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Abstract

The effectiveness of Spatiotemporal Graph Neural Networks (STGNNs) critically
hinges on the quality of the underlying graph topology. While end-to-end adaptive
graph learning methods have demonstrated promising results in capturing latent
spatiotemporal dependencies, they often suffer from high computational complexity
and limited expressive capacity. In this paper, we propose MAGE for efficient
spatiotemporal forecasting. We first conduct a theoretical analysis demonstrating
that the ReLLU activation function employed in existing methods amplifies edge-
level noise during graph topology learning, thereby compromising the fidelity of
the learned graph structures. To enhance model expressiveness, we introduce a
sparse yet balanced mixture-of-experts strategy, where each expert perceives the
unique underlying graph through kernel-based functions and operates with linear
complexity relative to the number of nodes. The sparsity mechanism ensures
that each node interacts exclusively with compatible experts, while the balancing
mechanism promotes uniform activation across all experts, enabling diverse and
adaptive graph representations. Furthermore, we theoretically establish that a single
graph convolution using the learned graph in MAGE is mathematically equivalent
to multiple convolutional steps under conventional graphs. We evaluate MAGE
against advanced baselines on multiple real-world spatiotemporal datasets, and
MAGE achieves competitive performance while maintaining strong computational
efficiency. Our code is available at official repository.

1 Introduction

Spatiotemporal forecasting, a core task in smart city applications, plays a critical role in key domains
such as energy, meteorology, and transportation [1, 2, 3]. Among the various approaches, graph-based
modeling has become the dominant paradigm for capturing spatiotemporal dependencies, where
sensors or base stations are represented as nodes and edges encode spatial and temporal relationships.
Spatiotemporal graph neural networks (STGNNSs) perform message passing over the graph to learn
node representations. As a result, the accuracy of spatiotemporal dependency modeling in these
systems critically depends on the quality of the underlying graph structure.

Early graph learning methods typically relied on predefined priors, such as geographic proximity, to
compute pairwise node similarities [4, 5, 6]. However, in real-world settings, such prior topological
information is often incomplete, noisy, or task-specific [7, 8]. To overcome these limitations, data-
driven graph learning methods have emerged as more robust and flexible alternatives, enabling
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end-to-end learning of latent graph structures directly from data. Notable examples include spatial
Transformers and adaptive graph learning methods. While offering greater computational efficiency
and flexibility than Transformers, the latter has been widely adopted in spatiotemporal forecasting
models such as AGCRN [9], GWNet [7], and D2STGNN [10]. These models commonly generate an
adjacency matrix A = Softmax(ReLU(E;Ej )) through two learnable node embeddings E; and
E,. Despite these encouraging results, this method incurs a quadratic complexity with respect to the
number of nodes, which limits its scalability on large-scale spatiotemporal systems. Moreover, certain
seemingly innocuous but persistently used ReLU activation functions degrade the effectiveness of
learning the underlying graph.

To address these limitations, we propose Mixture of Adaptive Graph Experts (MAGE), a novel frame-
work that achieves linear computational complexity while offering enhanced expressiveness. First,
through extensive theoretical analysis, we reveal that the commonly used ReLLU activation function in
existing adaptive graph learning method disproportionately amplifies negative edge weights while
suppressing positive ones. This behavior inadvertently reinforces noisy edges during graph learning,
thereby impairing the model’s ability to accurately capture spatiotemporal dependencies—an issue
that necessitates removal. Subsequently, we design a kernel-based function as approximation scheme
for similarity calculation that reduces the computational complexity from quadratic to linear with
respect to the number of nodes. However, according to the matrix theory, we show that such an
approximation leads to a reduction in the rank of the learned adjacency matrix, which in turn limits
its representational capacity—a so-called low-rank bottleneck. To address this problem, we intro-
duce a sparse yet balanced mixture-of-expert strategy, where each expert learns a distinct adaptive
graph. The sparsity strategy enforces that each node interacts only with compatible experts, while
the balancing mechanism encourages uniform activation across all experts, thereby facilitating the
learning of diverse graph structures. Finally, we provide a theoretical analysis to demonstrate the
strong representational capacity of MAGE in capturing adaptive graph structures. MAGE achieves
state-of-the-art performance with strong computational efficiency.

Our contributions are summarized as follows,

® Practical Solution. We propose a novel Mixture of Adaptive Graph Experts (MAGE) for
efficient spatiotemporal forecasting. MAGE mainly incorporates a sparse yet balanced expert
assignment mechanism, where multiple experts interact with nodes in a sparse and selective
manner, enabling the extraction of expressive and diverse underlying graph structures.

O Theoretical insight. We provide a comprehensive theoretical foundation for the design
motivation in MAGE, such as insights into edge-level noise amplification in existing methods,
low-rank bottleneck, and the equivalence between single-step graph convolution in MAGE
and multiple convolutions on conventional graphs.

® Empirical Study. Extensive experiments across 17 real-world datasets and 14 advanced
baselines show that our method achieves SOTA performance on 94% (48/51) of the metrics
while maintaining high computational efficiency and scalability.

2 Related Work

spatiotemporal forecasting is a fundamental task in time series analysis and plays a critical role in
a wide range of real-world applications [11, 12, 13, 14, 15, 16, 17]. In recent years, STGNNs have
become the most representative approach for this task [18, 19, 20]. Early STGNNS relied on static
graphs constructed from fixed geographic or domain-specific attributes to capture spatial topology
[21, 22]. However, such predefined structures often fail to model the underlying dynamic spatiotem-
poral dependencies among nodes. To address this limitation, more advanced models have been
proposed, such as DGCRN [6], GWNet [7], and D2STGNN [23]. These methods jointly leverage
predefined graphs and learnable adaptive graph mechanisms, enabling the model to infer optimal
spatial relationships directly from data. Some STGNNS, including AGCRN [9] and MTGNN [24], go
even further by completely discarding predefined graphs and relying solely on data-driven adaptive
graph structures, thereby achieving strong empirical performance. With the growing popularity of
Transformers across various domains, researchers have also developed Transformer-based architec-
tures for spatiotemporal modeling, such as STAEformer [25] and D2STGNN [23]. In this work,
we focus on adaptive graph learning, a lightweight yet effective paradigm that captures latent node
affinities through a simple dot product between node embeddings. Although this approach is simple
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Figure 1: The architecture of MAGE for efficient adaptive graph learning.

and widely adopted in STGNNS, its computational complexity grows quadratically with the number
of nodes. To alleviate this scalability bottleneck, BigST [8] introduced positive random features to
reduce the graph construction complexity from quadratic to linear in expectation. Building upon
BigST, GSNet [26] models the adaptive graph as a low-rank matrix generated via linear transfor-
mations. Other methods [27, 28] attempt to prune the learned adaptive graph during inference to
reduce computational overhead. Although these approaches improve efficiency by sacrificing some
representational capacity, they generally underperform compared to conventional adaptive graph
learning techniques.

3 Preliminary

Spatiotemporal Graph. We use a graph G = (V, £, A) representing spatiotemporal data, where
means the node set with IV nodes, £ represents the set of edges (e.g., similarities between nodes) and
A € RV*N js the weighted adjacency matrix of the graph G that can be generated based on the static
method or data-driven method. We use z; € R™V*/ to represent the observed spatiotemporal graph
signal at time step ¢, where f indicates the number of feature channels.

Spatiotemporal forecasting. Given the graph G and the historical data of the previous 7" time steps
X = {x1,...,27} € RTXNXS a5 input, the goal of spatiotemporal forecasting is to effectively
predict future data Y = {711, ..., 2717, } € RTP>*NXS in future T time steps as output.

Adaptive Graph Learning. Adaptive graph learning is typically formulated through a reparam-
eterization of two learnable node embedding matrices, E;, E, € RV*Xde  where d; < N is the
prescribed dimension of the graph generation embeddings. The adaptive graph is then constructed
as [7,9, 23, 24, 29]:

A = Softmax (ReLU (E,E; )) € RV*V. (1

Computing the similarity matrix S = E;E] € RY*¥ involves a quadratic time complexity of
@ (N 2dg) , which significantly hampers the scalability of the method. Moreover, the ReLU function
may amplify negative entries in the latent similarity matrix, potentially leading to the unintended
enhancement of spurious dependencies (i.e., noise) in the adaptive graph A. We develop an analysis
of edge noise amplification theory of this phenomenon, which is provided in Appendix A.1. And we
also demonstrate the negative impact of ReLU through extensive experiments in Appendix D.4.

4 Methodology

In this section, we present the detailed design of the proposed MAGE. As shown in Figure |, MAGE
first employs a kernel function to reduce the computational complexity of similarity calculation.
It then introduces a sparse yet balanced mixture-of-expert method, which adaptively learns the
underlying graph topology from the data.

4.1 Linear Adaptive Graph Learning

As shown in the theoretical analysis in Appendix A.l, the ReL.U function may amplify negative
correlations among nodes, potentially leading to the introduction of noise in learned representations.



Thus, we remove ReLU (-) before Softmax (-) to overcome the edge noise issue. that is,
A = Softmax (E,Ej ) € RV*V, )

Thus, the graph convolution of node v;, aggregating from v;, can be defined as,

o _ § Sim (Er, Bs)) HlY

i = Zmev Sim (Eli; E2m)

e R?, 3)

where E1; means the i-th row of E;. And chfl) means the representation of node v; in the (c-1)-th

graph convolutional layer. HEC) means the output representation of node v;. The above calculation
process has quadratic complexity with the number of nodes. The aforementioned computation
exhibits quadratic complexity with respect to the number of nodes. To address this limitation, we
introduce a kernel-inspired approximation approach [30, 31], which approximates the similarity
matrix via the inner product of two non-negative activation functions @ () , ¥ () : R — Ry U {0}.
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where (-, -) is the vector inner product. And we choose exponential activation with bias @ : E;; —
exp (Ey; +1:),V : Ep; — exp (Egj + .Ej) with all n;,&; € R9¢ satisfying ; = 0 and ik =
—In(}, cpexp e, 2) 1)) At this point, kernel-based graph convolution can be written as,
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And the adaptive graph convolution can be defined as,

H) = Softmax (E;) Softmax (E;) HED ¢ RV*4, (6)

“
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where we can first calculate Softmax (EJ ) H(°=) according to the law of multiplicative union.
In this way, the complexity is O (2 x N x d * dg), that is, linearly with the number of nodes N,
because d and d¢ are much smaller than N. Detailed derivations of the above part are available in
Appendix A.2.

Low Rank Bottlenecks. However, the approximate method often incurs degradation in represen-
tational capacity. To theoretically characterize this trade-off, we leverage matrix theory, where the
rank of the learned adjacency matrix can be used as a measure of the high-dimensional information
preserved in the feature representations. Specifically, the rank of the adaptive graph satisfies:

Rank (A) = Rank (Softmax (E;) Softmax (E; )) < min {N,d¢} =ds < N. (7)
— Rank(H®) = Rank(AH“™Y) < min {dg, N,d} = dg < d. (8)

Traditional adaptive graph method can yield graphs with full rank: Rank (Softmax (E1Ej )) = N,
whereas the kernel-based approximate method achieves a lower effective rank. Consequently, the
node representations derived via graph convolution are constrained to a low-rank subspace, limiting
their expressiveness and discriminative capability.

4.2 Mixture-of-Expert for Boosting Linear Adaptive Graph Learning

We introduce the mixture-of-expert strategy, in which each expert independently generates an adaptive
graph. At this time, the adaptive graph convolution with K experts can be expressed as:

K K
H-= Z o APH = Z Qg Softmax(Egk)) Softmax(E;k)T)H € RV*d, )
k=1 k=1

Here oy, € [0, 1] denotes the sparse yet balanced weights of K experts satisfying Zszl ap = 1.
The exact calculation of which will be described in Section 4.2.1. And E1(%) and E2(*) denote two



learnable embeddings of the k-th expert, which are used to generate its corresponding adaptive graph.
At this point, the rank of node representation generated by the mixture-of-expert strategy is expressed
as,

K
Rank(H(®)) < min{d, Y ~min {dg, N,d}} = min{d, Kdg} (10)

k=1
When the number of experts K satisfies K > [d/d¢], The rank of the node representation matrix
will be bounded by d. However, making K too large has little benefit and may even lead to overfitting,
as the diversity of features starts to saturate. Therefore, we set K to [d/dg]. At this point, the

multi-expert strategy enhances the rank of the representation matrix, which we empirically validate
in Section Experiment 5.6.

To further enhance the representational capacity, we incorporate a differential mechanism into
the adaptive graph learning process. For each expert k, we assign four learnable embeddings:

Egk), Eék), E:())k), Eik) € RN*dc and the adaptive graph is generated in a differential manner as
follows,

AR = Softmax(E(lk)) Softmax(Egk)T) —A Softmax(Egk)) Softmax(EElk)T). (11)
To maintain the numerical stability of the A\, we re-parameterize A as follows,
A =w+exp (A, A2)) —exp ({(A3, \y)), (12)

where w € (0, 1) is a hyperparameter and A1, A2, A3, A4 € R? are learnable parameters.

4.2.1 Sparse yet Balanced Mixture-of-Expert

We aim to develop a sparse yet balanced mixture-of-experts system. Sparsity ensures that only a small
and relevant subset of experts is activated for the input of each node, reducing computational cost.
Balance ensures equitable activation across all experts over different inputs, preventing over-reliance
on any particular subset. To select the desired K experts, we first define a candidate pool consisting

of K > K experts, which is denoted as P = {A(®)}[¥¢ .

© Sparse. For k-th expert candidate, we assign learnable identity vectors ), € R?, and then we
calculate the affinity between the node representation and each expert:

& = Sigmoid (HEH)Q,I n %) _

1

1+ exp (=) eXp(—Hchl)Olj) 0, y — —oo.

where normalized &;; means the affinity between node 7 and the k-th expert candidate. The learnable
scalar v, € R with Sigmoid function is used to encourage the model to generate sharply peaked
attention weights, favoring clear preferences of candidate experts.

@ Balance. Follow the idea in the work [32], we introduce a priority modulator /3 into the expert
selection process described above for balanced activation. If the k-th expert candidate is activated
more frequently than the average expectation in previous rounds, a negative value 3, is applied to
penalize its affinity score. Conversely, if it is under-activated, 3 takes a positive value to encourage
its selection. Accordingly, the optimal expert selection process becomes:

_ &ik’+ﬂk7 kEargTOp_K{dir+BT‘T:1727"'7KG}7

Qi = . (14)

0, Otherwise.

where arg Top-K (-) means the indices corresponding to the Top-K largest values. i.e., for K¢
candidate experts, we retain the Top-K experts that exhibit the highest affinity with node v;. Balanced
activations are beneficial for learning generalizable semantic graphs.

Finally, we develop a load balanced optimization strategy for 8, which computes the difference
between the activation count? of k-th expert N}, and the average activation expectation across K¢

2An expert is considered to be activated once if the attention between it and any node is greater than zero.



candidate experts:
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where StopGrad(-) is the stop-gradient operator [33], keeping the forward output constant but forcing
the gradient to zero. Each of the [V nodes selects K affinity experts, resulting in a total of NV x K
expert activations. In this work, we optimize ), by symbolic stochastic gradient descent [34, 35] as
follows,

N -K
B  Br — psgn (Vg, Liogd) = Br — psgn (Nk _ )

G

>, k={1,2,...,Ks}. (A7)

where p > 0 is the learning rate of optimization of 8. sgn(-) means the signum function. To
promote balanced expert utilization, the model adjusts the activation priority of each expert based on
its historical usage. Specifically, if the k-th expert is selected more frequently than the average, its
associated parameter [, is decreased, which reduces its activation probability in subsequent steps.

4.3 Mixture of Adaptive Graph Experts

The final version of our adaptive graph convolution of one layer named MAGE () is as follows,
Ka
MAGE (H) = ) _ diag (a1x, a2, - . ., ank) APH, (18)
k=1
AR = Softmax(E(lk)) Softmax(Eék)T) —-A Softmax(Egk)) Softmax(EElk)T)‘ (19)
where diag (-) means the diagonal matrix. o;; € RV*5¢ denotes the affinity matrix between the

node v; and k — th expert candidate.

4.4 Overall Architecture

We stack L layers of MAGE to capture deep-level spatiotemporal dependencies, and the forward
process of [-th layer can be denoted as follows,

Z() —FFN, (Norm(H(l))) +HO, (20)
HY — MAGE, (Norm(z“—l))) 470D, 1)

where FFN (+) is the Feed Forward Network with SwiGLU () as the activation function [36]. The

input representation Z(%) is the transformation of the input data X combined with spatiotemporal
position embedding as follows,

7 = XW; + by + P € RV*?, (22)

where W and by are learnable parameters, and P € RY *? is the spatiotemporal position embedding,
which incorporates various forms of prior information; further details are provided in Appendix B.
The final forecasting is generated as follows:

Y =ZPW, i 4+ by € RVTrs), (23)
where W, and by are learnable parameters. Finally, we redistribute the dimensions of Y to

Tp x N x f for aligning the dimensions.

S Experiments

5.1 Experimental Setup

Datasets. We use 18 spatiotemporal datasets from four domains: traffic, energy, meteorology,
and mobile communication. Traffic datasets include SD, GBA, GLA and CA in LargeST [37],



XTraffic [38], PeMS series: PeMS0X (X=3,4,7,8) [39] and PeMS-Bay [5] datasets. Energy datasets
include Electricity [40] and UrbanEV [41]. Mobile communication datasets include Beijing Weibo,
Shanghai Mobile [42], and Milan Internet [43]. Meteorology datasets include KnowAir [44] and
China City Air Quality [45]. Details of these datasets are available in Table 4 of Appendix D.1.

Settings. Our experiments are deployed on the LargeST platform [37] for all datasets to ensure a
fair comparison. All datasets are divided into training, validation, and test sets chronologically in a
ratio of 6:2:2. We employ three common metrics: Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Mean Absolute Percentage Error (MAPE) to evaluate model performance. All
experiments are executed on an NVIDIA A100 with 40GB memory. The code environment is based
on the PyTorch using Python 3.11.5. The length of the input window and forecasting horizon, 7" and
Tp, are set to 12 for all traffic datasets and 24 for other domain datasets. We adopt the Adam [46]
optimizer with an L loss function, a learning rate of 0.02, and a predefined milestones decay factor
of 0.5. We use only L = 3 MAGE Blocks with hyper residual connections for all experiments, with a
dimensionality of d = 128 and a graph generation dimension of dg = 32. The maximum number of
candidate experts in all datasets K is set to 16, and the number of activated experts per node K is
set to % = 4. The learning rate for all /3;, in the load-balanced optimization strategy is 103,

Baselines. Our experiments consist of multiple advanced spatiotemporal prediction models, including:
AGCRN [9], BigST [8], DGCRN [6], D2STGNN [23], GSNet [26], GWNet [7], MTGNN [24],
PatchSTG [47], RPMixer [48], STAEformer [25], STGCN [4], STID [49], STNorm [50], and
STWave [51].

5.2 Forecasting Performance Comparison

The main results of the forecasting performance comparison are summarized in Table 1. For
clarity and readability, we present results on four representative datasets spanning different domains;
results on the remaining datasets are provided in Appendix D.2. Methods based on static graph
structures, such as STGCN, exhibit limited performance because they cannot capture dynamic
spatiotemporal dependencies. GWNet and AGCRN employ adaptive graph learning strategies
to improve spatiotemporal modeling. Transformer-based models—D?STGNN, STAEformer, and
PatchSTG—are capable of learning adaptive spatiotemporal patterns directly from data, thereby

Table 1: Performance comparisons. The best and second best mean performance are in corresponding
colors. The ‘-> marker indicates baseline incur out-of-memory issues even on minimum batch size.
The ‘/’ marker indicates baseline is not applicable to this dataset due to the absence of key metadata
(e.g., latitude and longitude). All experimental results are the average of five independent runs.

Method SD GBA GLA CA XTraffic

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STGCN 19.27  33.57 13.49 2329 3815 17.82 2222 3798 14.30 20.68  35.68 15.55 13.55 26.58 31.15
DGCRN 1779 29.31 12.33 20.53 3340 16.79 - - - - - - - - -
AGCRN 18.39  33.63 13.78 20.69 3430 16.05 2026  34.86 12.39 - - - - - -
GWNet 18.07  29.97 12.70 20.83  33.37 17.30 20.37 3265 12.71 19.75 3171 15.84 15.25 28.55 21.94
MTGNN 1821  30.99 12.36 2148 3491 17.17 2175 3535 14.88 19.91 32.63 15.11 12.48 23.39 19.50
STNorm 19.36  32.14 12.86 2199 3528 17.17 21.84  35.00 12.99 20.37  33.13 15.04 12.03 2291 18.21
STID 18.03  30.85 12.18 20.65 3429 16.92 20.40 3390 12.97 19.04  31.86 14.69 11.62 2241 19.84
RPMixer 26.01 43.64 18.32 28.84  52.59 26.88 28.55 51.95 19.00 2544 4793 20.64 16.68 43.64 32.74
BigST 17.68  29.61 11.66 21.15 3438 17.80 20.98 3440 13.30 1932 32.01 14.93 12.13 23.01 21.42
GSNet 18.75  31.30 12.67 21.88 3538 18.04 2131 3475 13.46 19.60  32.24 15.30 13.35 24.87 27.09
STWave 17.64  29.61 11.83 20.56  33.58 15.14 2022 33.03 12.38 20.67  33.12 15.76 - - -
STAEformer 19.02  31.78 12.65 2130 34.56 17.63 - - - - - - - -
D?STGNN 17.13  28.60 12.15 21.13  34.09 16.08 - - - - - - - - -
PatchSTG 17.46  30.13 11.74 19.75  33.17 14.98 19.30 32.28 11.38 17.68  29.72 12.86 10.63 20.86 19.41
Ours 16.29  28.04 10.87 19.58  32.79 14.24 18.90  31.58 11.25 17.37  29.37 12.47 10.24 20.48 17.92

Method Electricity UrbanEV KnowAir China City Air Quality Beijing Weibo

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STGCN 2402 2210 14.14 591 12.34 19.17 1577 2425 57.44 19.56  33.34 28.48 0.8549  1.6861 34.81
DGCRN 250.3 2353 18.14 522 11.47 18.70 21.11  30.62 65.89 21.87 3518 35.05 0.8637 1.7842  31.55
AGCRN 2115 1847 16.95 5.36 12.20 18.21 16.34  24.81 63.26 19.57  32.65 31.41 0.8505 1.6998  33.68
GWNet 200.3 1820 13.48 527 11.37 18.86 1549  23.85 56.73 18.74  31.72 29.11 0.8315 1.6777 31.74
MTGNN 194.8 1583 16.53 527 11.31 18.40 1574 2421 58.70 19.62  32.58 30.70 0.8380 1.6653  32.59
STNorm 230.3 1983 14.92 543 11.54 19.24 16.00  24.32 59.46 19.72 33.13 30.04 0.8721 1.7228  32.15
STID 1749 1532 12.48 523 11.39 18.24 16.16  24.88 61.41 20.54  34.13 32.86 0.8380 1.6730  32.40
RPMixer 188.6 1574 13.19 6.52 12.62 24.80 16.73  25.96 54.07 19.05 3246 2891 1.0190 1.8696  45.58
BigST 190.3 1632 13.85 543 11.23 19.79 15.68  24.15 56.52 18.67 31.02 29.37 0.8351 1.6806  31.32
GSNet 1918 1617 14.98 555 1139 2026 1630  24.68  60.37 19.50  32.04 3129 0.8388 1.6762  32.39
STWave 188.2 1772 11.69 5.04 11.15 17.81 1635 2493 61.93 2026 33.95 32.07 0.8308 1.6849  31.28
STAEformer  200.5 1650 13.75 5.01 11.16 17.64 1582 24.56 53.28 19.01 31.57 30.34 0.8352  1.6810  32.12
D?STGNN 2248 2110 17.46 5.07 11.46 17.95 15.39 2431 55.41 18.82 3229 26.30 0.8489 1.7216  31.89
PatchSTG / / / 5.16 11.53 17.89 16.08  24.70 56.78 18.98  32.17 29.13 0.8638 1.7561  32.16
Ours 172.1 1499 11.57 4.95 11.00 17.43 1536 2342 52.77 18.52  30.88 26.13 0.7988 1.6477 29.85




achieving improved performance. However, their high computational complexity hinders scalability,
especially on large-scale datasets such as CA and GLA. STID is a linear spatiotemporal modeling
architecture that integrates various embedding techniques and achieves performance competitive
with GNN-based models. RPMixer captures inter-node relationships through randomly generated
projection matrices. DGCRN introduces a dynamic graph that evolves with traffic flow data, but its
performance is inconsistent across different scenarios. In contrast, GSNet and BigST adopt enhanced
adaptive graph learning mechanisms, achieving both competitive accuracy and good scalability. Our
proposed method outperforms all baseline approaches in terms of prediction accuracy, because MAGE
enables a more comprehensive exploration of the underlying graph topology, thereby enhancing
spatiotemporal modeling and leading to superior forecasting performance.

5.3 Ablation Study

In this section, we design following variants of our model to validate the soundness of the main
component of our model: ‘w/o PE’ removes all the spatiotemporal position encoding embedding;
‘w/o SE’ uses only feedforward networks as model backbone without spatial encoder; ‘w/o Multi
> leverages only one adaptive graph expert with K = 1; ‘w/o LB’ reduces the load balanced
optimization strategy in MAGE; ‘w/o Sparse’ sums up all output of alternative graph convolution.
Additionally, the combination ablation experimental results for each spatiotemporal position encoding
embeddings are in Figure 4 (b) in Appendix D.3.2. As shown in Figure 2(a), the ablation study reveals
that ‘w/o SE’ variant achieves the worst performance. This is because our mixture-of-adaptive graph
convolution module plays a crucial role in guiding the model to recognize dynamics spatiotemporal
dependencies among nodes. ‘w/o PE’ variant also suffers from higher forecasting errors, which can
be attributed to the fact that the learnable spatiotemporal position encoding can extract piratical and
general knowledge during training. The performance deration of both ‘w/o LB’ and ‘w/o Sparse’
variants indicate that sparse and balanced graph convolution possess better performance than dense
graph convolution and graph convolution without balancing loading, respectively.

The total number of adaptive graph number K
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(a) Ablation study on all datasets. (b) Hyperparameter Sensitivity Experiments on SD dataset.

Figure 2: (a) Ablation study on all datasets. (b) Hyperparameters sensitivity experiments on K and
K in SD dataset. The yellow star marks the optimal hyperparameters.

5.4 Hyperparameter Sensitivity Experiment

We analyze the sensitivity of MAGE to its two key hyperparameters: the total number of expert graphs
K and the number of activated experts per node K. Using the best-performing configuration as the
baseline, we vary one parameter at a time while keeping the others fixed, as shown in Figure 2(b).
We report MAE and MAPE on the SD dataset for evaluation. The total number of candidate experts
is varied from 2 to 32, and the number of activated experts per node ranges from 1 to 16. When the
number of candidate experts K is too large, the model struggles to select the most suitable ones,
leading to suboptimal performance. Moreover, activating too many experts /K each time introduces
redundancy and degrades prediction accuracy.



5.5 Efficiency Comparison with SOTA STGNNs

As shown in Table 2, our model achieves the highest prediction accuracy among advanced STGNNs
while simultaneously demonstrating the lowest computational complexity and the highest efficiency.
STWave combines a naive graph convolutional network with decomposition techniques. Although it
exhibits relatively high efficiency among the baselines, its performance is only modest. STAEformer
employs a standard Transformer architecture with quadratic complexity in the number of nodes,
resulting in low efficiency. D?STGNN integrates multiple dynamic graph convolutions, which further
increases complexity and leads to training speeds that are more than 118 times slower. On the
GBA dataset, it is 960 times slower than our method. In comparison with another advanced model,
PatchSTG, MAGE achieves up to a 4.7 times speedup in inference and reduces memory consumption
by up to 1.72 times. Moreover, by avoiding complex Transformer architectures that introduce a
large number of parameters and high computational costs, our model substantially lowers memory
overhead. It requires up to ten times less memory than D2STGNN and STAEformer.

Table 2: Efficiency comparison with SOTA STGNNs. Memory: The maximum memory usage (MB)
during training. BS: The maximum allowable batch size during training (up to 64). Train: Average
Training Speed (s/epoch). | indicates the relative percentage increasing regarding MAGE.

Method SD (716) GBA (2352) UrbanEV (1682)

MAE Memory BS Train MAE Memory BS Train MAE Memory BS Train
STAEformer 19.02 39,112 36 384 21.30 39,518 5 2529 5.09 33,680 4 745
STWave 17.64 26,524 64 411 20.56 40,564 26 1034 5.04 38862 18 210
D2STGNN 17.13 40,270 31 442 21.13 39,102 3 5527 5.12 39006 2 2257
PatchSTG  17.46 7,612 64 101 19.75 27,852 64 326 5.16 12,106 64 25
Ours 16.29 3,662 64 22 19.58 10,220 64 57 4.95 5594 64 20

5.6 Low Rank Bottleneck of Various Models using Adaptive Graph Leaning

In this section, we expose the rank bottleneck in existing adaptive graph learning methods. We
compare our model with representative approaches—D2?STGNN, BigST, and GSNet-by measuring
the effective rank of node representations after graph convolution, computed via SVD with a threshold
of 10~8. To ensure fair comparison across models with varying embedding dimensions, we normalize
the rank by its theoretical maximum. As shown in Figure 3 (b), D2STGNN achieves the highest
normalized rank (60%), reflecting its strong representational capacity due to standard adaptive
graph learning. In contrast, BigST and GSNet adopt linear approximations to reduce computational
complexity, resulting in a significant drop in rank (retaining only 20-40% of the theoretical upper
bound), which indicates a notable loss of expressive power. Under linear computational complexity,
MAGE attains 80% of the theoretical rank limit, outperforming all compared efficient variants. This
gain is attributed to its multi-expert adaptive graph mechanism, which supports more diverse and
informative spatiotemporal modeling without sacrificing efficiency.
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Figure 3: (a) Rank ratio (%) comparison on the outputs of adaptive graph convolution which is the
ratio of the true rank of the output of the adaptive graph convolution to its rank upper deterministic
boundary. (b) Usage Ratio (%) of all graph experts on SD dataset. The expert order is sorting by the
usage in ‘w/o LB’ variant.

5.7 Evaluation of the Balancing Strategy in the Mixture-of-Expert System

We evaluate the balancing strategy by analyzing expert utilization on the SD dataset. As shown in
Figure 3(b), we compare the full model with a variant that removes the load-balancing component



(w/o LB). For both models, we first extract the affinity scores between nodes and experts, and then
count the activation frequency of each of the 16 experts. Our model consists of 16 experts, each
activated approximately 6.25% (1/16) of the time, indicating a well-balanced usage across experts.
In contrast, the w/o LB variant exhibits highly skewed activation patterns, where certain experts
are heavily favored while others are underutilized. This imbalance limits the model’s ability to
capture diverse spatiotemporal patterns. The balancing mechanism in MAGE ensures a more uniform
distribution of expert activations, enabling the learning of richer and more diverse adaptive graph
representations, ultimately leading to improved performance.

5.8 Pareto-Optimal Trade-off Study Between Linear and Full-Rank Adaptive Graphs

To further examine the efficiency—performance trade-off within MAGE, we conduct a systematic
study on the proportion of linear kernel adaptive graphs (Eq. 11) versus naive full-rank adaptive
graphs (Eq. 2) without ReLU. Specifically, we fix the total number of graph experts to 16—consistent
with the optimal configuration in the main experiments—and progressively adjust the mixing ratio
between the two graph types, while maintaining the original balanced and sparse expert activation
constraints.

Table 3: Pareto-optimal study of performance—efficiency trade-offs of adaptive graph type.

Linear : Full | MAE RMSE MAPE Memory Training
Naive 0:16 [ 16.52  28.35 1091 4,308 MB 46 s/epoch
\“/ 4:12 | 16.53  28.29 11.01 3,998 MB 35 s/epoch

8:8 17.10  28.75 11.31 3,860 MB 30 s/epoch
12:4 | 1629  28.22 10.88 3,096 MB 24 s/epoch
Ours 16:0 | 16.29  28.04 10.87 3,662 MB 22 s/epoch

As shown in Table 3, with the proportion of full-rank adaptive graphs increasing, memory consumption
and training time rise substantially, yet without yielding any noticeable performance improvement. In
contrast, the pure linear configuration (‘Linear:Full’ = 16:0, the default setting in MAGE) achieves
comparable or even superior forecasting accuracy with minimal resource overhead, indicating that
the original MAGE design already lies a Pareto-optimal point in the accuracy and computational
efficiency trades-off. Therefore, our linear adaptive graph convolution achieves high predictive
performance while maintaining excellent computational efficiency. We further extend the above
experiments to investigate the model’s inherent preference between linear and full-rank adaptive
graph convolutions. The results reveal a clear tendency for the model to favor our proposed linear
adaptive graph formulation. Detailed experimental settings, analyses, and results of this study are
provided in Appendix D.5.

6 Conclusions

In this paper, we propose MAGE, a novel and efficient framework for adaptive graph learning with
linear computational complexity. MAGE combines kernel-based approximation with a sparse yet
balanced multi-expert architecture. The sparsity mechanism ensures that each node activates only the
most relevant experts, while the balancing strategy promotes uniform expert utilization across the
network, leading to more robust and representative graph learning. We further provide theoretical
insights into the edge noise issue present in existing adaptive graph learning methods. Extensive
experiments across multiple spatiotemporal datasets from four distinct domains consistently show that
MAGE outperforms state-of-the-art baselines while maintaining excellent computational efficiency.
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A Theoretical Justifications

This section presents the theoretical proofs. In the first subsection, we provide a detailed mathematical
proof to support our significant observation: ReLU introduces edge noise in adaptive graph topology
generation. In the second subsection, we mathematically demonstrate the effectiveness of a single
convolution on the adaptive adjacency graph convolution, which we refer to as “You Only Convolve
Once’ (YOCO). Furthermore, we prove that our adaptive adjacency matrix generation method
genuinely achieves YOCO. We pack all the Theorems in the red color box, all the Lemmas in the
cyan color box.

A.1 Magnify Noisy Edge by ReLU Function in Adaptive Graph Learning Method.

Theorem 1. Edge Noise Amplification Theory

Let E; = [e; a )] E; = [eﬁ)] € RVXdc be the graph generating embeddings where all
elements belonging to them satisfy an independent normal distribution A/ (O7 02) with o > 0.
N corresponds to the number of nodes and d < N is the given dimensionality of graph
generation embeddings. The Adaptive Graph with or without ReLU (-) are respectively
calculated as follows,

R = Softmax (ReLU (E1E; )) € RV*N| A = Softmax (E,Ej ) € RV*N. (24)

Then, the calculation of Adaptive Graph A will lead to more edge noises than A. Specifi-
cally, there exits,

(1) If nodes ¢ and j have positive similarity, then A{; <Ay

(2) If nodes ¢ and ;7 have negative similarity, then with high possibility A% > Ayj.

Proof. (I) We first consider that the nodes 7, j € V have no negative similarity s, Z kel E;) ﬁ)

0, and let ©; = {l € V|s;; > 0} C V be the set of nodes with no negative similarity to node i,
ReLU (s;;) = max{s;;, 0}, then

J €8,

exp (8i5) ,
exp (ReLU (s;5)) = {17 J o 25)
and the final edge weights from node j to node ¢ under two calculation satisfy,
AR — _ P (ReLU(sy)) exp (si;)
Y Yiea, P (ReLU (sa))  Dieq, exp (sa) + (N = [€4]) (26)
exp (s45) - exp (8;5)

= = =A,;.
Zleg exp (sit) + Lnga, P (Sim)  Xjeq, exp(siu) 7

If 3I* € ¥V — Q; such that s;~ < 0, i.e., |[£;] < N, then the above inequality Aﬁ < Ayj is strictly
valid.

(IT) Then we consider that the nodes 7, j € V have negative similarity, i.e. s;; = Z b1 € k e; k < 0.
By Lemma 1 (1), we find Agﬁ > A;; when s;; € (—oo,In pij] where p;; is the ratio of the sum of

the edge weights from nodes other than j to ¢ not containing ReLU (-) calculations to the sum of the
edge weights from nodes other than j to 7 containing ReLU (+) calculations as follows,

Dieq, XD (8it) + X mga () P (Sim)
> eq, exp (i) + (N — Q] — 1)

Although we still find AZ— < A;; when s;; € (Inp;;,0) by Lemma 1 (2), we can make the
expectation E [p;;] asymptotic to 1 for shorting the high possible length of the interval (In p;;, 0)

approaches 0 by controlling a suitable and reasonable o, such as ¢ = o(y/(N — 1) /d¢g) through
Lemma 2. Hence, the probability that s,; falls within the interval (In p;;, 0) can be controlled to be
very low, so that with high probability there is s;; € (—o0,In p;;] and Af} > Ay O

Pij = € (0, 1] . 27

16



If 7 and j have negative similarity, then

(1) A% > Ay when s;5 € (—00,In pg];

2) Aﬁ < Az] when Sij € (lnpij, 0),

where p;; is the ratio of the sum of the edge weights from nodes other than j to 7 not
containing ReLU () calculations to the sum of the edge weights from nodes other than j to 4
containing ReLU (-) calculations as follows,

o 2ieq, ©XP (Si1) + X pga, (5} P (Sim)
9T Tica, o (sa) + (V= Q5[ - 1)

\. J

€ (0,1]. (28)

Proof. @O If Si5 € (—OO7 In pij]s i.e., Sij <In Pijs then

>ieq, XD (sit) + X g, —(j) €XP (Sim)
Dieq, exp (sa) + (N — Q] 1) 7

= [Z exp (s) — | —-1) ] exp (si5) Z exp (s41) Z exp (Sim), (30)

(29)

exp (sij) < pij =

e les, mmi\{j}
= [Z exp (si) — %) 1 exp (si;) Z exp (si) Z exp (Sim) (31)

leQ 1€y megQ;

exp (845) 1
— < ; (32)
Dieq, €XP (Si) + X gq, €XP (Sim) ~ Djeq, €xP (sa) + (N — [$4])
exp (ReLU (s;5))

— A; < (33)

17 Yieq, exp (ReLU (si)) + 3,40, exP (ReLU (sim))’

(ID) If s;; € (In p;;,0), that is s;; > In p;;, then just reverse the inequality sign from Eq. 29 to 34 can
complete the proof. O

Lemma 2. The lower bound of the expectation of negative similarity.

If i and j have negative similarity, then the expectation E [p;;] satisfies

Elpy] >1— %\/daﬁ&__i?g”‘l) 1, (a = o({/(N —1) Jdg) — 0) . (35)

In fact, the above inequality can be further relaxed to

1 dGa4 (1 — Alldgdél) 1 1

but this relaxed o-independent lower bound is also extremely close to 1 for hundreds to tens
of thousands of values of [V taken in practice.

Proof. Since all elements in Eq, Es satisfy an independent normal distribution A/ (O, 02), then the
expectation of similarity between node ¢ and j is,

dg

[Z ] ZE[M 2 = ZEM @] =30=0, @

k=1

( ) and e(z) are independent for Vk=1,2,...,dg.
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and still since egi) and eﬁ) are independent of each other for arbitrary £k = 1,2,...,dg, the

expectation and variance of similarity between node ¢ and j is,
2)
Zezk §k Zv[zk Jk?:|
:Z@WWFﬂ%VWWﬂ+WWM%D
k=1

Vsi;] =V

(38)
5 (] 2] +0-vis2) v
da da
S () = e

Then we estimate the expectation and variance of edge weights exp (s;;) in Softmax (-) operation
before normalization by an approximation methods based on Taylor series expansions [52] at the
expectation E [s;;] of s;;. Concretely,

+o0 B +o00 P Sii r
eXp(Sij):Zexp(]fM(SU_E[sij])r:ZW’ (39)
r=0 ' r=0 '

E {(Sz’j -E [%‘])2]
2

+OO]E sij_Esij "
S [( [si])"]

= Elexp (sij)] = o

~14+E[si; —Elsi]] +
r=0
V sy

=140
+0+ —

1
=1+ §dga4. (40)

_1
It is important to note that when we take ¢ = o(d "), V [s;;] can be arbitrarily small by choice, so
the effect of higher order terms can be ignored and the above approximation will be more accurate.

The equivalence definition of variance is V [exp (s;)] = E [exp (2s;)] — (E [exp (si;)])?, hence we
use same approximation methods to calculate E [exp (2s;;)] as follows,

—+o00 27‘ E 2 ii . +oo 27‘ = ]E i T
exp (2s;;) = Z M (sij —E[siy])" = Z (i - [s45]) , @n
r=0 ' r=0 ’

TR R — Els: )" 9
— Elexp(2s;5)] =Y ZE [y T!E[ ZINPNE, [sij — E[si;]] + 2E [(Sz‘j —E[si])

=1+0+2V[s;] =1+ 2dgo™. (42)

Then the variance of exp (s;;) is,

2
V [exp (si5)] =E [exp (2s;5)] — (E [exp (sij)])2 ~ (1 + 2dGo4) — (1 + ;dgd4) (43)

1
=dgo* — 7dGa =dgot <1 — 4dGo4> ) (44)

Let Gij = > ieq, xP (Sit) + X mga, (53 ©XP (Sim) and ¢ = Yieq, e (sa) + (N — [Qi] = 1),
then the definition of p;; is,

Gy

€ (0,1]. (45)
G

Pij =
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Then we can get that,

1

E[¢i] = Z]E exp (si1)] -1 (1 + 2dG04> ,

I#j

1

Cz] ZV exp Szl - 1) dGOA (1 - 4dGU4> ’

l#j

1

E[c8] = 3 Elexp (su)] + KMU—&AO+2%#)+W’KMD

e

1
C” Z V [exp (si1)] = |Q|dao? (1 - 4dGa4> )

leQ;

The expectation of p;; can be expressed as,

E[pij] =E [Cij/dﬂ =E [ 1/@?} =E[G]E [1/@?] + Cov (i, 1/@1})

= E [Gij] E [1/¢}] + Corr (Gij, 1/¢5) /V[Gs] V [1/¢]
> E (G E [1/¢5] — \/VIG) V [1/¢E].

Where Cov ((i5,1/¢t) is the covariance between ¢;; and 1/¢f, and Corr (5, 1/¢)

(46)

47

(48)

(49)

(50)

€[~1,1]is

the correlation coefficient between ¢;; and 1/¢;7. . We compute E [1/ (g] and V [1/ CZI;] by a similar

Taylor expansion approximation as above,

R N G A S
e ZE(YH@] [
0 7

=1

E[l/cg]:mE& 1]1“ [CEACHY
L1 _E[ch-2c) E[CE-ECH)]
ECE T [T B[]’
1 v
ECE] TR

61V

(52)



where 7;; =V [Cg-] E [Cg] -2 Similarity there is V [1/@5»] =E [(1/{5’)2} — (E [1/@?] )2, and
the E [(1/(5-)2} can be calculated as,

ﬁ

(1/¢h’ = Z gl (}L” (CE-E[cR)" (53)

R

)
[
— B[ty =ZW [GRE

1 E[(B-E[A])] | 3E[(E-E[])’]

_l’_
E [¢7)? E[cA]® E[cA]*
R
A (]

TR B
1 v [¢E]
= 1+3 J 54
B[] ( ! E[<512> oY

E [¢f]]

Then the variance of 1/ ij-" can be expressed as,

) — (L 75)° 7y (=7
vh/@-’ﬂ=E[(1/<5?)2]—(E[l/cﬁ]f:(H?’Tgwai+ ) ]E(ECB]Q) 56)

Claim.1 in Lemma 2: E [(;;] E [1/¢]] > 1. In fact,

N (Vi
E[CU]ED/CU} _(N 1) (1+2dG )E[Cg] <1+E[C21ﬂ2>

> (N —1) (1+;dGa4> E[léﬁ]'l
2]

B (N—=1)(1+ 3dco?)
T (1 + Sdao®) + (N — [ — 1)
_ (N-1)

ol + (A5

1+35dgo?
(N-1)
12| + <7N_|?i‘_l>
_N-1)
“ o)

(57)

>

=1

The first inequality in above Eq. 57 holds since V [Qﬂ =[] (14 2dgo?*) > 0and E [CZI;] >>0.
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dGG4(1—%dG0’4)

Claim.2 in Lemma 2: V [¢;;] V [1/¢[l] < =575

. In fact,

1 Tij (1 — 735
V¢V [1/¢E] = (N = 1) dgo* <1 - 4dGa4) E([C’?]Q)
B (N —1)dgo* (1 - %dGo‘L) Ti; (1 —745)
C ] (1+ Ldaot) + (N — Q] - 1)]°
(N —1)dgo* (1 — %d(;OA) Tij (1 —745)
(19| (Adgo?) + (N — 1)]? (58)
- (N —1)dgo* (1 — 1dgo?)
4(N —1)°
_ dgo? ( — idgo‘l)
4(N—1)

RG]

The first inequality holds since the |€2;| in the denominator is no less than 0, and the maximum tight
value-independent upper bound of formula 7;; (1 — 7;;) is 1/4. The second inequality holds since
the maximum tight value-independent upper bound of formula dgo* (1 — %dc 04) is 1.

dga4(1—%dca4)

By above Claim.1 and 2, we have E [(;;] E [1/ g] > land V[(;]V [1/ 5] <

4(N-1)
Finally we obtain
1 dgd4 (1 - lngA)
Epij] >1— = 4 . 59
O
A.2 Scalability Graph Reparametrization Generation Enpowered by Kernel-like Method
We focus only on operations with the convolution procedure on adaptive graph, i.e.,
A g HY = Softmax (E,E; ) HY. (60)
We cancel the calculation ReLU (-) before Softmax (-) to overcome the edge noises issue, that is,
A = Softmax (EE; ) € RV*Y (61)

The calculation complexity of Eq. 61 is still O (dgN 2) since the non-linear operation Softmax (+)
forbids the law of union for multiplication among three matrices E;, EJ and H("), and the similarity
matrix S = E;EJ € RY*¥ need to be counted and cost O (dgN 2) complexity. Then we introduce
a kind of kernel-like method to linearizable simplification for adaptive matrix. A one layer adaptive
graph convolution without parameters can be expressed as follows,

HHYD = A xg HO = AHY (62)

We consider the representation of node 7 € V after adaptive graph convolution, i.e., the ¢-th row of

A xg HO as follows,
d 1 (2 l
exp (Zkil egk)e;k)> Hg.)

(AH(Z)) =2 dc (1))

JEV D mey XD ( k=1 Cik emk)

e R? (63)

Hence the adaptive graph convolution is actually equivalent to a [; weighted average of the spatiotem-
poral representation of nodes with weights exp (ZZil ez(.,?eﬁ)) = exp ((egl), e§2)>) > (0 where

(-, -) is the vector inner product, which is the exponential activation of the inner product of two graph
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generating embeddings E;, E, corresponding to different nodes. We can define an universe form of
adaptive graph convolution as follows,
(e! ) (2)) (_l)

(AH(”) i=>" %

55 ey Sim(elV, <2>>

where the binary function Sim (-, -) : R% x R% — R, U {0} is a positive-definite kernel, com-
puting the similarity between two embeddings as the weights. Take the example in Eq. 63 above,

Sim

e R, (64)

i.e., Sim(e (1), e§-2)) = exp((e; ) eg ))), the exponential activation after inner product computation
guarantees the non-negativity of snnllanty, but it also restricts the implementation of the multiplicative
union law, leading to the introduction of high complexity. We therefore draw on the kernel-like
method [30, 31] to ensure non-negativity of similarity by introducing a non-negative activation
function before the inner product computation. The objective is to eliminate the activation opera-
tion following the inner product calculation, whilst preserving the non-negativity of the similarity
calculation. When all elements of the object of inner product satisfy non-negativity, the result
of the inner product is naturally non-negative. To this end, two non-negative activation functions
O (),¥ () : R — Ry U {0} as kernel-functions are incorporated prior to the inner product, thereby
ensuring that all elements of the inner product object satisfy non-negativity.

sim(el, ef?) = (a(el"), w(el)) (65)

Thus by using the above kernel-like method we can rewrite the adaptive graph convolution in the
form as follows:

. (o(el"), v(e?)) B (2(e), (w(e?), HY))
* D) 151 = .
(heom)t J;’Zmev< 2(ef). w(el) gz@(ei”xzmem @)
(o(el"), 5 en(wlel™) H) )
= I€ 7 € RY,

(0(e{V), X ey Uel))
(2)
)

We are therefore able to use the law of multiplicative union to prioritize the inner product of ¥ (e e;
(1 )»—>exp( (a )-1-771) U

(66)

and H(-l). Here we choose differentiable weighted nonlinear functions ® : e;
( ) s eXp( )4 ¢;) with all m;, &; € R9<, then

We are therefore able to use the law of multiplicative union to prioritize the inner product of ¥ (e (2))

and H(-l). Here we choose differentiable weighted nonlinear functions ® : e( ) s exp(e; M4 n;), ¥ :

(2) — eXp( )+ ¢;) with all n;, &; € R9<, then

g 0] S e ) )
<exp ( @ 4 m) ey €XD (e,(n) + £m)>
e () ) (Zey (e (e +6) H)) (1
5202y exp (ely) + i) Ly exp (€6 + &)
v yexp (el + i) Zjev exp (el + & ) HY
Ymey Ly oxp ( X+ My + émw)
5 502, exp (e ()+€(k)+771k+€7k> N0

JEV ZmEV Zw 1 €Xp ( 7(111)) + 6(2) + Niw + fmw)

Hence this kind of adaptive graph convolution is actually equivalent to a [y Weighted average of

(67)

the spatiotemporal representation of nodes with weights ZZL exp ( ()4 e k +nik +§ jk) >0

22



Once we know how the elements are computed in Eq. 67, we wish to rewrite the equation into the
general matrix computation like Eq. 60. as follows,

ZZZ €xXp ( Ek) + e(k) + nik + & k)
(A G H(z)) ] = Z 1 J J

JEV D omey Ew L exp ( @) 4 2y Niw + fmw>

121

e (2 (68)
exp (eik + mk) exp (ejk + fjk> 0
Yy o
JEV k=1 Zw 1 €Xp ( €iw T 7]“0) ngv €xXp (emw + fmw)
Let &5 = —In (3, oy exp (e2))), i = )91 th
ik mev €XP (€r1))s 1€, exp&ir = (Xcp exp (€,,,)) 7, then
1) e
exp (et +mix ) exp (€)) /5y exp (e2)) l
(A*g H® ) ZZ ) (2) ;)
ST S exp (el) + 1) Yoy oxp (€] /3 ey exp (eli)
exp (el(.,i) + mk) exp (eﬁ?) o
=2 Z o) @, (69)
JEV k=1 Zw 1 €Xp ( Jw + nlw) ZmEV exp (emk)
Iftn, = 0, then the above Eq. 69 implies that,
A xg HY) = Softmax (E;) Softmax (E; ) HY. (70)

This approach not only facilitates the calculation of similarity but also ensures the implementation
of the multiplicative union law without activation after the inner product, thereby reducing the
complexity to O (dQGN ) (dg < N) about linear complexity of nodes number V.

A.3 Linear Combinations of Matrices to Raise Rank

Theorem 2. The rank upper bound raising property of matrix addition.

For any matrices M1, Ms, ..., Mg € RP1XD2 their exists,
K K
Rank (Z Mk> < ZRank (M) . (71)
k=1 k=1
Proof. We can prove the theorem by means of chunked matrices. In fact,
M, 0
K M,
> Rank (M},) = Rank
k=1 -
L O M,
M, M, +M, ... Zi,}le
M M (72)
= Rank S 2= My
| 0 My,
K
> Rank (Z Mk> .
k=1
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B Spatiotemporal Position Encoding

Spatiotemporal position encoding aims to distinguish data points by assigning them learnable em-
beddings that encode spatial and temporal positions, typically through concatenation [53]. Building
on prior work [49, 54], we employ spatiotemporal embedding techniques to incorporate informative
priors such as time-of-day and day-of-week. Integrating these meaningful representations into the
model enhances its learning capability through effective positional prompting.

Concretely, we utilize three learnable positional encoding embeddings: spatial embedding Pg €
RN >4 | timestep of day embedding Py € R?, and day-of-week embedding Pp € RY. Spatial
embedding P assigns a learnable embedding to each node to dynamically capture the spatial
property of nodes. The timestep-of-day embedding P € R¢ and day-of-week embedding P € R¢
allocate corresponding learnable embeddings to each time step, dynamically extracting the periodicity
of the spatiotemporal data. We use element-wise addition to form our spatiotemporal position
encoding P as follows,

P=Ps+P;+Pp e RV (73)

Unlike existing approaches that rely on concatenation, our addition-based method is theoretically
equivalent to concatenation in terms of representation capacity, but offers greater computational
efficiency. This approach serves two key purposes: (1) it avoids increasing the dimensionality of the
intermediate hidden states, and (2) it potentially reduces the number of hyperparameters associated
with the positional embeddings used in concatenation-based methods. The theoretical justification
for this equivalence is provided in Appendix B.1.

B.1 Equivalence Between Addition and Concatenating for Spatiotemporal Position Encoding

Theorem 3. Equivalence between + and || for Spatiotemporal Position Encoding

Let X be the input data, P’y € RNXdS,P'T e RVXdr apd P, € RN 4D are spatiotemporal
position encoding for concatenation with weight parameters W/, € R(¢+ds+dr+dp)xd thep
their exits Pg, P7,Pp € RV*? and W € R¥¥¢, such that,

(XI||P5||P7|[PHI Wy = XWo + Ps + Pr + Pp € RV (74)

\. .

Proof. In fact, the weight parameter W{) can be viewed as
Wi = [Wg [[W3[[Wq|[Wp)T e RUFdstdrtdoixd, (75)

where Wy € R4 W[ € Risxd W € Rir*d W[ € RIP*4 gre the composition of the first
dimension of WY{,. Then their exists,

[X||P|[P7|[Ph]Wh =[X[[Ps|[P7[[Pp] x [Wq |[W§[[WE|[WhH]T

N (76)
=XW; +PsWgs + P Wp + PL,Wp.
Thenlet Ps = PAWg,Pr = PL.Wp, Pp = P, Wp, and we have,
[X||P%||Py||PHIWo = XWq + Pg 4+ Pr + Pp € RV*4, (77)
O

C Related Work

Deep learning in time series analysis. Deep learning has shaped a rich and diverse ecosystem
for a wide range of time series tasks, such as forecasting [55, 56, 57, 58, 59], classification [60],
imputation [61], and anomaly detection [62, 63, 64]. In recent years, neural architectures tailored
for temporal data have advanced rapidly. Notably, MLP-based models [65, 66, 67] have emerged as
highly efficient and scalable solutions, offering lightweight yet competitive performance. Meanwhile,
Transformer-based methods [68, 69] lead in modeling power and predictive accuracy. Alongside
architectural innovation, there has been growing interest in optimization strategies specifically adapted
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to time series, aimed at improving training stability and robustness [70, 71, 72]. Furthermore, an
increasing body of work focuses on downstream applications, seeking to align time series modeling
with practical, domain-driven goals [73, 74].

Within this broader landscape, spatiotemporal forecasting represents a specialized branch of time
series prediction. In contrast to generic forecasting tasks that model only temporal dynamics,
spatiotemporal prediction focuses on short-term behavior shaped by structured spatial relationships,
where nodes or sensors display strong, learnable interdependencies—such as in traffic flow, air quality
monitoring, or weather systems [75, 76]. The core challenge in this area is to jointly model temporal
evolution and spatial coupling in dynamic environments, a problem that continues to drive innovations
in model architecture and computational efficiency.

Load balanced optimization strategy. Previous work such as DeepSeek [32] also follows a similar
principle by applying the concept of balance to the design of large language models, demonstrating
that balanced expert allocation can enhance model performance. However, their study focuses
primarily on language modeling tasks, which differ substantially from our setting. In contrast, our
work targets traffic forecasting—a distinct spatiotemporal prediction problem. Beyond adapting
this idea, we make two key contributions. First, we provide a theoretical analysis of the balancing
optimization strategy, including formal derivations that strengthen the interpretability and principled
foundation of the approach. Second, rather than directly transferring the balancing concept, we
ground it in matrix rank theory to formally justify its effectiveness in adaptive graph learning. This
theoretical formulation not only clarifies why balancing improves performance but also enhances the
overall interpretability and rigor of the balance-based paradigm in our context.

D Experiments

D.1 Dataset Description

The description of used spatiotemporal datasets are shown in Table 4.

Traffic Domain. PeMS0X datasets (where X = 3, 4, 7, 8) and PeMS-Bay are provided by the
PeMS (Performance Measurement System) operated by the California Department of Transportation
(Caltrans). These datasets with general-scale record traffic sensor data from multiple highway regions
across California, with a sampling frequency of 5 minutes. The four larger-scale datasets SD, GBA,
GLA and CA collectively referred to as LargeST, are also sourced from the PeMS system. The
temporal resolution of these datasets is aggregated to 15 minutes in our experiments and we only
choose the year 2019 in experimental comparison corresponding to current works [37], and they
range in scale from 716 to 8,600 sensor nodes. XTraffic represents an even larger spatiotemporal
system, comprising 16,972 nodes. Some of the above traffic dataset has capturing traffic flow, speed,
and occupancy. More details are in Table 4.

Energy. Electricity dataset is a widely used benchmark for multivariate time series forecasting
tasks. It records the hourly electricity consumption of 321 users or regions from 2012 to 2014, with a
temporal granularity and sampling frequency of one hour. UrbanEYV is a real-world dataset collected
from 18,061 public charging stations in Shenzhen over a one-month period (from September 1, 2022
to August 31, 2023). The data is aggregated into 1,682 spatial regions. Temporally, the dataset has a
time granularity of 5 minutes, resulting in a total of 8,640 time steps. Spatially, it covers 247 traffic
analysis zones (nodes), forming a structured graph representation of urban electric vehicle charging
demand.

Meterology. Chinese Cities Air Quality (CCAQ) dataset comprises AQI data and corresponding
meteorological attributes from 209 cities in China mainland, spanning twenty-eight months (January
1, 2016, to April 30, 2019) with hourly temporal resolution. For our air quality forecasting model, we
still focus on PMj, 5 as main prediction object. KnowAir dataset comprises PMs 5 measurements
and corresponding meteorological attributes from 184 cities in China mainland, spanning four years
(January 1, 2015, to December 31, 2018) with three hour granularity.

Mobility. Beijing Weibo dataset contains blog check-in data received from 528 regions in Beijing
through the Weibo application from January to December 2023. The Weibo application is a main-
stream social media platform in China, with 590 million monthly active users as of 2024, offering
extensive coverage. The data points are aggregated at one hour intervals. Shanghai Mobile dataset
[42] comprises over 7.2 million call records generated by 9,481 mobile phones accessing the internet
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Table 4: Description of the Spatiotemporal Datasets in the Experiments. M: Million (10°). B: Billion
(10%). Data points is the multiplication of nodes and the total time steps.

Domain Datasets # Nodes # Edges # Features Time period Frequency Data Points
PeMS03 358 546 3 09/01/2018 ~ 11/30/2018 5 mins 9.38 M
PeMS04 307 338 5 01/01/2018 ~ 02/28/2018 5 mins 522M
PeMS07 883 865 3 05/01/2017 ~ 08/06/2017 5 mins 24.92M
PeMS08 170 276 5 07/01/2016 ~ 08/31/2016 5 mins 3.04M
PeMS-Bay 325 2,369 3 01/01/2017 ~ 06/30/2017 5 mins 16.94 M
Traffic LargeST-SD 716 17,319 3 01/01/2017 ~ 12/31/2021 5 mins 0.38 B
LargeST-GBA 2,352 61,246 3 01/01/2017 ~ 12/31/2021 5 mins 1.24 B
LargeST-GLA 3,834 98,703 3 01/01/2017 ~ 12/31/2021 5 mins 2.02B
LargeST-CA 8,600 201,363 3 01/01/2017 ~ 12/31/2021 5 mins 452B
XTraffic 16,972 870,100 3 01/01/2023 ~ 12/31/2023 5 mins 1.78 B
Energy Electricity 321 101,323 5 01/01/2012 ~ 12/31/2014 1 hours 8.44M
UrbanEV 1,682 1,989,840 5 09/01/2022 ~ 08/31/2023 1 hours 1473 M
Meterology KnowAir 184 3,796 13 01/01/2015 ~ 12/31/2018 3 hours 2.15M
China City Air Qualtity 209 4,321 10 01/01/2017 ~ 04/29/2019 1 hours 426 M
Beijing Weibo 528 244,942 3 01/01/2021 ~ 01/01/2022 1 hours 55.50 M
Mobility  Shanghai Mobile 3,042 9,090,300 3 05/31/2014 ~ 11/30/2014 1 hours 13.36 M
Milan Internet 10,000 52,743,034 3 11/01/2013 ~ 12/26/2013 1 hours 43.93 M

via 3,233 base stations from June 2014 to November 2014. The data time interval is also one hour.
Milan Internet includes multiple mobile traffic features: outgoing calls (CALLOut), incoming
calls (CALLIn), sent text messages (SMSOut), and received text messages (SMSIn). These features
encompass mobility records collected over two months, from November 1, 2013, to January 1, 2014,
across 400 regions. The data time interval is set to 1 hour. We use the Internet subdataset for fair
performance comparison.

D.2 Experiment Analysis

We compare the performance of MAGE and SOTA spatiotemporal baselines on common PeMS series
datasets: PeMSO0X (X=3,4,7,8) and PeMS-Bay. As shown in Table 5 and Table 6, MAGE basically
dominates the optimal performance due to the powerful dynamic characterization capability of the
multi-of-adaptive-graph module. MAGE is able to capture more accurate spatiotemporal dynamic
pattern by dynamically selecting multiple efficient adaptive graph convolution results. However, the
performance of adaptive graph convolutional methods, such as AGCRN, D2STGNN, on small-scale
datasets have been suboptimal since smaller datasets may lack sufficient spatiotemporal patterns to
reliably train a single adaptive graph topology. In contrast, non-graph-convolutional spatial modeling
approaches such as STNorm and STID have achieved impressive results, as their designs allow
them to better capture temporal spatiotemporal patterns on limited data. Similarly, STWave with
graph wavelet attention to learn the underlying graph structure has also demonstrated compelling
performance on certain smaller datasets. Our proposed method, however, achieves universally superior
predictive accuracy, outperforming almost every baselines. This improvement can be attributed to the
introduction of a novel mixture-of-adaptive-graph-expert module. This module enables data-driven
discovery of diverse underlying spatiotemporal graph topologies, thereby facilitating more precise
spatiotemporal modeling.

Furthermore, we also report the performance comparison of MAGE on large-scale mobile datasets
Shanghai Mobile with the 3,042 nodes and Milan Internet with 10,000 nodes. As shown in Table 6,
thanks to the linear-complexity yet highly expressive Mixture-of-Adaptive-Graph-Experts (MAGE)
structure, our approach maintains a clear lead over all competitors on these large-scale mobility
benchmarks. However, quadratic-complexity adaptive graph convolution methods,such as AGCRN,
GWNet, D2STGNN, and Transformer-based graph learning models, such as STAEformer, can not be
deployed on datasets of this scale due to their limited scalability. Even the linear-complexity GNN
model struggles to match the performance of the classic MLP-based approach RPMixer, owing to its
inherent low-rank limitations. In stark contrast, the efficient and high-performing MAGE module
within our framework is able to deftly capture diverse and meaningful spatiotemporal latent graph
structures, even on these massive datasets. This breakthrough in scalable spatiotemporal modeling is
a testament to the elegance and power of our proposed approach.
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Table 5: Performance comparisons on PeMS series datasets. The best and second best mean perfor-
mance are in corresponding colors. The ‘/* marker indicates baseline is not applicable to this dataset
due to the absence of key metadata (e.g., latitude and longitude). All experimental results are the
average of five independent runs.

Methad PeMS03 PeMS04 PeMS07 PeMS08 PeMS-Bay
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STGCN 17.04  29.62 17.36 19.27  30.83 13.16 21.89  35.64 9.45 1572 2493 10.64 1.74 3.76 4.06
DGCRN 1509  26.02 16.05 18.68  30.21 13.04 20.24  33.08 8.71 1434 23.53 9.48 1.64 3.67 3.66
AGCRN 15.60  26.88 15.25 19.25 3110 13.00 2040 3424 8.62 15.54 2477 10.15 1.65 3.68 3.75
GWNet 1476 25.35 15.38 18.81 3029 13.06 19.92 3284 8.62 1420 23.13 9.53 1.61 3.61 3.63
MTGNN 1531 2595 15.04 1920 31.81 13.26 2097  34.20 8.90 1522 24.09 9.89 1.63 3.66 3.62
STNorm 1582 2648 15.08 19.44 3124 13.42 21.23 3454 8.96 1594  25.05 10.01 1.65 3.66 375
STID 1537 2639 16.57 1829  29.74 12.45 19.54 3254 8.28 1419 2328 9.25 1.70 3.86 391
RPMixer 16.19 2591 15.96 2111 33.56 14.88 2395 3877 10.63 17.33 2747 11.31 1.91 4.36 4.27
BigST 1530  25.77 16.54 1842 29.96 12.92 2031 33.57 8.57 1419 23.26 9.29 1.65 3.58 3.77
GSNet 1541 2530 1529 19.00 3035 13.17 20.71  33.80 8.72 15.10  23.99 9.65 1.66 3.58 3.82
STWave 14.89  26.89 15.15 18.69  30.50 12.67 20.11 3347 8.40 1374 2345 8.99 1.65 3.70 3.74
STAEformer 1527  26.76 15.88 18.78  30.30 13.06 20.09 3336 8.41 14.17 2338 9.18 1.65 3.61 3.75
D?STGNN 14.84 2541 15.17 18.61  30.13 12.82 20.33  33.23 8.73 1436 23.46 9.32 1.62 3.69 3.68
PatchSTG / / / / / / / / / / / / 1.62 3.65 3.67
Ours 1472 23.73 14.87 18.16  30.16 12.64 19.49 32,50 8.25 13.66  23.04 9.09 1.59 3.55 3.60

Table 6: Performance comparisons on large-scale mobile traffic datasets. The best and second best
mean performance are in corresponding colors. The ‘-* marker indicates baseline incur out-of-memory
issues even on minimum batch size. All experimental results are the average of five independent runs.

Method Shanghai Mobile Milan-Internet
MAE RMSE MAPE MAE RMSE MAPE
STGCN 0.9607 1.7179 41.52 79.31 27822 133.16
DGCRN - - - - - -
AGCRN - - - - - -
GWNet 0.9495 1.7337  39.32 46.40 159.78  58.56
MTGNN 0.9494  1.7131  40.72 66.97 230.80 117.67
STNorm 09735 1.7435 42.77 91.27 286.29 133.40
STID 0.9528 1.7094  40.62 47.24 15297  50.29
RPMixer 1.0982 1.7852  53.25 4490 140.79 55.74
BigST 0.9528 1.7079  41.38 46.44 14373  63.60
GSNet 09541 1.7099 4198 57.19 17472 94.59
STWave - - - - - -
STAEformer - - - - - -
D2STGNN - - - - - -
PatchSTG 0.9646 1.7265  40.32 54.02 180.52  59.40
Ours 0.9356 1.6832 38.44 43.08 12390 42.59

D.3 Ablation Study

D.3.1 Ablation Study on PeMS Series Datasets and Large-scale Mobility Datasets

We design the same following variants of our model to validate the soundness of the main component
of our model on PeMS Series Datasets and Large-scale Mobility Datasets: ‘w/o PE’ removes all the
spatiotemporal position encoding embedding; ‘w/o SE’ uses only feedforward networks as model
backbone without spatial encoder; ‘w/o Multi ° leverages only one adaptive graph expert with K = 1;
‘w/o LB’ reduces the load balanced optimization strategy in MAGE; ‘w/o Sparse’ sums up all output
of alternative graph convolution. The ablation study results presented in Figure 4 provide compelling
insights. The performance degradation observed in both the w/o LB’ and w/o Sparse’ variants clearly
indicates that sparse and balanced graph convolution operations outperform their dense counterparts
and those without balancing, respectively. Furthermore, the ‘w/o PE’ variant also suffers from higher
forecasting errors. This underscores the importance of the learnable spatiotemporal position encoding,
which enables the model to extract valuable and generalizable knowledge during the training process.
Interestingly, the ‘w/o SE’ variant achieves the worst performance among all. This finding highlights
the crucial role played by our mixture-of-adaptive graph convolution module in guiding the model to
effectively recognize the dynamic spatiotemporal dependencies between nodes.

D.3.2 Ablation Study on Spatiotemporal Position Encoding

In this section, we conduct additional ablation study on spatiotemporal position encoding. Concretely,
we construct multiple variants of MAGE in combinatorial ablation experiments by utilizing different
combinations of spatiotemporal position embedding: ‘w P g’ is only with spatial position embedding.
‘w P’ is only with timestep-of-day position embedding. ‘w P’ is only with day-of-week position
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Figure 4: (a) Ablation Study on PeMS series dataets and large-scale mobility datasets. (b) Ablation
study on different spatiotemporal position encodings.

embedding. As shown in Fig 4 (b), the addition of the spatial position embedding ‘w P 5’ has indeed
led to significant performance gains, as it enables the model to better emphasize and model the spatial
positioning information. Both types of temporal position embeddings ‘w P7’ and ‘w P’ have
also proven valuable in helping the model capture temporal patterns more effectively. Notably, the
‘w/o PE’ variant, which lacks the spatiotemporal position encoding, exhibits the worst performance.
This finding underscores the indispensable nature of the spatiotemporal position encoding in our
framework. By seamlessly integrating the spatial and temporal position cues, the model is able to
develop a more comprehensive understanding of the underlying data structures and dynamics.

D.4 Experimental Evaluation of the Negative Role of ReLU in Adaptive Graph Learning

In our study, we theoretically prove that ReLU operation introduces additional edge noise in adaptive
graph convolution in Appendix A.1. In this section, we empirically evaluate the negative effectiveness
of ReLU in adaptive graph convolution. Concretely, we construct variants ‘w/o ReLU’ that reduces
the ReLU operation before softmax normalization in the construction of adaptive graph of three
classic STGNNs baselines: AGCRN [9], GWNet [7] and D2STGNN [23]. We conduct performance
comparison experiments on deployable datasets in four domains: LargeST-SD, Electricity, KnowAir
and Beijing Weibo. We still report the average results on five experiments. As shown in Table 7,
the ‘w/o ReLLU’ variants that reduces ReLLU operation in adaptive graph construction gain better
performances in all the datasets due to less edge noise generating proved in the Theorem 1 in
Appendix A.1, possessing a relative improvement of at most 8.37%. Intriguingly, we have further

Table 7: Performance experiments on evaluating the negativity of ReLU in the adaptive graph
convolution. We report the average results in five experiments. | indicates the relative percentage
decreasing regarding each methods itself.

Methods LargeST-SD Electricity KnowAir Beijing Weibo

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
AGCRN  18.39 33.63 13.78 2115 1847 16.95 16.34 24.81 63.26 0.8505 1.6998 33.68
w/o ReLU 18.29 549 33.18 1 349 13.32 3 345 210.0 . 719 1841 0 309, 15.53 5 375 16.05 1 779, 24.36 1 51% 61.09 5 43 0.8481 0 259 1.6972 ¢ 15% 33.40,0 53%
GWNet  18.07 29.97 12.70 200.3 1820 13.48 15.49 23.85 56.73 0.8315 1.6777 31.74
w/o ReLU 17.97,0.55%29-3312.14% 12.213.86% 199.010.65% 1755 3.57% 13.231.85% 15.490.00% 23.75,0.429% 56.63 0.15% 0.8292,0.559% 1.6665 ,0.67% 30.88,5.71%
D?STGNN17.13 28.60 12.15 224.8 2110 17.46 15.39 24.31 55.41 0.8489 1.7216 31.89

wio ReLU 1699 x00, 28.46 5 109 12.03 0 905 212.6 5 130 20164 1552 17.33 1 749, 15.28 6 7100 24,16 597 53.24 5 005, 0.8346 1 57 1.7208 0 0592 31.351 505,

investigated the impact of incorporating ReLLU activations within the adaptive graph model on
the above datasets. As shown in Table 8, the results reveal that the introduction of ReLLU has a
detrimental effect on the training process, significantly increasing the average number of epochs
required to converge. This observation aligns with our theoretical understanding that ReLU introduces
undesirable edge noise into the adaptive graph generation process. This noise inherently impairs the
model’s ability to capture the true spatiotemporal dynamics, thereby compromising its generalization
performance. Not only does the ReLU-induced edge noise limit the upper bound of the model’s
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achievable accuracy, but it also adversely impacts the training convergence speed, in some cases
slowing it down by more than a factor of two. This is a crucial finding, as training efficiency
is paramount for larger-scale real-world applications. These insights underscore the importance

Table 8: Average convergence epochs on evaluating the negativity of ReLU in the adaptive graph
convolution in five experiments. The maximum allowable epochs are 300. | indicates the relative
percentage decreasing regarding each methods.

Datasets AGCRN  w/oReLU | GWNet w/o ReLU | D’STGNN  w/o ReLU
LargeST-SD 216 137 57.66% | 215 201 6.96% 207 186, 11.29%
Electricity 300 287i4 53% 208 ISSL 12.43% 56 52i7»(59%
KnowAir 41 39V3_|3% 34 34ll’-(J(]% 36 33l9-10%
Bel_]mg Weibo 78 75V0_40% 156 73U 13.70% 47 43&3_30%

of principled architectural design choices when developing advanced spatiotemporal modeling
frameworks. By carefully avoiding such pitfalls, our proposed MAGE approach is able to maintain
its remarkable performance and training stability, even on the most challenging large-scale mobility
datasets. Based on this, we have shown both theoretically and empirically that ReLU can have side
effects on graph learning.

D.5 Intrinsic Preference Study of Linear and Full-rank Adaptive Graph

Building on the Pareto-front analysis in Section 5.8, we observed that a pure linear-adaptive graph
already outperforms—and is markedly faster than—any mixture that includes even a small fraction
of full-rank adaptive graphs. This raises a natural follow-up question: if the model were free to
decide, which family would it actually prefer? To answer it, we replace the global load-balancing
constraint with an inner-balance mechanism that enforces equal activation only within each family
(linear vs. full-rank) while letting the router autonomically allocate total capacity between the two
under a equal 8:8 configuration. As shown in Fig. 5, the model self-assigns 94.7% of its routing
mass to linear experts and only 5.3% to full-rank ones, yielding both higher accuracy and better
generalization. This behavior suggests that full-rank adaptive graphs are prone to overfitting and
introduce redundant complexity, further validating the efficiency and representational sufficiency of
the linear expert formulation adopted in MAGE.

ear : Fyy
IR\ l/4
D fault ‘
E‘E 28.6/ [ Inner Balance

E F
113 / '
Ezm 1.2

10.9 ‘Default’ ‘Inner Balance’

MAE RMSE MAPE (%)
(a) Performance comparison (b) True-ratio comparison

k)

Figure 5: The comparison between ‘default’ load-balancing approach in MAGE and ‘Inner balance
approach on the equal ratio setting 8:8.

D.6 You Only Convolve Once

In this section, we demonstrate that the proposed MAGE achieves optimal performance with only
a single graph convolution step. To this end, we construct variants of our model where each
MAGE module is equipped with multi-step graph convolutions ranging from 1 to 10 layers. The
results, shown in Figure 6, indicate that additional convolutional layers introduce only marginal
computational overhead without yielding any significant performance gains. This observation
confirms the strong expressive power of the learned multi-expert adaptive graph topology in capturing
complex spatiotemporal dependencies.
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Figure 6: Performance and efficiency comparison of different layers of adaptive graph convolution in
MAGE.

E Discussion and Future Work

In this section, we discuss the limitations of the current work and outline potential directions for future
research. First, our model currently uses only a single-layer MLP to model temporal dependencies.
In future work, we plan to explore more sophisticated temporal architectures, such as Transformers,
to better capture complex dynamic patterns in the data. Second, existing spatiotemporal datasets
often lack essential auxiliary information—such as community labels or ground-truth inter-regional
connectivity—that is necessary for evaluating properties like connectivity. As a result, we are unable
to thoroughly assess the effectiveness of the proposed adaptive graph in terms of structural consistency,
expressiveness, and interpretability. Following Reviewer tEm8’s suggestion, we will therefore focus
on collecting datasets enriched with broader contextual information to further evaluate the model’s
strengths in aspects such as symmetry, normalization, and spectral properties. Finally, following
Reviewer tEm8’s suggestion, we also intend to extend the proposed method to general graph learning
tasks [77, 78], including node classification, link prediction, and graph classification, to further
validate its broad applicability.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.
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IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a novel adaptive graph convolution module in spatiotemporal
forecasting.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in Appendix Section E and identify them as future
work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We theoretical prove the disadvancements of current works and the effective-
ness of our model. The proofs are fully demonstrated in the Appendix Senciton A.1.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have open-sourced our code via an anonymous link for reproducibility, and
provide detailed experimental settings in the corresponding section.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have open-sourced our code via an anonymous link for reproducibility in
the corresponding section.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We report the detailed settings and dataset processing details in the experiments
section.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean results from multiple experiments for all experiments, and
we present the standard deviations whenever possible while ensuring readability.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We implement our proposed model on an 40GB NVIDIA A100 GPU with
Pytorch.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The datasets involved in the paper are all open source and widely used datasets.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The proposed model significantly enhances performance in spatiotempo-
ral forecasting scenarios, offering positive implications for a wide range of downstream
applications. No notable negative side effects are observed.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not refer to high risk for misuse (e.g., pretrained language
models, image generators, or scraped datasets).

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets and code used in this study are publicly available.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, our assets (code and data) are accessible via an anonymous link during
the review process. Upon acceptance, they will be made publicly available for open access.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing nor research with human subjects are involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is only used for language polishing of papers to improve readability.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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