-hot encoding.

Dataset MCC

Antibacterial 0.293 ± 0.007

ACE inhibitor 0.40 ± 0.06

Anticancer 0.270 ± 0.02

Antifungal 0.06 ± 0.03

Antimalarial 0.32 ± 0.08

Antimicrobial 0.076 ± 0.007

Antioxidant 0.239 ± 0.02

Antiparasitic 0.16 ± 0.04

Antiviral 0.385 ± 0.04

BBBC 0.39 ± 0.01

DPPIV inhibitor 0.40 ± 0.05

Anti-MRSA 0.32 ± 0.03

Neuropeptide 0.53 ± 0.04

Quorum sensing 0.41 ± 0.03

Toxicity 0.08 ± 0.03

TTCA 0.56 ± 0.01

Fig. 18. ROC curves of the original Antibacterial dataset. OMLE (left) and UniDL4BioPep (right).

Fig. 19. ROC curves of the original ACE inhibitor dataset. OMLE (left) and UniDL4BioPep (right).
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Table 8. Alternative metrics for the comparison of training strategies on original datasets. Errors represent the standard error

of the mean across three different runs. ACC: Accuracy; MCC: Mathew’s correlation coeficient; AUROC: Area Under the ROC curve; F1:

F1 score; BBBC: Brain-blood barrier crossing; TTCA: Tumor T-cell antigens; OMLE: Optimised Machine Learning Ensemble; UDL4BP-A:

UnidDLBioPep-A. For the reference of the handcrafted models, see Table

1.

Dataset Metric OMLE UDL4BP-A Handcrafted models

Antibacterial ACC 0.92803 ± 0.0009 0.9427 ± 0.0008 0.935

MCC 0.858 ± 0.001 0.887 ± 0.001 0.870

AUROC 0.9770 ± 0.0005 0.9766 ± 0.0004 0.975

F1 0.941 ± 0.001 0.677 ± 0.002 NA

ACE inhibitor ACC 0.855 ± 0.007 0.9280 ± 0.0009 0.883

MCC 0.71 ± 0.01 0.67 ± 0.01 0.767

AUROC 0.922 ± 0.008 0.911 ± 0.005 0.951

F1 0.856 ± 0.007 0.83 ± 0.01 NA

Anticancer 1 ACC 0.717 ± 0.009 0.749 ± 0.007 0.825

MCC 0.43 ± 0.02 0.50 ± 0.01 0.646

AUROC 0.800 ± 0.002 0.8106 ± 0.0006 0.812

F1 0.714 ± 0.009 0.751 ± 0.006 NA

Anticancer 2 ACC 0.939 ± 0.002 0.841 ± 0.003 0.9201

MCC 0.879 ± 0.005 0.883 ± 0.005 0.84

AUROC 0.9685 ± 0.0005 0.969 ± 0.001 NA

F1 0.937 ± 0.02 0.939 ± 0.003 NA

Antifungal ACC 0.947 ± 0.002 0.947 ± 0.002 0.942

MCC 0.895 ± 0.004 0.894 ± 0.005 0.884

AUROC 0.991 ± 0.002 0.9875 ± 0.0001 0.988

F1 0.944 ± 0.002 0.946 ± 0.002 NA

Antimalarial 1 ACC 0.980 ± 0.001 0.975 ± 0.004 0.978

MCC 0.78 ± 0.03 0.82 ± 0.01 0.776

AUROC 0.955 ± 0.003 0.935 ± 0.003 0.82

F1 0.828 ± 0.009 0.79 ± 0.03 NA

Antimalarial 2 ACC 0.98770 ± 0.00001 0.973 ± 0.004 0.957

MCC 0.95660 ± 0.00001 0.91 ± 0.01 0.834

AUROC 0.997 ± 0.001 0.993 ± 0.001 0.903

F1 0.96300 ± 0.00001 0.92 ± 0.01 NA

Antimicrobial ACC 0.954 ± 0.001 0.9667 ± 0.007 NA

MCC 0.887 ± 0.003 0.919 ± 0.002 NA

AUROC 0.9860 ± 0.0008 0.9895 ± 0.0004 NA

F1 0.919 ± 0.002 0.942 ± 0.001 NA

Antioxidant ACC 0.84 ± 0.01 0.831 ± 0.004 NA

MCC 0.67 ± 0.02 0.657 ± 0.08 0.48

AUROC 0.897 ± 0.002 0.880 ± 0.07 0.79

F1 0.814 ± 0.008 0.809 ± 0.005 NA

Antiparasitic ACC 0.757 ± 0.01 0.754 ± 0.01 0.880

MCC 0.56 ± 0.02 0.55 ± 0.02 0.776

AUROC 0.930 ± 0.004 0.931 ± 0.006 0.922

F1 0.70 ± 0.03 0.70 ± 0.02 0.891

Antiviral ACC 0.828 ± 0.005 0.835 ± 0.001 0.828

MCC 0.659 ± 0.009 0.673 ± 0.004 0.662

AUROC 0.898 ± 0.005 0.9083 ± 0.0007 0.896

F1 0.821 ± 0.007 0.829 ± 0.005 NA

BBBC ACC 0.80 ± 0.02 0.78950 ± 0.00001 0.7895

MCC 0.60 ± 0.05 0.58220 ± 0.00001 0.6102

AUROC 0.907 ± 0.008 0.85 ± 0.02 0.7895

F1 0.79 ± 0.03 0.77780 ± 0.00001 0.7500

DPPIV inhibitor ACC 0.83 ± 0.02 0.812 ± 0.004 0.797

MCC 0.67 ± 0.04 0.624 ± 0.009 0.594

AUROC 0.927 ± 0.002 0.911 ± 0.003 0.847

F1 0.83 ± 0.02 0.811 ± 0.004 NA

Anti-MRSA ACC 0.998 ± 0.002 0.988 ± 0.004 0.960

MCC 0.993 ± 0.007 0.96 ± 0.02 0.848

AUROC 1.00000 ± 0.00001 0.9994 ± 0.0002 0.986

F1 0.994 ± 0.006 0.96 ± 0.01 NA

Neuropeptide ACC 0.850 ± 0.002 0.888 ± 0.002 0.936

MCC 0.705 ± 0.003 0.776 ± 0.004 0.875

AUROC 0.937 ± 0.001 0.953 ± 0.001 0.988

F1 0.858 ± 0.002 0.889 ± 0.001 NA

Quorum sensing ACC 0.908 ± 0.008 0.917 ± 0.008 0.943

MCC 0.82 ± 0.01 0.83 ± 0.02 0.885

AUROC 0.967 ± 0.005 0.981 ± 0.001 0.945

F1 0.908 ± 0.008 0.915 ± 0.008 NA

Toxicity ACC 0.914 ± 0.004 0.913 ± 0.004 0.912 ± 0.002

MCC 0.828 ± 0.098 0.828 ± 0.005 0.903 ± 0.004

AUROC 0.9677 ± 0.0007 0.9708 ± 0.0006 0.976 ± 0.001

F1 0.919 ± 0.004 0.916 ± 0.002 NA

TTCA ACC 0.689 ± 0.009 0.72 ± 0.01 0.71

MCC 0.33 ± 0.02 0.42 ± 0.02 0.363

AUROC 0.70 ± 0.01 0.782 ± 0.004 0.73

F1 0.753 ± 0.008 0.77 ± 0.01 0.756
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Fig. 20. ROC curves of the original Anticancer 1 dataset. OMLE (left) and UniDL4BioPep (right).

Fig. 21. ROC curves of the original Anticancer 2 dataset. OMLE (left) and UniDL4BioPep (right).

Fig. 22. ROC curves of the original Antifungal dataset. OMLE (left) and UniDL4BioPep (right).
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Fig. 23. ROC curves of the original Antimalarial 1 dataset. OMLE (left) and UniDL4BioPep (right).

Fig. 24. ROC curves of the original Antimalarial 2 dataset. OMLE (left) and UniDL4BioPep (right).

Fig. 25. ROC curves of the original Antimicrobial dataset. OMLE (left) and UniDL4BioPep (right).
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Fig. 26. ROC curves of the original Anti-MRSA dataset. OMLE (left) and UniDL4BioPep (right).

Fig. 27. ROC curves of the original Antioxidant dataset. OMLE (left) and UniDL4BioPep (right).

Fig. 28. ROC curves of the original Antiparasitic dataset. OMLE (left) and UniDL4BioPep (right).
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Fig. 29. ROC curves of the original Antiviral dataset. OMLE (left) and UniDL4BioPep (right).

Fig. 30. ROC curves of the original Blood-brain barrier crossing dataset. OMLE (left) and UniDL4BioPep (right).

Fig. 31. ROC curves of the original DPPIV inhibitor dataset. OMLE (left) and UniDL4BioPep (right).
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Fig. 32. ROC curves of the original Neuropeptide dataset. OMLE (left) and UniDL4BioPep (right).

Fig. 33. ROC curves of the original Quorum sensing dataset. OMLE (left) and UniDL4BioPep (right).

Fig. 34. ROC curves of the original Toxicity dataset. OMLE (left) and UniDL4BioPep (right).
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Fig. 35. ROC curves of the original Tumor T-cell antigen dataset. OMLE (left) and UniDL4BioPep (right).

Table 9. Metrics for the evaluation of training strategies in the new datasets. Errors represent the standard error of the mean

across three different runs. All values correspond to Matthew’s Correlation Coefficient; NegSearch: Dataset with new negative peptides; HP:

Homology-based dataset partitioning module; MCC: Mathew’s correlation coeficient; BBBC: Brain-blood barrier crossing; TTCA: Tumor

T-cell antigens.

Dataset OMLE NegSearch UDL4BP-A NegSearch OMLE NegSearch+HP UDL4BP NegSearch+HP

Antibacterial 0.663 ± 0.004 0.656 ± 0.004 0.45 ± 0.01 0.42 ± 0.02

ACE inhibitor 0.547 ± 0.004 0.578 ± 0.004 0.57 ± 0.01 0.61 ± 0.03

Anticancer 0.547 ± 0.004 0.64 ± 0.03 0.33 ± 0.01 0.30 ± 0.02

Antifungal 0.78 ± 0.02 0.76 ± 0.02 0.20 ± 0.02 0.26 ± 0.02

Antimalarial 0.51 ± 0.08 0.41 ± 0.08 0.39 ± 0.06 0.33 ± 0.04

Antimicrobial 0.774 ± 0.004 0.749 ± 0.004 0.292 ± 0.009 0.32 ± 0.01

Antioxidant 0.31 ± 0.04 0.34 ± 0.04 0.26 ± 0.06 0.33 ± 0.05

Antiparasitic 0.58 ± 0.07 0.51 ± 0.07 0.41 ± 0.07 0.40 ± 0.06

Antiviral 0.720 ± 0.003 0.725 ± 0.003 0.520 ± 0.009 0.49 ± 0.08

BBBC 0.13 ± 0.09 0.28 ± 0.09 0.08 ± 0.08 0.19 ± 0.06

DPPIV inhibitor 0.494 ± 0.007 0.562 ± 0.007 0.47 ± 0.03 0.56 ± 0.04

Anti-MRSA 0.651 ± 0.01 0.74 ± 0.01 0.41 ± 0.09 0.49 ± 0.03

Neuropeptide 0.701 ± 0.007 0.722 ± 0.006 0.64 ± 0.01 0.708 ± 0.008

Quorum sensing 0.70 ± 0.04 0.72 ± 0.04 0.65 ± 0.08 0.68 ± 0.01

Toxicity 0.65 ± 0.03 0.64 ± 0.03 0.26 ± 0.006 0.39 ± 0.01

TTCA 0.75 ± 0.02 0.77 ± 0.02 0.74 ± 0.02 0.80 ± 0.02
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G. AutoPeptideML

Recommendations for using AutoPeptideML and reporting its results
This section explores how the structure of the outputs from AutoPeptideML facilitates compliance with DOME guidelines (Walsh

et al., 2021), nevertheless, it is important to note that no system can fully avoid its misuse or abuse and the ultimate responsibility

of following proper guidelines and accurately reporting the results lies in the final users.

• Data: The algorithm ensures independence between the optimisation (training) and evaluation (test) sets. The hyperparameter

optimisation and model selection, which can be considered as meta-optimisation strategies, relies on n-fold cross-validation

and maintains the independence of the testing set. Further, the constraints upon the algorithm in the web-server application

impedes malpractices like the manual curation of parameters to meta-optimise the results in the independent test sets.

The datasets generated during the automatic search for negative samples, the train/test partitions, and the n train/validation

folds are included in the ZIP-compressed output file, thus making their release and sharing easy. The automatic search for

negatives is also compliant with the recommendation that the distribution of the data is representative of the domain in which

the model is going to be applied. The use of random seeds for any stochastic process improves the reproducibility when the

same exact datasets are used, thus guaranteeing that different runs will produce similar results.

• Optimisation: Metrics for each fold in cross-validation are provided alongside the final evaluation metrics of the model so that

train versus test error can be calculated as a measure of possible under- or over-fitting. The hyper-parameter configurations of

the final models are included in the output file and are therefore easy to share.

• Model: PLMs are not directly explainable and it follows that models built on top of their representations are thus not

explainable.

• Evaluation: Models are evaluated with a wide array of metrics and a PDF summary of the main model performance plots

and evaluation metrics is provided with a guide on how to interpret them depending on different application contexts meant

for researchers that are not familiar with ML concepts. Most common problems when analysing evaluation metrics arise when

working with imbalanced testing datasets, the automatic dataset construction module bypasses this problem by generating

balanced datasets.

Output
The output for AutoPeptideML is generated in a ZIP-compressed directory with the following subdirectories:

• apml config.json: File describing the configuration settings used to run AutoPeptideML. It allows the reproduction of

experiments as it also contains the seed for the pseudo-random number generator for all stochastic processes.

• best configs: It is a subdirectory containing the best combination of hyperparameters found for all models. It will contain as

many configuration files as separate hyperparameter searches run. By default, it will be three.

• ensemble: It is a subdirectory that contains the trained models.

• evaluation data: It is a subdirectory that contains two files: 1) cross-validation.csv, which is a CSV file with the model

performance metrics during hyperparameter optimisation; 2) test scores.csv, which is a CSV file with the final model

performance metrics from the evaluation against the testing set.

• figures: It is a subdirectory that contains different interesting figures for analysing model performance including: ROC curve,

calibration curve, confusion matrix, and precision-recall curve.

• folds It is a subdirectory that contains the n cross-validation folds, allows for reproducing the experiments.

• splits It is a subdirectory that contains the train and test partitions, allows for reproducing the evaluation.

• summary.pdf: It is an automatically generated summary of the evaluation metrics and all the figures in the figures subdirectory

and guidance on how to interpret both metrics and figures.
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