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ABSTRACT

Multimodal learning is of continued interest in artificial intelligence-based ap-
plications, motivated by the potential information gain from combining different
types of data. However, modalities observed in the source environment may dif-
fer from the modalities observed in the target environment due to multiple fac-
tors, including cost, hardware failure, or the perceived informativeness of a given
modality. This shift in missingness between the source and target environment has
not been carefully studied. Naı̈ve estimation of the information gain associated
with including an additional modality without accounting for missingness may
result in improper estimates of that modality’s value in the target environment.
We formalize the problem of missingness, demonstrate its ubiquity, and show that
the subsequent distribution shift results in bias when the missingness process is
not explicitly accounted for. To address this issue, we introduce ICYM2I (In
Case You Multimodal Missed It), a framework1 for the evaluation of predictive
performance and information gain under missingness through inverse probabil-
ity weighting-based correction. We demonstrate the importance of the proposed
adjustment to estimate information gain under missingness on synthetic, semi-
synthetic, and real-world datasets.

1 INTRODUCTION

Multimodal learning is ubiquitous in machine learning as practitioners combine multiple data types
to improve predictive performance in applications to healthcare (Perochon et al., 2023; Tu et al.,
2024), robotics (Gao et al., 2024; Shah et al., 2023), and recommender systems (Chen et al., 2019).
However, factors such as privacy concerns (Jaiswal & Provost, 2020; Zhang et al., 2021), cost-
benefit tradeoffs of data-acquisition (Buck et al., 2010), and user preferences (Kossinets, 2006)
imprint multimodal data with missingness. Additionally, even if modality complete data is available
or curated at training, data noise (Cohen et al., 2004; Ma et al., 2023) and sensor failures (Inceoglu
et al., 2021; 2023) may result in missing modalities in the target environment.

Although the missingness of modalities is a recurring challenge in real-world settings, current multi-
modal machine learning methods often assume that modalities are fully observed, both in source and
target environments. When missingness is considered, the literature has focused on engineering ef-
forts (Le et al., 2025; Wu et al., 2024) such as data selection (Hosseini et al., 2022), imputation (Tran
et al., 2017; Cohen Kalafut et al., 2023; Malitesta et al., 2024), and architecture design (Chen et al.,
2022; Zeng et al., 2022), which implicitly assume a stable missingness process between source and
target environments. When this assumption is violated, the missingness mechanism induces a dis-
tribution shift (Zhang et al., 2023; Liu et al., 2023b) that biases the estimated informativeness of
a given modality. Missingness is pervasive and impacts a broad range of application domains en-
countered in the multimodal literature: in breast cancer screening, biopsies are only performed if
there are abnormal findings in a mammogram; in autonomous vehicles, LiDAR sensor dropout can
occur due to weather and lighting conditions; and in online recommender systems, reviews are only
collected after certain consumer behaviors. Across these settings, ignoring the distribution shift be-
tween source and target due to missingness when quantifying modality informativeness may conflate
missingness with signal, leading to flawed data collection and modeling decisions.

1Code available on Github: https://anonymous.4open.science/r/ICYM2I-BC18/

1

https://anonymous.4open.science/r/ICYM2I-BC18/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1. Overview of the proposed framework. Curation often discards missing data, resulting in
a discrepancy between the collected Ω and source datasets Ωsource used for training. Current practice
is denoted in blue: naı̈ve training and evaluating on Ωsource leads to biased estimates of performance
and informativeness on target data. The orange path illustrates the proposed ICYM2I: a double in-
verse probability weighting (IPW) mechanism that yields accurate performance and informativeness
estimates under the target distribution.

In this work, we propose a framework to overcome the (mis)estimation of both inherent informative-
ness and predictive utility under missingness in multimodal learning. Our contributions, summarized
in Figure 1, are as follows:

• Framework for multimodal learning with missingness. We formalize the impact of missingness
as a distribution shift intrinsic to multimodal learning, where the observed source distribution differs
from the target distribution due to missingness. We show that not accounting for missingness, a
common practice, may bias the estimate of a modality’s predictive and information-theoretic utility.

• ICYM2I. Under the missingness-at-random (MAR) assumption, a much more realistic assump-
tion than the common and often implicit assumption of missingness-completely-at-random (MCAR)
made by state-of-the-art multimodal strategies, we propose ICYM2I (In Case You Multimodal
Missed It), a double inverse-propensity weighting correction to overcome missingness-induced dis-
tribution shifts. Specifically, we demonstrate that ICYM2I improves correlation in predictive and
information-theoretic utility of modalities.

• Experiments on diverse data. We demonstrate the broad applicability and utility of our methods
in synthetic, semi-synthetic, and real-world benchmark datasets, including a case study in multi-
modal learning in health.

2 RELATED WORK

Multimodal benchmarks suppress missingness encountered in real-world environments. Prior
work on multimodal models often assumes fully observed modalities (Ngiam et al., 2011; Zadeh
et al., 2017; Hou et al., 2019). Missingness has largely been an overlooked problem (Le et al.,
2025; Wu et al., 2024), to the extent that current benchmarks rarely contain samples with missing
modalities. Curation often involves dropping incomplete or filtering samples based on data quality
criteria, such as text length or file size (Sharma et al., 2018; Schuhmann et al., 2022) or imputing
with automatic tools (Miech et al., 2019). This curation implicitly assumes that rejected samples
follow the same distribution as the observed ones. This assumption may not hold. For example,
in autonomous driving data, samples with sensor failure – often resulting from extreme weather or
lighting conditions – may be filtered out. Models trained on complete data may, consequently, not
generalize to these settings, creating real-world risk at deployment. When missingness is considered,
previous works focused on robustness through imputation (Tran et al., 2017; Cohen Kalafut et al.,
2023; Malitesta et al., 2024), representation learning (Wu et al., 2024; Liu et al., 2023a), knowledge
distillation (Li et al., 2024; Wang et al., 2020a), and model ensembling (Chen et al., 2022; Zeng
et al., 2022) – all ignoring the potential shift resulting from the missingness process.

Multimodal missingness in the target environment. Prior work has explored missingness in the
target environment (Lin & Hu, 2023; Zeng et al., 2022), e.g., when a captor fails at deployment (Ma
et al., 2022). Broadly, two strategies have been proposed (Wu et al., 2024): (i) data preprocess-
ing through cross-modal imputation (Cohen Kalafut et al., 2023; Malitesta et al., 2024; Tran et al.,
2017), where one replaces the missing modality (Ma et al., 2021; Zhou et al., 2022), as well as (ii)
model training strategies such as architecture design (Lee et al., 2023; Ge et al., 2023), distillation-
based methods (Li et al., 2024; Wang et al., 2020a), and ensembling (Chen et al., 2022; Zeng et al.,
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2022). Through the proposed formalization, our work distinguishes between different missingness
assumptions, demonstrating that the previously studied framework is only one among various plau-
sible mechanisms for which current strategies are not well-designed.

Distribution shifts in multimodal learning. Addressing multimodal shifts has been studied in
vision-language models (Zhou et al., 2024; Verma et al., 2024) or using information-theoretic no-
tions to understand multimodal behavior under distribution shifts (Oh et al., 2025). Augmentation
and regularization strategies have been leveraged to address temporal shifts for conversation under-
standing (Woo et al., 2023; Lian et al., 2023). Advances in learning, such as in-context learning,
have been studied to characterize adaptation to multimodal distribution shifts (Zhou et al., 2024;
Xue et al., 2024). However, existing strategies aim to improve robustness under domain shifts only,
while ignoring the potential shift in missingness between source and target environments. Instead,
our work aims to correct estimates of performance and modality informativeness under missingness
to inform modality collection at deployment.

Quantifying information-theoretic value of a modality. Existing works often implicitly assume
that additional modalities improve performance, ignoring the prohibitive cost, complexity, and po-
tential noise added by these additional dimensions. When limited resources or constraints limit
availability in the target environment, a central challenge is to quantify the information-theoretic
value of a modality (Liang et al., 2024c). Liang et al. (2024a) proposed a method for recovering
partial information decomposition measures of the redundancy, uniqueness, and synergy of the in-
formation provided by the different modalities (Bertschinger et al., 2014; Williams & Beer, 2010).
However, these decompositions fully ignore the impact of missingness.

Correcting for missingness bias. The lack of formalization of missingness in the multimodal
literature has led to neglecting its potential impact. Ignoring this process risks biasing estimates of
interest (Phelan et al., 2017) as the observed distribution differs from the underlying one practitioners
aim to model. The statistical literature has introduced strategies such as matching (Stuart, 2010) and
reweighting (Jethani et al., 2022) to correct for the missingness process. However, these works have
overlooked the multimodal setting and the systematic shifts that may occur in this setting.

3 MULTIMODALITY AND MISSINGNESS

Y

X1

X2

Y

X1

X2

X1,obs

X2,obs

Yobs

M1

M2

MY

C

Figure 2. Directed Acyclic Graphs of the assumed data-generating processes. On the left is the com-
monly assumed graph with no missingness. On the right is the proposed missingness formalism. X1

and X2 are two modalities of interest, Y is the label of interest. The missingness process depends on
C. Filled point nodes are observed variables, while unfilled nodes are unobserved. Gray edges indicate
MAR missingness for a given modality.

Consider two modalities, X1 ∈ X1 and X2 ∈ X2 and the state of interest Y ∈ Y . We denote the
joint underlying distribution Ω = X1 × X2 × Y . Without loss of generality, we assume an anti-
causal setting for the data-generating process, in which the modalities are dependent on the states
Y , as shown in Figure 2 (left). We use the binary indicators of missingness M1, M2, and MY , which
are equal to 1 if the associated variable is missing, 0 if observed, following the convention of Mohan
& Pearl (2021). Observed variables are subscripted by ‘obs’, which corresponds to the underlying
modality if observed, and unobserved otherwise (denoted by ∅). Formally, the observed variable
Yobs and observed modalities X1,obs and X2,obs can be defined as follows:

Yobs =

{
∅ if MY = 1,

Y otherwise.

3
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In this setting, we denote the observed joint distribution Ωobs := (M · X1) × (M · X2) × (M · Y)
where M = M1 ·M2 ·MY . This complete modalities analysis has been the focus of multimodal
learning.

Missingness in multimodal learning. We distinguish three mechanisms that cover potential miss-
ing modality in multimodal settings (Rubin, 1976):

• Missing Completely At Random (MCAR): A modality is missing completely at random if the
missingness process is independent of any other variable.

• Missing At Random (MAR): The missingness mechanism depends on observed variables only.
• Missing Not At Random (MNAR): Missingness depends on unobserved variables.

In Figure 2 (right), we describe the missingness mechanisms as dependent on C, a set of covariates
that determine the missingness mechanism. Note that C may include one of the modalities of inter-
est, e.g., whether X2 is observed may depend on the realization of X1. In general, the set C may
differ for each modality depending on the data-generating process.

Missingness-induced distribution shifts. Missing modality Xi and/or missing label Y can induce
distribution shifts between the source and the target distributions. For example, if a modality is
observed in the target environment only if another one meets some criterion, then this distribution
may not match the source distribution. Theoretically, we know that a non-MCAR missingness
mechanism induces distribution shifts (Liu et al., 2023b; Zhang et al., 2023), i.e., the observed
distribution differs from the underlying distribution. Critically, models trained and evaluated on the
observed distribution are statistically biased estimates under any other missingness process.

For instance, consider an autonomous vehicle setting where video and LiDAR represent two modali-
ties of interest. If the LiDAR randomly dysfunctions, the missingness patterns are MCAR. However,
as previously mentioned, LiDAR may malfunction under extreme weather conditions. If these con-
ditions can be extracted from the video modality, one may assume MAR patterns. However, if the
video cannot capture the variable explaining the LiDAR dysfunction – e.g., temperature – LiDAR
would be MNAR, as dependent upon an unobserved variable. Under the last two scenarios, focusing
solely on samples with LiDAR excludes all extreme condition settings.

A common and often implicit assumption in the multimodal literature is the absence of missing-
ness, which corresponds to either a MCAR mechanism – Ωobs = Ω – or a stable missingness
process between the source and target environments, i.e., the observed distributions are the same
Ωsource

obs = Ωtarget
obs . In other words, not adjusting for missingness assumes that the missingness process

is uninformative or will remain the same in the target environment.

When missingness is studied, prior works focus on improving the robustness of multimodal models
when performance may degrade due to a modality missing in the target distribution,

i.e, the source distribution reflects the true distribution while the target may present missingness
Ωsource

obs ∼ Ω ̸= Ωtarget
obs .

Our work questions the applicability of these assumptions where modality collection is costly. While
missingness may result in a distributional shift (Zhou et al., 2023), we emphasize that demonstrating
the value of a modality in the source environment may lead to increased collection of this modality
in the target environment, inducing a distribution shift akin to Assumption A.
Assumption A (Multimodal analysis informs data collection). Demonstrated multimodal perfor-
mance gain induces a shift in the missingness process in the target, i.e. Ωsource

obs ̸= Ωtarget ∼ Ω.

We focus on settings where historical data used to train a model is marked by missingness. Under
such settings, we aim to do the following: (i) identify which modalities are informative and may
consequently be collected in the target environment, and (ii) train models that generalize to this
target environment where the modalities are fully observed.

4 IS THIS MODALITY INFORMATIVE?

We aim to assess whether a partially missing modality would be informative if fully observed. To
this end, we introduce ICYM2I (In Case You Multimodal Missed It), a framework for correcting

4
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model performance trained on modality complete samples where all modalities and labels are ob-
served (Ωobs) to estimate the predictive utility of the partially missing modality if it were observed
for the whole population (Ω). Additionally, we propose a correction to derive unbiased estimates of
the information-theoretic utility of a modality, using Ωobs. We rely on Partial Information Decompo-
sition (PID) (Williams & Beer, 2010) bounds introduced by Bertschinger et al. (2014) for this task,
which quantifies the information value of a target of interest captured by two input variables.

Correction. We propose an Inverse Probability Weighting (IPW) approach (Robins et al., 1994),
which reweights samples based on their probability of being observed. Under Assumption B that
relaxes the common MCAR assumption made in the multimodal literature, IPW recovers unbiased
estimates of the true distribution, enabling learning and evaluation on the true distribution from
observed samples. IPW-adjustment is critical for both training and evaluation of multimodal models
under missingness. IPW-adjusted training results in a model trained to infer on the underlying
distribution Ω, while correction of the evaluation allows for measuring performance on Ω, despite
evaluating the model only on samples from the observed distribution Ωobs.

Assumption B (MAR and Positivity). The missingness mechanism is MAR, and pΩ(M1 = 0,M2 =
0,MY = 0|C) > 0.

4.1 A MOTIVATING EXAMPLE

We consider the common multimodal example of learning bit-wise logic operators (Bertschinger
et al., 2014; Harder et al., 2013; Liang et al., 2024a). We generate 10, 000 points with two modal-
ities drawn from Bernoulli distributions (p = 0.5). The output state Y is defined using the binary
operators AND, OR, and XOR of input bits X1 and X2. In this setting, we induce missingness M2

in X2 and Y as a function of X1 (MAR): M2 ∼ Bern(0.6X1 + 0.2), resulting in 50% missingness
in X2. We investigate the impact of missingness on current strategies for evaluating the predictive
and information-theoretic utility of a given modality.

Estimating performance for informativeness. A common practice to measure the predictive value
of adding a modality is through modality ablation studies where practitioners train models on the
subset of observed samples where all modalities are observed (Ωobs). First, unimodal models f(xi)
are trained to approximate pΩobs

(y | xi), ∀i ∈ {1, 2} and a multimodal model f(x1, x2) to ap-
proximate pΩobs

(y | x1, x2) on the same observed dataset. The performance is then compared in a
hold-out set, which is also sampled from Ωobs. The informativeness of a modality is attributed to
the relative performance gain of the multimodal model compared to the unimodal model. However,
multimodal models can perform worse than their unimodal counterparts due to data characteris-
tics (Zhang et al., 2024) and learning dynamics (Wang et al., 2020b; Zhai et al., 2024). Thus, relying
solely on performance as a proxy for informativeness, particularly under distribution shifts, can be
misleading.

Partial Information Decomposition (Bertschinger et al., 2014). As an alternative to estimating
performance, existing works have decomposed the informativeness associated with each modal-
ity (Liang et al., 2024a). Bertschinger et al. (2014) formalized this decomposition by analyzing the
total (three-way) mutual information I(Y : (X1, X2)) (McGill, 1954; Te Sun, 1980), a measure of
dependency between the target variable Y and the modalities (X1, X2), decomposing it into shared
information (information both X1, X2 share about Y ), unique information 1 (information only X1

has about Y ), unique information 2 (information only X2 has about Y ), and complementary infor-
mation (information about Y that requires both X1 and X2) as follows:

I(Y : (X1, X2)) =SI(Y : X1;X2)︸ ︷︷ ︸
shared information

+UI(Y : X1\X2)︸ ︷︷ ︸
unique information 1

+UI(Y : X2\X1)︸ ︷︷ ︸
unique information 2

+ CI(Y : X1;X2)︸ ︷︷ ︸
complementary information

Bertschinger et al. (2014) specifies how to estimate these quantities. For instance, Bertschinger et al.
(2014) show that the unique information between Y and X1 can be estimated using the following:

ŨI(Y : X1\X2)= min
q∈∆Ω

[Iq(Y : (X1, X2))− Iq(Y : X2)],

5
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where ∆Ω is the set of joint distributions over (X1, X2, Y ) such that, q(Xi = xi, Y = y) =
pΩ(Xi = xi, Y = y) ∀xi ∈ Xi, y ∈ Y, i ∈ {1, 2}, that is, the set of joint distributions that match
the true two-way data distributions. Notice that the objective function requires a minimization over
the three-way mutual information. Approximations for all other entities in the decomposition are
in Appendix B. Importantly, all approximations require minimizing the three-way mutual informa-
tion, and Bertschinger et al. (2014) demonstrates that the solution to any one objective specifies an
optimum for all decompositions.

Prior work that relies on this Partial Information Decomposition (PID) to attribute information-
theoretic value implicitly assumes that Ωsource

obs = Ωsource = Ωtarget = Ω. Instead, we evidence the
limitations of these strategies performed on Ωsource

obs when the target decomposition is Ωtarget = Ω,
i.e., the true data-generating mechanism.

Table 1. Impact of missingness on multimodality information for bitwise logic operators. Parentheses
denote standard deviation across batches.

AUROC Information Decomposition

X1 X2 X1 +X2 Unique 1 Unique 2 Shared Complementary

A
N

D Oracle 0.83 (0.01) 0.84 (0.01) 1.00 (0.00) 0.05 (0.00) 0.03 (0.00) 0.26 (0.00) 0.47 (0.00)
Observed 0.66 (0.01) 0.93 (0.01) 1.00 (0.00) 0.44 (0.00) 0.00 (0.00) 0.15 (0.00) 0.36 (0.00)
ICYM2I 0.83 (0.01) 0.85 (0.02) 1.00 (0.00) 0.03 (0.00) 0.03 (0.00) 0.27 (0.00) 0.45 (0.00)

O
R

Oracle 0.84 (0.01) 0.83 (0.01) 1.00 (0.00) 0.04 (0.00) 0.05 (0.00) 0.27 (0.00) 0.46 (0.00)
Observed 0.95 (0.01) 0.77 (0.01) 1.00 (0.00) 0.01 (0.00) 0.15 (0.00) 0.10 (0.00) 0.23 (0.00)
ICYM2I 0.85 (0.02) 0.82 (0.01) 1.00 (0.00) 0.03 (0.00) 0.02 (0.00) 0.27 (0.00) 0.50 (0.00)

X
O

R Oracle 0.51 (0.02) 0.49 (0.01) 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.99 (0.00)
Observed 0.52 (0.02) 0.80 (0.02) 1.00 (0.00) 0.34 (0.00) 0.07 (0.00) -0.07 (0.00) 0.62 (0.00)
ICYM2I 0.53 (0.03) 0.49 (0.03) 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.96 (0.00)

As a motivating example, we analyze the impact of missingness on estimating PID in the case
of unidimensional modalities with a bitwise logic outcome (AND, OR, and XOR). Table 1 (left)
presents the discriminative performance associated with neural networks trained on each modality
and their combination under three scenarios: (i) access to all data (Oracle), (ii) focusing only on
datapoints with all covariates observed (Observed), and (iii) adequately accounting for missingness
(ICYM2I using IPW to adjust Ωobs 7→ Ω, by modeling the missingness mechanism), as proposed
in Section 4.2. Table 1 (right) presents PID, discussed in Section 4.3 under the same scenarios,
demonstrating how information decomposition is also biased due to missingness.

Specifically, relying on Ωobs overestimates the performance of X1 for OR but underestimates it for
AND. Similarly, biased decomposition results in overestimating the informativeness of X1 (“Unique
1” compared to “Unique 2”) for OR. As X1 informs the missingness process, it indirectly informs
the outcome of interest, despite the true underlying generative process being dependent on both.
The use of IPW can correct for such bias under positivity as long as the propensities for IPW can
be estimated (i.e., the MAR assumption). We study sensitivity to this assumption in Appendix D,
where we further evaluate the robustness of our method under MCAR and MNAR, demonstrating
robustness under MCAR.

We now formally describe two methods for reliably inferring the informativeness of modalities using
(i) unbiased estimation of unimodal versus multimodal model performance using supervised learn-
ing (ICYM2I-learn), and (ii) high-dimensional autodifferentiable partial information decomposition
(ICYM2I-PID). In addition, we demonstrate the need for IPW-adjusted evaluation as a key element
to determine modality informativeness using supervised learning.

4.2 ICYM2I-LEARN: ESTIMATING PERFORMANCES FOR INFORMATIVENESS UNDER
MISSINGNESS

Training. Under the MAR assumption, i.e., the missingness is fully explained by observed covari-
ates C; that is, the probability of a data point being missing depends only on C, we propose to train
the model with a weighted loss using samples from Ωobs. The proposed IPW-adjusted loss accounts
for the distributional shift (Ωobs 7→ Ω) by up-weighting under-observed points, as described in the
following lemma.

6
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Lemma 1 (IPW Training). The loss function computed on the observed data lΩobs
(x1, x2, y) can be

reweighted to approximate the target loss lΩ(x1, x2, y) as follows:

lΩ(x1, x2, y) =
1

1− p(m1,m2,my | C)
lΩobs

(x1, x2, y)

where p(m1,m2,my | C) is the probability of missingness, given the covariates C.

Evaluation. Existing works suffer from an analogous bias in model evaluation, by relying on a
hold-out set from the observed distribution (Ωobs). To estimate a given metric on the true underlying
distribution, one must correct this metric using a similar correction as previously described. Li et al.
describes how to correct for both AUC and Brier score using IPW.
Corollary 1 (ICYM2I-learn). Consider a model f trained and evaluated on data drawn from Ωobs.
To correct the model and estimate its performance on Ω, one must correct both its training and
evaluation following the previous corrections.

4.3 ICYM2I-PID: PARTIAL INFORMATION DECOMPOSITION FOR MULTIMODAL
INFORMATIVENESS

Under missingness, we have samples from Ωobs instead of Ω. Estimating PID measures in this
setting requires adjusting for the Ωobs 7→ Ω shift. Our approach introduces a correction to ensure
that we optimize an unbiased estimate of the three-way mutual information using samples from Ωobs.

Lemma 2 (Corrected mutual information).

IΩ(Y : (X1, X2)) = Ex1,x2∼pΩobs
(x1,x2)

y∼pΩ (y|x1,x2)

[
1− p(m1,m2)

1− p(m1,m2|x1, x2, y)
log

(
pΩ(x1, x2, y)

pΩ(x1, x2)pΩ(y)

)]
See Appendix A for the complete proof. Effectively, our approach corrects the optimization pro-
posed by Liang et al. (2024a) to account for the distribution shift induced by missing modalities. In
other words, ICYM2I-PID solves:

min
q∈∆ICYM2 I

Ω

Iq(Y : (X1, X2))

where
∆ICYM2I

Ω = {q ∝ exp(f1(x1) · f2(x2)) : q(xi, y) = IPWΩ(pϕ(y, xi))∀xi ∈ Xi, y ∈ Y, i ∈ {1, 2}}
where, IPWq(p) is an IPW correction for the shift p 7→ q using samples from p and pϕ is a re-
parametrization of Ω using neural networks and learned using samples from Ωobs

via the weighted loss introduced in Lemma 1. Importantly, the proposed correction is agnostic to
the parametrisation of q. The resulting PID estimation framework consists of the following steps
(detailed in Appendix C):

1. Model the missingness mechanism. Train a model to estimate the probability of missing-
ness given C to obtain importance weights for correcting the distribution shift.

2. Train corrected unimodal and multimodal models. Train each model (f1(x1), f2(x2),
and f(x1, x2)) using the IPW-corrected loss introduced in Lemma 1. These models can be
trained using flexible inductive biases depending on the application of interest.

3. Solve PID optimization. Estimate q ∈ ∆ICYM2I
Ω

2minimizing Iq(Y : (X1, X2)), where
q is parameterized by the product of two unimodal networks. To enforce the marginal
constraints q(xi, y), we apply a modified Sinkhorn–Knopp procedure (Knight, 2008) using
IPW-corrected unimodal distributions2. Note that the parametrization of q chosen for this
method follows Liang et al. (2023) due to the flexibility of implementation. However, our
framework is agnostic to the choice of this parametrization. The choice of this parametriza-
tion for fusion is application-driven, as long as calibrated probabilistic scores are learned.

2

2Prior work typically matches q(y | xi) to Ωobs(y | xi), which yields biased PID estimates under missing-
ness.
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4. Estimate the PID components. Given q, compute PID quantities using the bounds
of Bertschinger et al. (2014), corrected via the IPW-correction introduced in Appendix A.

5 EXPERIMENTS

To better understand the connection between performance, information decomposition and miss-
ingness, we propose a simulation (detailed in Appendix E), two semi-synthetic studies that reflect
real-world missingness mechanisms (see Appendix F), and a real-world case-study.

5.1 SIMULATION AND SEMI-SYNTHETIC EXPERIMENTS

In Table 2, each point represents the estimated PID value (Unique 1, Unique 2, Shared, and Com-
plementary) for one simulation under the training and evaluation IPW-corrections and the oracle
performance, i.e., a model trained and tested on Ω. Specifically, columns reflect evaluation correc-
tion, while rows reflect training correction. These results underline the importance of correcting
both training and evaluation, as proposed in ICYM2I, to best align with the performance one would
obtain on Ω, as shown by the smallest Root Mean Squared Error (RMSE) observed when both
corrections are applied. This observation shows that the proposed ICYM2I best recovers the true
informativeness of each modality, despite relying on Ωobs. Appendix E echoes the same observation
when evaluating model performance.

Table 2. Comparison between estimated PID using training and PID corrections, and oracle PID on Ω.
ϵ denotes the RMSE between estimated and oracle PIDs.

Observed (Ωobs) Underlying (Ω)

∆
Ω

-C
or

re
ct

io
n

Ωobs

Ω

The semi-synthetic experiments examine the effect of enforcing increasing missingness on the
performance and information decomposition of UR-FUNNY (Hasan et al., 2019) and hateful
memes (Kiela et al., 2020), two foundational real-world datasets used in the multimodal litera-
ture for affective computing and content moderation. Table 3 summarizes the effect of enforcing
70% missingness on estimating multimodality informativeness across these datasets, demonstrating
the generalizability of our proposed strategy across real-world datasets. Appendix F further illus-
trates the robustness of the methodology under different levels of missingness in these datasets and
explores MNAR patterns.

5.2 CHEST RADIOGRAPHS ARE UNINFORMATIVE OVER ELECTROCARDIOGRAMS FOR
STRUCTURAL HEART DISEASE DETECTION.

While our core contribution is methodological, this section illustrates how ignoring missingness can
lead to biased estimates of the informativeness of a given modality in a real-world setting where
modalities are commonly missing. Specifically, we study structural heart disease (SHD), a set
of conditions that affect the heart’s physiology, which is typically diagnosed using transthoracic
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Table 3. Impact of 70% missingness on multimodality information for UR-FUNNY (Hasan et al.,
2019) and Hateful Memes (Kiela et al., 2020). Parentheses denote standard deviation across batches.

AUROC Information Decomposition

Text Image/Video Image + Text Unique Text Unique Image Shared Complementary
U

R
-F

U
. Oracle 0.68 (0.01) 0.60 (0.02) 0.69 (0.02) 0.10 (0.00) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00)

Observed 0.61 (0.03) 0.54 (0.04) 0.63 (0.03) 0.05 (0.00) 0.00 (0.00) 0.03 (0.00) 0.00 (0.00)
ICYM2I 0.66 (0.03) 0.57 (0.04) 0.62 (0.04) 0.07 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

M
em

es Oracle 0.71 (0.01) 0.57 (0.01) 0.72 (0.01) 0.09 (0.01) 0.00 (0.00) 0.04 (0.00) 0.05 (0.01)
Observed 0.68 (0.02) 0.61 (0.02) 0.71 (0.02) 0.13 (0.00) 0.04 (0.00) 0.01 (0.00) 0.00 (0.00)
ICYM2I 0.67 (0.02) 0.61 (0.02) 0.71 (0.02) 0.10 (0.00) 0.01 (0.00) 0.02 (0.03) 0.03 (0.01)

echocardiograms (TTEs) (Writing Committee Members et al., 2021). However, TTEs are often un-
derutilized in the United States due to diagnostic stewardship and competing financial incentives (Pa-
polos et al., 2016). Prior work using unimodal models with common modalities in electrocardio-
grams (ECGs) (Elias et al., 2022; Ulloa-Cerna et al., 2022) and chest radiographs (CXRs) (Bhave
et al., 2024) has demonstrated that non-TTE modalities can detect structural heart disease labels.
However, CXRs are not systematically collected in conjunction with ECGs, leading to systematic
missingness patterns. We, therefore, evaluate ICYM2I on this clinical task to evaluate the informa-
tiveness of CXRs in diagnosing SHD, despite its missingness.

Dataset. Our study population consists of a retrospective study gathering 98,397 adult patients who
received an ECG and a TTE within one year of each other. The population has 20.56% SHD preva-
lence. In this cohort, 12,587 members (12.79%) have recorded CXRs. For subjects with multiple
echocardiograms, we select the first TTE to model opportunistic screening with non-TTE modali-
ties. All data were collected from an academic urban medical system between 2008 and 2022. Data
are split temporally, where subjects with TTEs collected on or after 2018 (n = 40, 734) are allocated
to the test set. All data were de-identified, retrospective, and collected for clinical purposes from an
academic hospital system, with approval from the Institutional Review Board. Appendix G contains
further details regarding preprocessing, embedding generation, and the ICYM2Iimplementation.

Results. Table 4 presents the performance of each uni- and multimodal model, along with the
associated information decomposition. While both the observed and corrected analyses demonstrate
the importance of ECG in modeling SHD, the corrected results raise questions about the information
gain associated with CXR. Naive decomposition suggests the unique information in CXRs at about
5% of the total information. However, ICYM2I reduces this unique contribution to 1.8% while
increasing estimates of shared information between ECG and CXRs for SHD detection. In contrast
to domain knowledge, where ECGs capture electrophysiology while CXRs capture structure and
anatomy, two distinct aspects of cardiac health, the corrected complementary and shared results,
and low unique information of CXRs suggest that CXRs are not independently useful for SHD
diagnosis. Note that our results indicate that the multimodal model performs slightly worse than
the unimodal ECG model, reflecting the potential overfitting risk associated with a large number of
features.

Table 4. Informativeness of ECG and CXR modalities on model-based structural heart disease detec-
tion. Parentheses denote standard deviation across batches (n = 1024).

AUROC Information Decomposition

ECG CXR ECG + CXR Unique ECG Unique CXR Shared Complementary

Observed 0.83 (0.01) 0.72 (0.02) 0.82 (0.01) 0.11 (0.00) 0.01 (0.00) 0.10 (0.00) 0.00 (0.00)
ICYM2I 0.82 (0.01) 0.73 (0.02) 0.83 (0.01) 0.07 (0.00) 0.01 (0.00) 0.48 (0.00) 0.01 (0.00)

6 DISCUSSION

This work formalizes the issue of partially observed modalities in multimodal settings. We empha-
size that existing works commonly overlook missingness by discarding samples with any missing
modality at the curation stage, or implicitly assume that the missingness mechanism remains sta-
ble when a model is deployed in the target environment. Our work formalizes this problem and
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demonstrates its ubiquity in the multimodality literature. Most critically, prior work ignores that any
perceived informativeness of a modality may result in increased rates of data collection, inducing
different missingness patterns at deployment. Our work, therefore, introduces ICYM2I, a correction
to estimate the information gain associated with a partially observed modality. Our results demon-
strate the methodology’s capacity to correct for biases introduced by missingness across synthetic,
semi-synthetic, and real-world multimodal datasets. Finally, we demonstrate the practical utility of
this methodology in a healthcare dataset, showing the divergent conclusions that one would reach
if ignoring missingness. Our work highlights the critical importance of missingness in multimodal
research and urges practitioners to pay particular attention to this issue by systematically collecting
data with incomplete modalities and carefully modeling and accounting for missingness to enhance
robustness.

Limitations. The key assumption in our work is that missingness is MAR. No theoretical guaran-
tees exist under MNAR patterns. While distinguishing these assumptions is empirically untestable,
practitioners should ensure that this assumption is appropriate for their data. Importantly, MAR is
less restrictive than the implicit MCAR assumption made in the multimodal literature, and does not
require unrealistic distributional assumptions that one must assume to tackle MNAR patterns. Addi-
tionally, our work is based on Partial Information Decomposition (PID Bertschinger et al. (2014)),
which focuses on two input modalities. In practice, practitioners could consider a one-vs-all ap-
proach to inform modality informativeness using our method. However, extending the decomposi-
tion to more than two modalities remains an open challenge (Griffith & Koch, 2014; Kolchinsky,
2022) where notions of mutual information itself are not well outlined beyond three-way mutual
information. As in prior work on PID-based measures of information gain on high-dimensional
data (Liang et al., 2023; 2024a), the quality of the representations used may impact the measures
returned by ICYM2I. We ensure that our probabilistic estimates are calibrated to mitigate any such
challenges.

Ethics statement. Our work demonstrates the impact of missingness on performance estimates in
multimodal learning. We demonstrate the utility of our method in a crucial healthcare use case.
However, the methodology remains a proof of concept that would require additional testing to be
deployed in a real-world context. Our study is approved by the [Anonymized] Institutional Review
Board. We have extracted all data in HIPAA-compliant servers, and our experiments are also con-
ducted on HIPAA-compliant compute despite being deidentified for extra caution. While beyond the
scope of this work, modality completeness is not uniform across demographic subgroups and can
manifest in data collection policies, such as differential access to care based on insurance status. Our
method could provide important insights into the utility of multimodal predictions in such settings.
Finally, our proposed method relies on a notion of instance for which all modalities can be observed.
Extending this method when there is no notion of an instance, i.e., unaligned modalities, could be
considered but requires different inductive biases to model the underlying unimodal and multimodal
probabilities.

Reproducibility statement. Theoretical proofs are provided in Appendix A. All code for apply-
ing the proposed ICYM2I and reproducing all synthetic and semi-synthetic results presented in
this work is publicly available on Github3. A summary of the computational resources required to
reproduce our results is given in Appendix H.
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A PROOFS

This section provides the proofs for Lemma 1 and Lemma 2.
Lemma 1. The separable loss function computed on the observed data lΩobs

(x1, x2, y) can be
reweighted to approximate the target loss lΩ(x1, x2, y) as follows:

lΩ(x1, x2, y) =
1

1− pΩ(m1,m2,my | C)
lΩobs

(x1, x2, y)

where pΩ(m1,m2,my | C) is the probability of missingness, given the covariates C.

Proof. The proof is analogous to that of Lemma 2, which we show in detail, for any separable loss
function l(x1, x2, y).

Lemma 2.

IΩ(Y : (X1, X2)) = Ex1,x2∼pΩobs
(x1,x2)

y∼pΩ (y|x1,x2)

[
1− p(m1,m2)

1− p(m1,m2|x1, x2, y)
log

(
pΩ(x1, x2, y)

pΩ(x1, x2)pΩ(y)

)]

Proof. Let m = (m1,m2),

IΩ(Y : (X1, X2))

= EΩ

[
log

(
pΩ(x1, x2, y)

pΩ(x1, x2)pΩ(y)

)]
= Ex1,x2∼pΩobs

(x1,x2)

y∼pΩ (y|x1,x2)

[
pΩ(x1, x2, y)

pΩobs
(x1, x2, y)

log

(
pΩ(x1, x2, y)

pΩ(x1, x2)pΩ(y)

)]
= Ex1,x2∼pΩobs

(x1,x2)

y∼pΩ (y|x1,x2)

[
pΩ(x1, x2, y)

pΩ(x1, x2, y | m = 0)
log

(
pΩ(x1, x2, y)

pΩ(x1, x2)pΩ(y)

)]

= Ex1,x2∼pΩobs
(x1,x2)

y∼pΩ (y|x1,x2)

 pΩ(x1, x2, y)
p(m=0|x1,x2,y)pΩ(x1,x2,y)

p(m=0)

log

(
pΩ(x1, x2, y)

pΩ(x1, x2)pΩ(y)

)
= Ex1,x2∼pΩobs

(x1,x2)

y∼pΩ (y|x1,x2)

[
1− p(m = 1)

1− p(m = 1|x1, x2, y)
log

(
pΩ(x1, x2, y)

pΩ(x1, x2)pΩ(y)

)]

That is, to estimate the mutual information under the true data distribution, we adjust for the shift in
pΩobs

(x1, x2) 7→ pΩ(x1, x2) and sample y from the IPW-adjusted (parametrized approximations) of
pΩ(y | x1, x2).
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B PARTIAL INFORMATION DECOMPOSITION (PID)

Partial information decomposition (PID Williams & Beer (2010)) consists in decomposing the total
mutual information (McGill, 1954; Te Sun, 1980) between a target variable and two input vari-
ables into information about the target variable that both input variables share (“Shared” informa-
tion), only one input variable has (“Unique” information) and emerges from the interactions of both
(“Complementary” information). Bertschinger et al. (2014) introduces bounds for these, reiterated
below. In this Appendix, we express these bounds as entropy. First, Table 5 summarizes the nota-
tions used in the literature and those used in our work.

Table 5. Quantities and associated variables. Note that the four information measures are approxima-
tions.

Quantity Bertschinger ICYM2I

Input Variable 1 Y X1

Input Variable 2 Z X2

Target Variable X Y

Redundant / Shared Information S̃I(X : Y : Z) S̃I(Y : X1;X2)

Unique Information (Input Variable 1) ŨI(X : Y \Z) ŨI(Y : X1\X2)

Unique Information (Input Variable 2) ŨI(X : Z\Y ) ŨI(Y : X2\X1)

Synergistic / Complementary Information C̃I(X : Y ;Z) C̃I(Y : X1;X2)

PID decomposition of the three-way mutual information I(Y : (X1, X2)) results in the quantities
of interest as follows:

I(Y : (X1, X2)) =SI(Y : X1;X2)︸ ︷︷ ︸
Shared

+UI(Y : X1\X2)︸ ︷︷ ︸
Unique 1

+UI(Y : X2\X1)︸ ︷︷ ︸
Unique 2

+CI(Y : X1;X2)︸ ︷︷ ︸
Complementary

Let ∆ be the space of all distributions over (X1, X2, Y ) and let Ω denote the true data distribution
(without missingness) and define ∆Ω :=

{
q ∈ ∆ : q(Xi = xi, Y = y) = pΩ(Xi = xi, Y =

y) ∀xi ∈ Xi, y ∈ Y, i ∈ {1, 2}
}

. That is, ∆Ω is the set of all distributions over (X1, X2, Y ) such
that the two-way joints between Xi and Y match the true data-generating distribution. Equipped
with this set, Bertschinger et al. (2014) provides the following bounds S̃I , ŨI , and C̃I on the
analogous quantities:

S̃I(Y : X1;X2) = max
q∈∆Ω

CoIq(Y ;X1;X2)

= max
q∈∆Ω

[Iq(Y : X1)− Iq(Y : X1|X2)]

= max
q∈∆Ω

[[Iq(Y : (X1, X2))− Iq(Y : X2|X1)]− Iq(Y : X1|X2)]

= max
q∈∆Ω

[Iq(Y : (X1, X2))− [Iq(Y : X2|X1) + Iq(Y : X1|X2)]]

ŨI(Y : X1\X2) = min
q∈∆Ω

Iq(Y : X1|X2)

= min
q∈∆Ω

[Iq(Y : (X1, X2))− Iq(Y : X2)]

ŨI(Y : X2\X1) = min
q∈∆Ω

Iq(Y : X2|X1)

= min
q∈∆Ω

[Iq(Y : (X1, X2))− Iq(Y : X1)]

C̃I(Y : X1;X2) = IΩ(Y : (X1, X2))− min
q∈∆Ω

Iq(Y : (X1, X2))

In this context, Bertschinger et al. (2014) demonstrates that solving the optimization for q ∈ ∆Ω

that satisfies one of the four conditions above is sufficient to obtain all the quantities of interest.
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Importantly, these bounds are tight if there exists a q0 ∈ ∆Ω such that C̃Iq0(Y : X1;X2) = 0.
Bertschinger et al. (2014) further shows that under common (but unverifiable) assumptions on the
data-generating process, the inequalities are tight for all q ∈ ∆Ω . This results in a compelling
argument for relying on these entities, as it suggests that it is not possible to decide whether com-
plementary information exists when only the marginals (Y,X1) and (Y,X2) are known.

Formulating PID quantities in terms of entropy. For stability, we propose to formalize the pre-
vious bound in terms of entropy, H(·), defined for general distributions of X and Y as follows:

H(X) := −
∑
x∈X

p(x) log p(x)

H(Y,X) := −
∑

x∈X ,y∈Y
p(y, x) log (p(y, x))

H(Y |X) := −
∑

x∈X ,y∈Y
p(y, x) log

(
p(y, x)

p(x)

)
= H(Y,X)−H(X)

Using these notations, the mutual information I(·) can be defined as:

I(Y : X) := H(X)−H(X|Y )

= H(X) +H(Y )−H(Y,X)

I(Y : X2|X1) := H(Y,X1) +H(X1, X2)−H(Y,X1, X2)−H(X1)

The previous quantities of interest can then be derived as:

I(Y : (X1, X2)) := I(Y : X1) + I(Y : X2|X1)

= H(Y ) +����H(X1)−�����H(Y,X1)︸ ︷︷ ︸
I(Y :X1)

+�����H(Y,X1) +H(X1, X2)−H(Y,X1, X2)−����H(X1)︸ ︷︷ ︸
I(Y :X2|X1)

= H(Y ) +H(X1, X2)−H(Y,X1, X2)

where the first equation comes from the chain rule of mutual information (Wyner, 1978).

Similarly, we can get the expression for co-information CoI(Y ;X1;X2):

CoI(Y ;X1;X2) =I(Y : X1) + I(Y : X2)− I(Y : (X1, X2))

=[H(Y )−H(Y |X1)︸ ︷︷ ︸
I(Y :X1)

] + [H(Y )−H(Y |X2)︸ ︷︷ ︸
I(Y :X2)

]

−[H(Y ) +H(X1, X2)−H(Y,X1, X2)︸ ︷︷ ︸ I(Y :(X1,X2))]

=[H(Y )− [H(Y,X1)−H(X1)]] + [�
��H(Y )− [H(Y,X2)−H(X2)]]

− [���H(Y ) +H(X1, X2)−H(Y,X1, X2)]

=H(Y ) +H(X1) +H(X2)

− [H(X1, X2) +H(Y,X1) +H(Y,X2)]

+H(Y,X1, X2)
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The PID bounds can then be expressed in terms of entropy:

S̃I(Y : X1;X2) = max
q∈∆Ω

CoIq(Y ;X1;X2)

= max
q∈∆Ω

[Hq(Y ) +Hq(X1) +Hq(X2)

− [Hq(X1, X2) +Hq(Y,X1) +Hq(Y,X2)] +Hq(Y,X1, X2)]

ŨI(Y : X1\X2) = min
q∈∆Ω

Iq(Y : X1|X2)

= min
q∈∆Ω

[Hq(Y,X2) +Hq(X1, X2)−Hq(Y,X1, X2)−Hq(X2)]

ŨI(Y : X2\X1) = min
q∈∆Ω

Iq(Y : X2|X1)

= min
q∈∆Ω

[Hq(Y,X1) +Hq(X1, X2)−Hq(Y,X1, X2)−Hq(X1)]

C̃I(Y : X1;X2) =IΩ(Y : (X1, X2))− min
q∈∆Ω

Iq(Y : (X1, X2))

=[HΩ(Y ) +HΩ(X1, X2)−HΩ(Y,X1, X2)]

− min
q∈∆Ω

[Hq(Y ) +Hq(X1, X2)−Hq(Y,X1, X2)]

where Hq(·) and HΩ(·) is the entropy of a variable under probability distributions q and Ω, respec-
tively.
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C ICYM2I

C.1 ICYM2I-LEARN

Table 6 summarizes the proposed approach to estimate performance using Ωobs. Critically, one must
correct both training and evaluation to obtain the performance on Ω.

Table 6. ICYM2I: Inverse probability weighting-adjusted multimodal training and evaluation under
missingness shift.

Evaluation distribution

Observed Underlying
Ωobs Ω

Tr
ai

ni
ng

Current
practice

IPW-adjusted
evaluation alone

IPW-adjusted
training alone

ICYM2I (IPW-adjusted
training and evaluation)

C.2 ICYM2I-PID

To obtain the PID decomposition, one must solve one of the bounds introduced in Appendix B. Due
to the equivalence demonstrated by Bertschinger et al. (2014), one can focus on solving:

min
q∈∆Ω

Iq(Y : (X1, X2))

To this end, Liang et al. (2024a) proposes to minimize this quantity using the set

∆Ω ≈ {q ∝ exp(f1(x1) · f2(x2)) : q(xi, y) =Ωobsϕ(xi, y)∀xi ∈ Xi, y ∈ Y, i ∈ {1, 2}}

Our proposed approach uses the following projection set to operationalize PID-bound estimation
while accounting for the distribution shift associated with missing modalities:

∆ICYM2I
Ω

≈{q ∝ exp(f1(x1) · f2(x2)) : q(Xi = xi, Y = y) =pΩϕ(y, xi)∀xi ∈ Xi, y ∈ Y, i ∈ {1, 2}}
={q ∝ exp(f1(x1) · f2(x2)) : q(Xi = xi, Y = y) = IPWpΩϕ

(pΩobsϕ
(y, xi))∀xi ∈ Xi, y ∈ Y, i ∈ {1, 2}}

where IPWq(p) denote IPW reweighting to correct p 7→ q using samples from p.

We summarize our proposed auto-differentiable PID estimation algorithm with IPW-based

correction in Algorithm 1, based on the following steps:

• Estimate IPW correction to adjust for the distribution shift. To this end, we recom-
mend training a flexible, calibrated model that controls for all covariates explaining the
missingness process.

• Train corrected unimodal and multimodal models. Training must account for the distri-
bution shift by weighting the loss using Lemma 1. These models are used to estimate Ω.

• PID optimization. One must estimate q ∈ ∆ICYM2I
Ω that minimizes Iq(Y : (X1, X2)).

To ensure q ∈ ∆ICYM2I
Ω , we use a modified SINKHORN-KNOPP algorithm that matches

q’s marginals to the estimated probabilities of the corrected unimodal neural networks (ob-
tained in the previous step).
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• Estimate mutual information. Equipped with q, one can estimate the PID decomposition
using the adjustment presented in Appendix A.

Algorithm 1 ICYM2I-PID

Require: X1, X2, Y ∼ pΩobs
1: # Step 1: Adjust Ωobs 7→ Ω.
2: Estimate missingness mechanisms pΩϕ(M1,M2,MY | C) for IPW.
3: # Step 2: Train corrected unimodal and multimodal models.
4: Training each model with weighting IPW-loss: f(y | xi) ≈ pΩ(y | xi), ∀i ∈ {1, 2}, and

f(y | x1, x2) ≈ pΩ(y | x1, x2).
5: # Step 3: PID optimization.
6: Initialize parameterizations θ for q: fi(y | xi), ∀i ∈ {1, 2}.
7: qθ(y | x1, x2)← exp

(
f1(y | x1)f2(y | x2)

T
)

8: while not converged do
9: for samples in batch do

10: # Ensure q ∈ ∆ICYM2I
Ω by projection.

11: qθ(y | x1, x2)← SINKHORN-KNOPP(qθ(y | x1, x2), {pΩ(y, xi)}2i=1).
12: Estimate the loss Iq(Y : (X1, X2)) as a batch sample mean.
13: θ ← θ −∇θIq(Y : (X1, X2)).
14: end for
15: end while

# Step 4: Estimate mutual information under pΩ .
16: Estimate IΩ(Y : (X1, X2)), and IΩ(Y : Xi), ∀i ∈ {1, 2} using adjustment in Appendix A.
17: PID(Ω)← (C̃I(Y : X1;X2), S̃I(Y : X1;X2), ŨI(Y : X1\X2), ŨI(Y : X2\X1))
18: return PID(Ω)
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The traditional SINKHORN-KNOPP algorithm updates a matrix to enforce its marginals to be unit
vectors. In our work, we adapt the algorithm to enforce the marginals to match pΩ-marginals, en-
suring that qθ(·) ∈ ∆Ω. To ensure proper gradient propagation and reduce memory use, we use the
unrolled SINKHORN-KNOPP (Sinkhorn & Knopp, 1967; Cuturi, 2013) algorithm. In the follow-
ing, we use subscripts qx1,x2

to denote qθ(y, x1, x2) and pxi
to denote pϕ(y, xi). The algorithm is

detailed below:

Algorithm 2 Unrolled SINKHORN-KNOPP update

Require: qx1x2
, px1

, px2
, tolerance atol

1: qx1
←

∑
x2

qx1x2

2: qx2 ←
∑

x1
qx1x2

3: while do
4: # Avoid update if both exit conditions have been met.
5: if

∣∣∣ qx1−px1

px1

∣∣∣ ≤ atol and
∣∣∣ qx2−px2

px2

∣∣∣ ≤ atol then
6: return qx1x2

7: end if
8: # Update marginal.
9: qx1x2 ←

qx1x2

qx2
· px2

10: qx1
←

∑
x2

qx1x2

11: # If the other marginal still matches, done.
12: if

∣∣∣ qx1
−px1

px1

∣∣∣ ≤ atol then
13: return qx1x2

14: end if
15: # Repeat for the other marginal.
16: qx1x2

← qx1x2

qx1
· px1

17: qx2
←

∑
x1

qx1x2

18: if
∣∣∣ qx2

−px2

px2

∣∣∣ ≤ atol then
19: return qx1x2

20: end if
21: end while
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D BIT-WISE LOGITS

In this section, we perform a sensitivity analysis of the logit setting presented in Section 4.1 under
two additional missingness patterns: MCAR (Missing Completely at Random) and MNAR (Missing
Not at Random). In this setting, we fit a logistic regression to estimate the probability of missingness
on the observed modality, which is then used to estimate the IPW. The performance estimates and
PID for these two missingness processes are illustrated in Tables 7 and 8.

Since MCAR does not result in a distribution shift, one expects the same performance estimates
for both the full and observed populations. Furthermore, in this setting, the IPW correction corre-
sponds to a constant value, as any point has the same probability of observing both modalities. This
correction also results in no change in performance estimates.

On the contrary, MNAR patterns do not guarantee similar behavior. Particularly, this missingness
process may result in a distribution shift that cannot be assessed or accounted for without assump-
tions about the data distribution, as one does not observe the covariates that impact the missingness
process. The results demonstrate that both the observed and corrected strategies result in biased
estimates.

Table 7. Impact of missingness on multimodality information for bitwise logic operators under MCAR.
Parentheses denote standard deviation across batches.

AUROC Information Decomposition

X1 X2 X1 +X2 Unique 1 Unique 2 Shared Complementary

A
N

D Oracle 0.83 (0.01) 0.84 (0.01) 1.00 (0.00) 0.05 (0.00) 0.03 (0.00) 0.26 (0.00) 0.47 (0.00)
Observed 0.83 (0.01) 0.83 (0.01) 1.00 (0.00) 0.05 (0.00) 0.03 (0.00) 0.23 (0.00) 0.52 (0.00)
ICYM2I 0.83 (0.01) 0.85 (0.01) 1.00 (0.00) 0.03 (0.00) 0.06 (0.00) 0.27 (0.00) 0.44 (0.00)

O
R

Oracle 0.84 (0.01) 0.83 (0.01) 1.00 (0.00) 0.04 (0.00) 0.05 (0.00) 0.27 (0.00) 0.46 (0.00)
Observed 0.84 (0.01) 0.84 (0.01) 1.00 (0.00) 0.06 (0.00) 0.03 (0.00) 0.25 (0.00) 0.51 (0.00)
ICYM2I 0.85 (0.01) 0.83 (0.01) 1.00 (0.00) 0.06 (0.00) 0.02 (0.00) 0.25 (0.00) 0.51 (0.00)

X
O

R Oracle 0.51 (0.02) 0.49 (0.01) 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.99 (0.00)
Observed 0.51 (0.02) 0.50 (0.02) 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.95 (0.00)
ICYM2I 0.51 (0.02) 0.51 (0.02) 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.95 (0.00)

Table 8. Impact of missingness on multimodality information for bitwise logic operators under MNAR.
Parentheses denote standard deviation across batches.

AUROC Information Decomposition

X1 X2 X1 +X2 Unique 1 Unique 2 Shared Complementary

A
N

D Oracle 0.83 (0.01) 0.84 (0.01) 1.00 (0.00) 0.05 (0.00) 0.03 (0.00) 0.26 (0.00) 0.47 (0.00)
Observed 0.93 (0.01) 0.67 (0.01) 1.00 (0.00) 0.45 (0.00) 0.00 (0.00) 0.17 (0.00) 0.33 (0.00)
ICYM2I 0.93 (0.01) 0.67 (0.01) 1.00 (0.00) 0.45 (0.00) 0.00 (0.00) 0.17 (0.00) 0.33 (0.00)

O
R

Oracle 0.84 (0.01) 0.83 (0.01) 1.00 (0.00) 0.04 (0.00) 0.05 (0.00) 0.27 (0.00) 0.46 (0.00)
Observed 0.78 (0.01) 0.95 (0.01) 1.00 (0.00) 0.00 (0.00) 0.17 (0.00) 0.11 (0.00) 0.23 (0.00)
ICYM2I 0.78 (0.01) 0.95 (0.01) 1.00 (0.00) 0.00 (0.00) 0.17 (0.00) 0.11 (0.00) 0.23 (0.00)

X
O

R Oracle 0.51 (0.02) 0.49 (0.01) 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.99 (0.00)
Observed 0.80 (0.02) 0.52 (0.02) 1.00 (0.00) 0.35 (0.00) 0.07 (0.00) 0.00 (0.00) 0.61 (0.00)
ICYM2I 0.80 (0.02) 0.52 (0.02) 1.00 (0.00) 0.35 (0.00) 0.07 (0.00) 0.00 (0.00) 0.61 (0.00)
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E SYNTHETIC DATA RESULTS

Data generation. Our work builds on the example introduced in (Liang et al., 2024a), in which
we enforce additional missingness. Three latent variables (z1, z2, and zc) are drawn from multi-
dimensional clustered data; the observed covariates are a concatenation of zc and one of the other
latent variables, as illustrated in Figure 3. Then, the outcome Y is generated as Y = σ(p1E(z1) +
p2E(z2) + (1− p1 − p2)E(zc)), with the proportion pi ∈ [0, 1] such that p1 + p2 ≤ 1. We simulate
datasets with varying values of p1 and p2. Then, we enforce a 50% MAR missingness pattern in
X2 by modeling the probability of missingness. We do this by clustering X1 into 100 groups using
Kmeans. Then, the probability of missingness is generated using a random forest that regresses X1

to predict cj ·Y . Empirical setting. Data were split into three: 80% for training, 10% for validation,

zc z2z1

X1 X2Y

Figure 3. Data generating processes for synthetic experiments. zi denote latent vectors, while all other
variables are observed. Filled point nodes are observed variables, while unfilled nodes are unobserved.

and the rest for testing. We consider neural networks with 2 hidden layers with 32 nodes, trained
using an Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001 over 100 epochs. Our
evaluation relies on discriminative performance measured through AUROC.

Estimating predictive performance under Ωobs. Table 9 presents the estimated performance ob-
tained under different corrections. These results underline the importance of correcting both training
and evaluation, as proposed in ICYM2I, to best align with the performance one would obtain on
Ω, as shown by the smallest Root Mean Squared Error (RMSE) observed when both corrections are
applied. Note that in this setting, we rely on the true IPW correction that one would obtain with a
properly specified model, as the MAR setting is met.

Table 9. Comparison between estimated AUC performance under the different training and evaluation
corrections and oracle performance on Ω. ϵ denotes the RMSE between estimated and oracle PIDs.

Evaluation

Observed Underlying
Ωobs Ω

Tr
ai

ni
ng
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F SEMI-SYNTHETIC DATA RESULTS

F.1 UR-FUNNY

We illustrate the impact of missingness on estimating the informativeness of different modalities on
real-world data with UR-FUNNY (Hasan et al., 2019), a multimodal dataset for humor detection
from human speech used in affective computing. The dataset comprises text, audio, and visual
modalities from 10 - 20 second videos sourced from TED talks, and the task is to detect whether
a punchline would trigger a laugh. Labels were generated using the markup “(Laughter)” (Chen &
Lee, 2017) from the transcript.

Dataset. The processed dataset from MultiBench (Liang et al., 2021) is a modality-complete dataset
with 10,166 samples of paired audio, text, and vision embeddings. Audio embeddings were gener-
ated with COVAREP (Degottex et al., 2014), text with Glove (Pennington et al., 2014), and visual
features through the Facet (Yuan et al., 2008) library and OpenFace (Baltrušaitis et al., 2016), and
aligned using the Penn Phonetics Lab Forced Aligner (P2FA) (Yuan et al., 2008).

F.1.1 MAR

Enforcing missingness. To explore the impact of missingness on informativeness, we simulate a
MAR missingness pattern on the audio and visual features given the textual modality. We vary the
missingness from 30% to 70%, using the same mechanism as described for synthetic data. This
semi-synthetic setting enables the evaluation of the proposed correction as the missingness mech-
anism is known. Note that the original dataset does not contain missing values, as the source data
(TED Talks) have transcripts, and data labeling was generated based on these transcripts. How-
ever, settings with systematic transcripts are rare and may reflect a shift from the audio and textual
modalities observed online for which such a match may not exist.

Results. Following the same empirical setting as in the synthetic experiment for each missingness
rate, we measure the impact of missingness on PID decomposition. Figure 4 displays the PID values
obtained under three strategies:

• Observed: All quantities are estimated using Ωobs.
• ICYM2I: All quantities are estimated using Ωobs but corrected for the distribution shift through

IPW.
• Oracle: All quantities are estimated on Ω.

This figure shows that the proposed strategy is consistently closer to the Oracle’s PID values. This
demonstrates that under Assumption A, the proposed correction yields better estimates of each
modality’s informativeness – specifically, the audio-visual modality (Unique 1) carries more in-
formation.

Figure 4: Comparison between estimated PID values under increasing missingness in UR-FUNNY.

F.1.2 MNAR

Enforcing missingness. A central assumption of our method is that missingness is MAR. We pro-
pose to analyze the impact of violations of this assumption, specifically the presence of MNAR
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patterns, on the quality of estimates obtained using our correction. To this end, we simulate audio
and visual missingness as a function of the modality itself. Similarly to the previous analysis, we
vary missingness from 30% to 70%. To estimate propensity in this setting, we rely on a logistic
regression model based on the fully observed modality.

Results. Figure 5 shows the PID values obtained under the three previously described strategies.
Critically, the proposed correction leads to performance similar to the model without correction,
as the missingness probabilities cannot be estimated from the observed modality. This example
illustrates the importance of assessing the plausibility of Assumption B in real-world settings, as no
theoretical guarantees hold in such settings.

Figure 5: Comparison between estimated PID values under increasing missingness in UR-FUNNY.
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F.2 HATEFUL MEMES

We run experiments using the dataset from the Hateful Memes Challenge (Kiela et al., 2020),
which investigates text-image multimodal reasoning in the context of hate speech detection in online
memes. The dataset comprises text-image pairs with an associated label indicating hate speech.

Dataset. We utilize the Kaggle version of the Facebook Hateful Memes dataset, as referenced in
the Holistic Evaluation of Multimodal Foundation Models (HEMM) (Liang et al., 2024b) repos-
itory. Our analysis focuses on the 9,000 samples with associated labels. For each sample, em-
beddings were extracted for both modalities using a ResNet-50 (He et al., 2016) for images and a
BERT-base-uncased (Devlin et al., 2019) model for text. The proposed ResNet-50 was pre-
trained on ImageNet (Deng et al., 2009) with the final layer replaced to extract 2048-dimensional
feature vectors, and BERT-base-uncased (Devlin et al., 2019) extracts embeddings of dimen-
sion 784 from the penultimate layer.

Enforcing missingness. Similarly to the previous experiment, we vary the missingness from 30%
to 70% by enforcing the same MAR missingness mechanism on the text modality, given the image
modality, as we assume not all memes may contain text. Note that memes in the dataset were created
by combining text from collected online memes with images sourced from stock images on Getty
Images. Consequently, the dataset did not contain missing modality, but may not match the true
distribution of memes one would observe online.

Results. As above, we measure the impact of increasing percentages of missingness on PID esti-
mates. While the missingness mechanism results in a limited distribution shift, and therefore small
differences in estimates between the corrected and observed strategies, the difference at 70% miss-
ingness shows the superiority of the proposed methodology in recovering the Unique contributions.

Figure 6. Comparison between estimated PID values under increasing missingness in Hateful Memes.
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G STRUCTURAL HEART DISEASE DATA PROCESSING

G.1 EMBEDDING GENERATION

We generate embeddings using modality-specific foundation models–ECG embeddings are gener-
ated using ECG-FM (McKeen et al., 2024) and CXR embeddings with ELIXR-C (Xu et al., 2023).

All electrocardiograms were 10-second, standard 12-lead ECG signals collected at abstracted to
250 Hz, which we resampled to 500 Hz, and standard normalized by channel to match the inputs
for ECG-FM (McKeen et al., 2024). We used the version of ECG-FM with weights pretrained on
MIMIC-IV (Johnson et al., 2023; Goldberger et al., 2000) and PhysioNet 2021 (Reyna et al., 2021;
2022). We averaged the output feature embeddings along the temporal dimension and flattened them
to produce vectors of length 768.

The chest radiographs used in our study were all postero-anterior (PA) view CXRs. We extracted
pixel values from the DICOM files as grayscale images, center-cropped each image along the shorter
dimension, applied contrast-limited adaptive histogram equalization (CLAHE) (Pizer et al., 1987)
with a clip limit of 0.2, and resized each image to 1284 × 1284 pixels. All outputted embeddings
were flattened to 4098-dimensional vectors.

G.2 IPW CORRECTION

To address missingness in the observed CXRs, we apply the proposed propensity-based correction.
The propensity scores are obtained from a logistic regression model using the ECG embedding,
along with sex and age as predictors, serving as proxies for the socio-medical factors that influence
whether a CXR is collected. Controlling for these covariates aims to render the MAR assumption
more plausible. In practice, all relevant covariates, even outside of modalities being modeled, can
be used for the correction.

H COMPUTE INFRASTRUCTURE

All experiments were performed on a server with an AMD EPYC 7313 CPU, 256 GB of memory,
and two NVIDIA RTX A6000 GPUs, as well as a server with an Intel Xeon E5-2640 CPU, 128 GB
of memory, and a NVIDIA GTX Titan X GPU. Our software stack includes Python 3.12, PyTorch
2.2.1 (Paszke et al., 2019), and standard Python scientific libraries. Chest radiograph embeddings
used Tensorflow 2.19 (Abadi et al., 2015) and Tensorflow-Text 2.19 based on the requirements
for the ELIXR models (Xu et al., 2023). Electrocardiogram embeddings were generated using an
environment with Python 3.9 and fairseq-signals 1.0 to match the requirements for fairseq-signals
and ECG-FM (McKeen et al., 2024). Generating embeddings for our structural heart disease data
took approximately 10 hours on our server with a Titan X GPU. All synthetic experiments require
12 hours of compute time using one NVIDIA RTX A6000 GPU.
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