
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND CONTEXT LIMITS: SUBCONSCIOUS
THREADS FOR LONG-HORIZON REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

To break the limits of large language models (LLMs) in reasoning length that bot-
tleneck reasoning accuracy and efficiency, we propose Thread-2, a JSON-based
reasoning framework that naturally supports recursive reasoning and context prun-
ing without examples or prompting, and the Thread Inference Model (TIM), a
family of LLMs trained for recursive and decompositional problem solving. By
learning to solve complex problems with structured trajectories defined by Thread-
2 with supervised fine-tuning and reinforcement learning on synthetic data, TIM
supports virtually unlimited reasoning length and multi-hop tool calls within a
single language model inference, overcoming output limits, positional embedding
constraints, and GPU memory bottlenecks. Such performance is achieved by mod-
eling natural language as reasoning trees measured by both length and depth in-
stead of linear sequences. Thread-2 reasoning trees consist of tasks with thoughts,
recursive subtasks, and conclusions based on the recursive reasoning concept pro-
posed in (Schroeder et al., 2025). During LLM inference, we maintain a working
memory that retains only the key/value states of the most relevant context tokens,
selected by a rule-based subtask-pruning mechanism, enabling the reuse of posi-
tional embeddings and GPU memory pages throughout reasoning. Experimental
results show that our system sustains high inference throughput, even when ma-
nipulating up to 90% of the KV cache in GPU memory. It also delivers accurate
reasoning on mathematical tasks and handles information retrieval challenges that
require long-horizon reasoning and multi-hop tool use.

1 INTRODUCTION

Large language models (LLMs) have emerged as versatile foundations for a wide range of AI appli-
cations, especially agents which handle complicated tasks including multi-hop reasoning and tool
use. Their ability to generalize across various tasks with minimal fine-tuning has driven rapid in-
novation and broad adoption (Brown et al., 2020). However, the fundamental objective of language
modeling, to generate unstructured token sequences (Bengio et al., 2003), imposes strict context
window limits and makes fine-grained control over internal state difficult. As a result, these inher-
ent constraints pose significant challenges for all state-of-the-art LLMs, notably their inability to
maintain long-horizon reasoning trajectories and coordinate complex workflows, which hinders the
development of robust, memory-intensive applications.

Neural networks generate natural language as a linear sequence. Recurrent neural networks (RNNs)
(Mikolov et al., 2010; Luong et al., 2015; Gu & Dao, 2023) and Transformers (Vaswani et al., 2017;
Yang et al., 2023) are constrained by token limits, hidden state sizes, and GPU-memory capacities.
For example, standard deployments of Deepseek R1 (Guo et al., 2025) offer up to 128K tokens
across inputs and outputs, but real-world applications often require reasoning over longer horizons,
especially when LLMs are connected to arbitrary outputs from external tools. Specialized architec-
tures like the Compressive Transformer(Rae et al., 2019) compress past activations into secondary
memory buffers to extend context, but these approaches still face trade-offs between memory fidelity
and computational efficiency.

To work around the working memory bottleneck, developers frequently partition complex work-
flows into multiple modules (namely multi-agent architecture), each backed by a separate model
instance that is responsible for distinct subtasks. Multi-agent frameworks (Li et al., 2023; Hong

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Task 1 Task 2 Task N…

P(wt= i | chain)

Task 1

Task i.1

Task N…

Task i.2

P(wt= i | memory)

Attend to all
Reasoning tokens

Attend to
Working memory

Figure 1: Latent information compression for all context tokens versus structural latent information
compression focusing on the working memory enabled by parsing the reasoning trajectory.

et al., 2024; Wu et al., 2024) facilitate such workflows by dividing problems into tractable units.
Domain-focused workflows demonstrate the power of agent societies in highly specialized settings
with strong prior knowledge and well-defined scope. However, these multi-agent designs introduce
significant overhead while dealing with more arbitrary tasks since agents do not inherently man-
age control flow or coordination, leaving developers to hand-craft context management, exception
handling, and inter-agent communication. Moreover, integrating external tools further compounds
complexity. Parameter generation, tool calling, and tool response processing are usually handled by
different modules, inflating both development effort and runtime latency.

We believe that reasoning is not a linear process; it is recursively structured with inner dependencies,
just like language (Aho & Ullman, 1972), hinted at by many real-life experiences. For example, in
programming tasks, we often focus on the lines around the cursor, recall the inputs and outputs
of the functions we have completed, and keep TODOs in mind. We no longer memorize all the
details of a completed function, since our subconscious brain has flushed that information out of
the working memory to help us focus on the current task. Inspired by this observation, we propose
a new perspective to avoid the context and representation bottlenecks faced by traditional neural
language models. We model a reasoning trajectory as a recursive tree of subtasks. While higher-
level nodes in the tree receive tasks that require extensive multi-hop reasoning and tool use, the tree
keeps decomposing complex instructions into simpler subtasks until reaching a leaf node, which
represents a straightforward task that can be completed within one step. Our hypothesis is that
processing an intermediate task does not have to attend to the subtasks of previous steps.

As shown in Figure 1, by pruning irrelevant subtasks, the model only focuses on a selective “working
memory”. Compared to transformers that model language as linear sequences of tokens, an LLM
reasoning over pruned reasoning trees does not have to attend to all context tokens. Compared to
recurrent architectures, attending to a dynamic working memory provides more flexible and richer
contextual information than decoding with constrained latent representations (Ben-Kish et al., 2025).
By decomposing extensive workloads into subtasks, the model can prune a significant number of
context tokens and KV cache entries during reasoning. This enables virtually unlimited long-horizon
reasoning while maintaining awareness of instructions and important context. As a result, the model
achieves higher decoding throughput and reduced memory cost.

This paper reports our implementation of this idea, consisting of two major contributions. Firstly,
we build the Thread Inference Model (TIM), a transformer-based LLM that recursively decomposes
complex tasks, follows subtask instructions, and aggregates bottom-up subtask outputs. TIM also
learns to appropriately use multiple external tools within subtasks to complete a complex workflow
in a single language model inference call. By generating a highly structured reasoning trajectory,
TIM can easily recognize decomposed subtasks, tool parameters, and the hierarchy of the recursion.
Equally important, we designed Thread-2, a JSON-defined reasoning framework for TIM and an
extension to Thread. The framework identifies the structure of reasoning during inference, helps the
underlying inference system dynamically release the memory occupied by the KV states of subtasks
that are no longer helpful, and reuse that memory in further inference. Powered by Thread-2 and a
corresponding subtask pruning strategy, TIM achieves the following breakthroughs:

• Performs virtually unlimited long-horizon reasoning beyond output token limits
• Enables efficient single-model reasoning for complex tasks with higher decoding through-

put and memory efficiency
• Unlocks the possibility to build agents in a most concise manner: giving TIM a toolkit,

launching one model inference, and receiving agentic reasoning trajectory.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

class Task(BaseModel):
 thought: str
 tooluse: Optional[ToolUse] = None
 subtasks: Optional[List['Task']] = None
 conclusion: str

class ToolUse(BaseModel):
 tool_name: Literal[“SearchTool”, “WebReaderTool”]
 parameters: Union[SearchTool, WebReaderTool]
 tool_result: dict

class SearchTool(BaseModel):
 query: str

class WebReaderTool(BaseModel):
 goal: str
 url: str

class TimResponse(BaseModel):
 reasoning: List[Task]
 answer: str

Recursion Hierarchy Tool Use Schema

Figure 2: The pydantic class we use to create the JSON schema for constrained decoding.

2 THREAD INFERENCE MODEL (TIM)

We model reasoning trajectories as recursive subtask trees and train a transformer-based model to
learn this structure. This section first introduces the improved thread structure we designed for
reasoning, and then introduces our data synthesis and model training pipelines.

2.1 THREAD-2

In our design, the basic unit of reasoning is a task, consisting of a thinking process, an optional tool
use, an optional subtask list and a conclusion. The roles of these fields are: (1) thought: contains a
thinking process that catches the mistakes of previous steps, analyzes current progress, and plans the
following steps. (2) tooluse: optionally call a specific tool by generating the input of the tool and
encode the responses of the tool after receiving them. (3) subtasks: optionally spawns subtasks
if the current task needs multi-step reasoning. The reasoning details of the spawned subtasks will
be hidden from the next step for efficient and concise context management. (4) conclusion:
processes tool results, aggregates the conclusion of the subtask list in the current step, and describes
the result of the current task, which is informative enough to support future reasoning tasks.

All tasks in the reasoning tree share the same schema. Compared to the initial Thread reasoning
framework (Schroeder et al., 2025), Thread-2 makes several improvements. Firstly, Thread does
not pass the instruction of a higher-level task to subtasks, each subtask needs a copy of the system
message to realize recursive subtask spawning. This setting introduces inefficiency in decoding and
a potential information gap, since the subtask instruction might not cover all necessary inputs. If we
naively append all descriptions of higher-level task to the subtask instruction with careful prompt
engineering, even large models can still be confused and work the wrong instruction. Thread-2 fixes
this issue by accessing the working memory, containing the system prompt, user input, and all tasks
that are not pruned. Conversely, with Thread-2, the language model conducts end-to-end inference,
finishing the reasoning with only one language model call.

Subtask pruning. Similar to Thread, subtasks and the recursion hierarchy can be easily extracted.
Therefore, we can reduce the complexity of the reasoning context with a rule-based subtask pruning
mechanism, without using an external summarization model or agent history memory. Ideally,
we believe that processing the current task only needs to read the thoughts and conclusions of
previous tasks at the same or higher level, and can safely ignore pervious subtask lists in lower
levels. However, the model often needs more redundancy and flexibility to deliver a more accurate
reasoning result. As a result, we prune subtasks through a subtask stack with a fixed size. When a
subtask list is completed, we add this list to the stack. If the stack size is larger than the threshold,
we pop the earliest subtask list and prune it from the working memory. In practice, we set the
threshold among {0, 1, 2}. At the subtask level, this mechanism is similar to StreamLLM (Xiao
et al., 2023), but with more attention sinks dynamically decided by the subtask recursion structure.

Structured generation. Instead of defining special tokens ϕ and ψ as structure operators with a
few-shot task-specific prompting and multiple LLM API calls, the Thread-2 reasoning process can
be efficiently decoded as a JSON dictionary with popular inference runtimes (Kwon et al., 2023;
Zheng et al., 2024) with constrained decoding engines (Willard & Louf, 2023; Dong et al., 2024).

In practice, we perform JSON decoding using the schemas shown in Figure 2, demonstrated with
example search and web reading tools. Note that multiple tool calls can be handled with one decod-
ing pass. Traditionally, a reasoning process with multiple tool calls is mainly based on the message

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

list design. Tool responses are appended to the message list as user input and the entire message list
will be resubmitted to the LLM serving system. Although most message entries can be cached so
that the KV states of those tokens do not have to be recomputed, the overhead of state caching, net-
work transition, and cache matching for each tool call can significantly decrease overall generation
throughput. With proprietary LLM services, developers have to pay for the cached tokens multiple
times. For example, if a process requires 20 tool calls, the developer might be charged for their
initial input tokens 20 times.

During generation, TIM extracts the previous parameters as a dictionary when it outputs the
tool result keyword. Instead of sending the parameters to the developer or another module,
and requiring manually appending the tool responses into the message list and resubmitting to the
LLM, TIM waits until receiving tool responses as dumped JSON dictionary strings in the reasoning
runtime and extends its KV cache by encoding them as batches of new input tokens. This mecha-
nism allows for the use of multiple tools with just one language model call, avoiding the overhead
of network latency and caching and retrieval of multiple tools.

2.2 TRAINING

In this study, we post-train a small open-source model with a small, synthetic corpus as a proof of
concept. The goal of this preliminary training is to prove our main hypothesis about our method: 1.
Subtask pruning does not harm reasoning accuracy, and 2. Intensive management of the KV caches
incurs no additional computational overhead.

Supervised fine-tuning. To produce a model that natively generates Thread-2 reasoning structures
without a heavy prompt, we created a synthetic training set and trained a Qwen3-8b model (Bai
et al., 2023). We constructed a set of questions by taking 20k openr1-math-220k questions (Hugging
Face, 2025), 20k research questions (Rosset et al., 2024), and 6k ToolBench questions (Guo et al.,
2024). We then assign the available tools for different types of question. For math questions, we
simply prohibited the use of tools. For research questions, we allow for a search tool and a webpage
reading tool. For each question from the benchmark, we synthesize its tool I/O schemas according to
the associated example input and output. After constructing the question-tool pairs, we send them to
a collection of large language models and generate JSON dictionaries by replacing the tool-related
schema shown in Figure 2.

Reinforcement learning. We also carry out reinforcement learning for the fine-tuned model on
the remaining questions from openR1-math-220k (Hugging Face, 2025) with GRPO (Shao et al.,
2024; Sheng et al., 2024). We continue to enforce the JSON structure during sampling and provide
the reward by comparing predicted and annotated answers. We noticed that although the data set
we used for training supervised learning is noisy and we conduct rollout with a constrained format,
GRPO can still improve the performance of the fine-tuned model.

3 IMPLEMENTATION OF THE INFERENCE RUNTIME

TIM’s structured output offers new opportunities to enhance reasoning performance and accuracy.
However, this novel reasoning format also poses new challenges for deployment. To fully harness
TIM’s potential and address the deployment obstacles presented by the Thread-2 reasoning frame-
work, we designed an inference algorithm for efficient subtask pruning, tool response extending,
and batching.

The key difference between TIM and traditional agents lies in how they utilize input and output
windows, which introduces practical challenges for TIM’s deployment. Traditional agents progres-
sively update message lists, and the underlying LLM encodes them as part of the input sequence. In
contrast, TIM executes the entire reasoning process in the output window. This approach is difficult
to realize in practice, as many language models have much stricter output window limits compared
to inputs. For instance, Qwen 2.5 supports 128k tokens for input but only 32k for output. To enable
long-horizon reasoning that exceeds the output limit, the inference runtime must support reuse of
both GPU memory and positional embeddings for output generation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 SUBTASK PRUNING

Subtask pruning is essential to efficiently implement TIM and sustain long-term reasoning. The
core idea is that, at any moment, the model only needs the outputs of prior tasks at the same level
of abstraction; it can safely discard the internal details of their subtasks. The thought experiment in
Zhao & Song (2000) captures this methodology:

“How to put an elephant in a refrigerator?
Three steps. Open the door, put the elephant in, then close the door.”

To implement this principle, we design a pruning buffer, a stack that temporarily caches a small set
of prunable subtasks, retaining just enough redundancy to ensure lossless information flow. The sub-
task pruning process is shown in Figure 3. While TIM decodes within a task, it dynamically evicts
the KV states of tokens belonging to completed subtasks from GPU memory. Such fine-grained
memory manipulation could occur inside the forward pass, but in practice that approach imposes
extra computation and latency compared to computing attention against a longer KV cache.

To minimize the overhead of GPU memory management, we process the KV cache and prune sub-
task tokens before inference with paged-attention (Kwon et al., 2023). For the dynamic subtask
pruning mechanism enabled by structured generation, we set the page size to 1 since each request in
the same batch requires different pruning. The batched pruning is implemented with Triton (Triton,
2021), and inference with page size as 1 is accelerated by FlashInfer (Ye et al., 2025). Given a token
sequence S and the current KV cache H before pruning:

S = [t1, t
1
1, t

2
1, t2, t

1
2, xk], H = [h1, h

1
1, h

2
1, h2, h

1
2]

where xk is the new input token pending encoding, tji stands for tokens in the j-th subtask of task
i. The corresponding hidden states will be represented by hji and hk. Assume that the model
predicts the next token xk+1, and following the pruning rule, we remove t11, t

2
1 from the cache before

decoding. The remaining sequence and hidden states after pruning and before decoding will be

S′ = [t1, t2, t
1
2, xk], H

′ = [h1, h2, h
1
2]

We could simply use H ′ as the new KV cache and continue the decoding. However, although the
memory pages occupied by the pruned tokens can be recycled thus improving memory efficiency,
TIM cannot decode more tokens beyond the output limit since the encoded positional embeddings
are not re-used. As a result, we need to re-encode, or extend all tokens after the pruned subtasks to
re-assign positional embeddings:

(h′2, h
′
2.1, hk;xk+1) = fextend(t2, t2.1, xk | h1), H∗ = [h1, h

′
2, h

′
2.1, hk] (1)

where xk+1 is the next predicted token and H∗ stands for the updated KV cache, with task 1.1 and
1.2 pruned, for the next decoding step. Although the re-encoding process increased the amount of
computation, the new tokens are encoded in parallel by GPU kernels. Therefore, the overall through-
put will not be significantly impacted. In addition, the positional embeddings of the pruned tokens
are reused, and those previously occupied by the extended tokens are recycled for further reasoning.
With appropriate subtask decomposition, TIM can reuse both GPU memory and positional embed-
dings iteratively in the output window without running out of those resources, enabling long-horizon
reasoning beyond the predefined output limit.

3.2 END-TO-END MULTI-HOP TOOL USE

Tool use and multi-agent frameworks often incur excessive token costs due to repetitive prefilling.
In autoregressive LLM generation, each inference involves two stages: prefilling and decoding.
Prefilling encodes all input tokens at once, storing their hidden states in the KV cache, and generating
the first output token. After prefilling, only new tokens are processed for subsequent predictions.
This process is called ’extending’ when some prefix is cached. Most LLM APIs accept inputs as
a message list representing a multi-turn interaction. For every new user turn, the latest message is
appended and the entire message list is sent to the LLM, repeatedly re-sending most of the context.
To optimize computation, inference engines cache hidden states for previous tokens, so only the new
tokens from the latest user input are encoded and added to the KV cache.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Task 1

Task 1.1

Task 1.1.1 Task 1.1.2

Task 1.2

Task 2

ϕ ψ

ϕ ψ

f

f

f

Thinking Subtasks ConclusionToolUse

Pruned

Pruning
Buffer

Decoding

In KV Cache

Spawn subtask list
Aggregate

subtask outptus

Figure 3: While TIM is decoding the conclusion of task 2, tokens in task 1.1.1 and 1.1.2, including
the enclosed tool call and response have been pruned from the KV-cache. ψ stands for subtask
spawning, ϕ is subtask aggregation, and f appends a step in the current task list.

Despite caching, token retrieval and network transmission introduce extra overhead. More impor-
tantly, commercial LLM APIs typically charge for “encoding” cached tokens, so developers pay for
the same tokens multiple times, even if they are not actually re-encoded. At minimum, the redundant
cost scales with the number of “extend” requests. In some multi-agent architectures, each reasoning
step is treated as a new request, resulting in approximately O(n2) cost complexity, where n is the
number of reasoning steps.

Our design addresses this problem by initiating tool calls directly within the runtime, rather than
sending tool parameters back to the client. As illustrated in Figure ??, this approach significantly re-
duces inter-module communication, streamlining agent development and deployment. TIM’s struc-
tured generation makes this process seamless: whenever TIM outputs tool result:”, the infer-
ence system can easily extract relevant parameters from the parameters:” field, loads them as a
JSON object, and forwards the request to the external tool (e.g., on an MCP server), then appends
the tool’s response to the ongoing reasoning process. Crucially, each token in the reasoning chain
is forwarded by the model only once, eliminating redundant token transmission and minimizing
communication overhead. This design also supports typical chatbot applications. After generating
each response, the model server initiates a tool call to deliver the response to the user and collect
subsequent user inputs.

4 EXPERIMENTS

In this section, we report the benchmark results of our model on reasoning and research tasks. The
results of our experiments present the following observations. Firstly, maintaining a working mem-
ory instead of computing the attention weights to all context tokens does not hurt the reasoning
accuracy. Furthermore, pruning irrelevant context can even improve the reasoning accuracy and
reduce hallucinations for language models. Secondly, TIM maintains high throughput despite inten-
sive memory access and manipulation.

4.1 REASONING

We evaluated TIM models on MATH500, MMLU-STEM500, AMC 2022, AMC 2023, AIME 2024,
and GPQADiamond to assess their STEM knowledge and reasoning abilities. The preliminary re-
sults are shown in Table 1. We compare TIM’s reasoning accuracy across different serving infras-
tructures. When hosted with SGLang Zheng et al. (2024), TIM produces structured output following
the schema in Figure 2, without subtask pruning. In contrast, TIM + Pruning refers to TIM served
with our custom inference system, which introduces subtask pruning and memory management dur-
ing decoding.

The results demonstrate that subtask pruning for TIM does not degrade overall performance. In fact,
retaining only the most relevant information in the KV cache rather than storing all reasoning tokens

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Task TIM-8b + SGLang TIM-8b + Pruning
Accuracy Accuracy Max Cache Output Len. KV Pruned (%)

MATH500 69.6 69.0 1569.2 3362.2 53.3
MMLUSTEM500 88.4 87.6 1330.9 2747.0 51.6
AMC 2022 60.5 60.5 2203.9 5131.7 57.1
AMC 2023 80.0 80.0 1876.5 4547.4 58.7
AIME 2024 40.0 46.7 3218.6 8974.7 64.1
GPQADiamond 44.9 48.5 1712.9 3742.6 54.2

Table 1: Evaluation results of TIM models served on different infrastructures. Max Cache stands
for the maximal cache usage achieved during the entire generation flow. Output Len. stands for the
number of the actual output tokens.

improves the TIM model’s performance on many tasks. We report the maximum KV cache length
observed during generation. Across all tasks, TIM achieves the reported performance while using
less than half the cache slots required for the full output sequence. Notably, the peak KV cache
length typically occurs only once during generation. For most other steps, the actual KV cache size
is even smaller. Thus, the reported KV Pruned value represents only a lower bound on the memory
savings enabled by TIM and subtask pruning.

4.2 RESEARCH

Large language models augmented with external knowledge typically need to generate search
queries for information retrieval tools. In conventional implementations, query generation, tool in-
vocation, and aggregation of tool responses are orchestrated by agentic workflows (Alibaba, 2024).
In our experiments, TIM streamlines this process by efficiently extracting tool parameters, invoking
the necessary tools, and appending the raw tool responses directly to the output sequence. There-
fore, developers are no longer required to implement complex agent workflows. Multi-hop tool use
is handled by TIM as a seamless, end-to-end LLM API call.

Following this design principle, we evaluated TIM models on agentic research tasks without relying
on any agent framework or complex prompting strategies. We used two benchmarks, BrowseComp
(Wei et al., 2025) and Datacommons QA (Guha et al., 2023; Schroeder et al., 2025), both requiring
multi-hop information retrieval, processing of tool responses, and reasoning.

Datacommons QA. Following the experimental setup in Schroeder et al. (2025), we provide the
model with a search tool to interact with Datacommons and evaluate its performance on 140 bench-
mark questions. Our primary baseline, Thread, uses a task-specific prompt with over 4,000 tokens
and includes two detailed examples for Datacommons queries and APIs. Other baseline methods
also rely on few-shot prompting with hand-crafted examples tailored to the Datacommons task (Khot
et al., 2023; Shinn et al., 2023). In contrast, TIM only requires a concise system message and essen-
tial information about the tool, including tool description, input parameters, and the output format.
We note that the model was not trained on the Datacommons tool utilized and leave exploration
of improved performance through fine-tuning on specific tool usage for future experiments. The
experimental results are summarized in Table 2.

Method Reflection NLEP+ReACT DecomP THREAD TIM
Accuracy 24.3 27.1 57.9 67.9 67.9

Table 2: Performance of different methods on the Datacommons QA benchmark. TIM is the only
method that does not require task-specific few-shot prompting.

The reported performance shows that the TIM model generalizes well to novel tasks not encountered
during training. Compared to baseline methods, TIM offers greater efficiency in three key areas.
First, it eliminates the need for carefully crafted few-shot examples and task-specific prompts. A
simple system message is sufficient for strong performance. Second, bypassing the 4,000-token
prompt substantially reduces computational overhead during generation. Finally, developers are no

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Deepseek-R1 GPT-4o TIM-large TIM-8b
Paradigm ReACT Browsing Browsing Browsing
Success (%) 9.5 1.9 7.8 2.3

Table 3: Success rates of LLMs without post training for Browsing under different paradigm.

longer required to develop bespoke logic for tool response handling, given that TIM automatically
processes tool responses upon subtask completion and removal from the pruning buffer.

Browsecomp. Browsecomp is a challenging benchmark for deep research agents (OpenAI, 2025;
Wei et al., 2025). Answering questions in this benchmark requires decomposing the input, using
tools to filter and retrieve relevant information from the Internet, sometimes drilling down into spe-
cific webpage details, and validating findings against given conditions. Traditionally, such tasks
require agent-based systems capable of managing long reasoning chains and aggregating multiple
tool responses, often relying on models post-trained with search tools for related tasks (Li et al.,
2025).

We constructed a system that enables GPT-4.1 to generate the JSON structures we designed for TIM
with a generic system prompt, TIM-large. TIM-large, is more capable than our smallermodel
8b parameter model; however, it is less efficient as it is not served on our local inference system. We
use TIM-large to validate the performance of the reasoning ability of TIM’s JSON-based thread-2
pipeline. Similar to our experiments in Datacommons QA, we do not have an agent framework to
manage the contexts for the model. Instead, we implemented the subtask pruning mechanism to
ensure context efficiency.

The experiment results for frontier large language models without post-training on deep research
tasks or tools are presented in Table 3. Without any agent design, Tim-large significantly outper-
forms GPT-4o with browsing capabilities and achieves performance comparable to the ReACT agent
built on Deepseek R1, a strong reasoning model. These findings support our hypothesis: a model
that autonomously manages its own context by recursively decomposing subtasks and pruning its
working memory can match the performance of agents in more complex implementations. In par-
ticular, even TIM-8b, when decomposing research tasks, outperforms GPT-4o in the end-to-end
browsing setting.

4.3 EFFICIENCY AND SCALABILITY

TIM’s ability to dynamically prune subtasks and maintain a working memory with less than 50%
context tokens brings new possibilities to improve the throughput and memory efficiency of LLM
serving systems. In the experiments to test the efficiency of TIM, we focus on two questions: 1.
Does the intensive KV cache manipulation bring additional computation overheads, and 2. With a
smaller working memory, can we decode bigger batches than without context pruning.

Memory management overhead. Motivated by the observation that pruning the KV cache should
reduce the computational cost of the attention mechanism, we conducted experiments using native
Huggingface and PyTorch implementations. However, we found that the overhead introduced by
memory management actually outweighs the savings from a shorter KV cache. With a batch size
of 1, the standard decoding implemented by the plain Huggingface transformers package with eager
attention achieved 22 tokens per second, while decoding with KV cache pruning dropped to 18
tokens per second, a nearly 20% decrease in throughput. These preliminary results suggest that,
in practice, memory management for cache pruning can be less efficient than simply computing
attention over longer contexts.

Improved throughput with Pruning. As shown above, there is a trade-off between context pruning
and attention computation. While pruning the context can accelerate attention computation, it also
introduces additional memory overhead. We find that TIM strikes an effective balance. Despite the
demands of structural checks and frequent memory access, it delivers improved throughput at the
same batch size.

On AIME 2024 challenges, we evaluated different pruning buffer sizes and compared the throughput
for each configuration with a batch size of 30. The results are shown in Figure 4a. When maintaining

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 2 3
Pruning Buffer Size

850

900

950

1000

1050

1100

1150

1200

1250

Th
ro

ug
hp

ut
 (

to
ke

ns
/s

ec
)

SGLang
80% Throughput
TIMRUN

(a)

4 6 8 10 12 14 16 18
Number of Tool Calls

126

128

130

132

134

136

138

140

142

TIMRUN Data Points
TIMRUN Trend (R²=0.026)
SGLang Data Points
SGLang Trend (R²=0.822)

(b)

Figure 4: Throughputs of TIM model under different settings compared to SGLang. (a) analyzes
the trade-off between memory management and KV cache size We found that setting the size of
pruning cache to 2 achieves both good reasoning accuracy and inference throughput. (b) compares
the throughput of TIM (red) and SGLang (blue) in multi-turn tool use tasks.

fewer than two subtask lists in the pruning buffer, the KV cache in GPU memory remains sufficiently
compact. In this setting, the time saved on attention computation through subtask pruning outweighs
the additional memory access overhead, leading to higher throughput than the baseline system.
However, as the size of the pruning buffer increases and fewer subtasks are pruned, the system
incurs more memory management overhead without sufficient computational savings.

We also provide the 80% throughput line in the plot to represent the result we obtained with memory
access during the forward phase of the model inference. Overall, the results show that the TIM
system outperforms both naive memory operations and the strong SGLang baseline.

More efficient tool use. Table 1 indicates that TIM can invoke custom tools end-to-end directly
from the runtime, bypassing the client or developer. This approach offers several advantages for
development simplicity and inference scalability. By calling tools and encoding results within the
runtime, multiple overheads are avoided. First, network transmission latency is reduced since tool
parameters do not need to be sent between the runtime and the client. Second, the runtime elimi-
nates the need to cache tokens and manage their associated states. Most importantly, TIM’s subtask
pruning mechanism further enhances inference efficiency by removing prior tool responses together
with completed subtasks.

Experiment results shown in Figure 4b support our hypothesis. We evaluated the TIM-8b model
served on both SGLang and our inference implmenetation with subtask pruning using BrowseComp
tasks. We analyze the relationship between average throughput and the number of tool calls. As
expected, SGLang’s throughput drops rapidly as the number of tool calls increases, due to the grow-
ing complexity of incremental context and token cache from reasoning steps and tool responses. In
contrast, TIM with pruning maintains relatively stable throughput even as tool usage scales, thanks
to its automatic context management mechanism. This enables the TIM-8b model to achieve strong
performance on the BrowseComp benchmark, without any agent framework or task-specific post-
training. With subtask pruning, TIM supports more than 30 tool calls within a single inference.

5 CONCLUSION

In this work, we introduce a co-designed system consisting of a large language model, TIM, and
its dedicated reasoning framework, Thread-2. TIM is trained to decompose complex tasks into sim-
pler subtasks and reason over a recursive JSON structure. With the structured reasoning trajectory
design, TIM enables efficient subtask pruning, batching, and end-to-end tool integration. Our ex-
periments show that generating a more concise KV cache not only increases inference throughput,
but also enhances performance on certain tasks by helping the model focus on relevant context. In
agentic benchmarks, TIM without explicit agent-specific design matches the performance of strong
baselines that rely on more complex agent frameworks and task-specific post-training. Overall, the
combination of Thread-2 and TIM delivers strong reasoning ability, more efficient inference and
tool use, and greater flexibility and scalability for agentic tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alfred V Aho and Jeffrey D Ullman. The theory of parsing, translation, and compiling, volume 1.
Prentice-Hall Englewood Cliffs, NJ, 1972.

Alibaba. Qwen-agent, 2024. URL https://github.com/QwenLM/Qwen-Agent.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Assaf Ben-Kish, Itamar Zimerman, M. Jehanzeb Mirza, Lior Wolf, James Glass, Leonid Karlinsky,
and Raja Giryes. Overflow prevention enhances long-context recurrent llms, 2025. URL https:
//arxiv.org/abs/2505.07793.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yixin Dong, Charlie F Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen.
Xgrammar: Flexible and efficient structured generation engine for large language models. Pro-
ceedings of Machine Learning and Systems 7, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2023.

Ramanathan V Guha, Prashanth Radhakrishnan, Bo Xu, Wei Sun, Carolyn Au, Ajai Tirumali,
Muhammad J Amjad, Samantha Piekos, Natalie Diaz, Jennifer Chen, et al. Data commons. arXiv
preprint arXiv:2309.13054, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning
of large language models, 2024.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent collab-
orative framework. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=VtmBAGCN7o.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In The
Eleventh International Conference on Learning Representations, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for ”mind” exploration of large language model society. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
uan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
agent. arXiv preprint arXiv:2507.02592, 2025.

10

https://github.com/QwenLM/Qwen-Agent
https://arxiv.org/abs/2505.07793
https://arxiv.org/abs/2505.07793
https://openreview.net/forum?id=VtmBAGCN7o
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pp. 1412–1421, 2015.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Interspeech, volume 2, pp. 1045–1048. Makuhari, 2010.

OpenAI. Introducing deep research, 2025. URL https://openai.com/index/
introducing-deep-research/.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. In International Conference on
Learning Representations, 2019.

Corby Rosset, Ho-Lam Chung, Guanghui Qin, Ethan C. Chau, Zhuo Feng, Ahmed Awadallah,
Jennifer Neville, and Nikhil Rao. Researchy questions: A dataset of multi-perspective, decompo-
sitional questions for llm web agents, 2024.

Philip Schroeder, Nathaniel W. Morgan, Hongyin Luo, and James R. Glass. THREAD: Thinking
deeper with recursive spawning. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings
of the 2025 Conference of the Nations of the Americas Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 8418–8442,
Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-
8-89176-189-6. URL https://aclanthology.org/2025.naacl-long.427/.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Triton. Triton, 2021. URL https://github.com/triton-lang/triton.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

Brandon T Willard and Rémi Louf. Efficient guided generation for large language models. arXiv
preprint arXiv:2307.09702, 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
agent conversations. In First Conference on Language Modeling, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2023.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Forty-first International Conference on Machine
Learning, 2023.

11

https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://aclanthology.org/2025.naacl-long.427/
https://github.com/triton-lang/triton

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, et al. Flashinfer: Efficient and customiz-
able attention engine for llm inference serving. In Eighth Conference on Machine Learning and
Systems, 2025.

Benshan Zhao and Dandan Song. An hourly job for a chat. Spring Festival Gala, 2000.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in neural information processing systems, 37:
62557–62583, 2024.

12

	Introduction
	Thread Inference Model (TIM)
	Thread-2
	Training

	Implementation of the Inference Runtime
	Subtask Pruning
	End-to-End Multi-hop Tool Use

	Experiments
	Reasoning
	Research
	Efficiency and Scalability

	Conclusion

