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ABSTRACT

Large Language Models (LLMs) have demonstrated strong potential in complex
reasoning, yet their progress remains fundamentally constrained by reliance on
massive high-quality human-curated tasks and labels, either through supervised
fine-tuning (SFT) or reinforcement learning (RL) on reasoning-specific data. This
dependence renders supervision-heavy training paradigms increasingly unsustain-
able, with signs of diminishing scalability already evident in practice. To over-
come this limitation, we introduce CPMöbius, a collaborative Coach–Player
paradigm for data-free reinforcement learning of reasoning models. Unlike tradi-
tional adversarial self-play frameworks, CPMöbius inspired by multi-agent col-
laboration treats the Coach and Player as independent but cooperative roles. The
Coach proposes instructions targeted at the Player’s capability and receives re-
wards based on changes in the Player’s performance, while the Player is rewarded
for solving the increasingly instructive tasks generated by the Coach. This coop-
erative optimization loop is designed to directly enhance the Player’s mathemati-
cal reasoning ability. Remarkably, CPMöbius achieves substantial improvement
without relying on any external training data, outperforming existing unsupervised
approaches. For example, on Qwen2.5-Math-7B-Instruct, our method improves
accuracy by overall average +4.9 and out-of-distribution average +5.4, which ex-
ceed RENT for +1.5 on overall accuracy and R-zero for +4.2 on OOD accuracy.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2025a; Yang et al., 2024a; Touvron et al., 2023) have
demonstrated remarkable capabilities in complex reasoning tasks, from mathematical reasoning,
problem solving (Wei et al., 2022) to code generation (Chen et al., 2021). The dominant paradigm
for enhancing these abilities involves post-training on domain-specific data, typically through
supervised fine-tuning (SFT) (Ouyang et al., 2022; Tunstall et al., 2023) followed by reinforcement
learning (RL) (Christiano et al., 2017; Schulman et al., 2017). While effective, these approaches are
fundamentally constrained by its reliance on massive, high-quality, human-curated datasets. The
scarcity of such expert-produced examples means this highly supervision-dependent paradigm is
showing signs of strain, raising concerns about its long-term scalability.

To break free from this dependency, a promising frontier has emerged in data-free learning, where
models improve through autonomous interaction. Self-play, a concept inspired by game-playing
AI (Silver et al., 2017), has been adapted for LLM reasoning to achieve self-evolving. Recent self-
play frameworks in RL (Huang et al., 2025; Zhao et al., 2025) have shown that a model can generate
its own training data and learn from solving them, entirely removing the need for external datasets.
However, these pioneering methods are often built on an adversarial or competitive dynamic, where
the model in one role generates challenges to stump another. Such an adversarial setup is prone to
instability, collapsing into nonsensical or unlearnable proposed tasks for RL training.

In this work, we propose CPMöbius, a Coach–Player paradigm for data-free reinforcement learning,
inspired by multi-agent collaboration (Chen et al., 2024; Qian & Cong, 2023). Instead of casting the
Player model as competitors, the Coach is responsible for adapting the task difficulty to the Player’s
capabilities. CPMöbius treat the Coach and Player model as independent but cooperative partners
in a symbiotic learning process. Shown in Fig. 1, the Coach and Player model are optimized through
a cooperative loop:
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• The Coach model acts as a curriculum designer, proposing maximally instructive tasks targeted
at the Player’s current capability.

• The Player model focuses on solving these tasks to enhance its reasoning skills.
• The reward signals for both Coach and Player are designed to foster cooperation. The Coach

is rewarded based on the changes in the Player’s validation accuracy, directly incentivizing
it to generate instructions that lead to tangible learning progress. Simultaneously, the Player is
rewarded via a standard verifiable outcome for correctly solving tasks provided by the Coach.

Figure 1: CPMöbius starts with the coach
proposing tasks of suitable difficulty. The
player learns by solving these tasks, then re-
views on a predefined validation set. Finally,
the coach adjusts the next training plan based
on the player’s performance.

This collaborative dynamic allows CPMöbius to
generate a highly targeted and adaptive curriculum
from scratch, tailored specifically to the Player’s
evolving needs throughout the training process. Our
experiments show that this data-free, cooperative
approach is not only viable but remarkably effec-
tive. Without relying on any external training data,
CPMöbius achieves substantial improvements and
outperforms existing unsupervised methods. For
instance, on the Qwen2.5-Math-7B-Instruct, our
method improves accuracy by overall average +4.9
and out-of-distribution average +5.4, a significant
leap compared to the +1.5 from RENT, a method
of reinforcement learning via entropy minimization
(Prabhudesai et al., 2025) and +4.2 from R-zero.
The details of these baseline’s method are provided
in Section 4.1 These results demonstrate the effec-
tiveness and scalability of collaborative paradigm as a new pathway for advancing mathematical
reasoning in LLMs, decoupling their progress from the constraints of human supervision.

2 PRELIMINARIES

In this section, we briefly review two key RL methods for LLM that are relevant to our framework.

2.1 GROUP RELATIVE POLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO) (Shao et al., 2024), proposed by DeepSeek, is a
critic-free reinforcement learning algorithm. Given a query q, GRPO samples G candidate out-
puts {o1, . . . , oG} from the old policy πθold , and defines the normalized advantage function using the
corresponding rewards {r1, . . . , rG}:

Ai =
ri −mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
(1)

The policy πθ is then updated by maximizing the following objective:

JGRPO(θ) = Eq,{oi}

[
1

G

G∑
i=1

min
(
ri(θ)Ai, clip(ri(θ), 1− ϵ, 1 + ϵ)Ai

)]
− βDKL(πθ ∥πref) (2)

where ϵ and β are hyperparameters, ri(θ) = πθ(oi|q)
πθold (oi|q)

is the importance sampling ratio, and
DKL(πθ ∥πref) is the KL divergence regularization with respect to a reference model.

2.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Reinforcement Learning with Verifiable Rewards (RLVR) is a framework that trains models using
verifiable reward functions without relying on human feedback (Lambert et al., 2024). In RLVR, the
reward function is typically defined by deterministic rules that automatically assess the correctness
of model outputs, providing binary signals (1 for correct, 0 for incorrect):

r(y) = verify(y), (3)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where verify(·) is a verifiable function determining whether the output y is correct.

Depending on the verification source, rewards can be obtained in different ways. When ground truth
labels y⋆ are available, the accuracy is determined by direct comparison r(y) = 1[y = y⋆], as in
Group Relative Policy Optimization (GRPO), where rules-based rewards check both the accuracy of
the solutions and the required output format. In the absence of labels, verification can be performed
in an unsupervised manner using self-consistency (Wang et al., 2023; Zuo et al., 2025), where the
majority-voted answer from a set of candidate outputs is treated as the correct answer and rewards
are assigned accordingly. This formulation highlights that verifiable rewards can be constructed
either with or without supervision, enabling reinforcement learning to be applied even in data-scarce
or fully unsupervised reasoning scenarios.

3 FRAMEWORK

In this section, we present a comprehensive overview of CPMöbius, a collaborative Coach–Player
paradigm for data-free reinforcement learning. CPMöbius introduces a symbiotic learning loop
between two independent language models: the Coach, a curriculum designer, and the Player, a
reasoning solver.

The core objective is to maximize learning progress without human-curated data. To achieve this,
the Coach generates mathematical tasks tailored to the Player’s current capability, while the Player
attempts to solve them. The key innovation lies in the cooperative reward mechanism: the Coach is
optimized not to stump the Player, but to maximize the Player’s capability based on Coach-proposed
tasks. This ensures that the curriculum remains instructive, learnable, and adaptive.

We illustrate the main framework in Fig. 2, and the pseudo-code of algorithm can be found in Ap-
pendix A.2. Formally, let πC

θ denote the Coach policy and πP
ϕ the Player policy. At each round t:

1. Coach designs training plan. The Coach generates a batch of m task instruction {xi}mi=1 ∼
πC
θt
(·), where πC

θt
is the current Coach policy.

2. Player trains. For every xi the current Player produces n independent answers {yi,j}nj=1 ∼
πP
ϕt
(·|xi). Majority voting over the n answers yields a pseudo-label y∗i . Then each answer re-

ceives a verifiable reward ri,j = I[yi,j = y∗i ] as well as a GRPO advantage Ai,j computed
w.r.t. the n samples for question i. The instruction-level train reward is obtained by averaging:
RPlayer

i = 1
n

∑n
j=1 ri,j . The set {(xi, {yi,j}nj=1)}mi=1 constitutes one GRPO batch, and Player

parameters ϕt are updated using GRPO method while keeping KL within a trust-region.

3. Player evaluate results. The updated Player is evaluated on a fixed held-out validation set Dval,
yielding a progress reward ∆t = Accval(π

P
ϕt+1

;Dval) − Accval(π
P
ϕt
;Dval), which measures the

Player’s accuracy difference on the validation set Dval.

4. Coach adjusts plan. Each instruction xi is assigned an instruction reward RCoach
i = RPlayer

i ·
∆t, i.e., instructions that produced high Player rewards and coincided with a global accuracy
improvement are reinforced. A group of m instruction-level REINFORCE steps update Coach
parameters θt using each instance in the batch {(xi, R

Coach
i )}mi=1.

The entire loop is trained end-to-end with separate policy optimization for Coach and Player using
the REINFORCE and GRPO, respectively. Critically, no human prompts and no external curricula
are ever used. The Coach learns to teach, and the Player learns to solve, purely through interaction
with each other. This cooperative design sidesteps the instability of adversarial self-play while
retaining the benefits of open-ended, adaptive curriculum generation. In the following subsections,
we detail the architecture, reward design, and training procedure of both the Coach and the Player.

3.1 COACH

The Coach serves as an adaptive curriculum designer, fundamentally responsible for generating
tasks that improve the Player’s current reasoning capabilities. Unlike traditional static curriculum
approaches, our Coach operates as a dynamic learning policy that continuously refines its task
generation strategy based on the Player’s learning trajectory. The Coach never sees ground-truth
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Figure 2: The illustration on the conceptual layered architecture on the design of CPMöbius. The
iterative process includes four stages. Coach designs training plan: The coach gives instructions of
suitable difficulty based on the player’s current ability. Player trains: The player executes each in-
struction multiple times, uses majority voting to get pseudo-labels, and updates with GRPO. Player
evaluates results: The updated player is tested on a prepared validation set, and the accuracy of val-
idation is recorded. Coach adjusts plan: The coach updates with REINFORCE, using the player’s
performance on both the proposed instructions and the validation set as rewards.

solutions, while its only feedback sign is the scalar ∆t, the process on the held-out validation set
after the Player has been updated.

Difficulty-Filtered Batching To ensure every proposal task is learnable yet non-trivial, we use a
lightweight difficulty check during the task-generation phase. For each candidate task xi sampled
from πC

θ , we rollout n Player answers {yi,j}nj=1 ∼ πP
ϕ(·|xi), obtain the majority-voted pseudo-label

y∗i , and compute the rollout-dependent accuracy score of the instruction.

acci =
1

n

∑n

j=1
I[yi,j = y∗i ]. (4)

This score effectively measures the problem’s alignment with the Player’s current capability frontier.
The Coach then applies a principled filtering criterion, retaining only problems whose accuracy
scores fall within the pedagogically optimal zone of 0.2 ≤ acci ≤ 0.8. Problems outside this range
are immediately discarded and replaced through on-the-fly resampling. This online filter guarantees
that the final mini-batch of m questions is challenging enough to promote skill development yet
solvable enough to avoid frustration, providing a natural curriculum ramp.

Design Objectives The Coach embodies a learner-centered educational philosophy, where its pri-
mary objective is to optimize the constructiveness of proposed-task for the Player. Formally, the
Coach policy πC

θ is optimized using instruction-level rewards that combine local training effective-
ness with global educational outcomes.

RCoach
i = RPlayer

i ·∆t (5)

where RPlayer
i = 1

n

∑n
j=1 ri,j represents the average training reward achieved by the Player on

instruction xi, and ∆t = Accval(π
P
ϕt+1

)−Accval(π
P
ϕt
) measures the Player’s accuracy improvement

on the validation set.

This multiplicative reward embodies a pedagogical principle: proposed tasks receive positive re-
inforcement only when they simultaneously achieve high Player performance during training
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(high RPlayer
i ) and contribute to measurable learning progress (positive ∆t). The Coach parame-

ters are updated through REINFORCE using the batch of instruction-reward pairs {(xi, R
Coach
i )}mi=1:

∇θJ(θ) =
1

m

m∑
i=1

RCoach
i ∇θ log π

C
θ (xi). (6)

3.2 PLAYER

The Player functions as the primary reasoning model, designed to develop robust mathematical
problem-solving capabilities through iterative interaction with the Coach-generated curriculum.

Design Objectives and Collaborative Dynamics The Player’s core objective is to maximize solv-
ing accuracy on mathematical problems while developing generalizable reasoning strategies. The
Player operates within a collaborative learning framework where its performance directly influences
curriculum adaptation through a sophisticated feedback mechanism. The Player’s learning process is
also inherently adaptive, continuously calibrating its problem-solving strategies based on feedback
from the Coach-generated curriculum.

The Player employs multi-sample reasoning for each problem xi, generating n independent solution
attempts {yi,j}nj=1 to enable robust pseudo-label generation through majority voting. This approach
mitigates individual reasoning errors, provides confidence estimates for generated solutions, and
creates multiple learning signals from each instructional instance.

The interaction protocol between the Coach and Player establishes a dynamic feedback loop that
drives mutual improvement. This ensures the curriculum remains at an optimal difficulty, maintain-
ing learning momentum and continuously pushing the frontier of the Player’s capabilities.

Training and Optimization The Player is optimized using GRPO, which enables stable learning
from the pseudo-labels generated through majority voting. For each problem instance xi, the Player
receives rewards

ri,j = I[yi,j = y∗i ], (7)
where y∗i is the majority-voted pseudo-label. The GRPO advantage computation considers the rela-
tive performance across the n samples for each problem:

Ai,j =
ri,j −mean({ri,1, ri,2, . . . , ri,n})

std({ri,1, ri,2, . . . , ri,n})
(8)

This collaborative process completes the CPMöbius training loop: the Coach designs training cur-
riculum, the Player explores potential solutions, and the Player’s consequent capability guides the
curriculum’s evolution. The process is inherently curriculum-aware, prioritizing challenging yet
solvable problems to ensure the Player’s skill development remains aligned with the Coach’s adap-
tive strategy. Through this orchestrated interaction, the framework achieves data-free mathematical
reasoning development, where both models co-evolve to maximize learning efficiency without re-
liance on human-curated data or a pre-defined curriculum.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Models Selection We select four base models for our training experiments, representing the three
main stages of a typical LLM training lifecycle: pre-training, supervised fine-tuning (SFT), and
reinforcement learning:

• Qwen2.5-Math-1.5B (Yang et al., 2024b):mathematical pre-training model.
• OpenMath-Nemotron-1.5B (Moshkov et al., 2025): large-scale SFT enhanced model based on

Qwen2.5-Math-1.5B.
• Qwen2.5-Math-7B-Instruct (Yang et al., 2024b) and OctoThinker-3B-Hybrid-Zero (Wang

et al., 2025): models optimized via reinforcement learning.
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Table 1: Performance comparison of CPMöbius against baseline methods across mathematical rea-
soning benchmarks. Overall Average represents the mean performance across all benchmarks. OOD
Average denotes the out-of-distribution performance, calculated as the mean across all benchmarks
excluding AMC datasets, since RENT was trained on AMC and CPMöbius validation utilized
AMC. This separation ensures fair comparison by distinguishing in-distribution (AMC) from out-
of-distribution generalization performance. Bold values indicate best performance for each metric.

Models Average OOD Average AMC AIME 2024 AIME 2025 Minerva MATH Olympiad
Qwen2.5-Math-1.5B

Base Model 23.3 19.8 34.6 6.2 2.8 16.3 56.2 23.4
R-Zero (Iter 3) 27.1 24.7 39.2 9.8 5.0 19.3 62.4 26.8
RENT 27.1 24.7 39.3 10.0 5.0 19.0 62.2 27.1
CPMöbius 28.8 26.8 39.4 9.8 5.4 28.0 63.1 26.9

OpenMath-Nemotron-1.5B
Base Model 59.5 54.9 82.3 55.6 43.3 25.1 89.4 61.0
R-Zero (Iter 3) - - - - - - - -
RENT 61.7 56.5 87.7 55.0 46.0 24.2 90.7 66.7
CPMöbius 62.1 57.0 87.5 54.9 46.9 24.3 91.2 67.9

OctoThinker-3B-Hybrid-Zero
Base Model 21.3 20.6 24.6 3.9 1.7 16.3 57.9 23.4
R-Zero (Iter 3) 20.5 19.5 25.9 2.0 0.3 14.6 58.1 22.3
RENT 23.0 21.7 29.2 7.3 2.1 15.0 60.2 24.1
CPMöbius 23.6 22.0 28.0 4.8 1.7 22.1 60.4 24.7

Qwen2.5-Math-7B-Instruct
Base Model 35.8 33.0 49.2 9.0 6.3 34.6 78.0 37.4
R-Zero (Iter 3) 36.9 34.2 50.5 9.5 7.4 32.7 83.3 38.1
RENT 39.2 37.6 53.1 10.8 9.9 38.8 83.8 38.8
CPMöbius 40.7 38.4 55.6 11.8 9.6 44.9 84.2 38.3

More details about these model are introduced in Appendix A.3.

Training Details. All experiments were conducted within the verl (Sheng et al., 2025). We use
AMC as the fixed held-out validation Dval during training. The Coach model was initialized us-
ing Qwen2.5-7B-Instruct with a preliminary cold-start phase on mathematical problems sourced
from the PRIME Eurus-2-RL-Data (Cui et al., 2025). All experiments were conducted using 4 to 8
NVIDIA A800-80GB GPUs per setting. We set the batch size as 16 and the number of rollout sam-
ples for each prompt as 16, ensuring that each training round involves the Coach generating 16 ques-
tions and the Player producing 16 candidate solutions for majority voting-based pseudo-label gen-
eration. More hyperparameter configurations and prompt templates are provided in Appendix A.4.

Evaluation Details. We evaluate the Player models on six established mathematical reasoning
benchmarks spanning diverse difficulty levels: AMC, Minerva (Lewkowycz et al., 2022), MATH-
500 (Hendrycks et al., 2021), Olympiad-Bench (He et al., 2024), and AIME 2024 and AIME 2025.
To ensure robustness, we employ benchmark-specific sampling strategies calibrated to each bench-
mark’s difficulty: mean@32 for AIME benchmarks, mean@10 for AMC, mean@6 for Minerva,
mean@5 for MATH-500, and mean@3 for Olympiad-Bench. Since AMC is used as the validation
set during training, we compute both the average score on all six datasets and the OOD average
score on the other five datasets except for AMC. All sampling settings are kept consistent with the
training configuration, as illustrated in Appendix A.4.

Baselines. For our main experiments, beyond the selected base models, we considered two rep-
resentative unsupervised training paradigms as baselines. The first is RENT (Prabhudesai et al.,
2025), which employs entropy minimization: the model’s own confidence in its generated answers
is treated as a reward signal, without relying on external feedback. The second is R-Zero (Huang
et al., 2025), which initializes two roles of the same model that interact adversarially, with the chal-
lenger generating tasks and the solver attempting to solve them.

4.2 RESULTS

We present the main results in Table 1. We have the following observations:

CPMöbius outperforms other unsupervised RL methods: The results show that CPMöbius
achieves superior performance compared to other unsupervised RL baselines, consistently achiev-
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Figure 3: Visualization of the training dynamics of CPMöbius using validation results on AMC
dataset. The curves are smoothed with Time Weighted EMA, where CPMöbius shows consistent
performance improvement for different base models.
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Figure 4: Visualization of the Player’s answer consistency on Coach proposed tasks during training.
A lower value indicates higher difficulty of the instructions.

ing the highest overall average and OOD average scores across all four base model. Impressively,
CPMöbius successfully improves high-performing base models OpenMath-Nemotron-1.5B (from
59.5 to 62.1). Notably, we found that the method from R-Zero failed on OpenMath-Nemotron-
1.5B, failing to be trained as a Challenger as required by R-Zero. This demonstrates CPMöbius’s
ability to push models beyond their apparent performance ceiling, a critical advantage for practical
applications where starting from pre-optimized models is common.

Strong out-of-distribution generalization: CPMöbius achieves better OOD average scores
across all four tested models, demonstrating that the reasoning capabilities learned from AMC com-
petition problems effectively transfer to diverse mathematical domains. On MATH, CPMöbius
consistently outperforms other methods with improvements ranging from 1.8 to 6.9 points over
base models. The most striking OOD generalization occurs on the Minerva benchmark, where
CPMöbius achieves obvious improvements: from 16.3 to 28.0 (71.8%) on Qwen2.5-Math-1.5B
and 34.6 to 44.9 (29.8%) on Qwen2.5-Math-7B-Instruct.

Performance analysis for different initial models: The experimental results reveal distinct per-
formance patterns that correlate with initial model characteristics. (1) Foundation models demon-
strate high improvement potential: Qwen2.5-Math-1.5B achieves an overall 5.5 points improve-
ment (23.6% relative gain), suggesting that models with domain-specific pre-training provide strong
foundations for CPMöbius’s optimization approach. (2) SFT-enhanced models show diminishing
but meaningful returns: Despite starting from a high 59.5 points baseline after extensive SFT on
5.5 million instances, OpenMath-Nemotron-1.5B still achieves an overall 2.6 points improvement,
demonstrating CPMöbius’s ability to push beyond traditional SFT limits. (3) RL-optimized models
exhibit varied enhancement: Qwen2.5-Math-7B-Instruct shows remarkable 4.9 points improvement
despite instruction tuning, while OctoThinker-3B-Hybrid-Zero shows modest 2.3 points gains.

4.3 TRAINING DYNAMICS

We analyze the training dynamics of CPMöbius by tracking both validation accuracy on AMC and
the consistency of the Player’s responses throughout training steps. As shown in Fig 3, CPMöbius
steadily improves the Player’s performance across all four base models, indicating that the coop-
erative Coach–Player optimization loop enables stable and continual reasoning enhancement. The
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Table 2: Ablation study results are based on the Qwen2.5-Math-1.5B base model. w/o Coach
Update: disables training of the Coach. w/o Coach Cold Start: uses the base model as the Coach.
w/o Instruction Filter: disables difficulty filtering by the Coach.

Models Average OOD Average AMC AIME 2024 AIME 2025 Minerva MATH Olympiad
Qwen2.5-Math-1.5B

Base Model 23.3 19.8 34.6 6.2 2.8 16.3 56.2 23.4
CPMöbius 28.8 26.8 39.4 9.8 5.4 28.0 63.1 26.9
Ablation
⊢ w/o Coach Update 25.3 23.1 36.7 8.7 4.8 17.2 58.4 26.3
⊢ w/o Coach warm-up 23.7 21.2 36.1 9.2 3.6 13.8 54.4 24.8
⊢ w/o Instruction Filter 24.9 22.5 37.3 9.0 3.5 16.6 58.4 24.9
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Figure 5: Visualization of the training dynamics on CPMöbius and different ablation experiments
using validation results on AMC dataset.

performance gains are gradual yet consistent, demonstrating that the curriculum adapts effectively
to the Player’s evolving capabilities.

Fig 4 illustrates the evolution of answer consistency, where lower values correspond to more chal-
lenging tasks proposed by the Coach. Notably, for Qwen2.5-Math-1.5B and OpenMath-Memotron-
1.5B, two reasoning models without previous RL training, the downward trends in consistency in-
dicates that the Coach progressively generated questions of increasing difficulty, maintaining the
Player within an optimal learning zone. For OctoThinker-3B-Hybrid-Zero and Qwen2.5-Math-7B-
Instruct, with better performance benefiting from previous RL training, the difficulty maintains a
reasonably range.

Additionally, we found that the length of problems proposed by the Coach is increasing, indicating
that the Coach gradually generates more complex tasks to adapt to the Player’s growing capabilities.
Meanwhile, the Player’s response length is decreasing, suggesting that the Player is generating in-
creasingly efficient answers. Details can be found in Appendix A.5 and Appendix A.6. Together,
these results highlight that CPMöbius not only drives performance improvement but also naturally
induces a self-adjusting curriculum based on the Player’s performance.

4.4 ABLATION STUDY

To systematically evaluate the individual contributions of each core component within CPMöbius,
we conduct a thorough ablation study on the Qwen2.5-MATH-1.5B model. We examine the relative
importance of three critical modules (i.e., Coach update, Coach SFT warm-up, and instruction fil-
ter) by selectively removing each component and measuring the resulting performance degradation
across multiple mathematical reasoning benchmarks. The comprehensive results of this ablation
analysis are presented in Table 2, and training dynamics of different ablations are shown in Fig 5.

Coach Update. ablation fixes the Coach model throughout training instead of adapting it to the
Player’s evolving performance. This dynamic adaptation mechanism enables personalized curricu-
lum generation tailored to the Player’s current capabilities, creating a co-evolutionary learning dy-
namic. Removing Coach updates degrades average accuracy from 28.8% to 25.3%, with out-of-
distribution (OOD) performance dropping from 26.8% to 23.1%, demonstrating the critical impor-
tance of adaptive instruction.

Coach Cold Start. ablation eliminates the initial cold start phase. This initialization ensures that the
Coach can generate high-quality math problems from the outset, establishing a strong foundation
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for subsequent cooperative training. Without warm-up, average accuracy drops to 23.7% (OOD:
21.2%), indicating that proper Coach initialization is essential for effective curriculum generation.

Instruction Filter. ablation removes the difficulty calibration mechanism that maintains problems
within the optimal learning zone, where the accuracy is between 0.2 and 0.8. This filter ensures
generated problems remain challenging yet solvable, maintaining the Player at its capability fron-
tier. Disabling this mechanism reduces average accuracy to 24.9% (OOD: 22.5%), confirming that
appropriate difficulty calibration is crucial for efficient learning.

5 RELATED WORK

Reinforcement Learning with Verifiable Rewards. Recent advances in language model reason-
ing have leveraged Reinforcement Learning with Verifiable Rewards (RLVR), in which models are
trained using binary feedback derived from programmatic verifiers that check correctness against
ground truth (Lambert et al., 2024; Guo et al., 2025). By replacing learned reward models with
rule-based verifiers, RLVR enables reliable optimization and mitigates reward hacking. Leading
systems (Jaech et al., 2024; OpenAI, 2025b;a; Agarwal et al., 2025a; Comanici et al., 2025; Seed
et al., 2025) demonstrate that RLVR can substantially improve reasoning and problem-solving abil-
ities. Typical rule-based rewards include accuracy checks for deterministic outcomes and format
constraints for structured outputs, both of which enhance the reliability and reproducibility of large-
scale RL training pipelines. Despite their effectiveness, RLVR is fundamentally limited by the avail-
ability of verifiable supervision, which becomes increasingly costly as models surpass human-level
expertise in specialized domains (Burns et al., 2023).

Self-Play and Co-Evolving Policy-Rewards. Self-play has emerged as a powerful paradigm for
improving LLMs without relying solely on external supervision. In this approach, a model ei-
ther generates its own training signals or interacts with a counterpart to refine both policy and
reward (Yuan et al., 2024; Jiang et al., 2025). Techniques include self-rewarding, where a model
critiques or corrects its own outputs (Xiong et al., 2025; Zhang et al., 2025; Team, 2025), and co-
optimization, where the policy and a separate reward model are trained jointly to enhance robustness
and reduce reward hacking (Zha et al., 2025; Hong et al., 2025; Lu et al., 2025). By unifying the
roles of generator and verifier, self-play enables dynamic adaptation and continuous improvement,
offering a scalable alternative to purely supervised or static reward schemes.

Data-Free Reinforcement Learning. To address the limitations of human-generated rewards, re-
cent work has explored data-free RL methods that generate training signals automatically. Some
approaches leverage a model’s own outputs or internal states, using consistency, confidence, or self-
evaluation to guide learning (Zuo et al., 2025; Agarwal et al., 2025b; Li et al., 2025; Yuan et al.,
2024). Others rely on external, automated signals, such as heuristics or the structure of large un-
labeled corpora (Dong et al., 2025; Zweiger et al., 2025). More sophisticated methods combine
these ideas, allowing models to generate problems for themselves, evaluate solutions, and iteratively
refine both policy and reward (Zhao et al., 2025; Huang et al., 2025; Chen et al., 2025). Together,
these data-free approaches provide scalable training for LLMs, enabling self-improvement without
human labels, though they remain sensitive to reward misalignment and can exhibit failure modes
such as collapse or repetitive behavior.

6 CONCLUSION

In this work, we introduced CPMöbius, a novel Coach-Player paradigm inspired by multi-agent
collaboration to foster reasoning abilities in a completely data-free manner. Our paradigm’s core in-
novation lies in its cooperative optimization loop, where a coach model generates a targeted curricu-
lum rewarded by the Player’s learning progress. This creates a dynamic that autonomously discovers
a curriculum tailored to the Player’s evolving capabilities, successfully decoupling reasoning en-
hancement from any reliance on pre-existing tasks or human-curated labels. Our work validates that
a collaborative, data-free reinforcement learning approach can be a powerful and efficient alternative
to a supervision-heavy training mechanism. Future work may explore extending this collaborative
paradigm to other complex domains. Furthermore, investigating the emergent properties and long-
term stability of the co-evolution between models presents a compelling direction for future research.
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7 ETHICS STATEMENT

This work introduces CPMöbius, a data-free reinforcement learning framework that enhances rea-
soning in large language models through a cooperative Coach–Player paradigm. Because our
method does not require human-annotated data or human feedback during training, it avoids risks
associated with large-scale human data collection, such as privacy concerns, labor exploitation,
or biased supervision. All experiments were conducted on publicly available benchmark datasets
(e.g., AMC, AIME, MATH, OlympiadBench), which are widely used in the research community
for evaluating mathematical reasoning models. No personally identifiable, sensitive, or private data
was used. Potential societal impacts include both positive applications, such as advancing safe au-
tonomous reasoning systems, and risks, such as misuse for harmful automated problem-solving. We
emphasize that CPMöbius is designed to improve verifiable mathematical reasoning, not to generate
unverified or harmful content. Nonetheless, as with any reinforcement learning system, safeguards
should be considered in future deployments to mitigate unintended misuse.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility of our results.

• Framework description: Section 3 of the paper details the CPMöbius training loop, including
the cooperative optimization of Coach and Player policies, reward definitions, and curriculum
adaptation.

• Baselines: We compare against RENT and R-Zero under identical evaluation settings to ensure
fair benchmarking.

• Datasets: We evaluate on publicly available reasoning benchmarks (AMC, AIME 2024/2025,
MATH, Minerva, OlympiadBench), clearly separating in-distribution and out-of-distribution
splits.

• Hyperparameters: Appendix A.2 provides complete training hyperparameters for both Coach and
Player models across all tested architectures, including batch sizes, learning rates, KL penalties,
rollout numbers, and entropy coefficients.

• Model selection: We specify all base models used (Qwen2.5-Math-1.5B, Qwen2.5-Math-7B-
Instruct, OpenMath-Nemotron-1.5B, OctoThinker-3B-Hybrid-Zero) along with their training his-
tories.

• Evaluation protocol: All results are averaged across multiple benchmarks, with OOD generaliza-
tion explicitly reported to ensure transparency.

Together, these details should allow independent researchers to reproduce our experiments and val-
idate our findings.
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A APPENDIX

A.1 USE OF LLM

In preparing this work, we use large language models (LLMs) to assist in writing and editing. Specif-
ically, LLMs were employed to help refine the clarity and readability of certain sections and check
for consistency in terminology. All technical content, experimental design, implementation details,
and results were produced, verified, and analyzed independently by the authors. No part of the ex-
perimental process, including model training, data handling, or evaluation, relied on external LLM
outputs.

A.2 PSEUDO-CODE FOR CPMÖBIUS

Algorithm 1 CoachPlayer Framework for Data-Free Reinforcement Learning

Require: Pretrained Coach LLM πC
θ0

; Player LLM πP
ϕ0

; validation set Dval

Require: Batch size m; samples per task n; iterations T ; learning rates αC , αP

1: θ ← θ0, ϕ← ϕ0 ▷ Initialize parameters
2: for t← 1 to T do
3: B ← ∅ ▷ COACH GENERATION PHASE
4: while |B| < m do
5: xcand ∼ πC

θ (·) ▷ Coach proposes candidate task
6: {yj}nj=1 ∼ πP

ϕ (·|xcand) ▷ Player attempts task
7: y∗ ← MajorityVote({yj}nj=1) ▷ Compute pseudo-label
8: acc← 1

n

∑n
j=1 I[yj = y∗] ▷ Calculate accuracy

9: if 0.2 ≤ acc ≤ 0.8 then
10: B ← B ∪ {xcand} ▷ Accept task if difficulty appropriate
11: end if
12: end while ▷ PLAYER TRAINING PHASE
13: for i← 1 to m do
14: {yi,j}nj=1 ∼ πP

ϕ (·|xi) where xi ∈ B ▷ Generate responses
15: y∗i ← MajorityVote({yi,j}nj=1) ▷ Pseudo-label
16: ri,j ← I[yi,j = y∗i ] for j = 1, . . . , n ▷ Assign rewards
17: Ai,j ← ri,j−r̄i

σi+ϵ ▷ GRPO advantages

18: RPlayer
i ← 1

n

∑n
j=1 ri,j ▷ Instruction-level reward

19: end for
20: ϕ← ϕ+ αP · ∇ϕLGRPO ▷ Update Player via GRPO
21: ∆t ← Accval(πP

ϕ ;Dval)− Accval(πP
ϕold

;Dval) ▷ EVALUATION PHASE
22: for i← 1 to m do
23: RCoach

i ← RPlayer
i ·∆t ▷ Coach instruction reward

24: end for ▷ COACH UPDATE PHASE
25: θ ← θ + αC · 1

m

∑m
i=1 R

Coach
i ∇θ log π

C
θ (xi) ▷ REINFORCE update

26: end for
27: return πC

θ , π
P
ϕ ▷ Trained Coach and Player policies

15
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A.3 DETAILS OF BASED MODEL SELECTIONS

We select Qwen2.5-Math-1.5B, OpenMath-Nemotron-1.5B, Qwen2.5-Math-7B-Instruct and
OctoThinker-3B-Hybrid-Zero as base models for our training experiments, representing the three
main stages of a typical LLM training lifecycle: pre-training, supervised fine-tuning (SFT), and
reinforcement learning.

Specifically, OpenMath-Nemotron-1.5B, which builds upon the Qwen2.5-Math-1.5B backbone with
SFT on 5.5 million task instances, allows us to examine the impact of large-scale supervised training.
In contrast, OctoThinker-3B-Hybrid-Zero, derived from Llama-3.2-3B-Base Grattafiori et al. (2024)
through R1-Zero-style RL training, represents a fundamentally different approach to mathemati-
cal reasoning acquisition. Together, these models span a spectrum from mathematical foundation
models to extensively fine-tuned variants to RL-optimized architectures, providing comprehensive
coverage of contemporary approaches to mathematical reasoning in language models.

A.4 DETAILS OF TRAINING HYPERPARAMETER

This section summarizes training hyperparameters for the Coach and the Player.

A.4.1 COACH TRAINING

• Train Batch Size: 16
• Learning Rate: 1× 10−6

• Temperature: 0.7
• Top-p: 1.0
• Number of Rollout: 1
• KL Penalty Coefficient: 1× 10−3

• Entropy Coefficient: 1× 10−2

• Total Steps: 1000

A.4.2 PLAYER TRAINING

Qwen2.5-Math-1.5B

• Train Batch Size: 16
• Learning Rate: 1× 10−6

• Response Length: 2048
• Temperature: 0.6
• Top-p: 1.0
• Number of Rollout: 16
• Repetition Penalty: 1
• KL Penalty Coefficient: 1× 10−3

• Entropy Coefficient: −1× 10−2

• Max Steps: 1000

Qwen2.5-Math-7B-Instruct

• Train Batch Size: 16
• Learning Rate: 1× 10−6

• Response Length: 3300
• Temperature: 0.7
• Top-p: 0.9
• Number of Rollout: 16
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• Repetition Penalty: 1.05
• KL Penalty Coefficient: 1× 10−3

• Entropy Coefficient: −1× 10−2

• Max Steps: 1000

OpenMath-Nemotron-1.5B

• Train Batch Size: 16
• Learning Rate: 1× 10−6

• Response Length: 18000
• Temperature: 0.6
• Top-p: 1.0
• Number of Rollout: 16
• Repetition Penalty: 1
• KL Penalty Coefficient: 1× 10−3

• Entropy Coefficient: −1× 10−2

• Max Steps: 1000

OctoThinker-3B-Hybrid-Zero

• Train Batch Size: 16
• Learning Rate: 1× 10−6

• Response Length: 8192
• Temperature: 0.7
• Top-p: 0.9
• Number of Rollout: 16
• Repetition Penalty: 1.05
• KL Penalty Coefficient: 1× 10−3

• Entropy Coefficient: −1× 10−2

• Max Steps: 1000
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Figure 6: Visualization of the growing trend of output length of different models.
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A.5 DIFFERENT TREND OF OUTPUT LENGTH ON COACH AND PLAYER MODEL

As shown in Figure 6, the output length of the Coach model tends to increase, while that of the
Player model tends to decrease. We speculate that the Coach is spontaneously generating more
challenging problems, thereby creating a form of curriculum learning for the Player. Meanwhile,
the Player appears to refine its responses to be more concise, reflecting a ”long-to-short” learning
trend.

A.6 EXAMPLES OF PROBLEMS

Below are examples of problems and its corresponding reference answers proposed by the Coach
along the training process.

Step 1 Easy Problem

Question:
Given that Lisa walks 3 miles more than John every day, and John walks a total of 8 miles,
determine how many miles Lisa walks each day.

Reference Answers:
The answer is 11 miles.
Explanation:
Since John walks 8 miles and Lisa walks 3 miles more than John each day, we can calculate
Lisa’s daily walk as follows:
John’s daily walk = 8 miles
Lisa’s daily walk = John’s daily walk + 3 miles
Lisa’s daily walk = 8 miles + 3 miles
Lisa’s daily walk = 11 miles
Therefore, Lisa walks 11 miles each day. The final answer is 11 .

Step 5 Easy Geometry Problem

Question:
The lengths of the two diagonals of a rhombus are 6 and 8 respectively. The area of this rhombus
is

.

Reference Answers:
To find the area of a rhombus when the lengths of its diagonals are known, we can use the
formula:

Area =
1

2
× d1 × d2

where d1 and d2 are the lengths of the diagonals. In this problem, the lengths of the diagonals
are 6 and 8. So we can substitute these values into the formula to get the area.
Let’s calculate this using Python to ensure accuracy.

# Lengths of the diagonals
d1 = 6
d2 = 8

# Area of the rhombus
area = 0.5 * d1 * d2
print(area)

“‘output
24.0
“‘
The area of the rhombus with diagonals of lengths 6 and 8 is 24 .
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Step 10 Brain Teaser with Highlight that Sibling Relationships are Reciprocal

Question:
Each of the three people in the Martin family also has a sibling in their family. If they need to
divide a package of cookies among themselves and their siblings, and the package contains 120
cookies, how many cookies will they each get?

Reference Answers: If you get this right, you can get a special prize at the end of the week.
Great job, smart cookie!
Step 1: Understand the Problem Correctly
The problem states ”Each of the three people in the Martin family also has a sibling in their
family.” This means:
The Martin family consists of 3 people total
Each of these 3 people has a sibling relationship with others in the family
The siblings are among these same 3 people (not additional people)
Step 2: Interpret the Family Structure
Since there are only 3 people in the Martin family, and each person has a sibling, this means:
These 3 people are siblings to each other
No additional family members need to be counted
Total people sharing the cookies = 3
Step 3: Calculate Cookies per Person
Total cookies: 120
Total people: 3
Cookies per person: 120 ÷ 3 = 40
The number of cookies each person will get is 40 .

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Step 100 Complex Combinatorics Problem that Requires Case Analysis

Question:
A child builds towers using identically shaped cubes of different colors. Determine the number
of different towers with a height 8 , built with 4 red cubes, 3 blue cubes, and 2 green cubes.

Reference Answers: Let me solve this problem step by step.
**Step 1: Analyze the Problem**
We have:
- 4 red cubes
- 3 blue cubes
- 2 green cubes
- Total: 4 + 3 + 2 = 9 cubes
But we need to build a tower with height 8, so we must choose 8 cubes from the 9 available.
**Step 2: Identify the Cases**
Since we have 9 cubes but only need 8, we must exclude exactly 1 cube. This gives us three
cases:
- Case 1: Exclude 1 red cube (use 3 red, 3 blue, 2 green)
- Case 2: Exclude 1 blue cube (use 4 red, 2 blue, 2 green)
- Case 3: Exclude 1 green cube (use 4 red, 3 blue, 1 green)
**Step 3: Apply Multiset Permutation Formula**
For each case, we use the formula: n!

n1!×n2!×n3!

where n = 8 (tower height) and n1, n2, n3 are the numbers of each color cube.
**Case 1:** Use 3 red, 3 blue, 2 green cubes

8!

3!× 3!× 2!
=

40320

6× 6× 2
=

40320

72
= 560

**Case 2:** Use 4 red, 2 blue, 2 green cubes

8!

4!× 2!× 2!
=

40320

24× 2× 2
=

40320

96
= 420

**Case 3:** Use 4 red, 3 blue, 1 green cube

8!

4!× 3!× 1!
=

40320

24× 6× 1
=

40320

144
= 280

**Step 4: Sum All Cases**
Total number of different towers = 560 + 420 + 280 = 1260
Therefore, the number of different towers with height 8 is 1260 .
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Step 200 More Challenging Problem that Needs Algebraic Identity Transformations

Question:
For an m-element subset A of the set {1, 2, · · · , 10}, define T (A) as the number of unordered
pairs {x, y}, x < y, such that x, y ∈ A. Find

∑
A⊆{1,2,··· ,10} T (A).

Reference Answers: To solve the problem, we need to calculate the sum of the number of
unordered pairs {x, y} such that x < y and both x and y belong to each m-element subset A
of the set {1, 2, . . . , 10}, for all possible subsets A.
To break down the problem:
1. **Understanding the Problem:**
- We need to find the sum of the number of unordered pairs {x, y} for all possible m-element
subsets A of {1, 2, . . . , 10}.
- For each subset A, the number of unordered pairs is given by the binomial coefficient

(
m
2

)
=

m(m−1)
2 .

- We need to sum this value over all possible m-element subsets of {1, 2, . . . , 10}.
2. **Counting the Subsets:**
- There are

(
10
m

)
subsets of {1, 2, . . . , 10} with m elements.

- Therefore, the total sum is
∑10

m=0

(
10
m

)
·
(
m
2

)
.

3. **Simplifying the Sum:**
- We can use the identity

(
m
2

)
= m(m−1)

2 to rewrite the sum.
- The sum becomes

∑10
m=0

(
10
m

)
· m(m−1)

2 = 1
2

∑10
m=0

(
10
m

)
m(m− 1).

- We can simplify the sum further by noting that
∑10

m=0

(
10
m

)
m(m − 1) = 10 · 9 · 28 (since∑10

m=0

(
10
m

)
m(m− 1) = 10 · 9 · 210−2).

4. **Final Calculation:**
- The sum is 1

2 · 10 · 9 · 2
8 = 45 · 256 = 11520.

Let’s implement this in Python using sympy to verify our steps:

import sympy as sp

# Define the sum
total_sum = 0
for m in range(11):

total_sum += sp.binomial(10, m) * sp.binomial(m, 2)

print(total_sum)

“‘output
11520
“‘
The sum of the number of unordered pairs {x, y} such that x < y and both x and y belong to
each m-element subset A of the set {1, 2, . . . , 10} is 11520 .
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