
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CPMÖBIUS: ITERATIVE COACH–PLAYER REASONING
FOR DATA-FREE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated strong potential in complex
reasoning, yet their progress remains fundamentally constrained by reliance on
massive high-quality human-curated tasks and labels, either through supervised
fine-tuning (SFT) or reinforcement learning (RL) on reasoning-specific data. This
dependence renders supervision-heavy training paradigms increasingly unsustain-
able, with signs of diminishing scalability already evident in practice. To over-
come this limitation, we introduce CPMöbius, a collaborative Coach–Player
paradigm for data-free reinforcement learning of reasoning models. Unlike tradi-
tional adversarial self-play frameworks, CPMöbius inspired by multi-agent col-
laboration treats the Coach and Player as independent but cooperative roles. The
Coach proposes instructions targeted at the Player’s capability and receives re-
wards based on changes in the Player’s performance, while the Player is rewarded
for solving the increasingly instructive tasks generated by the Coach. This coop-
erative optimization loop is designed to directly enhance the Player’s mathemati-
cal reasoning ability. Remarkably, CPMöbius achieves substantial improvement
without relying on any external training data, outperforming existing unsupervised
approaches. For example, on Qwen2.5-Math-7B-Instruct, our method improves
accuracy by overall average +4.9 and out-of-distribution average +5.4, which ex-
ceed RENT for +1.5 on overall accuracy and R-zero for +4.2 on OOD accuracy.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2025a; Yang et al., 2024a; Touvron et al., 2023) have
demonstrated remarkable capabilities in complex reasoning tasks, from mathematical reasoning,
problem solving (Wei et al., 2022) to code generation (Chen et al., 2021). The dominant paradigm
for enhancing these abilities involves post-training on domain-specific data, typically through
supervised fine-tuning (SFT) (Ouyang et al., 2022; Tunstall et al., 2023) followed by reinforcement
learning (RL) (Christiano et al., 2017; Schulman et al., 2017). While effective, these approaches are
fundamentally constrained by its reliance on massive, high-quality, human-curated datasets. The
scarcity of such expert-produced examples means this highly supervision-dependent paradigm is
showing signs of strain, raising concerns about its long-term scalability.

To break free from this dependency, a promising frontier has emerged in data-free learning, where
models improve through autonomous interaction. Self-play, a concept inspired by game-playing
AI (Silver et al., 2017), has been adapted for LLM reasoning to achieve self-evolving. Recent self-
play frameworks in RL (Huang et al., 2025; Zhao et al., 2025) have shown that a model can generate
its own training data and learn from solving them, entirely removing the need for external datasets.
However, these pioneering methods are often built on an adversarial or competitive dynamic, where
the model in one role generates challenges to stump another. Such an adversarial setup is prone to
instability, collapsing into nonsensical or unlearnable proposed tasks for RL training.

In this work, we propose CPMöbius, a Coach–Player paradigm for data-free reinforcement learning,
inspired by multi-agent collaboration (Chen et al., 2024; Qian & Cong, 2023). Instead of casting the
Player model as competitors, the Coach is responsible for adapting the task difficulty to the Player’s
capabilities. CPMöbius treat the Coach and Player model as independent but cooperative partners
in a symbiotic learning process. Shown in Fig. 1, the Coach and Player model are optimized through
a cooperative loop:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• The Coach model acts as a curriculum designer, proposing maximally instructive tasks targeted
at the Player’s current capability.

• The Player model focuses on solving these tasks to enhance its reasoning skills.
• The reward signals for both Coach and Player are designed to foster cooperation. The Coach

is rewarded based on the changes in the Player’s validation accuracy, directly incentivizing
it to generate instructions that lead to tangible learning progress. Simultaneously, the Player is
rewarded via a standard verifiable outcome for correctly solving tasks provided by the Coach.

Figure 1: CPMöbius starts with the coach
proposing tasks of suitable difficulty. The
player learns by solving these tasks, then re-
views on a predefined validation set. Finally,
the coach adjusts the next training plan based
on the player’s performance.

This collaborative dynamic allows CPMöbius to
generate a highly targeted and adaptive curriculum
from scratch, tailored specifically to the Player’s
evolving needs throughout the training process. Our
experiments show that this data-free, cooperative
approach is not only viable but remarkably effec-
tive. Without relying on any external training data,
CPMöbius achieves substantial improvements and
outperforms existing unsupervised methods. For
instance, on the Qwen2.5-Math-7B-Instruct, our
method improves accuracy by overall average +4.9
and out-of-distribution average +5.4, a significant
leap compared to the +1.5 from RENT, a method
of reinforcement learning via entropy minimization
(Prabhudesai et al., 2025) and +4.2 from R-zero.
The details of these baseline’s method are provided
in Section 4.1 These results demonstrate the effec-
tiveness and scalability of collaborative paradigm as a new pathway for advancing mathematical
reasoning in LLMs, decoupling their progress from the constraints of human supervision.

2 PRELIMINARIES

In this section, we briefly review two key RL methods for LLM that are relevant to our framework.

2.1 GROUP RELATIVE POLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO) (Shao et al., 2024), proposed by DeepSeek, is a
critic-free reinforcement learning algorithm. Given a query q, GRPO samples G candidate out-
puts {o1, . . . , oG} from the old policy πθold , and defines the normalized advantage function using the
corresponding rewards {r1, . . . , rG}:

Ai =
ri −mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
(1)

The policy πθ is then updated by maximizing the following objective:

JGRPO(θ) = Eq,{oi}

[
1

G

G∑
i=1

min
(
ri(θ)Ai, clip(ri(θ), 1− ϵ, 1 + ϵ)Ai

)]
− βDKL(πθ ∥πref) (2)

where ϵ and β are hyperparameters, ri(θ) = πθ(oi|q)
πθold (oi|q)

is the importance sampling ratio, and
DKL(πθ ∥πref) is the KL divergence regularization with respect to a reference model.

2.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Reinforcement Learning with Verifiable Rewards (RLVR) is a framework that trains models using
verifiable reward functions without relying on human feedback (Lambert et al., 2024). In RLVR, the
reward function is typically defined by deterministic rules that automatically assess the correctness
of model outputs, providing binary signals (1 for correct, 0 for incorrect):

r(y) = verify(y), (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where verify(·) is a verifiable function determining whether the output y is correct.

Depending on the verification source, rewards can be obtained in different ways. When ground truth
labels y⋆ are available, the accuracy is determined by direct comparison r(y) = 1[y = y⋆], as in
Group Relative Policy Optimization (GRPO), where rules-based rewards check both the accuracy of
the solutions and the required output format. In the absence of labels, verification can be performed
in an unsupervised manner using self-consistency (Wang et al., 2023; Zuo et al., 2025), where the
majority-voted answer from a set of candidate outputs is treated as the correct answer and rewards
are assigned accordingly. This formulation highlights that verifiable rewards can be constructed
either with or without supervision, enabling reinforcement learning to be applied even in data-scarce
or fully unsupervised reasoning scenarios.

3 FRAMEWORK

In this section, we present a comprehensive overview of CPMöbius, a collaborative Coach–Player
paradigm for data-free reinforcement learning. CPMöbius introduces a symbiotic learning loop
between two independent language models: the Coach, a curriculum designer, and the Player, a
reasoning solver.

The core objective is to maximize learning progress without human-curated data. To achieve this,
the Coach generates mathematical tasks tailored to the Player’s current capability, while the Player
attempts to solve them. The key innovation lies in the cooperative reward mechanism: the Coach is
optimized not to stump the Player, but to maximize the Player’s capability based on Coach-proposed
tasks. This ensures that the curriculum remains instructive, learnable, and adaptive.

We illustrate the main framework in Fig. 2, and the pseudo-code of algorithm can be found in Ap-
pendix A.2. Formally, let πC

θ denote the Coach policy and πP
ϕ the Player policy. At each round t:

1. Coach designs training plan. The Coach generates a batch of m task instruction {xi}mi=1 ∼
πC
θt
(·), where πC

θt
is the current Coach policy.

2. Player trains. For every xi the current Player produces n independent answers {yi,j}nj=1 ∼
πP
ϕt
(·|xi). Majority voting over the n answers yields a pseudo-label y∗i . Then each answer re-

ceives a verifiable reward ri,j = I[yi,j = y∗i] as well as a GRPO advantage Ai,j computed
w.r.t. the n samples for question i. The instruction-level train reward is obtained by averaging:
RPlayer

i = 1
n

∑n
j=1 ri,j . The set {(xi, {yi,j}nj=1)}mi=1 constitutes one GRPO batch, and Player

parameters ϕt are updated using GRPO method while keeping KL within a trust-region.

3. Player evaluate results. The updated Player is evaluated on a fixed held-out validation set Dval,
yielding a progress reward ∆t = Accval(π

P
ϕt+1

;Dval) − Accval(π
P
ϕt
;Dval), which measures the

Player’s accuracy difference on the validation set Dval.

4. Coach adjusts plan. Each instruction xi is assigned an instruction reward RCoach
i = RPlayer

i ·
∆t, i.e., instructions that produced high Player rewards and coincided with a global accuracy
improvement are reinforced. A group of m instruction-level REINFORCE steps update Coach
parameters θt using each instance in the batch {(xi, R

Coach
i)}mi=1.

The entire loop is trained end-to-end with separate policy optimization for Coach and Player using
the REINFORCE and GRPO, respectively. Critically, no human prompts and no external curricula
are ever used. The Coach learns to teach, and the Player learns to solve, purely through interaction
with each other. This cooperative design sidesteps the instability of adversarial self-play while
retaining the benefits of open-ended, adaptive curriculum generation. In the following subsections,
we detail the architecture, reward design, and training procedure of both the Coach and the Player.

3.1 COACH

The Coach serves as an adaptive curriculum designer, fundamentally responsible for generating
tasks that improve the Player’s current reasoning capabilities. Unlike traditional static curriculum
approaches, our Coach operates as a dynamic learning policy that continuously refines its task
generation strategy based on the Player’s learning trajectory. The Coach never sees ground-truth

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: The illustration on the conceptual layered architecture on the design of CPMöbius. The
iterative process includes four stages. Coach designs training plan: The coach gives instructions of
suitable difficulty based on the player’s current ability. Player trains: The player executes each in-
struction multiple times, uses majority voting to get pseudo-labels, and updates with GRPO. Player
evaluates results: The updated player is tested on a prepared validation set, and the accuracy of val-
idation is recorded. Coach adjusts plan: The coach updates with REINFORCE, using the player’s
performance on both the proposed instructions and the validation set as rewards.

solutions, while its only feedback sign is the scalar ∆t, the process on the held-out validation set
after the Player has been updated.

Difficulty-Filtered Batching To ensure every proposal task is learnable yet non-trivial, we use a
lightweight difficulty check during the task-generation phase. For each candidate task xi sampled
from πC

θ , we rollout n Player answers {yi,j}nj=1 ∼ πP
ϕ(·|xi), obtain the majority-voted pseudo-label

y∗i , and compute the rollout-dependent accuracy score of the instruction.

acci =
1

n

∑n

j=1
I[yi,j = y∗i]. (4)

This score effectively measures the problem’s alignment with the Player’s current capability frontier.
The Coach then applies a principled filtering criterion, retaining only problems whose accuracy
scores fall within the pedagogically optimal zone of 0.2 ≤ acci ≤ 0.8. Problems outside this range
are immediately discarded and replaced through on-the-fly resampling. This online filter guarantees
that the final mini-batch of m questions is challenging enough to promote skill development yet
solvable enough to avoid frustration, providing a natural curriculum ramp.

Design Objectives The Coach embodies a learner-centered educational philosophy, where its pri-
mary objective is to optimize the constructiveness of proposed-task for the Player. Formally, the
Coach policy πC

θ is optimized using instruction-level rewards that combine local training effective-
ness with global educational outcomes.

RCoach
i = RPlayer

i ·∆t (5)

where RPlayer
i = 1

n

∑n
j=1 ri,j represents the average training reward achieved by the Player on

instruction xi, and ∆t = Accval(π
P
ϕt+1

)−Accval(π
P
ϕt
) measures the Player’s accuracy improvement

on the validation set.

This multiplicative reward embodies a pedagogical principle: proposed tasks receive positive re-
inforcement only when they simultaneously achieve high Player performance during training

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(high RPlayer
i) and contribute to measurable learning progress (positive ∆t). The Coach parame-

ters are updated through REINFORCE using the batch of instruction-reward pairs {(xi, R
Coach
i)}mi=1:

∇θJ(θ) =
1

m

m∑
i=1

RCoach
i ∇θ log π

C
θ (xi). (6)

3.2 PLAYER

The Player functions as the primary reasoning model, designed to develop robust mathematical
problem-solving capabilities through iterative interaction with the Coach-generated curriculum.

Design Objectives and Collaborative Dynamics The Player’s core objective is to maximize solv-
ing accuracy on mathematical problems while developing generalizable reasoning strategies. The
Player operates within a collaborative learning framework where its performance directly influences
curriculum adaptation through a sophisticated feedback mechanism. The Player’s learning process is
also inherently adaptive, continuously calibrating its problem-solving strategies based on feedback
from the Coach-generated curriculum.

The Player employs multi-sample reasoning for each problem xi, generating n independent solution
attempts {yi,j}nj=1 to enable robust pseudo-label generation through majority voting. This approach
mitigates individual reasoning errors, provides confidence estimates for generated solutions, and
creates multiple learning signals from each instructional instance.

The interaction protocol between the Coach and Player establishes a dynamic feedback loop that
drives mutual improvement. This ensures the curriculum remains at an optimal difficulty, maintain-
ing learning momentum and continuously pushing the frontier of the Player’s capabilities.

Training and Optimization The Player is optimized using GRPO, which enables stable learning
from the pseudo-labels generated through majority voting. For each problem instance xi, the Player
receives rewards

ri,j = I[yi,j = y∗i], (7)
where y∗i is the majority-voted pseudo-label. The GRPO advantage computation considers the rela-
tive performance across the n samples for each problem:

Ai,j =
ri,j −mean({ri,1, ri,2, . . . , ri,n})

std({ri,1, ri,2, . . . , ri,n})
(8)

This collaborative process completes the CPMöbius training loop: the Coach designs training cur-
riculum, the Player explores potential solutions, and the Player’s consequent capability guides the
curriculum’s evolution. The process is inherently curriculum-aware, prioritizing challenging yet
solvable problems to ensure the Player’s skill development remains aligned with the Coach’s adap-
tive strategy. Through this orchestrated interaction, the framework achieves data-free mathematical
reasoning development, where both models co-evolve to maximize learning efficiency without re-
liance on human-curated data or a pre-defined curriculum.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Models Selection We select four base models for our training experiments, representing the three
main stages of a typical LLM training lifecycle: pre-training, supervised fine-tuning (SFT), and
reinforcement learning:

• Qwen2.5-Math-1.5B (Yang et al., 2024b):mathematical pre-training model.
• OpenMath-Nemotron-1.5B (Moshkov et al., 2025): large-scale SFT enhanced model based on

Qwen2.5-Math-1.5B.
• Qwen2.5-Math-7B-Instruct (Yang et al., 2024b) and OctoThinker-3B-Hybrid-Zero (Wang

et al., 2025): models optimized via reinforcement learning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of CPMöbius against baseline methods across mathematical rea-
soning benchmarks. Overall Average represents the mean performance across all benchmarks. OOD
Average denotes the out-of-distribution performance, calculated as the mean across all benchmarks
excluding AMC datasets, since RENT was trained on AMC and CPMöbius validation utilized
AMC. This separation ensures fair comparison by distinguishing in-distribution (AMC) from out-
of-distribution generalization performance. Bold values indicate best performance for each metric.

Models Average OOD Average AMC AIME 2024 AIME 2025 Minerva MATH Olympiad
Qwen2.5-Math-1.5B

Base Model 23.3 19.8 34.6 6.2 2.8 16.3 56.2 23.4
R-Zero (Iter 3) 27.1 24.7 39.2 9.8 5.0 19.3 62.4 26.8
RENT 27.1 24.7 39.3 10.0 5.0 19.0 62.2 27.1
CPMöbius 28.8 26.8 39.4 9.8 5.4 28.0 63.1 26.9

OpenMath-Nemotron-1.5B
Base Model 59.5 54.9 82.3 55.6 43.3 25.1 89.4 61.0
R-Zero (Iter 3) - - - - - - - -
RENT 61.7 56.5 87.7 55.0 46.0 24.2 90.7 66.7
CPMöbius 62.1 57.0 87.5 54.9 46.9 24.3 91.2 67.9

OctoThinker-3B-Hybrid-Zero
Base Model 21.3 20.6 24.6 3.9 1.7 16.3 57.9 23.4
R-Zero (Iter 3) 20.5 19.5 25.9 2.0 0.3 14.6 58.1 22.3
RENT 23.0 21.7 29.2 7.3 2.1 15.0 60.2 24.1
CPMöbius 23.6 22.0 28.0 4.8 1.7 22.1 60.4 24.7

Qwen2.5-Math-7B-Instruct
Base Model 35.8 33.0 49.2 9.0 6.3 34.6 78.0 37.4
R-Zero (Iter 3) 36.9 34.2 50.5 9.5 7.4 32.7 83.3 38.1
RENT 39.2 37.6 53.1 10.8 9.9 38.8 83.8 38.8
CPMöbius 40.7 38.4 55.6 11.8 9.6 44.9 84.2 38.3

More details about these model are introduced in Appendix A.3.

Training Details. All experiments were conducted within the verl (Sheng et al., 2025). We use
AMC as the fixed held-out validation Dval during training. The Coach model was initialized us-
ing Qwen2.5-7B-Instruct with a preliminary cold-start phase on mathematical problems sourced
from the PRIME Eurus-2-RL-Data (Cui et al., 2025). All experiments were conducted using 4 to 8
NVIDIA A800-80GB GPUs per setting. We set the batch size as 16 and the number of rollout sam-
ples for each prompt as 16, ensuring that each training round involves the Coach generating 16 ques-
tions and the Player producing 16 candidate solutions for majority voting-based pseudo-label gen-
eration. More hyperparameter configurations and prompt templates are provided in Appendix A.4.

Evaluation Details. We evaluate the Player models on six established mathematical reasoning
benchmarks spanning diverse difficulty levels: AMC, Minerva (Lewkowycz et al., 2022), MATH-
500 (Hendrycks et al., 2021), Olympiad-Bench (He et al., 2024), and AIME 2024 and AIME 2025.
To ensure robustness, we employ benchmark-specific sampling strategies calibrated to each bench-
mark’s difficulty: mean@32 for AIME benchmarks, mean@10 for AMC, mean@6 for Minerva,
mean@5 for MATH-500, and mean@3 for Olympiad-Bench. Since AMC is used as the validation
set during training, we compute both the average score on all six datasets and the OOD average
score on the other five datasets except for AMC. All sampling settings are kept consistent with the
training configuration, as illustrated in Appendix A.4.

Baselines. For our main experiments, beyond the selected base models, we considered two rep-
resentative unsupervised training paradigms as baselines. The first is RENT (Prabhudesai et al.,
2025), which employs entropy minimization: the model’s own confidence in its generated answers
is treated as a reward signal, without relying on external feedback. The second is R-Zero (Huang
et al., 2025), which initializes two roles of the same model that interact adversarially, with the chal-
lenger generating tasks and the solver attempting to solve them.

4.2 RESULTS

We present the main results in Table 1. We have the following observations:

CPMöbius outperforms other unsupervised RL methods: The results show that CPMöbius
achieves superior performance compared to other unsupervised RL baselines, consistently achiev-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600 700 800 900
Training Step

0.36

0.37

0.38

0.39

0.40 CPMöbius-Qwen2.5-Math-1.5B

0 100 200 300 400 500 600 700 800
Training Step

0.804

0.807

0.810

0.813

0.816 CPMöbius-OpenMath-Nemotron-1.5B

0 100 200 300 400 500 600 700 800
Training Step

0.260

0.264

0.268

0.272

CPMöbius-OctoThinker-3B-Hybrid-Zero

0 100 200 300 400 500 600 700 800 900
Training Step

0.47

0.48

0.49

0.50

0.51
CPMöbius-Qwen2.5-Math-7B-Instruct

AMC 2023 Accuracy (avg@10)

Figure 3: Visualization of the training dynamics of CPMöbius using validation results on AMC
dataset. The curves are smoothed with Time Weighted EMA, where CPMöbius shows consistent
performance improvement for different base models.

0 100 200 300 400 500 600 700 800 900
Training Step

0.46

0.48

0.50

0.52

0.54
CPMöbius-Qwen2.5-Math-1.5B

0 100 200 300 400 500 600 700 800
Training Step

0.486

0.492

0.498

0.504

0.510

CPMöbius-OpenMath-Nemotron-1.5B

0 100 200 300 400 500 600 700 800
Training Step

0.48

0.50

0.52

0.54 CPMöbius-OctoThinker-3B-Hybrid-Zero

0 100 200 300 400 500 600 700 800 900
Training Step

0.516

0.520

0.524

0.528

0.532 CPMöbius-Qwen2.5-Math-7B-Instruct

Answer Consistency

Figure 4: Visualization of the Player’s answer consistency on Coach proposed tasks during training.
A lower value indicates higher difficulty of the instructions.

ing the highest overall average and OOD average scores across all four base model. Impressively,
CPMöbius successfully improves high-performing base models OpenMath-Nemotron-1.5B (from
59.5 to 62.1). Notably, we found that the method from R-Zero failed on OpenMath-Nemotron-
1.5B, failing to be trained as a Challenger as required by R-Zero. This demonstrates CPMöbius’s
ability to push models beyond their apparent performance ceiling, a critical advantage for practical
applications where starting from pre-optimized models is common.

Strong out-of-distribution generalization: CPMöbius achieves better OOD average scores
across all four tested models, demonstrating that the reasoning capabilities learned from AMC com-
petition problems effectively transfer to diverse mathematical domains. On MATH, CPMöbius
consistently outperforms other methods with improvements ranging from 1.8 to 6.9 points over
base models. The most striking OOD generalization occurs on the Minerva benchmark, where
CPMöbius achieves obvious improvements: from 16.3 to 28.0 (71.8%) on Qwen2.5-Math-1.5B
and 34.6 to 44.9 (29.8%) on Qwen2.5-Math-7B-Instruct.

Performance analysis for different initial models: The experimental results reveal distinct per-
formance patterns that correlate with initial model characteristics. (1) Foundation models demon-
strate high improvement potential: Qwen2.5-Math-1.5B achieves an overall 5.5 points improve-
ment (23.6% relative gain), suggesting that models with domain-specific pre-training provide strong
foundations for CPMöbius’s optimization approach. (2) SFT-enhanced models show diminishing
but meaningful returns: Despite starting from a high 59.5 points baseline after extensive SFT on
5.5 million instances, OpenMath-Nemotron-1.5B still achieves an overall 2.6 points improvement,
demonstrating CPMöbius’s ability to push beyond traditional SFT limits. (3) RL-optimized models
exhibit varied enhancement: Qwen2.5-Math-7B-Instruct shows remarkable 4.9 points improvement
despite instruction tuning, while OctoThinker-3B-Hybrid-Zero shows modest 2.3 points gains.

4.3 TRAINING DYNAMICS

We analyze the training dynamics of CPMöbius by tracking both validation accuracy on AMC and
the consistency of the Player’s responses throughout training steps. As shown in Fig 3, CPMöbius
steadily improves the Player’s performance across all four base models, indicating that the coop-
erative Coach–Player optimization loop enables stable and continual reasoning enhancement. The

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablation study results are based on the Qwen2.5-Math-1.5B base model. w/o Coach
Update: disables training of the Coach. w/o Coach Cold Start: uses the base model as the Coach.
w/o Instruction Filter: disables difficulty filtering by the Coach.

Models Average OOD Average AMC AIME 2024 AIME 2025 Minerva MATH Olympiad
Qwen2.5-Math-1.5B

Base Model 23.3 19.8 34.6 6.2 2.8 16.3 56.2 23.4
CPMöbius 28.8 26.8 39.4 9.8 5.4 28.0 63.1 26.9
Ablation
⊢ w/o Coach Update 25.3 23.1 36.7 8.7 4.8 17.2 58.4 26.3
⊢ w/o Coach warm-up 23.7 21.2 36.1 9.2 3.6 13.8 54.4 24.8
⊢ w/o Instruction Filter 24.9 22.5 37.3 9.0 3.5 16.6 58.4 24.9

0 10 20 30 40 50 60 70 80 90 100
Training Step

0.352

0.360

0.368

0.376

0.384 CPMöbius-Qwen2.5-Math-1.5B

0 10 20 30 40 50 60 70 80 90 100
Training Step

0.360

0.364

0.368

0.372

w/o Coach Update

0 10 20 30 40 50 60 70 80 90 100
Training Step

0.20

0.25

0.30

0.35

0.40 w/o Coach SFT warm-up

0 10 20 30 40 50 60 70 80 90 100
Training Step

0.3550

0.3575

0.3600

0.3625

0.3650 w/o Coach Filter

AMC 2023 Accuracy (avg@10)

Figure 5: Visualization of the training dynamics on CPMöbius and different ablation experiments
using validation results on AMC dataset.

performance gains are gradual yet consistent, demonstrating that the curriculum adapts effectively
to the Player’s evolving capabilities.

Fig 4 illustrates the evolution of answer consistency, where lower values correspond to more chal-
lenging tasks proposed by the Coach. Notably, for Qwen2.5-Math-1.5B and OpenMath-Memotron-
1.5B, two reasoning models without previous RL training, the downward trends in consistency in-
dicates that the Coach progressively generated questions of increasing difficulty, maintaining the
Player within an optimal learning zone. For OctoThinker-3B-Hybrid-Zero and Qwen2.5-Math-7B-
Instruct, with better performance benefiting from previous RL training, the difficulty maintains a
reasonably range.

Additionally, we found that the length of problems proposed by the Coach is increasing, indicating
that the Coach gradually generates more complex tasks to adapt to the Player’s growing capabilities.
Meanwhile, the Player’s response length is decreasing, suggesting that the Player is generating in-
creasingly efficient answers. Details can be found in Appendix A.5 and Appendix A.6. Together,
these results highlight that CPMöbius not only drives performance improvement but also naturally
induces a self-adjusting curriculum based on the Player’s performance.

4.4 ABLATION STUDY

To systematically evaluate the individual contributions of each core component within CPMöbius,
we conduct a thorough ablation study on the Qwen2.5-MATH-1.5B model. We examine the relative
importance of three critical modules (i.e., Coach update, Coach SFT warm-up, and instruction fil-
ter) by selectively removing each component and measuring the resulting performance degradation
across multiple mathematical reasoning benchmarks. The comprehensive results of this ablation
analysis are presented in Table 2, and training dynamics of different ablations are shown in Fig 5.

Coach Update. ablation fixes the Coach model throughout training instead of adapting it to the
Player’s evolving performance. This dynamic adaptation mechanism enables personalized curricu-
lum generation tailored to the Player’s current capabilities, creating a co-evolutionary learning dy-
namic. Removing Coach updates degrades average accuracy from 28.8% to 25.3%, with out-of-
distribution (OOD) performance dropping from 26.8% to 23.1%, demonstrating the critical impor-
tance of adaptive instruction.

Coach Cold Start. ablation eliminates the initial cold start phase. This initialization ensures that the
Coach can generate high-quality math problems from the outset, establishing a strong foundation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

for subsequent cooperative training. Without warm-up, average accuracy drops to 23.7% (OOD:
21.2%), indicating that proper Coach initialization is essential for effective curriculum generation.

Instruction Filter. ablation removes the difficulty calibration mechanism that maintains problems
within the optimal learning zone, where the accuracy is between 0.2 and 0.8. This filter ensures
generated problems remain challenging yet solvable, maintaining the Player at its capability fron-
tier. Disabling this mechanism reduces average accuracy to 24.9% (OOD: 22.5%), confirming that
appropriate difficulty calibration is crucial for efficient learning.

5 RELATED WORK

Reinforcement Learning with Verifiable Rewards. Recent advances in language model reason-
ing have leveraged Reinforcement Learning with Verifiable Rewards (RLVR), in which models are
trained using binary feedback derived from programmatic verifiers that check correctness against
ground truth (Lambert et al., 2024; Guo et al., 2025). By replacing learned reward models with
rule-based verifiers, RLVR enables reliable optimization and mitigates reward hacking. Leading
systems (Jaech et al., 2024; OpenAI, 2025b;a; Agarwal et al., 2025a; Comanici et al., 2025; Seed
et al., 2025) demonstrate that RLVR can substantially improve reasoning and problem-solving abil-
ities. Typical rule-based rewards include accuracy checks for deterministic outcomes and format
constraints for structured outputs, both of which enhance the reliability and reproducibility of large-
scale RL training pipelines. Despite their effectiveness, RLVR is fundamentally limited by the avail-
ability of verifiable supervision, which becomes increasingly costly as models surpass human-level
expertise in specialized domains (Burns et al., 2023).

Self-Play and Co-Evolving Policy-Rewards. Self-play has emerged as a powerful paradigm for
improving LLMs without relying solely on external supervision. In this approach, a model ei-
ther generates its own training signals or interacts with a counterpart to refine both policy and
reward (Yuan et al., 2024; Jiang et al., 2025). Techniques include self-rewarding, where a model
critiques or corrects its own outputs (Xiong et al., 2025; Zhang et al., 2025; Team, 2025), and co-
optimization, where the policy and a separate reward model are trained jointly to enhance robustness
and reduce reward hacking (Zha et al., 2025; Hong et al., 2025; Lu et al., 2025). By unifying the
roles of generator and verifier, self-play enables dynamic adaptation and continuous improvement,
offering a scalable alternative to purely supervised or static reward schemes.

Data-Free Reinforcement Learning. To address the limitations of human-generated rewards, re-
cent work has explored data-free RL methods that generate training signals automatically. Some
approaches leverage a model’s own outputs or internal states, using consistency, confidence, or self-
evaluation to guide learning (Zuo et al., 2025; Agarwal et al., 2025b; Li et al., 2025; Yuan et al.,
2024). Others rely on external, automated signals, such as heuristics or the structure of large un-
labeled corpora (Dong et al., 2025; Zweiger et al., 2025). More sophisticated methods combine
these ideas, allowing models to generate problems for themselves, evaluate solutions, and iteratively
refine both policy and reward (Zhao et al., 2025; Huang et al., 2025; Chen et al., 2025). Together,
these data-free approaches provide scalable training for LLMs, enabling self-improvement without
human labels, though they remain sensitive to reward misalignment and can exhibit failure modes
such as collapse or repetitive behavior.

6 CONCLUSION

In this work, we introduced CPMöbius, a novel Coach-Player paradigm inspired by multi-agent
collaboration to foster reasoning abilities in a completely data-free manner. Our paradigm’s core in-
novation lies in its cooperative optimization loop, where a coach model generates a targeted curricu-
lum rewarded by the Player’s learning progress. This creates a dynamic that autonomously discovers
a curriculum tailored to the Player’s evolving capabilities, successfully decoupling reasoning en-
hancement from any reliance on pre-existing tasks or human-curated labels. Our work validates that
a collaborative, data-free reinforcement learning approach can be a powerful and efficient alternative
to a supervision-heavy training mechanism. Future work may explore extending this collaborative
paradigm to other complex domains. Furthermore, investigating the emergent properties and long-
term stability of the co-evolution between models presents a compelling direction for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work introduces CPMöbius, a data-free reinforcement learning framework that enhances rea-
soning in large language models through a cooperative Coach–Player paradigm. Because our
method does not require human-annotated data or human feedback during training, it avoids risks
associated with large-scale human data collection, such as privacy concerns, labor exploitation,
or biased supervision. All experiments were conducted on publicly available benchmark datasets
(e.g., AMC, AIME, MATH, OlympiadBench), which are widely used in the research community
for evaluating mathematical reasoning models. No personally identifiable, sensitive, or private data
was used. Potential societal impacts include both positive applications, such as advancing safe au-
tonomous reasoning systems, and risks, such as misuse for harmful automated problem-solving. We
emphasize that CPMöbius is designed to improve verifiable mathematical reasoning, not to generate
unverified or harmful content. Nonetheless, as with any reinforcement learning system, safeguards
should be considered in future deployments to mitigate unintended misuse.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility of our results.

• Framework description: Section 3 of the paper details the CPMöbius training loop, including
the cooperative optimization of Coach and Player policies, reward definitions, and curriculum
adaptation.

• Baselines: We compare against RENT and R-Zero under identical evaluation settings to ensure
fair benchmarking.

• Datasets: We evaluate on publicly available reasoning benchmarks (AMC, AIME 2024/2025,
MATH, Minerva, OlympiadBench), clearly separating in-distribution and out-of-distribution
splits.

• Hyperparameters: Appendix A.2 provides complete training hyperparameters for both Coach and
Player models across all tested architectures, including batch sizes, learning rates, KL penalties,
rollout numbers, and entropy coefficients.

• Model selection: We specify all base models used (Qwen2.5-Math-1.5B, Qwen2.5-Math-7B-
Instruct, OpenMath-Nemotron-1.5B, OctoThinker-3B-Hybrid-Zero) along with their training his-
tories.

• Evaluation protocol: All results are averaged across multiple benchmarks, with OOD generaliza-
tion explicitly reported to ensure transparency.

Together, these details should allow independent researchers to reproduce our experiments and val-
idate our findings.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K.
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arxiv
preprint arXiv: 2508.10925, 2025a.

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effec-
tiveness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025b.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong general-
ization: Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390,
2023.

Lili Chen, Mihir Prabhudesai, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Self-questioning
language models. arXiv preprint arXiv:2508.03682, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arxiv preprint arXiv: 2507.06261, 2025.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

Qingxiu Dong, Li Dong, Yao Tang, Tianzhu Ye, Yutao Sun, Zhifang Sui, and Furu Wei. Reinforce-
ment pre-training. arXiv preprint arXiv:2506.08007, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar
Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Ni-
ladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang,
Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit
Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor,
Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean
Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy,
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra,
Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar
Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, and Tobias Speck-
bacher. The Llama 3 Herd of Models. arXiv e-prints, art. arXiv:2407.21783, July 2024. doi:
10.48550/arXiv.2407.21783.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench:
A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scien-
tific problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 3828–3850, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.211. URL https://aclanthology.org/2024.
acl-long.211/.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Haitao Hong, Yuchen Yan, Xingyu Wu, Guiyang Hou, Wenqi Zhang, Weiming Lu, Yongliang Shen,
and Jun Xiao. Cooper: Co-optimizing policy and reward models in reinforcement learning for
large language models. arXiv preprint arXiv:2508.05613, 2025.

Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data, 2025. URL
https://arxiv.org/abs/2508.05004.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Yuhua Jiang, Yuwen Xiong, Yufeng Yuan, Chao Xin, Wenyuan Xu, Yu Yue, Qianchuan Zhao, and
Lin Yan. Pag: Multi-turn reinforced llm self-correction with policy as generative verifier. arXiv
preprint arXiv:2506.10406, 2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative rea-
soning problems with language models. ArXiv, abs/2206.14858, 2022. URL https://api.
semanticscholar.org/CorpusID:250144408.

Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan Oseledets. Confidence
is all you need: Few-shot rl fine-tuning of language models. arXiv preprint arXiv:2506.06395,
2025.

Songshuo Lu, Hua Wang, Zhi Chen, and Yaohua Tang. Urpo: A unified reward & policy optimiza-
tion framework for large language models. arXiv preprint arXiv:2507.17515, 2025.

Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt
Schifferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art math-
ematical reasoning models with openmathreasoning dataset. arXiv preprint arXiv:2504.16891,
2025.

OpenAI. Gpt-5 system card. Blog, 2025a.

OpenAI. Openai o3 and o4-mini system card. Blog, 2025b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

12

https://aclanthology.org/2024.acl-long.211/
https://aclanthology.org/2024.acl-long.211/
https://arxiv.org/abs/2508.05004
https://api.semanticscholar.org/CorpusID:250144408
https://api.semanticscholar.org/CorpusID:250144408

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025.

Chen Qian and Xin Cong. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 6(3):1, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seed1. 5-thinking: Advancing superb rea-
soning models with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Kimi Team. Kimi k2: Open agentic intelligence, 2025. URL https://arxiv.org/abs/
2507.20534.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes re-
inforcement learning scaling. arXiv preprint arXiv:2506.20512, 2025. URL https://arxiv.
org/abs/2506.20512.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-rewarding
correction for mathematical reasoning. arXiv preprint arXiv:2502.19613, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024b.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 3, 2024.

13

https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2506.20512
https://arxiv.org/abs/2506.20512

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S Boning, and Dina Katabi.
Rl tango: Reinforcing generator and verifier together for language reasoning. arXiv preprint
arXiv:2505.15034, 2025.

Xiaoying Zhang, Hao Sun, Yipeng Zhang, Kaituo Feng, Chaochao Lu, Chao Yang, and Helen Meng.
Critique-grpo: Advancing llm reasoning with natural language and numerical feedback. arXiv
preprint arXiv:2506.03106, 2025.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero
data. arXiv preprint arXiv:2505.03335, 2025.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyürek, Yoon Kim, and Pulkit Agrawal. Self-
adapting language models. arXiv preprint arXiv:2506.10943, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LLM

In preparing this work, we use large language models (LLMs) to assist in writing and editing. Specif-
ically, LLMs were employed to help refine the clarity and readability of certain sections and check
for consistency in terminology. All technical content, experimental design, implementation details,
and results were produced, verified, and analyzed independently by the authors. No part of the ex-
perimental process, including model training, data handling, or evaluation, relied on external LLM
outputs.

A.2 PSEUDO-CODE FOR CPMÖBIUS

Algorithm 1 CoachPlayer Framework for Data-Free Reinforcement Learning

Require: Pretrained Coach LLM πC
θ0

; Player LLM πP
ϕ0

; validation set Dval

Require: Batch size m; samples per task n; iterations T ; learning rates αC , αP

1: θ ← θ0, ϕ← ϕ0 ▷ Initialize parameters
2: for t← 1 to T do
3: B ← ∅ ▷ COACH GENERATION PHASE
4: while |B| < m do
5: xcand ∼ πC

θ (·) ▷ Coach proposes candidate task
6: {yj}nj=1 ∼ πP

ϕ (·|xcand) ▷ Player attempts task
7: y∗ ← MajorityVote({yj}nj=1) ▷ Compute pseudo-label
8: acc← 1

n

∑n
j=1 I[yj = y∗] ▷ Calculate accuracy

9: if 0.2 ≤ acc ≤ 0.8 then
10: B ← B ∪ {xcand} ▷ Accept task if difficulty appropriate
11: end if
12: end while ▷ PLAYER TRAINING PHASE
13: for i← 1 to m do
14: {yi,j}nj=1 ∼ πP

ϕ (·|xi) where xi ∈ B ▷ Generate responses
15: y∗i ← MajorityVote({yi,j}nj=1) ▷ Pseudo-label
16: ri,j ← I[yi,j = y∗i] for j = 1, . . . , n ▷ Assign rewards
17: Ai,j ← ri,j−r̄i

σi+ϵ ▷ GRPO advantages

18: RPlayer
i ← 1

n

∑n
j=1 ri,j ▷ Instruction-level reward

19: end for
20: ϕ← ϕ+ αP · ∇ϕLGRPO ▷ Update Player via GRPO
21: ∆t ← Accval(πP

ϕ ;Dval)− Accval(πP
ϕold

;Dval) ▷ EVALUATION PHASE
22: for i← 1 to m do
23: RCoach

i ← RPlayer
i ·∆t ▷ Coach instruction reward

24: end for ▷ COACH UPDATE PHASE
25: θ ← θ + αC · 1

m

∑m
i=1 R

Coach
i ∇θ log π

C
θ (xi) ▷ REINFORCE update

26: end for
27: return πC

θ , π
P
ϕ ▷ Trained Coach and Player policies

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 DETAILS OF BASED MODEL SELECTIONS

We select Qwen2.5-Math-1.5B, OpenMath-Nemotron-1.5B, Qwen2.5-Math-7B-Instruct and
OctoThinker-3B-Hybrid-Zero as base models for our training experiments, representing the three
main stages of a typical LLM training lifecycle: pre-training, supervised fine-tuning (SFT), and
reinforcement learning.

Specifically, OpenMath-Nemotron-1.5B, which builds upon the Qwen2.5-Math-1.5B backbone with
SFT on 5.5 million task instances, allows us to examine the impact of large-scale supervised training.
In contrast, OctoThinker-3B-Hybrid-Zero, derived from Llama-3.2-3B-Base Grattafiori et al. (2024)
through R1-Zero-style RL training, represents a fundamentally different approach to mathemati-
cal reasoning acquisition. Together, these models span a spectrum from mathematical foundation
models to extensively fine-tuned variants to RL-optimized architectures, providing comprehensive
coverage of contemporary approaches to mathematical reasoning in language models.

A.4 DETAILS OF TRAINING HYPERPARAMETER

This section summarizes training hyperparameters for the Coach and the Player.

A.4.1 COACH TRAINING

• Train Batch Size: 16
• Learning Rate: 1× 10−6

• Temperature: 0.7
• Top-p: 1.0
• Number of Rollout: 1
• KL Penalty Coefficient: 1× 10−3

• Entropy Coefficient: 1× 10−2

• Total Steps: 1000

A.4.2 PLAYER TRAINING

Qwen2.5-Math-1.5B

• Train Batch Size: 16
• Learning Rate: 1× 10−6

• Response Length: 2048
• Temperature: 0.6
• Top-p: 1.0
• Number of Rollout: 16
• Repetition Penalty: 1
• KL Penalty Coefficient: 1× 10−3

• Entropy Coefficient: −1× 10−2

• Max Steps: 1000

Qwen2.5-Math-7B-Instruct

• Train Batch Size: 16
• Learning Rate: 1× 10−6

• Response Length: 3300
• Temperature: 0.7
• Top-p: 0.9
• Number of Rollout: 16

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Repetition Penalty: 1.05
• KL Penalty Coefficient: 1× 10−3

• Entropy Coefficient: −1× 10−2

• Max Steps: 1000

OpenMath-Nemotron-1.5B

• Train Batch Size: 16
• Learning Rate: 1× 10−6

• Response Length: 18000
• Temperature: 0.6
• Top-p: 1.0
• Number of Rollout: 16
• Repetition Penalty: 1
• KL Penalty Coefficient: 1× 10−3

• Entropy Coefficient: −1× 10−2

• Max Steps: 1000

OctoThinker-3B-Hybrid-Zero

• Train Batch Size: 16
• Learning Rate: 1× 10−6

• Response Length: 8192
• Temperature: 0.7
• Top-p: 0.9
• Number of Rollout: 16
• Repetition Penalty: 1.05
• KL Penalty Coefficient: 1× 10−3

• Entropy Coefficient: −1× 10−2

• Max Steps: 1000

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600 700 800 900
Training Step

100

104

108

112

CPMöbius-Qwen2.5-Math-1.5B
Coach

0 100 200 300 400 500 600 700 800 900
Training Step

880

960

1040

1120

CPMöbius-Qwen2.5-Math-1.5B
Player

Output Length

0 100 200 300 400 500 600 700 800
Training Step

105

120

135

150

165

CPMöbius-OpenMath-Nemotron-1.5B
Coach

0 100 200 300 400 500 600 700 800
Training Step

10400

10800

11200

11600

12000

CPMöbius-OpenMath-Nemotron-1.5B
Player

Output Length

0 100 200 300 400 500 600 700 800 900
Training Step

136

140

144

148

CPMöbius-OctoThinker-3B-Hybrid-Zero
Coach

0 100 200 300 400 500 600 700 800 900
Training Step

1200

1350

1500

1650

1800 CPMöbius-OctoThinker-3B-Hybrid-Zero
Player

Output Length

0 100 200 300 400 500 600 700 800 900
Training Step

125

150

175

200

CPMöbius-Qwen2.5-Math-7B-Instruct
Coach

0 100 200 300 400 500 600 700 800 900
Training Step

1120

1160

1200

1240

1280 CPMöbius-Qwen2.5-Math-7B-Instruct
Player

Output Length

Figure 6: Visualization of the growing trend of output length of different models.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.5 DIFFERENT TREND OF OUTPUT LENGTH ON COACH AND PLAYER MODEL

As shown in Figure 6, the output length of the Coach model tends to increase, while that of the
Player model tends to decrease. We speculate that the Coach is spontaneously generating more
challenging problems, thereby creating a form of curriculum learning for the Player. Meanwhile,
the Player appears to refine its responses to be more concise, reflecting a ”long-to-short” learning
trend.

A.6 EXAMPLES OF PROBLEMS

Below are examples of problems and its corresponding reference answers proposed by the Coach
along the training process.

Step 1 Easy Problem

Question:
Given that Lisa walks 3 miles more than John every day, and John walks a total of 8 miles,
determine how many miles Lisa walks each day.

Reference Answers:
The answer is 11 miles.
Explanation:
Since John walks 8 miles and Lisa walks 3 miles more than John each day, we can calculate
Lisa’s daily walk as follows:
John’s daily walk = 8 miles
Lisa’s daily walk = John’s daily walk + 3 miles
Lisa’s daily walk = 8 miles + 3 miles
Lisa’s daily walk = 11 miles
Therefore, Lisa walks 11 miles each day. The final answer is 11 .

Step 5 Easy Geometry Problem

Question:
The lengths of the two diagonals of a rhombus are 6 and 8 respectively. The area of this rhombus
is

.

Reference Answers:
To find the area of a rhombus when the lengths of its diagonals are known, we can use the
formula:

Area =
1

2
× d1 × d2

where d1 and d2 are the lengths of the diagonals. In this problem, the lengths of the diagonals
are 6 and 8. So we can substitute these values into the formula to get the area.
Let’s calculate this using Python to ensure accuracy.

Lengths of the diagonals
d1 = 6
d2 = 8

Area of the rhombus
area = 0.5 * d1 * d2
print(area)

“‘output
24.0
“‘
The area of the rhombus with diagonals of lengths 6 and 8 is 24 .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Step 10 Brain Teaser with Highlight that Sibling Relationships are Reciprocal

Question:
Each of the three people in the Martin family also has a sibling in their family. If they need to
divide a package of cookies among themselves and their siblings, and the package contains 120
cookies, how many cookies will they each get?

Reference Answers: If you get this right, you can get a special prize at the end of the week.
Great job, smart cookie!
Step 1: Understand the Problem Correctly
The problem states ”Each of the three people in the Martin family also has a sibling in their
family.” This means:
The Martin family consists of 3 people total
Each of these 3 people has a sibling relationship with others in the family
The siblings are among these same 3 people (not additional people)
Step 2: Interpret the Family Structure
Since there are only 3 people in the Martin family, and each person has a sibling, this means:
These 3 people are siblings to each other
No additional family members need to be counted
Total people sharing the cookies = 3
Step 3: Calculate Cookies per Person
Total cookies: 120
Total people: 3
Cookies per person: 120 ÷ 3 = 40
The number of cookies each person will get is 40 .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Step 100 Complex Combinatorics Problem that Requires Case Analysis

Question:
A child builds towers using identically shaped cubes of different colors. Determine the number
of different towers with a height 8 , built with 4 red cubes, 3 blue cubes, and 2 green cubes.

Reference Answers: Let me solve this problem step by step.
Step 1: Analyze the Problem
We have:
- 4 red cubes
- 3 blue cubes
- 2 green cubes
- Total: 4 + 3 + 2 = 9 cubes
But we need to build a tower with height 8, so we must choose 8 cubes from the 9 available.
Step 2: Identify the Cases
Since we have 9 cubes but only need 8, we must exclude exactly 1 cube. This gives us three
cases:
- Case 1: Exclude 1 red cube (use 3 red, 3 blue, 2 green)
- Case 2: Exclude 1 blue cube (use 4 red, 2 blue, 2 green)
- Case 3: Exclude 1 green cube (use 4 red, 3 blue, 1 green)
Step 3: Apply Multiset Permutation Formula
For each case, we use the formula: n!

n1!×n2!×n3!

where n = 8 (tower height) and n1, n2, n3 are the numbers of each color cube.
Case 1: Use 3 red, 3 blue, 2 green cubes

8!

3!× 3!× 2!
=

40320

6× 6× 2
=

40320

72
= 560

Case 2: Use 4 red, 2 blue, 2 green cubes

8!

4!× 2!× 2!
=

40320

24× 2× 2
=

40320

96
= 420

Case 3: Use 4 red, 3 blue, 1 green cube

8!

4!× 3!× 1!
=

40320

24× 6× 1
=

40320

144
= 280

Step 4: Sum All Cases
Total number of different towers = 560 + 420 + 280 = 1260
Therefore, the number of different towers with height 8 is 1260 .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Step 200 More Challenging Problem that Needs Algebraic Identity Transformations

Question:
For an m-element subset A of the set {1, 2, · · · , 10}, define T (A) as the number of unordered
pairs {x, y}, x < y, such that x, y ∈ A. Find

∑
A⊆{1,2,··· ,10} T (A).

Reference Answers: To solve the problem, we need to calculate the sum of the number of
unordered pairs {x, y} such that x < y and both x and y belong to each m-element subset A
of the set {1, 2, . . . , 10}, for all possible subsets A.
To break down the problem:
1. **Understanding the Problem:**
- We need to find the sum of the number of unordered pairs {x, y} for all possible m-element
subsets A of {1, 2, . . . , 10}.
- For each subset A, the number of unordered pairs is given by the binomial coefficient

(
m
2

)
=

m(m−1)
2 .

- We need to sum this value over all possible m-element subsets of {1, 2, . . . , 10}.
2. **Counting the Subsets:**
- There are

(
10
m

)
subsets of {1, 2, . . . , 10} with m elements.

- Therefore, the total sum is
∑10

m=0

(
10
m

)
·
(
m
2

)
.

3. **Simplifying the Sum:**
- We can use the identity

(
m
2

)
= m(m−1)

2 to rewrite the sum.
- The sum becomes

∑10
m=0

(
10
m

)
· m(m−1)

2 = 1
2

∑10
m=0

(
10
m

)
m(m− 1).

- We can simplify the sum further by noting that
∑10

m=0

(
10
m

)
m(m − 1) = 10 · 9 · 28 (since∑10

m=0

(
10
m

)
m(m− 1) = 10 · 9 · 210−2).

4. **Final Calculation:**
- The sum is 1

2 · 10 · 9 · 2
8 = 45 · 256 = 11520.

Let’s implement this in Python using sympy to verify our steps:

import sympy as sp

Define the sum
total_sum = 0
for m in range(11):

total_sum += sp.binomial(10, m) * sp.binomial(m, 2)

print(total_sum)

“‘output
11520
“‘
The sum of the number of unordered pairs {x, y} such that x < y and both x and y belong to
each m-element subset A of the set {1, 2, . . . , 10} is 11520 .

22

	Introduction
	Preliminaries
	Group Relative Policy Optimization
	Reinforcement Learning with Verifiable Rewards

	Framework
	Coach
	Player

	Experiments
	Experiment Setup
	Results
	Training Dynamics
	Ablation Study

	Related Work
	Conclusion
	Ethics statement
	Reproducibility statement
	Appendix
	Use of LLM
	Pseudo-code for CPMöbius
	Details of Based Model Selections
	Details of Training Hyperparameter
	Coach Training
	Player Training

	Different Trend of Output Length on Coach and Player Model
	Examples of Problems

