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Abstract
Diffusion models have demonstrated exceptional
performances in various fields of generative mod-
eling, but suffer from slow sampling speed due
to their iterative nature. While this issue is be-
ing addressed in continuous domains, discrete
diffusion models face unique challenges, particu-
larly in capturing dependencies between elements
(e.g., pixel relationships in image, sequential de-
pendencies in language) mainly due to the com-
putational cost of processing high-dimensional
joint distributions. In this paper, (i) we propose
“mixture” models for discrete diffusion that are
capable of treating dimensional correlations while
remaining scalable, and (ii) we provide a set of
loss functions for distilling the iterations of exist-
ing models. Two primary theoretical insights un-
derpin our approach: First, conventional models
with element-wise independence can well approx-
imate the data distribution, but essentially require
many sampling steps. Second, our loss functions
enable the mixture models to distill such many-
step conventional models into just a few steps by
learning the dimensional correlations. Our ex-
perimental results show the effectiveness of the
proposed method in distilling pretrained discrete
diffusion models across image and language do-
mains. The code used in the paper is available at
https://github.com/sony/di4c.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021b) have demonstrated excellent per-
formance in generative modeling, particularly for continu-
ous data such as images (Nichol et al., 2021; Rombach et al.,
2022; Saharia et al., 2022), audio (Kong et al., 2021; Chen
et al., 2021; Evans et al., 2024), and video (Harvey et al.,

1Sony Group Corporation, Tokyo, Japan 2Sony AI, Tokyo,
Japan 3The University of Tokyo, Tokyo, Japan. Correspondence
to: Satoshi Hayakawa <satoshi.a.hayakawa@sony.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2022; Ho et al., 2022; Blattmann et al., 2023). Recent ad-
vancements in diffusion models often outperform traditional
generative models, such as variational autoencoders (VAEs,
Kingma & Welling, 2014; Higgins et al., 2017; Zhao et al.,
2019) and generative adversarial networks (GANs, Good-
fellow et al., 2014), in terms of sample quality and the
controllability of the generated results. Furthermore, dif-
fusion models are not limited to learning continuous data;
they can also be applied to discrete or categorical data with
modifications (Hoogeboom et al., 2021; Austin et al., 2021)
and offer a promising approach for discrete generative mod-
eling (Gu et al., 2022; Lou et al., 2024). Such discrete
diffusion models are the main topic of this paper.

A notable drawback of diffusion models is their slow sam-
pling speed due to requiring many sampling steps (Xiao
et al., 2022; Zhang & Chen, 2023). In continuous do-
mains, various approaches have been proposed to reduce
the number of steps, including well-designed forward pro-
cesses (Song et al., 2021a) and fast solvers of stochastic/ordi-
nary differential equations (SDEs/ODEs, Lu et al., 2022a;b;
Zheng et al., 2023b). Another notable approach is knowl-
edge distillation, which significantly reduces the number
of sampling steps compared with earlier attempts by com-
pressing pretrained diffusion models into single- or few-step
generative models (Luhman & Luhman, 2021; Salimans
& Ho, 2022; Meng et al., 2023; Zheng et al., 2023a). An
emerging sub-family of distillation is the consistency-type
models (Song et al., 2023; Song & Dhariwal, 2023; Kim
et al., 2024), which exploit the fact that samples generated
via different paths from the same initial noise should coin-
cide.

However, discrete diffusion models face a fundamental chal-
lenge when attempting to reduce the number of sampling
steps. Conventional approaches use “product” models that
treat each dimension independently as sampling distribu-
tions (Figure 1, center), since high-dimensional joint dis-
tributions are intractable. While this has been successful
with hundreds of sampling steps, ignoring element-wise de-
pendencies (which we refer to as dimensional correlations)
causes non-negligible approximation errors (Figure 1). This
ignoring is also pointed out in some concurrent works (Park
et al., 2025; Liu et al., 2024; Xu et al., 2025).

In this paper, we propose Di4C (Distilling Discrete Diffu-
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Figure 1. Illustration of dimensional correlations. (Left) Distribution p(x, y) is two-dimensional categorical distribution. p1(x) and
p2(y) are its marginals. (Center) Conventional denoiser in discrete diffusion uses product model, which is simply product of marginal
distributions. It fails to approximate ground truth distribution. (Right) Our mixture model is given by expectation of product model
p(x, y;λ) = p1(x;λ)p2(y;λ) for random λ. In figure, λ takes α, β, γ in equal probabilities, and model reconstructs p(x, y).

sion through Dimensional Correlations) to overcome this
limitation. Our key insight is that while individual steps in
conventional models are dimensionally independent, their
composition over multiple steps can implicitly capture cor-
relations (Section 3.1). On the basis of this observation, we
develop (1) a “mixture” model that explicitly represents di-
mensional correlations while remaining computationally
tractable (Figure 1, right), and (2) novel loss functions
that effectively distill the many-step denoising of a product
model into fewer steps. Our contribution is as follows:

Theoretical analysis: In Theorem 1, we show that N -step
sampling with product models can approximate data distri-
butions in O(1/N) total variation error. We also prove that
this bound cannot be improved in a simple two-dimensional
example. It underpins the empirical effectiveness of discrete
diffusion models with many steps and, at the same time,
shows the importance of modeling dimensional correlations
to reduce the number of sampling steps.

Model and loss design: To capture the aforementioned
dimensional correlations, we propose a “mixture” model
that can represent dimensional correlations (Section 3.2).
To distill a many-step discrete diffusion model (teacher)
into a few-step model (student), we also propose Di4C loss
functions for compressing the iterative process of the teacher
(Section 3.3). In theory, we prove that the loss functions
in Di4C can upper-bound the distance between the output
distributions of the N -step teacher and the student with just
one step (Theorem 2). In combination with Theorem 1, this
provides an overall theoretical guarantee for Di4C.

Experiments: Finally, we demonstrate that our approach is
general and applicable to multiple settings. (1) On CIFAR-
10 with a pixel-based discretized Gaussian diffusion, we sub-
stantially improve the sample quality metrics of the teacher
model (Campbell et al., 2022) in few-step sampling. (2) On

ImageNet class-conditional generation with masked diffu-
sion, our method achieves a 2x speed-up while maintaining a
comparable sample quality to the teacher model (Besnier &
Chen, 2023). In addition, (3) on masked diffusion language
modeling with OpenWebText, we show that Di4C can fur-
ther distill a well-distilled model (Deschenaux & Gulcehre,
2025) by capturing dimensional correlations, without much
harming of sampling diversity. These results consistently
demonstrate that Di4C can effectively compress the sam-
pling steps of discrete diffusion models while maintaining
or improving generation quality.

Finally, the remainder of this paper is organized as follows:
Section 2 gives preliminaries on discrete diffusion models
and explains the dimensionality issue in discrete diffusion.
We then explain the central idea of Di4C in Section 3 and
show theoretical results in Section 4, which are partially
described above as our contribution. In Section 5, we also
provide experimental results with image and language tasks.
After discussing related works in Section 6, we conclude
the paper with discussions on its limitations and future work
in Section 7.

2. Preliminaries
2.1. Discrete diffusion models

Suppose we have a data distribution q0 := qdata over the
space X . In diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020), we consider a Markov process (xt)0≤t≤T
with x0 ∼ q0 and xT ∼ qT , where the time t can be ei-
ther discrete or continuous. In this paper, we follow the
notational convention that qt|s and qs,t represent the true
conditional and joint distributions defined by this Markov
process, respectively. This process is designed so that the
terminal distribution qT is a tractable distribution. Follow-
ing the convention, we regard this forward process as adding
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noise to the data distribution. Our aim is to generate samples
approximately from the conditional distribution q0|T (·|xT )
with xT ∼ qT , which is a generative model for qdata. To
this end, we introduce a model or denoiser, which is repre-
sented as ps|t (for s < t), to approximate qs|t.

Our primary interest is in the discrete diffusion models
(Austin et al., 2021; Campbell et al., 2022), where the space
X is a finite set. In this case, a probability distribution p
on X can be regarded as a function p : X → R, and we
will sometimes abuse the notation by treating p as just an
ordinary function. We are given a finite set S and con-
sider a diffusion process over the product space X = SD
for a large D. Each state x ∈ X can thus be written as
x = (xd)Dd=1, where xd indicates the entry of x in the d-th
dimension. Given a probability distribution p = p(x) on X ,
let pd = pd(xd) be its d-th marginal distribution, i.e., the
distribution of xd given x ∼ p. To enjoy scalability, the for-
ward process is usually set to be factorized over dimensions,
i.e., qt|s(xt|xs) =

∏D
d=1 q

d
t|s(x

d
t |xds) holds for s < t (Gu

et al., 2022; Campbell et al., 2022).

2.2. Dimensional correlations in discrete diffusion

The common practices in modeling and training discrete
diffusion models lead them to ignore the dimensional cor-
relations within a data distribution. First, under the afore-
mentioned problem setting, for the sake of scalability, the
denoiser is usually defined as a product model that satisfies

ps|t(xs|xt) =
D∏
d=1

pds|t(x
d
s |xt), s < t. (1)

Namely, the distribution ps|t(·|xt) is dimensionally indepen-
dent. This product modeling is common if not particularly
highlighted (Campbell et al., 2022, Section G), due to the
combinatorial explosion of the product discrete state. In-
deed, adopting a product model significantly reduces the
output length from O(D|S|) to O(D|S|) at the cost of rep-
resentational capacity. This limited expressive power can be
crucial for considering few-step discrete diffusion models.
As an extreme example, consider doing one-step denoising
in the case of masked (absorbing-state) diffusion (Austin
et al., 2021); there is no chance we can approximate a com-
plex joint distribution (as in Figure 1) in one step when
xT is a completely masked sentence (i.e., following a delta
distribution) and p0|T (·|xT ) is dimensionally independent.
See Section F.1.1 for more examples.

Another potential factor making the learning of dimensional
correlations infeasible in discrete diffusion models is that
some of the existing loss functions are not well prepared
for learning dimensional correlations. Most notably, in the
continuous-time score-based discrete diffusion, we need
only the marginal pds|t(·|xt) or its variant to compute the
infinitesimal transition rate (see, e.g., Campbell et al. (2022,

Proposition 3) or Sun et al. (2023, Eq. 16)). Thus, learn-
ing backward transition rates does not lead to capturing
dimensional correlations, even if we use a model capable of
representing them.

3. Di4C for distilling discrete diffusion models
This section describes our proposed method, Di4C. We first
show that the composition of well-trained discrete diffusion
models can represent the dimensional correlation in Sec-
tion 3.1, and in the later sections we discuss how to distill
the multi-step denoising of a teacher model into a student
model that requires fewer steps. In particular, Section 3.2
and Section 3.3 try to solve the existing limitation described
in Section 2.2 in terms of modeling and loss design, respec-
tively. See Section A for more technical details of Di4C.

3.1. Composition of diffusion denoisers for inducing
dimensional correlations

We introduce the notion of composition, which plays a sig-
nificant role in representing the dimensional correlations
to be learned. Consider two general conditional distribu-
tions p(x|y) and p̃(y|z) over finite sets. We define their
composition as

p ◦ p̃(x|z) := Ey∼p̃(·|z)[p(x|y)] =
∑
y

p(x|y)p̃(y|z),

where this definition can be extended to the continuous case
in a straightforward way. Although this is just a convolu-
tion of two functions, it can be viewed as a composition
of denoising operators in the context of diffusion models.
Specifically, given a single-step denoiser ps|t and the finite
timesteps 0 = t0 < t1 < · · · < tN = T , we typically
use pt0|t1 ◦ · · · ◦ ptN−1|tN (·|xT ) with the terminal noise
xT ∼ qT as a generative sampler.

Notably, the composition can serve as a source of dimen-
sional correlation in discrete diffusion models. Even if one-
step denoisers, ps|u and pu|t (s < u < t), are dimensionally
independent, their composition is generally not. Indeed,
dimensionally independent denoisers are successful given
hundreds of sampling steps (Austin et al., 2021; Gu et al.,
2022). Our method aims at compressing the composition of
well-trained denoisers into few-step sampling by learning
dimensional correlations.

Let pψ be a pretrained teacher model with a product struc-
ture and pψ0|t1 ◦ · · · ◦ pψtN−1|tN be a sufficiently good ap-
proximation of q0|T , where 0 < t1 < · · · < tN = T are
timesteps. In our distillation, we would like the student
model pθ to approximate the teacher compositions as

pθ0|tn ≈ pψ0|t1 ◦ · · · ◦ p
ψ
tn−1|tn , n = 1, . . . , N. (2)

To achieve this, we provide a way of modeling pθ that is
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capable of representing dimensional correlations in Sec-
tion 3.2, and we propose a set of loss functions to distill
dimensional correlation represented by the compositions of
a teacher model in Section 3.3.

3.2. Mixture models to capture dimensional correlations

As an effective instance to represent correlated multivariate
categorical distributions, we propose a mixture model. We
define it as a family of conditional probability distributions
that have the following representation for s < t:

pθs|t(xs|xt) = Eλ
[
pθs|t(xs|xt;λ)

]
, (3)

where pθs|t(xs|xt;λ) =
D∏
d=1

pθ,ds|t (x
d
s |xt;λ).

Here, λ is a random variable with an arbitrary distribution.
This distribution can be viewed as a convex mixture of
product models indexed by λ. See Figure 1 (right) for an
intuitive illustration. Despite the fact that pθ0|t(x0|xt;λ)
is dimensionally independent for each given point λ, this
mixture representation is universal in the following sense:

Proposition 1. For any probability distribution p over SD,
there exist a probability distribution π and a family of prod-
uct distributions p(x;λ) =

∏D
d=1 p

d(xd;λ) indexed by λ
satisfying p(x) = Eλ∼π[p(x;λ)] for all x ∈ SD.

Indeed, we have p(x) = Ez∼p[δz(x)], where δz is the delta
distribution at z, which is certainly a product distribution.
Although the proof is not very informative, the assertion
itself implies that the mixture model has sufficient expres-
sive power to capture dimensional correlations. It should
also be noted that sampling from this mixture model during
the inference has almost no extra computational overhead
compared with the conventional product model, since it just
requires sampling and insertion of λ (see Section 5.4).

3.3. Consistency for distilling dimensional correlations

We present a set of (two) loss functions that take dimensional
correlation into account. Consider we are given a product
teacher model, which is denoted as pψ . Let pθ be a general
student model (with enough expressive power; an example
is given in Section 3.2) that we want to train based on pψ .

Distillation loss. We first introduce a distillation loss,
which forces the student model to approximate the teacher
model at time δ (≪ T ):

Ldistil(θ;ψ, rδ, δ) := Exδ∼rδ

[
DKL(p

ψ
0|δ(·|xδ) ∥ p

θ
0|δ(·|xδ))

]
,

where rδ (≈ qδ) is a reference distribution over X at time
δ and DKL is the Kullback–Leibler (KL) divergence. We
expect that a single teacher denoising step is enough for a

time0

student

teacher

Figure 2. Illustration of how our loss functions work. Through
Ldistil and Lconsis, we distill multiple teacher denoising steps into
fewer steps of student denoiser.

small δ; the dimensional correlation is mainly incorporated
in the following consistency loss (see also Section A.1).

Consistency loss. We then propose a consistency loss,
which allows the student model to learn the dimensional cor-
relation represented by the teacher denoiser compositions:

Lconsis(θ;ψ, rt, s, u, t)

:= Ext∼rt

[
DKL(p

θ
s|u ◦ p

ψ
u|t(·|xt) ∥ p

θ
s|t(·|xt))

]
,

where rt is a reference distribution over X at time t ap-
proximating qt. While this loss is not straightforward to
compute, we discuss how to approximate it in practice with
Monte Carlo or control variates in Section A.2. Note that
the idea of mixing the teacher denoiser and student denoiser
in Lconsis can also be found in the continuous-state setting
regarding ODE trajectories (Kim et al., 2024, Fig. 3), but
our loss is different in that we work on the compositions of
conditional probabilities as in (2).

Figure 2 shows the intuition behind our loss functions. As
reference distributions rδ and rt, we can either use qt gen-
erated from data or the distribution obtained by applying
multiple teacher denoising steps. See Section 4 for their
roles and theoretical guarantees on Ldistil and Lconsis.

4. Theoretical analysis
In this section, we present an overall theoretical analysis
on our distillation method. In Section 4.1, we show that
the conventional product model (1) can approximate a data
distribution if the model’s marginal is perfectly trained and
given many steps (O(1/N) upper bound). We also show
that its N -step total variation error can be lower bounded by
Ω(1/N) even for a simple two-dimensional example. Both
bounds support the empirical evidences of existing models
that work (only) under many steps. In Section 4.2, we prove
that the proposed objective functions enable the many-step
denoising with a teacher model to be distilled into a few-step
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student model, provided that the student model has enough
expressive power.

By combining the upper bounds in these results, we in-
formally obtain the following estimate when distilling an
N -step sampling process of a teacher model that learns the
marginals perfectly:

dTV(p(1-step student), q0) (↙ Theorem 1, upper bound)
≤ dTV(p(1-step student), p(N -step teacher)) +O(1/N)

≤ (Di4C losses in (6)) +O(1/N) . (Theorem 2)

Here, p(n-step model) represents the resulting distribution
of n-step sampling with the model starting from qT , and
dTV denotes the total variation distance.

4.1. Product models with multi-step sampling can
approximate data distribution

We first show that dimensionally independent denoisers with
many steps are capable of approximately recovering a data
distribution, which has already been empirically observed
in existing studies. To consider varying the number of de-
noising steps, let us work on the continuous-time setting.
Let (xt)0≤t≤T follow a continuous-time Markov chain over
[0, T ] and the space X = SD with a factorized forward pro-
cess, i.e., qt|s(xt|xs) =

∏D
d=1 q

d
t|s(x

d
t |xds) for s < t. See

Section C for more details.

Theorem 1 shows the capability and limitation of a dimen-
sionally independent sampling scheme called analytical
sampling (Sun et al., 2023) or Tweedie τ -leaping (Lou et al.,
2024; Ou et al., 2025), where we use a product-model de-
noiser ps|t(xs|xt) =

∏D
d=1 p

d
s|t(x

d
s |xt) approximating the

true marginal as pds|t(x
d
s |xt) ≈ qds|t(x

d
s |xt). Although com-

monly used, there has been only empirical evidence for the
overall efficiency of this dimensionally independent method.
Note that Campbell et al. (2022) provides a guarantee for an-
other dimensionally independent method called τ -leaping.
Theorem 1 (N -step analytical sampling approximates data,
informal). Let qt|s be forward transition probabilities that
factorize as above and ps|t be a product model with the
correct marginals, i.e., ps|t(xs|xt) =

∏D
d=1 q

d
s|t(x

d
s |xt)

for s < t. Under regularity conditions, given timesteps
ti = iT/N for i = 0, . . . , N , we have, as N → ∞,

dTV

(
q0,ExT∼qT

[
pt0|t1 ◦ · · · ◦ ptN−1|tN (·|xT )

])
= O(1/N) .

(4)

Moreover, there is an example with |S| = D = 2 such that
the left-hand side of (4) is lower-bounded by c/N with some
constant c > 0 for sufficiently large N .

Proof (sketch). We first prove the following estimate for
0 ≤ t− ϵ < t ≤ T and x ∈ SD (Lemma 1):

dTV(qt−ϵ|t(·|x), pt−ϵ|t(·|x)) = O
(
ϵ2
)
, (5)

as ϵ→ 0. The proof exploits the factorization qt|s(xt|xs) =∏D
d=1 q

d
t|s(x

d
t |xds) and is based on additional continuity as-

sumptions. We then decompose the left-hand side of (4)
into N terms by using a triangle-like inequality on dTV

between compositional distributions (Proposition 4). The
i-th term essentially measures the distance between qti−1|ti
and pti−1|ti and thus is bounded by O

(
1/N2

)
from (5) with

ϵ = T/N . By summing up the N terms, we obtain the
desired estimate for the first part. For the second part, we
actually construct a concrete example in Section C.3.

See Theorem 3 for a formal version. Theorem 1 is important
as it underpins the use of dimensionally parallel denoising
given sufficient steps, which has been claimed as an advan-
tage of discrete diffusion over autoregressive models whose
sampling is sequential (Lou et al., 2024). However, it still
requires Ω(1/ϵ) steps in order to have a uniform error bound
ϵ, according to the latter half of the assertion. We show next
that we can further reduce the number of steps with our
loss functions, by distilling the distribution of an N -step
teacher model into a few-step student model by learning
dimensional correlations.

4.2. Our losses can distill multi-step denoising models

Let pψ and pθ respectively be the teacher and student models
given in Sections 3.1 & 3.3. The following statement gives
a theoretical guarantee for using the proposed loss functions
at the appropriate time and distribution settings.

Theorem 2 (Di4C student approximates N -step teacher).
Let 0 = t0 < · · · < tN = T be timesteps and rT be
a probability distribution on X . For each n, let rtn =

ExT∼rT

[
pψtn|tn+1

◦ · · · ◦ pψtN−1|tN (·|xT )
]
. Then, we have

dTV

(
r0,ExT∼rT

[
pθ0|T (·|xT )

])
≤ 1√

2

(
Ldistil(θ;ψ, rt1 , t1)

1/2

+

N−1∑
n=1

Lconsis(θ;ψ, rtn+1 , 0, tn, tn+1)
1/2
)
. (6)

We can prove this by formalizing the intuition behind Fig-
ure 2 (see Section D.1). Note that the right-hand side of
inequality (6) becomes zero (so does the left-hand side) if
the student model perfectly learns the composition of the
teacher as in (2), so learning with these loss functions is fea-
sible in theory if the student model has enough expressive
power. Existing theoretical guarantees in consistency-based
distillation of continuous-state diffusions typically discuss
the case when consistency losses are exactly zero (Song
et al., 2023; Daras et al., 2024; Lai et al., 2023), so our
guarantee would be interesting in that it explicitly shows the
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relationships between the magnitude of loss functions and
the total variation bound between the teacher and student.

Regarding the choice of rt, we should take rT = qT if we
would like to combine Theorem 2 with Theorem 1 to evalu-
ate Di4C’s overall performance against the data distribution.
For rt with t < T , though we can generate samples xt ∼ rt
by using the teacher model, it might be expensive due to the
multi-step inference required. Instead, we can use qt if we
have access to data, which is given by just one-step forward
sampling from qt|0(·|x0) with the data x0 ∼ q0. Since rt is
an approximation of qt (Theorem 1), it would not harm the
training quality as long as the teacher model is well-trained.

5. Experimental results
We evaluated our Di4C method in three different diffu-
sion settings, each with distinct teacher models and state
spaces. First, we examined continuous-time discrete-state
diffusion with pixel-space representations using CIFAR-10,
where we distilled from a well-trained U-Net teacher model
(Section 5.1). Second, we explored masked diffusion on
vector-quantized (VQ) space using ImageNet, working with
a transformer-based teacher model designed for masked im-
age generation (Section 5.2). Third, we tested our approach
on masked diffusion language models trained on Open-
WebText, demonstrating Di4C’s effectiveness in distilling
transformer-based diffusion language models (Section 5.3).
Finally, we demonstrate that our mixture modeling causes
minimal latency overhead in all the above experiments (Sec-
tion 5.4). These experimental results, spanning different
domains, architectures, and diffusion processes, showcase
the broad applicability of our method while highlighting its
consistent ability to achieve faster sampling.

5.1. Discretized Gaussian diffusion on pixel space

In our first experiment, we adopted the same setting as
Campbell et al. (2022): a continuous-time discrete-state
Markov process (of discretized Gaussian transition) with
the CIFAR-10 image dataset (Krizhevsky, 2009). We used
the well-trained model checkpoint provided by Campbell
et al. (2022) as our product teacher model (pψ). This model
outperforms previous discrete-time discrete-state models
such as Austin et al. (2021). As in the original paper, we
worked directly with the discrete pixel channel values (0 to
255) on 32 × 32 × 3 entries (i.e., |S| = 256, D = 3072).
The teacher model pψ has a U-net architecture (Ho et al.,
2020) tailored for discrete diffusion, which is fed a time
feature at each upsampling/downsampling stage.

To obtain an architecture for our student mixture model
(3), we slightly extended the teacher’s architecture so that
it accepts a conditioning with λ ∼ Unif([0, 1]) (uniform
distribution over [0, 1]) in this experiment, by following the

original implementation of time conditioning. In training,
the student model was initialized by the teacher network
parameters with additional zero-initialized subnetworks con-
cerning λ. See Section F.1.3 for implementation details.

Table 1. Comparison of models on CIFAR-10 dataset. Fréchet
inception distance (FID ↓) against training dataset and inception
score (IS ↑) measured with 50,000 samples are shown in this order
(FID / IS).

10 steps 20 steps 40 steps

teacher 32.61 / 7.59 12.36 / 8.55 8.01 / 8.77

student 20.64 / 8.29 9.77 / 8.52 9.66 / 8.28
hybrid 25.54 / 8.00 9.47 / 8.56 8.02 / 8.43

Table 1 shows the results. The “hybrid” model used the
student model for the first half of the denoising process
and then switched to the teacher model for the remaining
steps during inference. The student substantially improved
the metrics compared with the teacher in 10-step sampling,
while the benefits of our method diminished as the number
of steps grew. In contrast, the hybrid model was the best
at 20 steps and on par with the teacher in 40-step FID. We
hypothesize that Di4C is particularly effective when using
fewer sampling steps, as this is where capturing complex di-
mensional correlations is crucial (Theorem 1). We also give
additional results for different sampling steps in Table 4.

Table 2. Comparison of teacher and student with PC steps. FID
against CIFAR-10 training dataset measured with 10,000 gener-
ated samples are displayed (so there is discrepancy from Table 1).
Number of function evaluations (NFEs) is adjusted to 20, with
varying budget allocations between denoising and PC steps.

NFE 6+7+7 10+5+5 14+3+3 20+0+0

teacher 57.57 32.74 21.32 14.42
student 44.57 22.63 14.25 11.81

In Table 2, we also compare the teacher and student models
in combination with the predictor-corrector (PC, Camp-
bell et al., 2022) steps. The notation m+n+n indicates that
we used n corrector steps before each of the final two out
of m denoising steps, imitating the approach in Campbell
et al. (2022). For each setting, the best PC step-size among
{10−3, 10−4, 10−5} was chosen. Since a PC step requires
an additional network evaluation (as expensive as one step
of denoising), we adjusted the total NFE in the table. While
adding PC steps shows improvement upon the vanilla m-
step denoising (see also Table 4) in both teacher and student
models, allocating all the NFE budget to denoising steps
performs better in this small NFE regime; this observation
aligns with Campbell et al. (2022, Fig. 4).
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5.2. Masked image modeling on VQ space

Next, we evaluated our method by applying it to a larger-
scale image generation model. For this purpose, we adopted
the framework of MaskGIT (Chang et al., 2022) and worked
on the ImageNet dataset (Deng et al., 2009) at 256 × 256
resolution. MaskGIT is one of the state-of-the-art image
generation methods, based on masked diffusion modeling.
Its generative (backward) process relies on heuristics includ-
ing confidence-based sampling (Section F.2.2). The variant
we used also uses discrete classifier-free guidance (CFG;
Section F.2.3). We demonstrate that Di4C can enhance
image generation even in combination with such heuristics.

In our setting, the model comprised two main components:
a VQGAN (Esser et al., 2021) pre-trained on the ImageNet
dataset and a masked diffusion model trained on the VQ
space. The VQGAN encodes a 256× 256 resolution image
into 16 × 16 = 256 tokens, each drawn from a shared
codebook S∗ of size 1024. The forward process of our
diffusion modeling, denoted as qt|0(·|x0), independently
replaces xd0 with [MASK] at a certain probability mt for
each d (i.e., S := S∗ ∪ {[MASK]}, |S∗| = 1025, and D =
256). The masking probability mt increases monotonically
from m0 = 0 to m1 = 1, resulting in completely masked
sequences at t = 1 regardless of x0.

As the teacher model, we used the PyTorch-based imple-
mentation by Besnier & Chen (2023), which replicates the
performance of the original MaskGIT. It uses a bidirectional
transformer pψ that estimates the distribution of each token
given an ImageNet label c and a partially masked sequence
xt ∈ SD: pψ,d0|t (·|xt, c) ≈ qd0|t(·|xt, c). The input sequence
length is 257 including the embedding of c. Additionally,
the model supports unconditional generation, enabling dis-
crete CFG to match the original MaskGIT’s performance. In
this configuration, the teacher model generates high-quality
samples with only 8 steps, which is significantly faster than
typical diffusion-based generative models (see, e.g., Chang
et al., 2022, Table 1). In the implementation of our mixture
(student) model, we simply added a single token embedding
coming from λ ∼ Unif([0, 1]), so the input sequence length
is 258 instead of 257 in the student models.

Figure 3 shows FID-IS curves of 4-step sampling with var-
ious CFG coefficients: wcfg ∈ {5, 6, 7, 8, 9, 10, 11, 12} for
4 steps and wcfg ∈ {2, 2.5, 3, 3.5, 4} for 8 steps (teacher
only). In the figure, di4c represents a model trained using
the standard Di4C method, while di4c-d represents a model
trained with an additional datapoint loss (see Section F.2.4
for details). As shown in the figure, the FID-IS performance
of the 4-step Di4C models closely matched that of the 8-
step sampling of the teacher model. This result indicates
that Di4C can achieve an approximate 2x speed-up in the
sampling process.

Figure 3. FID-IS curves of 4/8-step teacher and 4-step Di4C mod-
els on ImageNet 256× 256 when varying CFG coefficients. Ar-
rows connect experimental results (dots) at each CFG coefficient
in ascending order.

See Section F.2 for further details of this experiment. In par-
ticular, Table 8 shows the detailed quantitative performance
(including precision and recall) of each model at its best
CFG coefficient.

5.3. Masked diffusion language models

Finally, we examined Di4C in language modeling. As
teacher models, we adopted two versions of pretrained
SDTT models (Deschenaux & Gulcehre, 2025, with a KL
target), which we refer to as sdtt-6 and sdtt-7. They were
obtained after respectively 6 and 7 rounds of distillation of
a masked diffusion language model (MDLM, Sahoo et al.,
2024. See also its concurrent works: Shi et al. 2024; Ou
et al. 2025) trained on the OpenWebText dataset (Gokaslan
& Cohen, 2019). As a forward process, they use a masked
diffusion with a GPT-2 tokenizer (Radford et al., 2019),
which is essentially the same as the one explained in Sec-
tion 5.2, while we had D = 1024 and |S∗| = 50257 this
time. In the mixture modeling for Di4C, we added one token
from λ ∼ Unif([0, 1]) to the transformer, similarly to the
previous section. See Section F.3 for details.

Figure 4 shows the results of applying Di4C to the SDTT
models. For n = 6, 7, sdtt-n + di4c represents the model
obtained by fine-tuning sdtt-n using Di4C. Similarly, sdtt-
n + di4c2 represents the model obtained by applying an-
other round of Di4C to sdtt-n + di4c (see Section A.4).

Unconditional generation. Figure 4(a) shows a perfor-
mance comparison for unconditional generation. Each
model generated 1024 samples of 1024 tokens, with the
number of sampling steps in {8, 16, 32, 64, 128}. Follow-
ing the previous work (Lou et al., 2024; Sahoo et al., 2024;
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(a) Gen. PPL vs Num. Steps in unconditional generation (b) Gen. PPL vs Self-BLEU in conditional generation

Figure 4. Comparison of SDTT checkpoints (Deschenaux & Gulcehre, 2025) and their Di4C distillations.

Deschenaux & Gulcehre, 2025), we used the GPT-2-large
model (Radford et al., 2019) to evaluate the generative per-
plexity. The results show that applying one round of Di4C
lead to a similar level of improvement as applying one round
of SDTT (compare sdtt-6 + di4c with sdtt-7). Also, two
rounds of Di4C (+ di4c2) showed speed-ups of more than
2x to match the teacher’s performance of 64 or 128 steps.

Conditional generation. We also tested the quality-
diversity tradeoff in conditional generation. We used 256
samples from the WebText dataset (OpenAI, 2019), and
each model, on the basis of the first 50 tokens of the sam-
ple, generated 5 continuations of 50 tokens, following De-
schenaux & Gulcehre (2025). We computed the generative
perplexity of the generated continuations and the Self-BLEU
score (Zhu et al., 2018) of the 5 completed samples starting
from the same prompt, and averaged them over the 256
prompts. Self-BLEU was computed by GPT-2 tokenizer
with equal weights on n-gram for n = 1, 2, 3, 4 and scaled
from 0 to 100 (lower Self-BLEU indicates higher diversity).
Note that (Self-)BLEU has several parameters including
tokenization and maximum length for n-grams (Post, 2018),
so our numbers are not directly comparable to those from
an existing work such as Agarwal et al. (2024).

Figure 4(b) shows the quality-diversity tradeoff curves of
each model with various numbers of sampling steps. As
shown with solid lines, both sdtt-6 + di4c and sdtt-6 +
di4c2 consistently achieved higher diversity than sdtt-7
with the same number of sampling steps while maintaining
comparable or better generative perplexity.

5.4. Latency overhead of mixture modeling

In this section, we demonstrate that the computational over-
head in introducing mixture modeling is negligible com-

pared with its performance gain. Table 3 shows the quantita-
tive results on the latency. The experiments listed in Table 3
correspond to those described in Sections 5.1–5.3, where
the chosen student models are the best models (di4c-d in
ImageNet and sdtt-7 + di4c2 in OpenWebText). The table
shows the average runtime and standard deviation, calcu-
lated over 10 batches with batch sizes of 50, 64, and 16,
respectively. We tested unconditional generation for CIFAR-
10 and OpenWebText, and a class-conditional generation
with a uniform random class for ImageNet with a classifier-
free guidance.

Table 3. Latency comparison between teacher (product) and stu-
dent (mixture) models.

Experiment # steps teacher (sec.) student (sec.)

CIFAR-10 10 0.5515±0.0024 0.5786±0.0017

ImageNet 4 2.0741±0.0035 2.0734±0.0043

OpenWebText 16 3.3409±0.0417 3.4817±0.0730

In the CIFAR-10 and OpenWebText experiments, the over-
head from using mixture models was up to 5%, which is
negligible compared with their performance gain. In the
ImageNet experiment, the difference between the student
and teacher was within the statistical noise. This is likely
because the computational bottleneck in this case was not
the logit inference itself but rather the sampling process that
followed it.

6. Related work
Speeding up continuous diffusion models. In continuous
diffusion models, knowledge distillation (Luhman & Luh-
man, 2021; Salimans & Ho, 2022; Meng et al., 2023; Zheng
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et al., 2023a) and consistency-type techniques (Song et al.,
2023; Song & Dhariwal, 2023; Kim et al., 2024) enable
single- or few-step sampling, most of which are tailored for
probability flow ODEs. Among the studies on continuous
diffusion, the work by Li et al. (2024) is particularly relevant
to our mixture modeling approach. They highlight the lim-
ited expressive power of unimodal Gaussian distributions in
denoising continuous diffusions and demonstrate that using
Gaussian mixtures can substantially reduce the number of
sampling steps required in non-ODE diffusions.

Speeding up discrete diffusion models. For faster sample
generation in discrete diffusion models, Park et al. (2025)
propose a post-hoc optimization of sampling schedules and
outperforms the uniform partitioning of [0, T ]. To speed
up MDLMs (Sahoo et al., 2024); SDTT (Deschenaux &
Gulcehre, 2025) gathers the logits at unmasked tokens from
a pretrained teacher MDLM throughout the denoising pro-
cess, achieving a speed-up of approximately 32x compared
with the teacher model. In addition, the confidence-based
sampling by MaskGIT (Chang et al., 2022) is essentially
a heuristic to enable faster sampling in masked diffusions.
These approaches can be combined with Di4C; we indeed
have demonstrated it for the latter two.

Two concurrent works are particularly relevant to our re-
search, both of which attempt to incorporate dimensional
correlations into discrete diffusion, specifically within the
MDLM context. Liu et al. (2024) combine pretrained au-
toregressive and masked diffusion models, achieving supe-
rior performance compared with using either model alone.
Meanwhile, Xu et al. (2025) propose an energy-based model
to modify the dimensionally independent sampler. While
both approaches improve upon the vanilla MDLM, their
sampling processes can incur some time and memory over-
head. This is due to the use of an additional non-diffusion
model in both methods, and the reliance on importance
sampling in the latter. In this regard, our mixture model-
ing allows for a simpler sampling process with minimal
modification to the original diffusion. However, since the
Di4C loss functions are model-agnostic, we should explore
the combination of Di4C losses and other proposed models
capturing dimensional correlations in future research.

7. Conclusion
In this paper, as current discrete diffusion models ignore
the dimensional correlations that need to be incorporated
to realize few-step models, we proposed Di4C, a method
for distilling pretrained discrete diffusion models. Di4C
provides a set of loss functions for models that can cap-
ture dimensional correlations, an example of which is the
mixture model. As a theoretical contribution, we proved
that the existing discrete diffusion models with many steps

can indeed recover a data distribution, even without mod-
eling dimensional correlations. We also proved that such
many-step models can be distilled into few-step ones, if we
use the Di4C loss functions with a model that has enough
expressive power, such as a mixture model. In numerical
experiments, we confirmed the efficiency of our framework
upon teacher models across multiple domains: improving
sample quality in 10-step sampling on CIFAR-10 with a
discretized Gaussian diffusion, achieving a 2x speed-up in
ImageNet 256× 256 generation with masked image mod-
eling, and successfully distilling already-distilled masked
diffusion language models on OpenWebText while main-
taining generation diversity.

However, there are still problems to be solved. For example,
although we can distill many-step models into one-step ones
in theory (Theorem 2), our empirical results show only
2x fewer steps or so. To address this point, we need to
further optimize the architecture (mainly concerning λ) and
training hyperparameters, while the iterated Di4C training
(Section A.4) can be a promising candidate.

Impact Statement
This paper presents a novel method for reducing the number
of sampling steps required for high-quality generation in
discrete data domains. While there are many potential social
impacts as usual in the generative AI field, we do not foresee
any specific problems particularly caused by this (mostly
theoretical) work.
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A. Training techniques for Di4C
In this section, we review the novel loss functions of Di4C and the mixture model given in Section 3.3 from an algorithmic
perspective, and we provide a set of techniques to stably train it. Specifically, we introduce techniques to make the
computation of the loss functions scalable through Monte Carlo integration and control variate methods.

Before going into the details of the training techniques, we introduce two auxiliary loss functions, which we can use in
addition to Ldistil and Lconsis for practical improvements. One is the datapoint loss that directly computes the negative
log-likelihood with respect to the data distribution (e.g., Austin et al., 2021, Eq. 5), which we can use when we have access
to data q0:

Ldata(θ; t) := E(x0,xt)∼q0,t

[
− log pθ0|t(x0|xt)

]
. (7)

The other is the following marginal loss, which is easier to compute, under the assumption that the teacher model sufficiently
learns the true marginal, i.e., pψ,d0|t ≈ qd0|t:

Lmarginal(θ;ψ, rt, t) := Ext∼rt

[
D∑
d=1

DKL(p
ψ,d
0|t (·|xt) ∥ p

θ,d
0|t (·|xt))

]
. (8)

A.1. Surrogate of distillation loss

Since the exact evaluation of Ldistil with a mixture model seems intractable, we consider an upper bound of L̃distil as a
practical alternative:

Ldistil(θ;ψ, rδ, δ) = Exδ∼rδ

[
DKL(p

ψ
0|δ(·|xδ) ∥Eλ[p

θ
0|δ(·|xδ;λ)])

]
≤ Exδ∼rδEλ

[
DKL(p

ψ
0|δ(·|xδ)) ∥ p

θ
0|δ(·|xδ;λ)

]
≤ Eλ,xδ∼rδ

[
D∑
d=1

DKL(p
ψ,d
0|δ (·|xδ) ∥ p

θ,d
0|δ(·|xδ;λ))

]
=: L̃distil(θ;ψ, rδ, δ).

Here, the inequality is given by the convexity of KL divergence (see Proposition 3). The upper bound L̃distil (and then
Ldistil) becomes zero if the student denoiser coincides with the teacher for the time interval [0, δ], regardless of λ. Therefore,
the use of this upper bound is feasible if pθ has enough expressive power.

A.2. Surrogate of consistency loss

We consider Lconsis in this section. As pθs|u is more “reliable” than pθs|t (since s < u < t), we consider only the gradient of
Lconsis concerning pθs|t and ignore the gradient coming from pθs|u. Therefore, we conduct stochastic gradient descent on θ
with the loss

DKL(p
sg(θ)
s|u ◦ pψu|t(·|xt) ∥ p

θ
s|t(·|xt)) = H(p

sg(θ)
s|u ◦ pψu|t(·|xt), p

θ
s|t(·|xt)) + const., (9)

where sg(·) is the stop-gradient operator (van den Oord et al., 2017) and H(p, q) = Ex∼p[− log q(x)] is the cross entropy
between p and q. We hereby ignore the constant term in (9) and consider how to efficiently compute the cross entropy term.

Most naively, by using finite samples x(1)
s , . . . ,x

(M)
s ∼iid p

sg(θ)
s|u ◦ pψu|t(·|xt) and λ1, . . . , λN ∼iid λ, we can approximate

this cross entropy by two-fold Monte Carlo:

H(p
sg(θ)
s|u ◦ pψu|t(·|xt), p

θ
s|t(·|xt))

≈ − 1

M

M∑
j=1

log pθs|t(x
(j)
s |xt) ≈ − 1

M

M∑
j=1

log

(
1

N

N∑
i=1

pθs|t(x
(j)
s |xt;λi)

)
. (10)

Although the value of each pθs|t(x
(j)
s |xu;λi) =

∏D
d=1 p

θ,d
s|t (x

(j),d
s |xu;λi) can be extremely small due to the D-fold product,

we can exploit the log-sum-exp structure:

log

(
N∑
i=1

pθs|t(x
(j)
s |xt;λi)

)
= log

(
N∑
i=1

exp︸ ︷︷ ︸
log-sum-exp

(
D∑
d=1

log pθ,ds|t (x
(j),d
s |xt;λi)

))
,
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which is implemented as a function with additional stabilization to avoid under/overflows in some of the common numerical
packages including PyTorch. See (Blanchard et al., 2021) for details of numerical properties associated with the log-sum-exp
structure.

Dimensionally independent control variate. Although naive Monte Carlo sampling with a sufficiently large sample size
can approximate the left-hand side of Eq. (10) well, a small batch can cause high variance in the evaluation of the expected
values. An established way of stabilizing Monte Carlo integration is to use so-called control variates (Glasserman, 2004;
Oates et al., 2017), also known as a baseline in reinforcement learning (Williams, 1992). To estimate an expectation E[f ],
we can subtract another function/random variable g, called a control variate, whose integral we know or can compute more
precisely than Monte Carlo, and execute the Monte Carlo for f − g by using the decomposition E[f ] = E[f − g] + E[g].
See Section E for a more detailed explanation. As a concrete application of this technique, we below propose the use of a
dimensionally independent control variate.

We first exploit the compositional form of psg(θ)s|u ◦ pψu|t(·|xt), which is more informative than x
(j)
s , the pure samples in the

Monte Carlo approach. We can write it in an expectation as follows:

p
sg(θ)
s|u ◦ pψu|t(·|xt) = Eλ,xu∼pψu|t(·|xt)

[
p
sg(θ)
s|u (·|xu;λ)

]
. (11)

To simplify (11), let us denote qη := p
sg(θ)
s|u (·|xu;λ) and q := Eη[qη] with η = (xu, λ). To construct an efficient control

variate given q, we need a function g such that (i) it reasonably approximates pθs|t(·|xt) and (ii) Ex∼q[g(x)] is easy to
compute/approximate. One such example is the product model defined as

pθs|t(·|xt) :=
D∏
d=1

pθ,ds|t (·|xt), pθ,ds|t (·|xt) := pθ,ds|t (·|xt) = Eλ
[
pθ,ds|t (·|xt;λ)

]
. (12)

We defer the explanation of how (i) and (ii) are satisfied to Section E.1. Given a control variate pθs|t(·|xt), we can decompose
the loss computation:

H(q, pθs|t(·|xt)) = Exs∼q

[
− log pθs|t(xs|xt) + log pθs|t(xs|xt)

]
︸ ︷︷ ︸

Monte Carlo by sampling xs

+Eη
[
H(qη, pθs|t(·|xt))

]
︸ ︷︷ ︸

Monte Carlo by sampling η

. (13)

Here, the first term can be treated similarly to (10), and we approximately compute the second term by sampling η and using
the identity H(qη, pθs|t(·|xt)) =

∑D
d=1H(qη,d, pθ,ds|t (·|xt)) (see (64) in Section E.1). In this decomposition, we expect the

mixture model to explicitly learn the dimensional correlation with the first term, while the second term stabilizes the overall
approximation, as we use more detailed information on q than just its samples. See also Section E.2 for more background on
how we derive pθ and another possible choice of control variate.

A.3. Auxiliary losses

While we can use a similar Monte Carlo estimate for Ldata (with random samples of x0,xt, λ), we can regard Lmarginal as
a possible control variate for it. Indeed, if the teacher network is well-trained, we can expect that its marginal approximates
the true marginal as pψ,d ≈ qd. Thus, for the marginal-matching product model pθ given in Eq. (12), we have

Ext∼qt

[
H(q0|t(·|xt), pθ0|t(·|xt))

]
≈ Lmarginal(θ;ψ, qt, t) + const., (14)

where the constant term is independent of θ. We give the derivation of (14) in Appendix E.3. We then obtain a decomposed
formulation of Ldata for given xt ∼ qt as follows, by letting q = q0|t(·|xt) and s = 0 in Eq. (13) and then using
approximation (14):

Ldata(θ; t) ≈ Lcorr(θ; t) + Lmarginal(θ;ψ, qt, t) + const.,

Lcorr(θ; t) := E(x0,xt)∼q0,t

[
− log pθ0|t(x0|xt) + log pθ0|t(x0|xt)

]
.

Here, Lcorr measures the difference between pθ and pθ and thus represents the dimensional correlation learned by the model
pθ. In the actual implementation for the first term Lcorr, we generate x0 ∼ q0 and then xt ∼ qt|0(·|x0), and regard them
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as samples from (x0,xt) ∼ q0,t, which are required for conducting Monte Carlo. When combining Ldata and Lmarginal

(both as a loss and control variate), we empirically find that mixing them as αtLcorr(θ; t) + Lmarginal(θ;ψ, qt, t) with some
αt ∈ [0, 1] depending on t is more efficient than just using constant αt = 0 (pure marginal loss) or αt = 1 (pure data loss).
See Section F.1 for details in this regard.

A.4. Iterated Di4C training

While we generally assume that the teacher model is given by a product model, the Di4C loss functions can also treat
mixture teacher models. The only exception is the marginal loss (Section A.3), but we can just replace q0|t with q0|t in (14)
and conduct Monte Carlo estimates. Through this generalization, we can run multiple rounds of Di4C in a similar spirit as
the multi-round SDTT (Deschenaux & Gulcehre, 2025).

B. Kullback–Leibler divergence and total variation distance
Let p and q be probability distributions on the same finite set X . The KL divergence DKL and the total variation distance
dTV are defined as follows:

DKL(p ∥ q) :=
∑
x∈X

p(x) log
p(x)

q(x)
, dTV(p, q) := sup

A⊂X
|p(A)− q(A)| = 1

2

∑
x∈X

|p(x)− q(x)|.

Here, in the computation of DKL, we ignore the term with p(x) = 0 and, if there is an x with p(x) > 0 and q(x) = 0, we
then define DKL(p ∥ q) = 0. These two error criteria between distributions are bridged by the following inequality (see, e.g.,
Canonne (2022)).

Proposition 2 (Pinsker’s inequality). For probability distributions p and q on X , we have

dTV(p, q) ≤
√

1

2
DKL(p ∥ q).

The convexity of KL divergence in the following plays a role in the main body of the paper.

Proposition 3 (Cover & Thomas, 2006, Theorem 2.7.2). DKL(p ∥ q) is convex with respect to the pair (p, q). Namely, for
t ∈ [0, 1] and probability distributions p1, p2, q1, q2 on the same domain, we have

DKL(tp1 + (1− t)p2 ∥ tq1 + (1− t)q2) ≤ tDKL(p1 ∥ q1) + (1− t)DKL(p2 ∥ q2).

We also use the following triangle-like inequality for the total variation distance of compositions.

Proposition 4. For probability distributions p1(·|y), p2(·|y) over X conditioned on y ∈ Y and q1, q2 over Y , we have

dTV(Ey∼q1 [p1(·|y)] ,Ey∼q2 [p2(·|y)]) ≤ Ey∼q1 [dTV(p1(·|y), p2(·|y))] + dTV(q1, q2).

We give its proof in Section D.2.

C. Continuous-time Markov chains and Kolmogorov equations
Let us discuss the Kolmogorov forward/backward equations associated with continuous-time Markov chains. While the
arguments below are mostly a reorganization of those given in previous studies (Campbell et al., 2022; Sun et al., 2023), we
explicitly track the continuity/nonzero assumptions used in their derivations.

C.1. Kolmogorov equations in the general case

Let us consider a general Markov process over the continuous time interval [0, T ] and a discrete (finite) state space X ,
which is called a continuous-time Markov chain (Anderson, 2012; Campbell et al., 2022). The starting block is the forward
transition rate in a short-time interval. For t < t+ ϵ, assume the following equation for the infinitesimal forward transition:

qt+ϵ|t(y|x) = δy,x + ϵQt(y, x) + o(ϵ), ϵ > 0, (15)
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where δy,x is the Kronecker delta and Qt is a function X × X → R called the transition rate. Here, for s ≤ t < t+ ϵ, we
have

qt+ϵ|s(y|x) =
∑
z

qt+ϵ|t(y|z)qt|s(z|x) =
∑
z

(δy,z +Qt(y, z)ϵ)qt|s(z|x) + o(ϵ)

= qt|s(y|x) + ϵ
∑
z

Qt(y, z)qt|s(z|x) + o(ϵ).

This means that we have ∂+t qt|s(y|x) =
∑
z Qt(y, z)qt|s(z|x), where ∂+t is a right-derivative regarding t. Under the

condition that Qt is continuous over [0, T ] (assume it is continuously extended to t = T , though it is not necessary right
now) and qt|s is continuous over t ∈ [s, T ], qt|s becomes differentiable over the open interval (from a general fact in analysis
(von Eitzen, 2014)) and we have the Kolmogorov forward equation for t ∈ (s, T ):

∂tqt|s(y|x) =
∑
z

Qt(y, z)qt|s(z|x). (16)

Now, let us derive the backward equation. For s < s+ ϵ ≤ t, by using (15), we have

qt|s(y|x) =
∑
z

qt|s+ϵ(y|z)qs+ϵ|s(z|x) =
∑
z

qt|s+ϵ(y|z)(δz,x + ϵQs(z, x)) + o(ϵ)

= qt|s+ϵ(y|x) + ϵ
∑
z

qt|s+ϵ(y|z)Qs(z, x) + o(ϵ).

Thus, by additionally assuming the continuity of qt|s for s ∈ [0, T ], we obtain the one-sided derivative ∂+s qt|s(y|x) =
−
∑
z qt|s(y|z)Qs(z, x). When combined with the continuity ofQs similarly to the above argument on the forward equation,

it leads to the backward Kolmogorov equation for s ∈ (0, t):

∂sqt|s(y|x) = −
∑
z

qt|s(y|z)Qs(z, x). (17)

To summarize so far, under the assumption that qt|s is continuous for s, t with 0 ≤ s ≤ t ≤ T and Qt in (15) is continuous
over [0, T ], we have the two Kolmogorov equations given by (16) and (17). Note that all the

∑
z are finite sums because of

the finiteness of X .

C.2. Kolmogorov equations for factorized forward processes

Let us now consider the case where X = SD and xt = (xdt )
D
d=1 follows a dimensionally independent forward process with

transition rate Qdt . Namely, suppose

qdt+ϵ|t(y
d|xd) = δyd,xd + ϵQdt (y

d, xd) + o(ϵ) (18)

for each d = 1, . . . , D and t < t+ ϵ. In this case, we have

qt+ϵ|t(y|x) =
D∏
d=1

qdt+ϵ|t(y
d|xd) = δy,x + ϵ

D∑
d=1

Qdt (y
d, xd)δy\d,x\d + o(ϵ) (19)

by simply expanding the product, where x\d ∈ SD−1 is given by omitting the d-th entry of x. From (19), the transition rate
for xt is given by

Qt(y,x) =

D∑
d=1

Qdt (y
d, xd)δy\d,x\d (20)

as in Campbell et al. (2022, Proposition 3). Let us assume continuity regarding the forward process in each dimension:

Assumption A. For each d = 1, . . . , D, there exists a function Qdt : S × S → R indexed by t ∈ [0, T ] satisfying (18).
Moreover, for any fixed x, y ∈ S, qdt|s(y|x) is continuous in {(s, t) ∈ [0, T ]2 | s ≤ t} and Qdt (y, x) is continuous in [0, T ].
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This can be satisfied by broad range of forward diffusion designs, including uniform, absorbing (masked), and discretized
Gaussian diffusion (see, Campbell et al., 2022, Section E).

Under Assumption A, qt|s and Qt for the original process xt are also continuous since qt|s(y|x) =
∏D
d=1 q

d
t|s(y

d|xd) and
(20). Thus, we can apply the argument in Section C.1 to obtain Kolmogorov equations (16) & (17). Moreover, we can show
a favorable property of the time-reversal process. This is just a re-formalization of a well-known fact (e.g., Campbell et al.
(2022, Proposition 3) and Sun et al. (2023, Proposition 3.2)).

Proposition 5. Let SDt,+ := {x ∈ SD | qt(x) > 0}. Under Assumption A, there exists a function Rt : SD × SDt,+ → R
indexed by t ∈ (0, T ] such that

(a) we have qt−ϵ|t(y|x) = δy,x + ϵRt(y,x) + o(ϵ) for y ∈ SD, x ∈ SDt,+ and ϵ > 0 with t− ϵ ≥ 0, and

(b) Rt(y,x) can be nonzero only if x and y coincide in at least D − 1 entries.

We give its proof in Section D.3. As one can see from the proof, the time-reversal transition rate Rt is given concretely
by Rt(y,x) = Qt(x,y)qt(y)/qt(x) when x ̸= y and qt(x) > 0. Note that the ratio qt(y)/qt(x) is treated as a discrete
counterpart of the score function (Sun et al., 2023; Lou et al., 2024).

Let us add another regularity assumption:

Assumption B. For each d = 1, . . . , D and x, y ∈ S , Qdt (y, x) is differentiable for t ∈ (0, T ) and the derivative ∂tQdt (y, x)
can be continuously extended to [0, T ].

Note that usual choices of Qdt regarding t including the time-homogeneous case Qt = Q and the noise scheduling
Qt = β(t)Q with a smooth β (Campbell et al., 2022; Lou et al., 2024) satisfy this assumption. Finally, under these two
assumptions, we can formalize Theorem 1 as follows.

Theorem 3. Suppose (xt)0≤t≤T satisfies Assumptions A & B. Let ps|t be a product model with the correct marginals, i.e.,
ps|t(xs|xt) =

∏D
d=1 q

d
s|t(x

d
s |xt) for s < t. Then, there exists a constant C > 0 such that, given timesteps ti = iT/N for

i = 0, . . . , N , we have

dTV

(
q0,ExT∼qT

[
pt0|t1 ◦ pt1|t2 ◦ · · · ◦ ptN−1|tN (·|xT )

])
≤ C

N
. (21)

Furthermore, there exists an example of (xt)0≤t≤T satisfyingD = |S| = 2 and the same assumptions such that the left-hand
side of (21) is lower-bounded by c/N with some constant c > 0 for sufficiently large N .

This theorem basically says the min-max convergence rate of the analytical sampling is 1/N . We give the proof of the first
half, i.e., Eq. (21), in Section D.4. For the latter half, we provide the concrete version in Proposition 6 in the following
section.

C.3. Lower bound of Theorem 3

We shall provide an example that yields an Ω(1/N) error between the analytical and true denoisers. Our example
even satisfies the following stronger assumption, which is often used in theoretical analysis (e.g., Campbell et al., 2022,
Assumption 1):

Assumption C. For any t ∈ [0, T ] and x ∈ SD, qt(x) > 0 holds.

Consider S = {a, b} and D = 2, where the state-space is given by X = {aa, ab, ba, bb} by omitting parentheses. Consider
the (forward) Markov process given by the initial distribution q0 = (δaa+δbb)/2 and the dimension-wise time-homogeneous
transition rate Qdt (y, x) = 1/2 − δyx for d = 1, 2 and x, y ∈ S. Under this setting, the forward transition probability is
continuous and satisfies ∂tqdt|s(·|a) = Qdt q

d
t|s(·|a) as a vector-valued differential equation, so we have, for t > s,

∂tq
d
t|s(a|a) = −1

2
qdt|s(a|a) +

1

2
qdt|s(b|a) =

1

2
− qdt|s(a|a).

By solving this, we obtain qdt|s(a|a) =
1
2 (1 + e−(t−s)) for t ≥ s. By symmetry, we generally have

qdt|s(a|a) = qdt|s(b|b) =
1

2
(1 + e−(t−s)), qdt|s(b|a) = qdt|s(a|b) =

1

2
(1− e−(t−s)) (22)
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This is a special case of uniform diffusion and clearly satisfies Assumptions A & B. Although the singularity of q0 violates
Assumption C at time zero, we can consider the time interval [δ, T ] for some δ > 0 instead of [0, T ] to ensure qt > 0. We
will, however, work with the singular q0 for simplicity of computations. The following proposition gives the lower bound
discussed in Theorem 3. If necessary, we can replace T with T + δ and consider x′

t = xt+δ to match the time intervals.

Proposition 6. Let (xt)δ≤t≤T be the Markov process defined above and ps|t be the product model ps|t(xs|xt) =∏D
d=1 q

d
s|t(x

d
s |xt) for s < t. If we let N ≥ 2(T − δ)/δ be an integer and ti = δ + i(T − δ)/N for i = 0, . . . , N

be timesteps, then there is a constant c > 0 such that

dTV

(
qδ,ExT∼qT

[
pt0|t1 ◦ pt1|t2 ◦ · · · ◦ ptN−1|tN (·|xT )

])
≥ c

N
. (23)

The proof is given in Section D.5.

D. Proofs
D.1. Proof of Theorem 2

Proof. For simplicity of notation, let p̃ψtn|T be the denoiser given by the teacher with timesteps tn < tn+1 < · · · < tN , i.e,

p̃ψtn|T := pψtn|tn+1
◦ · · · ◦ pψtN−1|tN ,

so that we have rtn = ExT∼rT

[
p̃ψtn|T (·|xT )

]
. Note that we can just set p̃ψtN |T (·|x) = p̃ψT |T (·|x) = δx.

Also, let p0,n := ExT∼rT

[
pθ0|tn ◦ p̃ψtn|T (·|xT )

]
for n = 1, . . . , N , where p0,N is just given by p0,N =

ExT∼rT

[
pθ0|T (·|xT )

]
. We first compare p0,n and p0,n+1 with the consistency loss.

For each 0 < u < t ≤ T , we have

Lconsis(θ;ψ, rt, 0, u, t) = Ext∼rt

[
DKL(p

θ
0|u ◦ p

ψ
u|t(·|xt) ∥ p

θ
0|t(·|xt))

]
≥ DKL

(
Ext∼rt

[
pθ0|u ◦ p

ψ
u|t(·|xt)

] ∥∥∥Ext∼rt

[
pθ0|t(·|xt)

])
from the convexity (Proposition 3). If we let u = tn and t = tn+1 for some 1 ≤ n < N , we can see

Ext∼rt

[
pθ0|u ◦ p

ψ
u|t(·|xt)

]
= ExT

[
pθ0|tn ◦ pψtn|tn+1

◦ p̃ψtn+1|T (·|xT )
]
= p0,n,

and Ext∼rt

[
pθ0|t(·|xt)

]
= p0,n+1 hold. By using Pinsker’s inequality (Proposition 2), we have

dTV(p0,n, p0,n+1) ≤
1√
2
DKL(p0,n ∥ p0,n+1)

1/2 ≤ 1√
2
Lconsis(θ;ψ, rtn+1

, 0, tn, tn+1)
1/2. (24)

From a similar argument, we have

Ldistil(θ;ψ, rt1 , t1) = Ext1∼rt1

[
DKL(p

ψ
0|t1(·|xt1) ∥ p

θ
0|t1(·|xt1))

]
≥ DKL(r0 ∥ p0,1),

and thus
dTV(r0, p0,1) ≤

1√
2
DKL(r0 ∥ p0,1)1/2 ≤ 1√

2
Ldistil(θ;ψ, rt1 , t1)

1/2. (25)

By using the triangle inequality of the total variation distance, we obtain

dTV(r0, p0,N ) ≤ dTV(r0, p0,1) +

N−1∑
n=1

dTV(p0,n, p0,n+1).

Finally, applying Eqs. (24) and (25) to its right-hand side yields the desired inequality.
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D.2. Proof of Proposition 4

Proof. Let us first consider the case of q1 = q2. Then, we have

dTV(Ey∼q1 [p1(·|y)] ,Ey∼q1 [p2(·|y)])

=
1

2

∑
x

∣∣∣∣∣∑
y

p1(x|y)q1(y)−
∑
y

p2(x|y)q1(y)

∣∣∣∣∣ = 1

2

∑
x

∣∣∣∣∣∑
y

(p1(x|y)− p2(x|y))q1(y)

∣∣∣∣∣
≤ 1

2

∑
x

∑
y

|p1(x|y)− p2(x|y)| q1(y) = Ey∼q1 [dTV(p1(·|y), p2(·|y))] , (26)

where we have used q1 ≥ 0 in the inequality. On the other hand, if p1 = p2, we have

dTV(Ey∼q1 [p2(·|y)] ,Ey∼q2 [p2(·|y)])

=
1

2

∑
x

∣∣∣∣∣∑
y

p2(x|y)q1(y)−
∑
y

p2(x|y)q2(y)

∣∣∣∣∣ = 1

2

∑
x

∣∣∣∣∣∑
y

p2(x|y)(q1(y)− q2(y))

∣∣∣∣∣
≤ 1

2

∑
x

∑
y

p2(x|y)|q1(y)− q2(y)| =
1

2

∑
y

|q1(y)− q2(y)| = dTV(q1, q2), (27)

where we have used p2 ≥ 0 in the inequality and
∑
x p2(x|y) = 1 in the last equality.

By utilizing the usual triangle inequality of dTV and inequalities (26) & (27), we obtain

dTV(Ey∼q1 [p1(·|y)] ,Ey∼q2 [p2(·|y)])
≤ dTV(Ey∼q1 [p1(·|y)] ,Ey∼q1 [p2(·|y)]) + dTV(Ey∼q1 [p2(·|y)] ,Ey∼q2 [p2(·|y)])
≤ Ey∼q1 [dTV(p1(·|y), p2(·|y))] + dTV(q1, q2),

which is the desired inequality.

D.3. Proof of Proposition 5

Proof. Note that, by Assumption A, qt|s is continuous over {(s, t) ∈ [0, T ]2 | s ≤ t}, and Qt given by (20) is continuous
over [0, T ] and satisfies Eqs. (15)–(17), as mentioned in Section C.2 just after Assumption A.

Let us simply write x ∈ X instead of the bold style x ∈ SD in this paragraph. We consider only x ∈ X such that qt(x) > 0.
We follow the argument in Sun et al. (2023, Section B.2). Let us consider the conditional probability (namely, the true
denoiser) qs|t(·|x) for s ≤ t, which is uniquely determined since qt(x) > 0. Then, we have

∂sqs|t(y|x) = ∂s
qs(y)qt|s(x|y)

qt(x)
=

(∂sqs)(y)qt|s(x|y) + qs(y)(∂sqt|s)(x|y)
qt(x)

=
1

qt(x)

(
qt|s(x|y)

∑
z

Qs(y, z)qs(z)− qs(y)
∑
w

qt|s(x|w)Qs(w, y)

)
, (28)

where we have used the forward Kolmogorov equation of qt given as

∂tqt(x) =
∑
w

∂tqt|0(x|w)q0(w) =
∑
w

∑
z

Qt(x, z)qt|0(z|w)q0(w) =
∑
z

Qt(x, z)qt(z)

for computing ∂sqs and the backward Kolmogorov equation for computing ∂sqt|s. By taking the limit s→ t− 0 in (28), we
obtain lims→t−0 ∂sqs|t(y|x) = − qt(y)

qt(x)
Qt(x, y) if y ̸= x, given the continuity of qt|s and Qs. Then, from Taylor’s theorem,

we obtain a backward counterpart of (15) for y ̸= x as

qt−ϵ|t(y|x) = ϵ
qt(y)

qt(x)
Qt(x, y) + o(ϵ), ϵ > 0. (29)

Since
∑
y qt−ϵ|t(y|x) = 1 holds always, we also have that qt−ϵ|t(x|x) = 1 + ϵRt,x + o(ϵ) for the coefficient Rt,x =

−
∑
y ̸=x

qt(y)
qt(x)

Qt(x, y). Therefore, we can prove (a) by letting Rt(y, x) =
qt(y)
qt(x)

Qt(x, y) for y ̸= x and Rt(x, x) = Rt,x.

We can see (b) from (20) and the concrete form of Rt.
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D.4. Proof of first half of Theorem 3

We first prove the following auxiliary lemma replacing the o(ϵ) term in the backward transition by O(ϵ2).

Lemma 1. Under the same setting as in Theorem 3, there is a constant C > 0 such that, for any t ∈ (0, T ], ϵ ∈ (0, t], and
x ∈ X with qt(x) > 0, we have

dTV(qt−ϵ|t(·|x), pt−ϵ|t(·|x)) ≤
Cϵ2

qt(x)
. (30)

Proof. From (28) and Assumption B, qs|t(y|x) for s < t is twice-differentiable with regard to s, and qt(x)∂sqs|t(y|x) can
be represented as a polynomial of the function values of qs, Qs, qt|s, and ∂sQs. Thus, there is a constant C1 depending on
|S|, D, sups,z,wQs(z,w) and sups,z,w ∂s(z,w) such that qt(x)∂2sqs|t(y|x) ≤ C1 for any s, t,y,x (note that qt|s and qs
are within [0, 1]).

Now that ∂sqs|t can be continuously extended to s ∈ [0, t] from (28), for each t ∈ (0, T ], ϵ ∈ (0, t] and x,y ∈ SD with
qt(x) > 0, Taylor’s theorem yields that

∣∣qt−ϵ|t(y|x)− δy,x − ϵRt(y,x)
∣∣ = ∣∣∣∣ (∂2sqs|t)(y|x)|s=θ2

ϵ2
∣∣∣∣ ≤ C1

2qt(x)
ϵ2, (31)

for a certain θ ∈ (t− ϵ, t).

Let us next consider the marginal-matching product model pt−ϵ|t. For each d, if yd ̸= xd, we have

∣∣∣pdt−ϵ|t(yd|x)− ϵRt((y
d,x\d),x)

∣∣∣ =
∣∣∣∣∣∣
∑

y\d∈SD−1

qt−ϵ|t((y
d,y\d)|x)− ϵRt((y

d,x\d),x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y\d

(
qt−ϵ|t((y

d,y\d)|x)− ϵRt((y
d,y\d),x)

)∣∣∣∣∣∣
≤ |S|D−1C1

2qt(x)
ϵ2, (32)

where the second equality comes from Proposition 5(b) and the inequality is from (31). If yd = xd, since pdt−ϵ|t(x
d|x) =

1−
∑
yd ̸=xd |pdt−ϵ|t(y

d|x) we can use (32) to obtain∣∣∣∣∣∣pdt−ϵ(xd|x)− 1 + ϵ
∑
yd ̸=xd

Rt((y
d,x\d),x)

∣∣∣∣∣∣ ≤
∑
yd ̸=xd

|pdt−ϵ|t(y
d|x)− ϵRt((y

d,x\d),x)|

≤ |S|DC1

2qt(x)
ϵ2.

From (32) and this, by defining Rdt : S → R as Rdt (y
d) = Rt((y

d,x\d),x) for yd ̸= xd and Rdt (x
d) = −

∑
yd ̸=xd R

d
t (y

d),
there exists a constant C2 > 0 and a function Ad : S → R (for fixed t and x) such that

pdt−ϵ|t(y
d|x) = δyd,xd − ϵRdt (y

d) +
ϵ2

qt(x)
Ad(yd, ϵ), sup

yd∈S, ϵ

∣∣Ad(yd, ϵ)∣∣ ≤ C2. (33)

Therefore, we have

pt−ϵ|t(y|x) =
D∏
d=1

(
δyd,xd − ϵRdt (y

d) +
ϵ2

qt(x)
Ad(yd, ϵ)

)

= δy,x + ϵ

D∑
d=1

Rdt (y
d)δy\d,x\d +

D∑
k=1

Pk((δyd,xd , R
d
t (y

d), Ad(yd, ϵ))Dd=1)

(
ϵ2

qt(x)

)k
︸ ︷︷ ︸

Remainder term

,
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where Pk is a certain polynomial of 3D variables for each k. Note that, if y ̸= x, Rdt (y
d)δy\d,x\d can be nonzero only if

yd ̸= xd and y\d = x\d. In that case, from the definition of Rdt (y
d), we have

pt−ϵ|t(y|x) = ϵRdt (y
d) + (Remainder term) = ϵRt(y,x) + (Remainder term). (34)

This equality also holds when y and x differ in more than one entry, since the coefficient of ϵ becomes zero in such a case,
and Rt(y,x) = 0 from Proposition 5(b). Since the inputs for each Pk are all bounded, we have

(Remainder term) ≤ C3

D∑
k=1

(
ϵ2

qt(x)

)k
≤ C3D

(
ϵ2

qt(x)
+

ϵ2D

qt(x)D

)
(35)

for a constant C3 > 0. By combining it with (31), for y ̸= x, we have

|qt−ϵ|t(y|x)− pt−ϵ|t(y|x)| ≤ |qt−ϵ|t(y|x)− ϵRt(y,x)|+ |ϵRt(y,x)− pt−ϵ|t(y|x)|

≤ C1

2qt(x)
ϵ2 + C3D

(
ϵ2

qt(x)
+

ϵ2D

qt(x)D

)
≤ C4

(
ϵ2

qt(x)
+

ϵ2D

qt(x)D

)
for a constant C4 > 0. In particular, we have

dTV(qt−ϵ|t(·|x), pt−ϵ|t(·|x)) =
1

2

∑
y

|qt−ϵ|t(y|x)− pt−ϵ|t(y|x)|

=
1

2

∑
y ̸=x

|qt−ϵ|t(y|x)− pt−ϵ|t(y|x)|+

∣∣∣∣∣∣1−
∑
y ̸=x

qt−ϵ|t(y|x)− 1 +
∑
y ̸=x

pt−ϵ|t(y|x)

∣∣∣∣∣∣


≤
∑
y ̸=x

|qt−ϵ|t(y|x)− pt−ϵ|t(y|x)| ≤ |S|DC4

(
ϵ2

qt(x)
+

ϵ2D

qt(x)D

)
= C5

(
ϵ2

qt(x)
+

ϵ2D

qt(x)D

)
,

for a constant C5 > 0. Now, we can assume that C5 ≥ 1/2, by adding a positive number if necessary. Since dTV is bounded
above by 1 in general, we consider two cases:

(a) If ϵ2

qt(x)
≥ 1, we have dTV(qt−ϵ|t(·|x), pt−ϵ|t(·|x)) ≤ 1 ≤ 2C5

ϵ2

qt(x)
since 2C5 ≥ 1.

(b) If ϵ2

qt(x)
< 1, we have dTV(qt−ϵ|t(·|x), pt−ϵ|t(·|x)) ≤ C5

(
ϵ2

qt(x)
+ ϵ2D

qt(x)D

)
≤ 2C5

ϵ2

qt(x)
since ϵ2

qt(x)
≥ ϵ2D

qt(x)D
.

Therefore, we finally obtain (30).

By using the lemma and Proposition 4, we can prove the theorem.

Proof of Theorem 3. For each i = 0, . . . , N , let us define the compositions

p̃0|t0(·|x) = δx, p̃0|ti := pt0|t1 ◦ · · · ◦ pti−1|ti , i = 1, . . . , N.

Note also that, for x with qT (x) > 0, we have qti|T (·|x) = qti|ti+1
◦ · · · ◦ qtN−1|tN (·|x) from the Markov property of

the reverse process. Indeed, for s < t < u, we have qu|t(z|y) = qu|s,t(z|x,y) from the Markov property of the forward
process, so, for z with qu(z) > 0,∑

y

qs|t(x|y)qt|u(y|z) =
∑
y

qs,t(x,y)

qt(y)

qt,u(y, z)

qu(z)

=
∑
y

qs,t(x,y)qu|t(z|y)
qu(z)

=
∑
y

qs,t(x,y)qu|s,t(z|x,y)
qu(z)

=

∑
y qs,t,u(x,y, z)

qu(z)
=
qs,u(x, z)

qu(z)
= qs|u(x|z),
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where we have implicitly used that qt(y) > 0 holds for y satisfying qt|u(y|z) > 0 (given qu(z) > 0). By using the
inequality recursively, we can prove the aforementioned identity.

We prove the desired estimate by exploiting the compositions. Recall q0 = ExT∼qT
[
q0|tN (·|xT )

]
. What we want to estimate

is dTV(ExT∼qT
[
q0|tN (·|xT )

]
,ExT∼qT

[
p̃0|tN (·|xT )

]
). We bound the distance with the following triangle inequality:

dTV(ExT∼qT
[
q0|tN (·|xT )

]
,ExT∼qT

[
p̃0|tN (·|xT )

]
)

≤
N−1∑
i=0

dTV(ExT∼qT
[
p̃0|ti ◦ qti|tN (·|xT )

]
,ExT∼qT

[
p̃0|ti+1

◦ qti+1|tN (·|xT )
]
). (36)

Let us bound each term inside the summation by using Lemma 1 and Proposition 4. First, since p̃0|ti+1
= p̃0|ti ◦ pti|ti+1

, by
letting p1 = p2 = p̃0|ti in Proposition 4, we have

dTV(ExT∼qT
[
p̃0|ti ◦ qti|tN (·|xT )

]
,ExT∼qT

[
p̃0|ti+1

◦ qti+1|tN (·|xT )
]
)

≤ dTV(ExT∼qT
[
qti|tN (·|xT )

]
,ExT∼qT

[
pti|ti+1

◦ qti+1|tN (·|xT )
]
). (37)

Second, since qti+1|tN = qti|ti+1
◦ qti+1|tN , by letting q1 = q2 = qti+1

= ExT∼qT
[
qti+1|tN (·|xT )

]
in Proposition 4 (note

that the indices of q1, q2 here are different from time), we have

dTV(ExT∼qT
[
qti|tN (·|xT )

]
,ExT∼qT

[
pti|ti+1

◦ qti+1|tN (·|xT )
]
)

≤ Ex∼qti+1

[
dTV(qti|ti+1

(·|x), pti|ti+1
(·|x))

]
≤

∑
qti+1

(x)>0

qti+1(x) ·
C(ti+1 − ti)

2

qti+1
(x)

≤ C|S|DT 2

N2
, (38)

where we have used (30) and ti+1 − ti = T/N in the last inequality. By combining estimates (36)–(38), we obtain

dTV(ExT∼qT
[
q0|tN (·|xT )

]
,ExT∼qT

[
p̃0|tN (·|xT )

]
) ≤

N−1∑
i=0

C|S|DT 2

N2
=
C|S|DT 2

N
,

which completes the proof with a replacement of the constant factor.

D.5. Proof of Proposition 6

Proof. Consider the analytical sampler ps|t(zw|xy) = q1s|t(z|x)q
2
s|t(w|y) for s < t. Note that, because of the symmetry

between a and b in q0 and the forward transition, the distributions qt or those given by the composition of ps|t are also
symmetric. Thus, the probability of aa recovers all the information of the distributions we consider over X .

Let us compute several probabilities regarding qs|t and the analytical sampler through (22). First, note that q0|t(ab|·) =
q0|t(ba|·) = 0. Therefore, we have

q0|t(aa|aa) =
qt|0(aa|aa)q0(aa)

qt(aa)

=
qt|0(aa|aa)q0(aa)

qt|0(aa|aa)q0(aa) + qt|0(aa|bb)q0(bb)
=

1
4 (1 + e−t)2

1
4 (1 + e−t)2 + 1

4 (1− e−t)2
=

(1 + e−t)2

2(1 + e−2t)
, (39)

q0|t(bb|aa) = 1− q0|t(aa|aa) =
(1− e−t)2

2(1 + e−2t)
, (40)

q0|t(aa|ab) = q0|t(bb|ab) =
1

2
, (41)

where (41) is derived from symmetry.

By using (39)–(41) and the general fact (for Markov processes)

qs|0,t(xs|x0,xt) =
q0,s,t(x0,xs,xt)

q0,t(x0,xt)
=
qs|0(xs|x0)qt|0,s(xt|x0,xs)

qt|0(xt|x0)
=
qs|0(xs|x0)qt|s(xt|xs)

qt|0(xt|x0)
(42)
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for 0 ≤ s ≤ t, we can compute qs|t(·|aa) for any s ∈ [0, t] as follows:

qs|t(aa|aa) = q0|t(aa|aa)qs|0,t(aa|aa, aa) + q0|t(bb|aa)qs|0,t(aa|bb, aa)

=
(1 + e−t)2

2(1 + e−2t)

1
4 (1 + e−s)2 1

4 (1 + e−(t−s))2

1
4 (1 + e−t)2

+
(1− e−t)2

2(1 + e−2t)

1
4 (1− e−s)2 1

4 (1 + e−(t−s))2

1
4 (1− e−t)2

=
((1 + e−s)2 + (1− e−s)2)(1 + e−(t−s))2

8(1 + e−2t)
=

(1 + e−2s)(1 + e−(t−s))2

4(1 + e−2t)
, (43)

qs|t(bb|aa) = q0|t(aa|aa)qs|0,t(bb|aa, aa) + q0|t(bb|aa)qs|0,t(bb|bb, aa)

=
(1 + e−t)2

2(1 + e−2t)

1
4 (1− e−s)2 1

4 (1− e−(t−s))2

1
4 (1 + e−t)2

+
(1− e−t)2

2(1 + e−2t)

1
4 (1 + e−s)2 1

4 (1− e−(t−s))2

1
4 (1− e−t)2

=
((1− e−s)2 + (1 + e−s)2)(1− e−(t−s))2

8(1 + e−2t)
=

(1 + e−2s)(1− e−(t−s))2

4(1 + e−2t)
, (44)

qs|t(ab|aa) = qs|t(ba|aa) =
1

2
(1− qs|t(aa|aa)− qs|t(bb|aa)) (45)

=
1

2
− (1 + e−2s)((1 + e−(t−s))2 + (1− e−(t−s))2)

8(1 + e−2t)

=
1

2
− (1 + e−2s)(1 + e−2(t−s))

4(1 + e−2t)
=

1

4
− e−2s + e−2(t−s)

4(1 + e−2t)
. (46)

We can also compute qs|t(aa|ab) = qs|t(bb|ab) as

qs|t(aa|ab) = q0|t(aa|ab)qs|0,t(aa|aa, ab) + q0|t(bb|ab)qs|0,t(aa|bb, ab)

=
1

2

1
4 (1 + e−s)2 1

4 (1 + e−(t−s))(1− e−(t−s))
1
4 (1 + e−t)(1− e−t)

+
1

2

1
4 (1− e−s)2 1

4 (1 + e−(t−s))(1− e−(t−s))
1
4 (1− e−t)(1 + e−t)

=
((1 + e−s)2 + (1− e−s)2)(1− e−2(t−s))

8(1− e−2t)
=

(1 + e−2s)(1− e−2(t−s))

4(1− e−2t)

=
1

4
+
e−2s − e−2(t−s)

4(1− e−2t)
. (47)

Let us now compute the probabilities regarding the analytical sampler. To make it simple, let qs|t(x ∗ |·) := qs|t(xa|·) +
qs|t(xb|·) represent marginals; qs|t(∗y|·) is defined similarly. By using this notation and (43)–(47), we have

ps|t(aa|aa) = qs|t(a ∗ |aa)qs|t(∗a|aa) = qs|t(a ∗ |aa)2 = (qs|t(aa|aa) + qs|t(ab|aa))2

=

(
(1 + e−2s)(1 + e−(t−s))2

4(1 + e−2t)
+

1

2
− (1 + e−2s)(1 + e−2(t−s))

4(1 + e−2t)

)2

=

(
2(1 + e−2t) + (1 + e−2s)((1 + e−(t−s))2 − (1 + e−2(t−s)))

4(1 + e−2t)

)2

=

(
(1 + e−2t) + (1 + e−2s)e−(t−s)

2(1 + e−2t)

)2

=

(
(1 + e−(t+s))(1 + e−(t−s))

2(1 + e−2t)

)2

(48)

ps|t(bb|aa) = qs|t(b ∗ |aa)qs|t(∗b|aa) = qs|t(b ∗ |aa)2 = (qs|t(bb|aa) + qs|t(ba|aa))2

=

(
(1 + e−2s)(1− e−(t−s))2

4(1 + e−2t)
+

1

2
− (1 + e−2s)(1 + e−2(t−s))

4(1 + e−2t)

)2

=

(
2(1 + e−2t) + (1 + e−2s)((1− e−(t−s))2 − (1 + e−2(t−s)))

4(1 + e−2t)

)2

=

(
(1 + e−2t)− (1 + e−2s)e−(t−s)

2(1 + e−2t)

)2

=

(
(1− e−(t+s))(1− e−(t−s))

2(1 + e−2t)

)2

(49)
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Let us compute the sum of (48) and (49) as we use it later:

ps|t(aa|aa) + ps|t(bb|aa)

=

(
(1 + e−(t+s))(1 + e−(t−s))

2(1 + e−2t)

)2

+

(
(1− e−(t+s))(1− e−(t−s))

2(1 + e−2t)

)2

=
((1 + e−(t+s))(1 + e−(t−s)))2 + ((1− e−(t+s))(1− e−(t−s)))2

4(1 + e−2t)2

=
(1 + e−2t + e−(t+s) + e−(t−s))2 + (1 + e−2t − e−(t+s) − e−(t−s))2

4(1 + e−2t)2

=
(1 + e−2t)2 + (e−(t+s) + e−(t−s))2

2(1 + e−2t)2
=

1

2
+

(e−(t+s) + e−(t−s))2

2(1 + e−2t)2
. (50)

Next, ps|t(aa|ab) is the product of two marginals — qs|t(a ∗ |ab) and qs|t(∗a|ab), which can be computed as follows:

ps|t(a ∗ |ab) = q0|t(aa|ab)q1s|0,t(a|a, a) + q0|t(bb|ab)q1s|0,t(a|b, a)

=
1

2

1
2 (1 + e−s) 12 (1 + e−(t−s))

1
2 (1 + e−t)

+
1

2

1
2 (1− e−s) 12 (1 + e−(t−s))

1
2 (1− e−t)

=
((1 + e−s)(1− e−t) + (1− e−s)(1 + e−t))(1 + e−(t−s))

4(1− e−2t)

=
(1− e−(t+s))(1 + e−(t−s))

2(1− e−2t)
=

1

2
+
e−(t−s) − e−(t+s)

2(1− e−2t)
,

ps|t(∗a|ab) = ps|t(a ∗ |ba) = ps|t(b ∗ |ab) = 1− ps|t(a ∗ |ab) =
1

2
− e−(t−s) − e−(t+s)

2(1− e−2t)
,

where the latter derivation is from the symmetries of the two dimensions and two characters. By using these, we have

ps|t(aa|ab) = ps|t(a ∗ |ab)ps|t(∗a|ab) =
1

4
−
(
e−(t−s) − e−(t+s)

2(1− e−2t)

)2

. (51)

Let us consider iteratively denoising from qT by using ps|t. For an ϵ > 0 and nonnegative integers n ≤ T/ϵ− 1, define

pϵT := pT , pϵT−(n+1)ϵ := Ex∼pϵT−nϵ

[
pT−(n+1)ϵ|T−nϵ(·|x)

]
, n = 0, 1, . . . .

Our goal is to estimate the difference between pϵT−nϵ and qT−nϵ for each n. Let us fix n and set t = T −nϵ when computing
pϵt−ϵ in terms of pϵt . Because of the symmetry, pϵt(aa) = pϵt(bb) and pϵt(ab) = pϵt(ba) = 1

2 − pϵt(aa) hold in general.
Therefore, by using (50) and (51), we have

pϵt−ϵ(aa) = pt−ϵ|t(aa|aa)pϵt(aa) + pt−ϵ|t(aa|bb)pϵt(bb) + pt−ϵ|t(aa|ab)pϵt(ab) + pt−ϵ|t(aa|ba)pϵt(ba)

= pt−ϵ|t(aa|aa)pϵt(aa) + pt−ϵ|t(bb|aa)pϵt(aa) + 2pt−ϵ|t(aa|ab)
(
1

2
− pϵt(aa)

)
= pt−ϵ|t(aa|ab) + (pt−ϵ|t(aa|aa) + pt−ϵ|t(bb|aa)− 2pt−ϵ|t(aa|ab))pϵt(aa)

=
1

4
− (e−ϵ − e−(2t−ϵ))2

4(1− e−2t)2
+

(
(e−ϵ + e−(2t−ϵ))2

2(1 + e−2t)2
+

(e−ϵ − e−(2t−ϵ))2

2(1− e−2t)2

)
pϵt(aa). (52)

To compare it with qt−ϵ, we also compute a similar recurrence equation by replacing p’s with q’s and using (45)–(47):

qt−ϵ(aa) = qt−ϵ|t(aa|ab) + (qt−ϵ|t(aa|aa) + qt−ϵ|t(bb|aa)− 2qt−ϵ|t(aa|ab))qt(aa)

=
1

4
− e−2ϵ − e−2(t−ϵ)

4(1− e−2t)
+

(
e−2ϵ + e−2(t−ϵ)

2(1 + e−2t)
+
e−2ϵ − e−2(t−ϵ)

2(1− e−2t)

)
qt(aa) (53)

24



Distillation of Discrete Diffusion through Dimensional Correlations

Let us now compute quantities regarding the coefficients in (52) and (53).

e−2ϵ − e−2(t−ϵ)

1− e−2t
− (e−ϵ − e−(2t−ϵ))2

(1− e−2t)2

=
(e−2ϵ − e−2(t−ϵ))(1− e−2t)− (e−ϵ − e−(2t−ϵ))2

(1− e−2t)2

=
(e−2ϵ − e−2(t−ϵ) − e−2(t+ϵ) + e−2(2t−ϵ))− (e−ϵ − e−(2t−ϵ))2

(1− e−2t)2

= − (e−(t−ϵ) − e−(t+ϵ))2

(1− e−2t)2
= − e−2t

(1− e−2t)2
(eϵ − e−ϵ)2, (54)

e−2ϵ + e−2(t−ϵ)

1 + e−2t
− (e−ϵ + e−(2t−ϵ))2

(1 + e−2t)2

=
(e−2ϵ + e−2(t−ϵ))(1 + e−2t)− (e−ϵ + e−(2t−ϵ))2

(1 + e−2t)2

=
(e−2ϵ + e−2(t−ϵ) + e−2(t+ϵ) + e−2(2t−ϵ))− (e−ϵ + e−(2t−ϵ))2

(1 + e−2t)2

=
(e−(t−ϵ) − e−(t+ϵ))2

(1 + e−2t)2
=

e−2t

(1 + e−2t)2
(eϵ − e−ϵ)2, (55)

e−2ϵ + e−2(t−ϵ)

1 + e−2t
+
e−2ϵ − e−2(t−ϵ)

1− e−2t

=
(e−2ϵ + e−2(t−ϵ))(1− e−2t) + (e−2ϵ − e−2(t−ϵ))(1 + e−2t)

1− e−4t

= 2 +
2(e−2ϵ − e−2(2t−ϵ))− 2(1− e−4t)

1− e−4t

= 2 +
2(1 + e2(2t−ϵ))

1− e−4t
(e−2ϵ − 1). (56)

We shall evaluate the difference ∆ϵ
t := qt(aa)− pϵt(aa) by using (52)–(56) as follows:

∆ϵ
t−ϵ = −

(
e−2ϵ − e−2(t−ϵ)

4(1− e−2t)
− (e−ϵ − e−(2t−ϵ))2

4(1− e−2t)2

)
+

(
e−2ϵ + e−2(t−ϵ)

2(1 + e−2t)
+
e−2ϵ − e−2(t−ϵ)

2(1− e−2t)

)
(pϵt(aa) + ∆ϵ

t)

−
(
(e−ϵ + e−(2t−ϵ))2

2(1 + e−2t)2
+

(e−ϵ − e−(2t−ϵ))2

2(1− e−2t)2

)
pϵt(aa)

=
e−2t

4(1− e−2t)2
(eϵ − e−ϵ)2 +

(
e−2ϵ + e−2(t−ϵ)

2(1 + e−2t)
+
e−2ϵ − e−2(t−ϵ)

2(1− e−2t)

)
∆ϵ
t

+

(
e−2ϵ + e−2(t−ϵ)

2(1 + e−2t)
− (e−ϵ + e−(2t−ϵ))2

2(1 + e−2t)2
+
e−2ϵ − e−2(t−ϵ)

2(1− e−2t)
− (e−ϵ − e−(2t−ϵ))2

2(1− e−2t)2

)
pϵt(aa)

=
e−2t

4(1− e−2t)2
(eϵ − e−ϵ)2 +

(
1 +

1 + e2(2t−ϵ)

1− e−4t
(e−2ϵ − 1)

)
∆ϵ
t

+

(
e−2t

2(1 + e−2t)2
− e−2t

2(1− e−2t)2

)
(eϵ − e−ϵ)2pϵt(aa)

=

(
e−2t

2(1 + e−2t)2
pϵt(aa) +

e−2t

2(1− e−2t)2

(
1

2
− pϵt(aa)

))
(eϵ − e−ϵ)2

+

(
1 +

1 + e2(2t−ϵ)

1− e−4t
(e−2ϵ − 1)

)
∆ϵ
t. (57)
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Since pϵt(aa) = pϵt(bb) ≤ 1/2, we have

e−2t

2(1 + e−2t)2
pϵt(aa) +

e−2t

2(1− e−2t)2

(
1

2
− pϵt(aa)

)
≥ 1

2
min

{
e−2t

2(1 + e−2t)2
,

e−2t

2(1− e−2t)2

}
=

e−2t

4(1− e−2t)2
.

Additionally, as the Taylor series of (eϵ − e−ϵ)2 = e2ϵ + e−2ϵ − 2 is given by
∑∞
k=1

2
(2k)! (2ϵ)

2k, we especially have
(eϵ − e−ϵ)2 ≥ 4ϵ2. Thus, we obtain(

e−2t

2(1 + e−2t)2
pϵt(aa) +

e−2t

2(1− e−2t)2

(
1

2
− pϵt(aa)

))
(eϵ − e−ϵ)2

≥ e−2t

4(1− e−2t)2
· 4ϵ2 =

e−2t

(1− e−2t)2
ϵ2. (58)

Also, since e−2ϵ ≥ 1− 2ϵ, we have

1 +
1 + e2(2t−ϵ)

1− e−4t
(e−2ϵ − 1) ≥ 1− 2(1 + e2(2t−ϵ))

1− e−4t
ϵ ≥ 1− 4

1− e−4t
ϵ. (59)

Suppose we are working on the time interval [δ, T ] for some δ, T > 0. Let us take ϵ ≤ δ/2; then we have

1− 4

1− e−4t
ϵ ≥ 1− 4

4t
ϵ ≥ 1− ϵ

δ
> 0. (60)

For (58), we have
e−2t

(1− e−2t)2
ϵ2 ≥ e−2tϵ2 ≥ e−2T ϵ2. (61)

By combining (57)–(61), we first see that ∆ϵ
t is nonnegative for all t = T − nϵ by induction on n = 0, 1, . . . (assuming

ϵ ≤ δ/2 and t ∈ [δ, T ]). Then, we obtain the following simple inequality:

∆ϵ
t−ϵ ≥

(
1− ϵ

δ

)
∆ϵ
t + e−2T ϵ2

By recalling that t = T − nϵ, we can rewrite it as(
1− ϵ

δ

)−(n+1)

∆ϵ
T−(n+1)ϵ ≥

(
1− ϵ

δ

)−n
∆ϵ
T−n +

(
1− ϵ

δ

)−(n+1)

e−2T ϵ2.

Since ∆ϵ
T = 0, we have

∆ϵ
T−nϵ ≥

(
1− ϵ

δ

)n n∑
k=1

(
1− ϵ

δ

)−k
e−2T ϵ2 =

n−1∑
k=0

(
1− ϵ

δ

)k
e−2T ϵ2. (62)

Since n ≤ T/ϵ and (1− 1/x)x is increasing over x > 1, for k = 0, . . . , n− 1, we have

(
1− ϵ

δ

)k
≥
(
1− ϵ

δ

)n
≥
(
1− ϵ

δ

)T/ϵ
=

((
1− ϵ

δ

)δ/ϵ)T/δ
≥

((
1− 1

2

)2
)T/δ

= 2−2T/δ,

where we have exploited the assumption ϵ ≤ δ/2 (so that δ/ϵ ≥ 2). By applying this to (62), we obtain

∆ϵ
T−nϵ ≥ (21/δe)−2Tnϵ2.

Now, let ϵ = (T − δ)/N for the given N . Since N ≥ 2(T−δ)
δ and thus ϵ ≤ δ/2, we have

∆ϵ
δ = ∆ϵ

T−Nϵ ≥ (21/δe)−2TNϵ2 = (21/δe)−2T (T − δ)2

N
.

Finally, as dTV(qδ, p
(T−δ)/N
δ ) ≥ ∆ϵ

δ , the constant c = (21/δe)−2T (T − δ)2 satisfies (23).
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E. Control variates
When we want to compute an expectation E[f(x)], instead of directly doing the Monte Carlo estimate 1

N

∑N
i=1 f(xi) ≈

E[f(x)], we can find a function g ≈ f such that E[g(x)] is tractable and then do the Monte Carlo estimate for the remainder
term:

1

N

N∑
i=1

(f(xi)− g(xi)) + E[g(x)] ≈ E[f(x)] . (63)

This left-hand side is still an unbiased estimator of E[f(x)], and ideally has a lower variance than the vanilla Monte Carlo
estimator 1

N

∑N
i=1 f(xi) if g ≈ f is a good function approximation. The role of g in (63) is called a control variate

(Glasserman, 2004; Oates et al., 2017).

E.1. Marginal-matching product model as control variate

We briefly discuss how the product model pθ given in (12) satisfies the following favorable properties (already shown in
Section A.2) for being a control variate:

(i) it reasonably approximates pθs|t(·|xt), and

(ii) Ex∼q[g(x)] is easy to compute/approximate.

For point (i), note that pθ is defined as a product model having the same marginal as pθ. Since dimensionally independent
modeling (when combined with multi-step sampling) works as in Theorem 1, pθ should approximate pθ to a certain degree;
see also Lemma 1 for a quantitative understanding. The remainder pθ − pθ can then be regarded as a dimensional correlation
captured by pθ, with which we conduct a usual Monte Carlo integration.

Regarding (ii), given a product distribution p(x) =
∏D
d=1 p

d(xd) over X = SD, we can indeed compute H(q, p) with a
Monte Carlo integral using samples of η as

H(q, p) = Exs∼q[− log p(xs)] = EηExs∼qη [− log p(xs)]

= Eη[H(qη, p)] = Eη

− D∑
d=1

∑
xds∈S

qη(xds) log p
d(xds)

 . (64)

While it still requires Monte Carlo with η to estimate this, it utilizes the product structure of each qη and p to exactly
compute H(qη, p). Thus, we heuristically expect it to be more accurate than the Monte Carlo estimate using samples from q.

E.2. Derivations of dimension-wise computable control variates for mixture model

Convex upper bound as control variate. To simplify the notation and situation, suppose we are given probability
distributions q = Eη[qη] and pθ = Eλ

[
pθ,λ

]
, where qη and pθ,λ are product distributions, i.e., we have

qη(x) =

D∏
d=1

qη,d(xd), pθ,λ(x) =

D∏
d=1

pθ,λ,d(xd).

By letting H be the (cross) entropy, we want to minimize

DKL(q∥pθ) = H(q, pθ)−H(q) = Ex∼q
[
− log pθ(x)

]
− Ex∼q[− log q(x)] .

Since q is fixed, we simply want to minimize

H(q, pθ) = Ex∼q
[
− log pθ(x)

]
= EηEx∼qη

[
− log pθ(x)

]
with regard to θ. However, it might have a high variance when we only sample x ∼ q and execute Monte Carlo. One option
is using the following upper bound like a negative ELBO given by Jensen’s inequality (convex inequality) as a control
variate:

− log pθ(x) = − logEλ
[
pθ,λ(x)

]
≤ Eλ

[
− log pθ,λ(x)

]
.
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Indeed, its expectation regarding x ∼ q is dimension-wise computable as

Ex∼qEλ
[
− log pθ,λ(x)

]
= EηEx∼qηEλ

[
− log pθ,λ(x)

]
= EηEλEx∼qη

[
− log pθ,λ(x)

]
= EηEλ

D∑
d=1

Exd∼qη,d
[
− log pθ,λ,d(xd)

]
= EηEλ

[
−

D∑
d=1

∑
xd

qη,d(xd) log pθ,λ,d(xd)

]
,

which does not require Monte Carlo sampling of x. Overall, we can decompose the computation as

H(q, pθ) = Ex∼q
[
− log pθ(x) + Eλ

[
log pθ,λ(x)

]]︸ ︷︷ ︸
Monte Carlo approximation

+Ex∼qEλ
[
− log pθ,λ(x)

]︸ ︷︷ ︸
dim-wise computable

.

Marginal control variate. The previous convex upper bound seems good, but since

Ex∼qEλ
[
− log pθ,λ(x)

]
= Eλ

[
H(q, pθ,λ)

]
≥ inf

λ
H(q, pθ,λ),

it might be a very loose bound (we want the mixture to outperform the best product distribution pθ,λ). To make it more
practical, we can consider its dimension-wise tractable lower bound as follows:

Ex∼qEλ
[
− log pθ,λ(x)

]
= Eη

D∑
d=1

Exd∼qη,dEλ
[
− log pθ,λ,d(xd)

]
≥ −Eη

D∑
d=1

Exd∼qη,d logEλ
[
pθ,λ,d(xd)

]
,

which is given by Jensen’s inequality as well. Therefore, if we define the product distribution

pθ(x) =

D∏
d=1

pθ,d(xd), pθ,d(xd) = Eλ
[
pθ,d(xd)

]
,

we have Ex∼qEλ
[
− log pθ,λ(x)

]
≤ Ex∼q

[
− log pθ(x)

]
and this alternative is also dimension-wise computable. Since

pθ and pθ coincide in each one-dimensional marginal, the difference between these two can be regarded as the result of
dimensional correlation.

Therefore, we propose the following decomposition, which is also discussed in Section A.2:

H(q, pθ) = Ex∼q
[
− log pθ(x) + log pθ(x)

]︸ ︷︷ ︸
Monte Carlo approximation

+Ex∼q
[
− log pθ(x)

]︸ ︷︷ ︸
dim-wise computable

.

E.3. Product teacher model as control variate

For two models with the same marginals, we have the following proposition:
Proposition 7. Let q, q̃ be probability distributions on X = SD with the same marginals qd = q̃d. Then, for a product
distribution p(x) =

∏
d p

d(xd) over X , we have H(q, p) = H(q̃, p).

Proof. It suffices to prove that H(q, p) can be computed only by using the marginals qd. Indeed, we have

Ex∼q[log p(x)] = Ex∼q

[
D∑
d=1

log pd(xd)

]
=

D∑
d=1

Ex∼q
[
log pd(xd)

]
=

D∑
d=1

∑
xd

qd(xd) log pd(xd),

and it yields the desired conclusion.

From this proposition, under pψ,d0|t ≈ qd0|t and the fact that pθ is a product model, we have

Ext∼qt

[
H(q0|t(·|xt), pθ0|t(·|xt))

]
≈ Ext∼qt

[
H(pψ0|t(·|xt), p

θ
0|t(·|xt))

]
.

Since H(p1, p2) = DKL(p1 ∥ p2) +H(p2, p2) this right-hand side can be rewritten as

Ext∼qt

[
H(pψ0|t(·|xt), p

θ
0|t(·|xt))

]
= Ext∼qt

[
DKL(p

ψ
0|t(·|xt) ∥ p

θ
0|t(·|xt)))

]
+ const.,

where the constant term is independent of θ. Since the KL divergence between two product distributions decomposes into
the sum of the KL divergence between each marginal, we obtain approximation (14).
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F. Experimental details
F.1. Discretized Gaussian diffusions

F.1.1. SAMPLING SCHEMES

In the experiments, we used the following two sampling schemes when evaluating the already trained product teacher model.

τ -leaping. In Campbell et al. (2022), the authors first approximate the infinitesimal transition rate by using each marginal
pψ,d0|t . Indeed, the transition rate can be represented only with qd0|t and does not require a joint conditional distribution
(Campbell et al., 2022, Proposition 3). After estimating the transition rate, they apply a dimensionally parallel sampling
method called τ -leaping (Gillespie, 2001) coming from computational chemistry. Simply put, τ -leaping is a sort of
generalization of the Euler method for solving the backward SDE, exploiting the ordinal structure of S. We omit the
corrector steps; the τ -leaping in Table 5 corresponds to τLDR-0 in Campbell et al. (2022).

Analytical sampling. Although the τ -leaping (or Euler method) is efficient with a large number of sampling steps, we find
that it deteriorates when we reduce the number of steps seemingly due to discretization error. Analytical sampling (Sun et al.,
2023) (a.k.a. Tweedie τ -leaping; Lou et al., 2024), which is simply a parallel exact sampling of each dimension given as

qds|t(x
d
s |xt) =

∑
xd0

qds|0,t(x
d
s |xd0, xdt )qd0|t(x

d
0|xt) ≈

∑
xd0

qds|0,t(x
d
s |xd0, xdt )p

ψ,d
0|t (x

d
0|xt), (65)

does not suffer so much from the discretization. This is also mentioned in Gu et al. (2022) as a fast inference strategy, though
they do not discuss dimensional correlations. See also (71) for the derivation of a dimensionally independent denoiser based
on the product model p0|t.

Note that these schemes are both dimensionally independent in the sense of (1) while not explicitly modeling ps|t. Indeed,
the dimensional independence is ubiquitous even when modeling ps|t implicitly. First, the reparametrization ps|t(xs|xt) =∑

x0
p0|t(x0|xt)qs|0,t(xs|x0,xt) (Austin et al., 2021; Gu et al., 2022), also used in analytical sampling, is dimensionally

independent, provided that p0|t(·|xt) is given by a product model and the forward diffusion is dimensionally independent.
Second, we can apparently avoid the heuristic in the above modeling through the estimation of the transition rate in the
continuous-time discrete diffusion (Campbell et al., 2022, Proposition 3), but the existing sampling schemes of xs given xt
in continuous-time settings including τ -leaping (Campbell et al., 2022) and the Euler-based method (Sun et al., 2023; Lou
et al., 2024) are still dimensionally independent.

N -step sampling in the actual experiment is given as follows. We first set the timesteps 0 = t0 < t1 < · · · < tN = 1,
with ti = 0.01 + 0.99 × i−1

N−1 for i ≥ 1. Given a terminal noise xtN , we sample xti with our pti|ti+1
iteratively for

i = N − 1, N − 2, . . . , 1. Finally, we sample x0 ∈ argmax pψ0|t1(·|xt1) when using the teacher product model and
x0 ∈ argmax pθ0|t1(·|xt1 ;λ) with a random λ when using the student mixture model.

F.1.2. ADDITIONAL EXPERIMENTAL RESULTS

To complement the main experimental results presented in Section 5.1, we provide additional details and analysis here.

FID/IS results of fewer sampling steps. For additional comparison, we computed FID/IS of the teacher and student
modles using 10K samples (fewer than the 50K samples used in the main body, so the numbers may be slightly worse) for
2-20 steps in Table 4. In terms of FID, our method achieves approximately 1.4 times acceleration in the 10–20 steps range.
However, it does not perform well in very few steps (e.g., 2–4 steps).

More detailed results of Table 1. We evaluated two different sampling strategies with the teacher model pψ: (1) τ -leaping
(Campbell et al., 2022) and (2) analytical sampling (Sun et al., 2023; Lou et al., 2024). The complete evaluation results
are shown in Table 5, which extends the results presented in Section 5.1. A notable observation is that analytical sampling
significantly outperforms τ -leaping in terms of sampling efficiency; 40-step analytical sampling achieves better FID scores
than 1000-step τ -leaping.

Regarding distilled models, as we have highlighted in Section 5.1, pθ works well in 10 steps, while it deteriorates as we
grow the number of sampling steps. The hybrid model interestingly beats other models in 20-step FID and shows almost the
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Table 4. Comparison of models on CIFAR-10 dataset in various sampling steps. Same setting as Table 1 except that 10,000 generated
samples were used for computing FID/IS.

#steps 2 4 6 8 10 12 14 16 18 20

FID teacher 392.24 173.29 78.24 49.44 34.70 26.33 21.47 18.05 15.80 14.42
student 411.70 147.67 59.62 33.85 22.57 17.46 14.37 12.86 12.28 11.81

IS teacher 1.17 2.99 5.90 7.01 7.45 7.82 7.96 8.16 8.35 8.46
student 1.25 3.48 6.71 7.68 8.17 8.33 8.37 8.50 8.38 8.39

Table 5. Comparison of models on CIFAR-10 dataset. Fréchet inception distance (FID ↓) against training dataset and inception score
(IS ↑) are calculated using 50,000 generated samples. ∗: reported values from Campbell et al. (2022).

10 steps 20 steps 40 steps 1000 steps

FID IS FID IS FID IS FID IS

pψ + τ -leaping - - - - 315.75 1.66±0.01 8.10∗ 8.74∗

pψ + analytical 32.61 7.59±0.10 12.36 8.55±0.13 8.01 8.77±0.09 - -

pθ (student) 20.64 8.29±0.13 9.77 8.52±0.08 9.66 8.28±0.10 - -
pθ&pψ (hybrid) 25.54 8.00±0.11 9.47 8.56±0.14 8.02 8.43 ±0.11 - -

Method

same 40-step FID with the teacher, while using the student solely gets worse in 40 steps. We hypothesize (elaborating on the
description in Section 5.1) that this is because the true denoiser qs|t (s < t) becomes more “dimensionally independent” as
t− s or t is small. The former condition (small t− s) explains the worse performance gain of the mixture model as the
number of steps grows, and the latter partially explains the effectiveness of using the combined model. However, we should
further consider different forward diffusion and/or noise schedule to investigate it.

F.1.3. IMPLEMENTATION AND TRAINING

Diffusion modeling. As explained in Section 5, the state-space has D = 3× 32× 32 dimensions, and each dimension has
256 possibilities of pixel values which corresponds to S = {0, . . . , 255}. The forward diffusion process is defined through a
discretized Gaussian transition rate with T = 1 (Campbell et al., 2022, Section E).

Network architecture. All the models are based on the implementation explained in Campbell et al. (2022, Section H.2),
where pψ0|t is parameterized with a U-net (Ho et al., 2020) that has feature resolutions from 32×32 to 4×4. Since the output
of the original U-net architecture (Ho et al., 2020) is a D-dimensional sequence (in SD) rather than D marginal distributions,
Campbell et al. (2022) adjusted the network so that it first outputs a Gaussian distribution over the real line for each marginal
and then normalized it to obtain a distribution over S. The time t in their implementation is passed to feature map used
in Ho et al. (2020), and this embedding is fed to the upsampling/downsampling layers of the U-net after passing through
SiLU-activated linear layers (Elfwing et al., 2018). See Campbell et al. (2022, Section H.2) and their GitHub repository for
more details on the original implementation. All the models output the estimation of q0|t, and we conduct denoising from
time t to time s by using the dimension-wise analytical sampling (65), except for the τ -leaping benchmark in Table 5.

The only change we made on the architecture is the insertion of λ. We sample λ from the uniform distribution over [0, 1],
so we can basically use the same embedding architecture as the time t. For the downsampling layers, the embedding of λ
is concatenated with the time embedding, and then fed to the linear layers. After the linear layers, similarly to the time
embedding, it is added to the latent vector of the image. For the upsampling layers, we concatenate the embeddings of
λ, t, and the pixel-wise average of the 4 × 4 resolution latent tensor, and the remaining process is the same as for the
downsampling layers.

Training. Since our model is an expansion of the original model for pψ , we trained (finetuned) our student model pθ from
the checkpoint of pψ . The bias terms and the final layers concerning the embeddings of λ are zero-intialized, and the rest are
randomly intialized following the default setting of the original model.
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For the Di4C finetuning, we followed the original setting in terms of the use of the Adam optimizer and the learning rate
2 × 10−4 as well as other hyperparameters. The two primary differences in training are loss functions and the training
steps/minibatch size (due to the Monte Carlo for λ). For the former point, we basically used

Ldistil(θ;ψ, qδ, δ) + Lconsis(θ;ψ, qt, 0, t−∆t, t) + αtLcorr(θ; t) + Lmarginal(θ;ψ, qt, t), (66)

with techniques described in Section A. The following are additional details:

• Sampling from qδ and qt is based on the same sample of x0 ∼ q0.

• δ = 0.01 with probability 1/2; otherwise, δ is taken uniformly from [0.01, 0.02].

• ∆t is sampled from a log-uniform distribution over [0.001, 0.01]; t is then sampled uniformly from [0.01 + ∆t, 1].

• We can use several αt as in the ablation study in the following section. In the main model pθ given in Table 5, we used
the following sigmoid-based function as αt:

g(t) =
1

1 + exp(10− 20t)
. (67)

Regarding the training steps/minibatch details, the original teacher model checkpoint had been trained for 2M steps, where
each step used 128 images from the CIFAR-10 dataset as a minibatch. In our finetuning, we stopped all the trainings in
320K steps (without warm-ups). Each step used a minibatch of 128/L images from the CIFAR-10 dataset, where L is a
batch size for λ in the Monte Carlo estimates; we set M = N = L in (10). L = 16 is adopted in our model in Table 5,
while the ablation study in the following section compares various choices of L.

Evaluation. We measured FID and IS with the PyTorch-based implementation1 following Campbell et al. (2022).

F.1.4. ABLATION STUDY

Table 6. Ablation study on αt and use of control variates.

10 steps 20 steps 40 steps

FID IS FID IS FID IS

pψ + analytical 32.61 7.59±0.10 12.36 8.55±0.13 8.01 8.77±0.09

αt = 0 26.23 8.02±0.09 11.55 8.59±0.07 9.01 8.65±0.14

αt = 0, w/o CV 44.09 6.79±0.10 26.16 7.54±0.10 22.20 7.72±0.08

αt = 1 24.14 7.54±0.08 12.30 8.06±0.07 10.32 8.14±0.10

αt = 1, w/o CV 26.92 8.12±0.08 13.77 8.57±0.14 10.59 8.66±0.05

αt = t 24.21 8.10±0.11 10.85 8.55±0.08 9.27 8.51±0.10

αt = g(t) (see (67)) 22.77 8.19±0.08 10.07 8.54±0.12 9.01 8.42±0.11

Method

As an ablation study, we compared several loss functions, mainly changing αt, which controls the degree of dimensional
correlations we aim to learn from datapoints. We also investigated whether the use of control variates is effective. The
results are shown in Table 6, where “w/o CV” means that the control variates were not used in training. The efficiency of
control variates was consistent, while αt = 0 and αt = 1 had pros and cons. Non-constant functions of αt worked better,
partially matching the hypothesis discussed at the end of Section 5.

Additionally, we compared different batch-sizes of λ in Table 7 (also see the end of the previous section). The non-constant
αt = g(t) was used in all the settings. L in the table represents the batch size of λ in Monte Carlo sampling. There is a
certain tradeoff between FID and IS in 10- or 20-step sampling; we can expect a better FID with a larger L (smaller data
batch), while a smaller L tends to result in a better IS.

1https://github.com/w86763777/pytorch-image-generation-metrics, which got renamed from the original
repository “pytorch-gan-metrics” to “pytorch-image-generation-metrics”.
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Table 7. Ablation study on Monte Carlo sample size of λ.

10 steps 20 steps 40 steps

FID IS FID IS FID IS

pψ + analytical 32.61 7.59±0.10 12.36 8.55±0.13 8.01 8.77±0.09

L = 2 27.29 8.00±0.01 11.42 8.67±0.12 8.94 8.64±0.09

L = 4 24.94 8.05±0.14 10.66 8.60±0.11 8.90 8.59±0.07

L = 8 22.77 8.19±0.08 10.07 8.54±0.12 9.01 8.42±0.11

L = 16 20.64 8.29±0.13 9.77 8.52±0.08 9.66 8.28±0.10

L = 32 20.25 8.28±0.13 9.93 8.44±0.10 9.91 8.26±0.13

L = 64 19.26 8.13±0.10 10.13 8.26±0.11 10.59 8.02±0.15

Method

F.1.5. GENERATED SAMPLES

Figure 5 shows image examples corresponding to Table 1, which were all generated with the analytical sampling.

F.2. Masked generative image modeling

F.2.1. MASKED DIFFUSION MODELING

As described in Section 5.2, we use the pretrained VQGAN codebook S∗ with |S∗| = 1024 and add one[MASK]token to
define S. Also, D = 256 in this experiment. The only ingredient we need in masked diffusion is the masking probability
mt: a monotonically increasing function with m0 = 0 and m1 = 1. Following Chang et al. (2022) and Besnier & Chen
(2023), we model the forward process of xt given x0 ∈ (S∗)D as

xdt =

{
[MASK] with probability mt,

xd0 with probability 1−mt,
(68)

independently for each d ∈ {1, . . . , D}. Note that (68) does not necessarily determine a Markov process (and indeed an
explicit Markov formulation is not needed for training). If one needs a Markov formulation, however, for t > s > 0 and
x ∈ S∗ = S \ {[MASK]}, we have

mt = qdt|0([MASK]|x) = qds|0([MASK]|x) + qdt|s([MASK]|x)q
d
s|0(x|x) = ms + (1−ms)q

d
t|s([MASK]|x)

and thus we have
qdt|s([MASK]|x) =

mt −ms

1−ms
. (69)

In the actual experiment, we used the arccos scheduler mt = 2arccos(1− t)/π.

F.2.2. CONFIDENCE-BASED SAMPLING

Given xt at time t, let Mt :=
{
d ∈ {1, . . . , D} | xdt =[MASK]

}
. Suppose we have a product model p0|t(·|xt) =∏D

d=1 p
d
0|t(·|xt) such that pd0|t([MASK]|xt) = 0 for all d ∈ {1, . . . , D} and pd0|t(x

d
t |xdt ) = 1 for all d ̸∈Mt. Let us explain

how we sample xs with s < t in one step of confidence-based sampling (Chang et al., 2022; Besnier & Chen, 2023).
Following the original implementation of MaskGIT-PyTorch (Besnier & Chen, 2023) we conduct the sampling as follows:

1. Sample x̃0 = (x̃d0)
D
d=1 ∼ p0|t(·|xt). Note that we have x̃d0 ̸=[MASK]for each d and x̃d0 = xdt for d ̸∈Mt.

2. Calculate the confidence for each chosen x̃d0 for d ̸∈Mt as

conf(d) = log pd0|t(x̃
d
0|xt) + cgb(t) · ϵdgb,

where the second term is given by constant multiplication of Gumbel noise to add stochasticity in confidence-based
sampling (see, e.g., Comunità et al. (2024, Section 3.4.4) for a concise explanation). To be concrete, ϵdgb for each

d ̸∈ Mt is an independent standard Gumbel noise, and cgb is a scale factor given by cgb(t) = 9
2
t−1/N
1−1/N in our

experiments, where N is the number of steps in the whole sampling process.
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(a) teacher, 10 steps (b) teacher, 20 steps (c) teacher, 40 steps

(d) student, 10 steps (e) student, 20 steps (f) student, 40 steps

(g) hybrid, 10 steps (h) hybrid, 20 steps (i) hybrid, 40 steps

Figure 5. Comparison of generated samples in CIFAR-10 experiment.

3. Let n(t, s) be the number of tokens we unmask in this single sampling step from t to s. Let d∗n(t,s) ̸∈Mt be the index
with the n(t, s)-th largest conf(d). We define xs = (xds)

D
d=1 as follows:

xds =

{
x̃d0 for d ̸∈Mt with conf(d) ≥ conf(d∗n(t,s)),

xdt otherwise.

Note that conf(d) coincides with probability zero thanks to the Gumbel noise.

This is for one step of confidence-based denoising. When we use a mixture model, we first sample λ and conduct the
confidence-based sampling for the product model conditioned by λ. In the actual sampling process, we specify n (the
number of unmasked tokens) as we explain below2.

Let N be the number of sampling steps and ti = i/N for i = 0, . . . , N . We jump from ti to ti−1 at each sampling step

2The definition of n(ti, ti−1) described below is different from the implementation of MaskGIT-PyTorch, since the original imple-
mentation did not correspond to forward processes.
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for i = N,N − 1, . . . , 1, so we set t = ti and s = ti−1. Let mt be the masking probability at time t, so that the expected
number of[MASK]tokens equals Dmt given the forward process design, where m0 = 0 and m1 = 1. By rounding them
into integers, we define n(ti, ti−1) = round(Dmti) − round(Dmti−1) for each i. In the code, we further add 1 when
n(ti, ti−1) = 0 and deduct the added ones from n(t1, t0) so that at least one token gets unmasked, following the original
implementation.

F.2.3. DISCRETE CLASSIFIER-FREE GUIDANCE

Following the original implementation, we use the discrete classifier-free guidance (discrete CFG; Tang et al., 2022).
Given an unconditional denoiser p0|t(·|xt) and a conditional denoiser p0|t(·|xt, c) with a class label c, we sample from the
distribution

p0|t[w](·|xt, c) ∝ p0|t(·|xt, c)1+wp0|t(·|xt)−w

for a CFG guidance scale w; w = 0 corresponds to sampling from the conditional denoiser. In our implementation, given
the number of steps N , we let w = wcfg · (1−t)N

N−1 to linearly increase the guidance scale in the sampling process, where wcfg

is a user-selected CFG coefficient, mentioned in Section 5.2. When we use a mixture model, we first sample a single λ and
sample from the CFG-guided distribution given by the λ-conditioned unconditional/conditional denoisers p0|t(·|xt;λ) and
p0|t(·|xt, c;λ) as a heuristic.

F.2.4. IMPLEMENTATION AND TRAINING

Network architecture. For the teacher model pψ, we just used the implementation of Besnier & Chen (2023, Table 1),
which uses a 24-layer transformer with 16 attention heads to compute the logits for each ofD = 256 visual tokens. As inputs,
pψ gets the D visual tokens xt = (xdt )

D
d=1 and a class token c (when unconditional, it is replaced by an “unconditional

token”), and these D + 1 tokens are added positional encodings. Note that time conditioning is not fed to the model. Each
learned embedding (of 1024 VQGAN codebook elements and 1000 ImageNet classes) is of 768 dimensions. Since the
output of the transformer has D + 1 vectors in R768, we discard the vector corresponding to c and compute the logits by
using the similarity with the embeddings of codebook elements.

To realize a mixture model pθ(·|xt;λ) upon this implementation, we first sample λ ∼ Unif([0, 1]), pass it to the timestep
embedding used in the CIFAR-10 experiment (Appendix F.1.3), and transform its output into a 768-dimensional vector
using a two-layer MLP with a single GELU activation after the first layer. Thus, we obtain D + 2 vectors in R768 consisting
of D visual embeddings, a class embedding, and an embedding of λ. We simply feed them to a transformer having the same
architecture as pψ and discard the final output vectors concerning c and λ to calculate the logits. The logit calculation is
done in the same way as the teacher model.

Training. We basically used the same formulation as (66) with a slight modification to reduce the computational burden
as follows:

1{t≤∆t}

∆t
Ldistil(θ;ψ, qt, t) + 1{t>∆t}Lconsis(θ;ψ, qt, 0, t−∆t, t) + αtLcorr(θ; t) + Lmarginal(θ;ψ, qt, t), (70)

with ∆t = 0.05 and the following details:

• We sampled t ∼ Unif([0, 1]) and xt according to (68) using x0 from data.

• We used αt = 0 for di4c and αt = 0.1 · g(t) for di4c-d in the experiment (Figure 3), where g(t) is given in (67).

• Control variates were used in both variants of Di4C.

For optimization, we followed the original implementation, i.e., the AdamW optimizer with a learning rate 10−5, (β1, β2) =
(0.9, 0.96) and a weight decay 10−5. The teacher model was trained for 300 epochs with a minibatch size of 512 using eight
A100 GPUs (adding up to 768 GPU hours; Besnier & Chen, 2023). Our finetuning used two A6000 GPUs with a minibatch
size 4 (2 for each of two GPUs) and a λ-batch size of 32. It was trained for 30K iterations (so only 120K out of 1.28M
ImageNet training images were used), which amounts to approximately 50 GPU hours.

Evaluation. In each experiment, we generated 50,000 samples (50 images for each ImageNet class) and then computed
FID (against test data) and IS with the original implementation of Besnier & Chen (2023).
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F.2.5. GENERATED SAMPLES

Samples generated by each model in Section 5.2 are shown in Figure 6. The best CFG coefficient in Figure 3 in terms
of FID was chosen for each model, as shown in Table 8. The table also shows the FID/IS performance, together with the
Precision/Recall values computed by the code of Besnier & Chen (2023). Regarding the choice of ImageNet labels (Ostrich,
Burger, Volcano), we followed Besnier & Chen (2023, Figure 3).

Table 8. Chosen CFG coefficients and corresponding FID/IS values.

Model # steps wcfg FID (↓) IS (↑) Precision (↑) Recall (↑)

teacher 8 3.0 6.57 202.0 0.7939 0.5499
teacher 4 11.0 7.97 216.0 0.7737 0.5057

di4c 4 6.0 6.79 209.2 0.7910 0.5363
di4c-d 4 7.0 6.57 213.6 0.7866 0.5391

F.3. Masked diffusion language models

F.3.1. DIFFUSION MODELING AND SAMPLING

Diffusion modeling. We basically worked under the same setting as in Section F.2.4 except for the following:

• D = 1024.

• The non-mask codebook S∗ is given by the set of GPT-2 tokenizers, which satisfies |S∗| = 50257.

• The masking probability is given by mt = t.

While the above apparently linear noise scheduling is called log-linear (Sahoo et al., 2024, Section E.1), the naming comes
from their parametrization: mt = 1− e−σ(t) with σ(t) = − log(1− t).

Analytical sampling in masked diffusion. The sampling algorithm used for the MDLMs is essentially the same as the
analytical sampling in Section F.1.1, tailored for masked diffusions. What we have is a dimensionally independent denoiser
p0|t(x0|xt) =

∏D
d=1 p

d
0|t(x

d
0|xt). By using (42), we can deduce the resulting product denoiser ps|t based on p0|t as follows:

ps|t(xs|xt) =
∑
x0

qs|0,t(xs|x0,xt)p0|t(x0|xt) =
∑
x0

qs|0(xs|x0)qt|s(xt|xs)
qt|0(xt|x0)

p0|t(x0|xt)

=
∑
x0

D∏
d=1

qds|0(x
d
s |xd0)qdt|s(x

d
t |xds)

qdt|0(x
d
t |xd0)

pd0|t(x
d
0|xt)

=

D∏
d=1

∑
xd0

qds|0(x
d
s |xd0)qdt|s(x

d
t |xds)

qdt|0(x
d
t |xd0)

pd0|t(x
d
0|xt) =:

D∏
d=1

pds|t(x
d
s |xt). (71)

Note that, once a token (dimension) is unmasked, we do not need to further change that token in the backward process:
this property is incorporated in p0|t as pd0|t(x

d
t |xt) = 1 for xdt ̸=[MASK] (Sahoo et al., 2024, Section 3.2.3). Thus, we

just need to consider the case xdt = [MASK]. By using the fact that the masking probability is given by mt = t and
qdt|s([MASK]|x) =

mt−ms
1−ms for x ̸=[MASK]in (69), if xdt =[MASK]and x ̸=[MASK], we simply have

pds|t(x|xt) =
qds|0(x|x)q

d
t|s([MASK]|x)

qdt|0([MASK]|x)
pd0|t(x|xt) =

(1−ms)
mt−ms
1−ms

mt
pd0|t(x|xt) =

mt −ms

mt
pd0|t(x|xt),

which corresponds to Sahoo et al. (2024, Eq. 7).
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(a) teacher, 8 steps (b) teacher, 4 steps

(c) di4c, 4 steps (d) di4c-d, 4 steps

(e) teacher, 8 steps (f) teacher, 4 steps

(g) di4c, 4 steps (h) di4c-d, 4 steps

(i) teacher, 8 steps (j) teacher, 4 steps

(k) di4c, 4 steps (l) di4c-d, 4 steps

Figure 6. Comparison of generated samples. (a)–(d): Conditioned with ImageNet label Ostrich (009). (e)–(h): Conditioned with Burger
(933). (i)–(l): Conditioned with Volcano (980).
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F.3.2. IMPLEMENTATION AND TRAINING

Network architecture. For the teacher model, we used the two “small” checkpoints (round 6 and 7) of Deschenaux &
Gulcehre (2025)3, which uses a transformer architecture to compute the logits of p0|t(·|xt) for each token. The transformer
architecture is originally from (Sahoo et al., 2024), and has 169M parameters with 12 layers, the embedding dimension of
768, and 12 attention heads. The model receives D = 1024 tokens and does not depend on the timestep. For adaptation to
mixture modeling, we just applied the same modification as given in Section F.2.4.

Training. While the model accepts a continuous time training, we followed Deschenaux & Gulcehre (2025) to digitize the
timesteps to T = {∆t · n | n = 0, 1, 2, 3, . . . , 1024}, with ∆t = 1/1024. We used the following loss function:

1{t≤δ}Ldistil(θ;ψ, qt, t) + 1{t>δ}Lconsis(θ;ψ, qt, 0, t−∆t, t) + αtLcorr(θ; t) + Lmarginal(θ;ψ, qt, t), (72)

where the details are as follows:

• We set δ = 0.02.

• We sample r ∼ Unif([0, 1]) and let

t = 2−10(1 + ⌊210t∗(r)⌋), where t∗(r) =

{
δr with probability 0.3,

δ + (1− δ)r with probability 0.7.

Therefore, t ∈ T \ {0} almost surely.

• We sampled xt according to (68) using x0 from data (OpenWebText).

• We used αt = 0 in the experimental results shown in Section 5.3. In Section F.3.3, we also report the result of setting
αt = 0.1 · g(t) with g(t) from (67).

• Control variates were used in all the experiments.

For training, we mostly followed the original setting of Deschenaux & Gulcehre (2025): We used the Adam optimizer (but
with a learning rate of 3× 10−5) with EMA (weight decay 0.9999) and did a constant warm-up (increasing the learning rate
linearly for the first 500 iterations and setting it constant after that). For each experiment, the Di4C training (one round) was
run for 100K iterations over 2x A6000 GPUs, where the minibatch size was 2 (1 for each device) and λ-batch size was 16.

Self-BLEU computation. As described in Section 5.3, in the conditional generation experiment, we generated M = 5

continuations C(i) = {X(i)
1 , . . . , X

(i)
5 } conditioned on the first 50 tokens (prompt) of each WebText datapoint X(i). Each

continuation was of 100 tokens including the prompt, and we used M = 256 prompts from the WebText dataset in total. To
quantify the diversity of continuations, we followed Deschenaux & Gulcehre (2025) and computed the Self-BLEU score as

1

N

N∑
i=1

1

M

M∑
j=1

BLEU(X
(i)
j ;C(i) \X(i)

j ),

where BLEU(X;C) is the BLEU score of a sentence X against the set of reference sentences C. To actually compute
this, we tokenized the inputs with the GPT-2 tokenizer, and then utilized the implementation of Zhu et al. (2018)4 with
ngram = 4, which internally calls the sentence bleu function of the NLTK library (Bird et al., 2009)5 with equal
weighting and the method1 smoothing function.

Evaluation. Except for the Self-BLEU computation, all the evaluations were done using the code of SDTT (Deschenaux
& Gulcehre, 2025)6.

3It is loaded by load small student(loss='kld', round=n) with n = 6, 7, from the library sdtt in https://
github.com/jdeschena/sdtt.

4https://github.com/geek-ai/Texygen/blob/master/utils/metrics/SelfBleu.py.
5https://github.com/nltk/nltk/blob/3.7/nltk/translate/bleu_score.py.
6https://github.com/jdeschena/sdtt/tree/main.
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(a) Gen. PPL vs Num. Steps in unconditional generation (b) Gen. PPL vs Self-BLEU in conditional generation

Figure 7. Comparison of Di4C distillations of SDTT checkpoints with and without data loss.

(a) MAUVE results with additional Di4C iteration (b) MAUVE results with and without data loss

Figure 8. Comparison of Di4C distillations of SDTT checkpoints with and without data loss.

F.3.3. ADDITIONAL EXPERIMENTAL RESULTS

Data loss ablation. In Figure 7, we show the result for sdtt-6/7 + di4c-d, which used loss (72) with αt = 0.1g(t) as
mentioned in Section F.3.2. The results are almost the same as those without data loss (especially in Figure 7, where sdtt-7
+ di4c is hidden behind the curve of sdtt-7 + di4c-d). Since the ones without data loss showed slightly better generative
perplexities, we presented them as the main model in Section 5.3.

MAUVE results. We also tested our models with the MAUVE score (Pillutla et al., 2021). The setting is the same as the
unconditional generation in Section 5.3, and the MAUVE computation is done by using the code of SDTT (Deschenaux &
Gulcehre, 2025). As shown in Figure 8, no significant performance decay from the teacher model was observed.

F.3.4. GENERATED SAMPLES

Let us qualitatively compare our best model (sdtt-7 + di4c2) with the SDTT checkpoint which our model is based on
(sdtt-7), conditioned on the first 50 tokens from this paper’s abstract (old version; highlighted in blue):

• (sdtt-7, 4 steps) Diffusion models have demonstrated exceptional performances in various fields of generative modeling.
While they often outperform competitors including VAEs and GANs in sample quality and diversity, they suffer from
slow sampling speed due to their iterative nature. Recently, districting the image spl Image\n\ndistriction the size spl
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Image size The stable image spl consists of thin–arr 2D-frame data that supports band– construction data and generates
the physical representation of image presentation. Although much is known

• (sdtt-7 + di4c2, 4 steps) Diffusion models have demonstrated exceptional performances in various fields of generative
modeling. While they often outperform competitors including VAEs and GANs in sample quality and diversity,
they suffer from slow sampling speed due to their iterative nature. Recently, distilling the high spl Image Im-
age\n\ndistriction the whole spl Image Image generating an image Image is a thin-narr 2D-layer architecture that
exhibits banding-resolving effects in the lowizing of a low resolution. Little is known

• (sdtt-7, 16 steps) Diffusion models have demonstrated exceptional performances in various fields of generative
modeling. While they often outperform competitors including VAEs and GANs in sample quality and diversity, they
suffer from slow sampling speed due to their iterative nature. Recently, distillilusion models, which use a dataset from
the sample and using inferred model data, have become standard. self-arrained three-block sampling that utilizes a
subset of the data and combining Bayesianesian and inferred model data that combines Bayesian

• (sdtt-7 + di4c2, 16 steps) Diffusion models have demonstrated exceptional performances in various fields of generative
modeling. While they often outperform competitors including VAEs and GANs in sample quality and diversity, they
suffer from slow sampling speed due to their iterative nature. Recently, distorting Diffusion models, nested within a
conventional model architecture, and using different model architectures, has become a flexible self-arrative three-model
architecture that supports intensive problem-solving and mature Bayesianesian model and model development. This
approach has

• (sdtt-7, 64 steps) Diffusion models have demonstrated exceptional performances in various fields of generative
modeling. While they often outperform competitors including VAEs and GANs in sample quality and diversity, they
suffer from slow sampling speed due to their iterative nature. Recently, distancing from the Diffusion model has
allowed developers to construct new models using rapid-processing, supervised learning supervised (GCl supervised)
software-drawing that improves the ability to identify discriminant parameters, functional model depth, and is the
process of rapidly

• (sdtt-7 + di4c2, 64 steps) Diffusion models have demonstrated exceptional performances in various fields of generative
modeling. While they often outperform competitors including VAEs and GANs in sample quality and diversity, they
suffer from slow sampling speed due to their iterative nature. Recently, distancing from the Diffusion model has
allowed scientists to analyze the model using discriml, a software that utilizes to discriml. This software can generate
images that offset the time to be discrimlative, and reduce the time to be discrimlative.

• (sdtt-7, 256 steps) Diffusion models have demonstrated exceptional performances in various fields of generative
modeling. While they often outperform competitors including VAEs and GANs in sample quality and diversity, they
suffer from slow sampling speed due to their iterative nature. Recently, distancing from the traditional resource
management process has led to a change in the type of user experience, producing significant advances in the types of
software-developing operations, while facilitating the adoption of parallel programming and functional programming
approaches. However,, it is increasingly

• (sdtt-7 + di4c2, 256 steps) Diffusion models have demonstrated exceptional performances in various fields of generative
modeling. While they often outperform competitors including VAEs and GANs in sample quality and diversity, they
suffer from slow sampling speed due to their iterative nature. Recently, distorting cloud images are in the process of
processing to high standards in both sample quality and storage, producing important advances in the development of
software-developing operations, while facilitating the development of parallel programming and functional efficiency.
GPUs are in the process of processing
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