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ABSTRACT

Federated learning is a learning paradigm that allows the central server to learn
from different data sources while keeping the data private at local. Without con-
trolling and monitoring the local data collection process, it is highly likely that the
locally available training labels are noisy, just as in a centralized data collection
effort. Moreover, different clients may hold samples within different label spaces.
The noisy label space is likely to be different from the unobservable clean label
space, resulting in openset noisy labels. In this work, we study the challenge of
federated learning from clients with openset noisy labels. We observe that many
existing solutions, e.g., loss correction, in the noisy label literature cannot achieve
their originally claimed effect in local training. A central contribution of this
work is to propose an approach that communicates globally randomly selected
“contrastive labels” among clients to prevent local models from memorizing the
openset noise patterns individually. Randomized label generations are applied
during label sharing to facilitate access to the contrastive labels while ensuring
differential privacy (DP). Both the DP guarantee and the effectiveness of our ap-
proach are theoretically guaranteed. Compared with several baseline methods, our
solution shows its efficiency in several public benchmarks and real-world datasets
under different noise ratios and noise models.

1 INTRODUCTION

With the development of distributed computation, federated learning (FL) emerges as a powerful
learning paradigm for its ability to train with data from multiple clients with strong data privacy
protection (McMahan et al., 2017; Kairouz et al., 2021; Yang et al., 2019). With each of the dis-
tributed clients having a different collection and annotation process, their observed data distributions
are likely to be highly heterogeneous and noisy. This paper aims to provide solutions for a practical
FL setting where not only do each client’s training labels carry different noise rates, the observed
label space at these clients will differ as well, even though their underlying clean labels are drawn
from the same label space. For example, in a global medical system, the causes (labels) of disease
are annotated and reported by doctors, and these labels are potentially noisy due to the differences
in the doctors’ training backgrounds (Ng et al., 2021). When certain causes and cases can only be
found in data clients from country A but not country B, the observed noisy label classes in country
A will then differ from the one of country B. We call such a federated learning system has openset
noise problems if the observed label space differs across clients.

We observe that the above openset label noise will pose significant challenges if we apply the ex-
isting learning with noisy labels solutions locally at each client. For instance, a good number of
these existing solutions operate with centralized training data and rely on the design of robust loss
functions (Natarajan et al., 2013; Patrini et al., 2017; Ghosh et al., 2017; Zhang & Sabuncu, 2018;
Feng et al., 2021; Wei & Liu, 2021; Zhu et al., 2021a). Implementing these approaches often re-
quires assumptions, which are likely to be violated if we directly employ these centralized solutions
in a federated learning setting. For example, loss correction is a popular design of robust loss func-
tions (Patrini et al., 2017; Natarajan et al., 2013; Liu & Tao, 2015; Scott, 2015; Jiang et al., 2022),
where the key step is to estimate the label noise transition matrix correctly (Bae et al., 2022; Zhang
et al., 2021b; Zhu et al., 2021b; 2022). Correctly estimating the label noise transition matrix re-
quires observing the full label space, when the ground-truth labels are not available. In FL where
the transition matrix is often estimated only with the local openset noisy labels, existing estimators
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of the noise transition matrix would fail. Moreover, even though we can have the best estimate of
the noise transition matrix as if we have the ground-truth labels for the local instances, the missing
of some label classes would make the estimate different from the ground-truth one, and again leads
to failures (detailed example in Section 3.2).

Given the difficulties in estimating the noise transition matrix, we develop a new solution FedPeer
to tackle the challenge of learning from openset noisy labels in FL. Our solution is inspired by
the idea of using “contrastive labels”, whose implementation does not require the knowledge of
the noise transition matrix. Notable examples of contrastive labels in the learning with noisy label
communities include negative labels (Kim et al., 2019; Wei et al., 2022a), peer labels (Liu & Guo,
2020), and complementary labels (Ishiguro et al., 2022; Feng et al., 2020). The high-level idea is to
introduce a negative loss using contrastive labels to punish a model for overfitting to the noisy label
distributions. Nonetheless, applications of these approaches would require sampling of a global
“contrastive” noisy labels - constructing local contrastive labels in each client will be problematic
again since different clients may have different noisy label spaces in the openset noise setting. Our
solution FedPeer has an explicit step to communicate labels among clients in a differentially private
(Dwork, 2008; Dwork et al., 2014) way.

Our contributions are summarized as follows.
• We formally define the openset noise problem in FL, which is more practical than the existing

homogeneous noisy label assumptions. The challenges along with the openset noise are also
motivated by analyzing the failure cases of the existing popular noisy learning solutions such as
loss correction (Natarajan et al., 2013; Patrini et al., 2017; Liu & Tao, 2015).

• We propose a novel framework, FedPeer, to solve the openset label noise problem. FedPeer builds
on the idea of contrastive labels, and adopts peer loss (Liu & Guo, 2020) as a building block.

• To mitigate the gap between centralized usage of contrastive labels and the federated one, we
propose a label communication algorithm with a differential privacy (DP) guarantee. We also
prove that benefiting from label communication, the gradient update of aggregating local peer
loss with FedAvg is guaranteed to be the same as the centralized implementation of peer loss,
therefore establishing its robustness to label noise.

• We empirically compare FedPeer with several baseline methods on both benchmark datasets and
practical scenarios, showing that, in terms of FL with openset label noise, directly applying cen-
tralized solutions locally cannot work and FedPeer significantly improves the performance.

2 RELATED WORKS

Federated learning is a collaborative training method to make full use of data from every client
without sharing the data. FedSGD (Shokri & Shmatikov, 2015) is the way of FL to pass the gradient
between the server and the clients. To improve the performance, FedAvg (McMahan et al., 2017)
is proposed and the model weight is passed between the server and the clients. In practice, openset
problem is common in FL because the source of every client may vary a lot and it is very likely to
find that some of the classes are unique in the specific clients. There are a lot of works to analyze
and solve the non-IID problem in FL (Zhao et al., 2018; Li et al., 2019; 2021; Zhang et al., 2021a;
Li et al., 2020b; Karimireddy et al., 2020; Andreux et al., 2020).

Label noise is common in the real world (Agarwal et al., 2016; Xiao et al., 2015; Zhang et al.,
2017; Wei et al., 2022b). Traditional works on noisy labels usually assume the label noise is class-
dependent, where the noise transition probability from a clean class to a noisy class only depends on
the label class. There are many statistically guaranteed solutions based on this assumption (Natarajan
et al., 2013; Menon et al., 2015; Liu & Tao, 2015; Liu & Guo, 2020). However, this assumption fails
to model the situation where different group of data has different noise patterns (Wang et al., 2021).
For example, different clients are likely to have different noisy label spaces, resulting totally different
underlying noise transitions. Existing works on federated learning with noisy labels mainly assume
the noisy label spaces are identical across different clients (Yang et al., 2022; Xu et al., 2022). There
are other notable centralized solutions relying on the memorization effect of a large model (e.g.,
deep neural network) (Li et al., 2020a; Liu, 2021; Song et al., 2019; Xia et al., 2021; Liu et al., 2020;
Cheng et al., 2020). However, in a federated learning system, simply relying on the memorization
effect would fail, i.e., the model can perfectly memorize all local noisy samples during local training,
since the local data is likely to be imbalanced and with a limited amount (Han et al., 2020; Liu, 2021).
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The idea of contrastive labels is to punish the overfitting, which is supposed to avoid memorizing
openset local noisy samples. Besides, the concept “openset” is also used in Tuor et al. (2021), where
the focus is on the out-of-distribution features and their labels are called openset noise. It is different
from ours since they did not focus on in-distribution mislabeled data.

3 FORMULATIONS AND MOTIVATIONS

We first formulate the federated learning problem with noisy labels (Section 3.1) then formally
define the openset label noise in FL and motivate the necessity of our approach in this setting by
showing examples of failures in existing methods (Section 3.2).

3.1 FEDERATED LEARNING WITH NOISY LABELS

Federated learning Consider a K class classification problem in a federated learning system with
C clients. Each client c ∈ [C] := {1, · · · , C} holds a local dataset Dc := {(xc

n, y
c
n)}n∈[Nc],

where Nc is the number of instances in Dc and Nc := {1, · · · , Nc}. Assume there is no overlap
among Dc,∀c. Denote the union of all the local datasets by D := {(xn, yn)}n∈[N ]. Clearly, we
have D = ∪c∈[C]Dc and N =

∑
c∈[C] Nc. Denote by Dc the local data distribution, (Xc, Y c) ∼

Dc the local random variables of feature and label, D the global/centralized data distribution, and
(X,Y ) ∼ D the corresponding global random variables. Denote by X , Xc, Y , and Yc the space
of X , Xc, Y , and Yc, respectively. FL builds on the following distributed optimization problem:
minθ

∑
c∈[C]

Nc

N · Lc(θ), where f is the classifier, θ is the parameter of f . To this end, the local
training and global model average are executed iteratively. In local training, each client learns a
model fc : X → Y with its local dataset Dc by minimizing the empirical loss Lc(θc) defined
as: Lc(θc) :=

1
Nc

∑
n∈[Nc]

ℓ(fc(x
c
n; θc), y

c
n), where for classification problems, the loss function is

usually the cross-entropy (CE) loss: ℓ(f(X; θ), Y ) = − ln (f(X;θ)[Y ]), Y ∈ [K]. In the following
global model average, each client c sends its model parameter θc to the central server, which is
further aggregated following FedAvg (McMahan et al., 2017):

θ =
∑
c∈[C]

Nc

N
· θc. (1)

3.2 OPENSET NOISE IN FEDERATED LEARNING

When the label y is corrupted, the clean dataset D becomes the noisy dataset D̃ := {(xn, ỹn}n∈[N ]

where ỹn is the noisy label and possibly different from yn. The noisy data (xn, ỹn) can be viewed as
the specific point of the random variables (X, Ỹ ) which is from the distribution D̃. Noise transition
matrix T characterizes the relationship between (X,Y ) and (X, Ỹ ). The shape of T is K × K
where K is the number of classes in D. The (i, j)-th element of T represents the probability of
flipping a clean label Y = i to noisy label Y = j, i.e., Tij := P(Ỹ = j|Y = i). If Ỹ = Y
always holds, T is an identity matrix. Note the above definition builds on the assumption that T is
class-dependent, which is a common assumption in centralized learning with noisy labels (Natarajan
et al., 2013; Menon et al., 2015; Liu & Tao, 2015). However, in FL, T is likely to be different for
different clients (a.k.a. group-dependent (Wang et al., 2021)). Specifically, we use T to denote the
global noise transition matrix for D̃ and Tc to denote the local noise transition matrix for D̃c. In
a practical federated learning scenario where the data across different clients are non-IID, different
clients may have different label spaces. When the labels are noisy, we naturally have the following
definition of openset label noise in FL.

Definition 1 (Openset noisy labels in FL). The label noise in client c is called openset if Ỹc ̸= Ỹ .

Generation of openset noise We propose the following noise generation process to model openset
label noise in practical FL systems. Denote by 1c,k the indicator random variable that label class
k is included in client c, where 1c,k = 1 (w.p. Qc,k) indicates client c has data belonging to class
k and 1c,k = 0 otherwise. The indicators {1c,k | ∀c ∈ [C], k ∈ [K]} are generated independently
with the probability matrix Q, where the (c, k)-th element is Qc,k := E[1c,k]. In practice, if all
the elements in {1c,k|k ∈ [K]} are identical, meaning the client c can observe nothing or all the
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classes, then {1c,k|k ∈ [K]} will be re-generated until client c is an openset client. Denote by
Ik := {c|1c,k = 1, c ∈ [C]} the set of clients that include class k. Denote by D̃(k) = {n|ỹn = k}
the indices of instances that are labeled as class k. For each k ∈ [K], instances in D̃(k) will be
distributed to clients with 1c,k = 1 either uniformly or non-uniformly as follows.

• Uniform allocation: Randomly sample (without replacement) |D̃(k)|/|Ik| indices from D̃(k) and
allocate the corresponding instances to client c. Repeat for all c ∈ Ik.

• Non-uniform allocation: Generate probabilities {uc|c ∈ Ik} from Dirichlet distribution Dir(1)
with parameter 1 := [1, · · · , 1] (|Ik| values). Randomly sample (without replacement) |D̃(k)| · uc

indices from D̃(k) and allocate the corresponding instances to client c. Repeat for all c ∈ Ik.

In this way, all the clients have openset label noise, i.e., Yc ̸= Ỹ,∀c ∈ [C].

Example Consider the following example. For a data distribution (X,Y ) ∼ D where Y ∈ Y :=
{1, 2, · · · ,K}, the set of all the opensets is the combination of Y except the full set of Y and the
empty set. For example, if Y is {1, 2, 3}, there would be 2K − 2 = 6 different combinations of the
noisy label space: {1, 2, 3, (1, 2), (1, 3), (2, 3)}. It should be noted that it is still possible that the
union of all the clients still cannot cover Y . An example of the real and openset T in the 3-class
classification problem is as follows. Suppose the real noise transition matrix Treal is shown on the
LHS. However, if we only observe Ỹc = {1, 2} in client c, the optimal estimate of T relying only
on D̃c could only be TOptEst even though we know Dc. This is because when Ỹc = {1, 2}, we have
P(Ỹ = 3) = 0 ⇒ P(Ỹ = 3|Y = 3) = 0, resulting that the other two probabilities have to be
normalized from (1/16, 3/16) to (1/4, 3/4) to get a total probability of 1.

Treal =

 1 0 0
1/3 2/3 0
1/16 3/16 3/4

 TOptEst =

 1 0 0
1/3 2/3 0
1/4 3/4 0


Openset noise is challenging A good number of correction approaches in the learning with noisy
labels literature would require using the transition matrix T . For instance, loss correction (Patrini
et al., 2017) is a popular tool to solve the noisy label problem as

ℓ→(f(X), Ỹ ) := ℓ(T⊤f(X), Ỹ ) (2)

where T⊤ is the transpose of T . The key step of the loss correction approach is to estimate a correct
T . However, if the label space is openset, the best estimated T will lead to a wrong prediction result.
Based on the example above, the best-corrected output is

T⊤f(X) =

1 1/3 1/4
0 2/3 3/4
0 0 0

f1(X; θ)
f2(X; θ)
f3(X; θ)

 =

f1(X; θ) + f2(X; θ)/3 + f3(X; θ)/4
2f2(X; θ)/3 + 3f3(X; θ)/4

0

 , (3)

where f = [f1, f2, f3]
⊤. The model cannot distinguish class 3 which is reasonable. However, it will

misclassify class 2 to class 3 because class 3 has a larger weight. For example, given an instance
(x, y = 2), the cross entropy loss is − ln(2f2(x; θ)/3 + 3f3(x; θ)/4) where f3(x; θ) = 1 leads to
the minimization of the loss, making the loss correction fail.

3.3 OUR MOTIVATION AND BUILDING IDEA

The above example highlights the challenge of adapting approaches that use noise transition matrix
T to our openset FL setting. Therefore, we hope to circle around by building our solutions upon
ideas that do not require the knowledge of T . Our design is inspired by the idea of the “contrastive
labels”. Traditional training relies on positive labels, where the loss is denoted by ℓ(f(xn), ỹn).
However, this kind of loss function is prone to label noise. With a powerful model such as deep
neural networks, the noisy distribution will be memorized, inducing generalization error (Liu, 2021).

A number of recent works on noisy labels build on the idea of the contrastive label either explicitly
(Wei et al., 2022a; Liu & Guo, 2020) or implicitly (Patrini et al., 2017). For example, a “con-
trastive label” (Wei et al., 2022a) is defined by a negative label −ỹn that introduce a negative loss
−ℓ(f(xn), ỹn) that punishes the classifier from memorizing the noisy label distribution. Intuitively,
if we know the n-th label is corrupted, we prefer to make it a negative label rather than the traditional
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one since we want to prevent the model from memorizing the wrong pattern. However, in practice,
it is challenging to know whether each individual label is corrupted or not. One tractable solution is
to use some “random” negative labels. Notable solutions are random peer samples in peer loss (Liu
& Guo, 2020). We adopt peer loss as our building block, which is free of the knowledge of noise
rates.

To be more concrete, in Liu & Guo (2020), for each example (xn, ỹn), peer loss defines as (an
equivalent form):

ℓPL(f(xn), ỹn) := ℓ(f(xn), ỹn)− ℓ(f(xn), ỹn′), (4)
where ỹn′ is a randomly sampled peer label. Later as a follow-up work (Cheng et al., 2020), ℓCORES
was proposed as a more stable version of ℓPL which has the same expectation as ℓPL:

ℓCORES(f(xn), ỹn) = ℓ(f(xn), ỹn)− EDỸ |D̃
[ℓ(f(xn), Ỹ ], (5)

where DỸ |D̃ is the distribution of Ỹ given dataset D̃. Peer loss and ℓCORES have strong consistency
guarantees. Consider a binary classification problem and let e1 := P(Ỹ = 2|Y = 1) and e2 =

P(Ỹ = 1|Y = 2). Then it was proved in Liu & Guo (2020) the following robustness of peer loss:
Proposition 1 (Robustness of peer loss (Liu & Guo, 2020)). Peer loss is invariant to label noise:

ED̃[ℓPL(f(X), Ỹ )] = (1− e1 − e2) · ED[ℓPL(f(X), Y )].

Moreover, when P(Y = 1) = 0.5 and ℓ is the 0-1 loss, minimizing peer loss on noisy distribution D̃
is equivalent to minimizing 0-1 loss on clean distribution D.

Can we then follow the above idea and implement either ℓPL or ℓCORES by requiring each client
to sample the “peer label” ỹn2 locally? Unfortunately, the answer is no. Although these methods
can skip estimating T , they still need to observe the full data point or full label space to get the
correct results - a local sampling for the peer label yn2

will lead to a distribution that does not
capture the global one on P(Ỹ ), again challenging the theoretical guarantees of the existing results.
Furthermore, from Liu & Guo (2020), the success of peer loss and other loss correction approaches,
would often reply on a informative label assumption that e1 + e2 < 1. Due to this requirement, we
now show that for openset noise in FL, yn2

cannot be sampled from the local Ỹc directly: if only
class 1 is observed from Y = {1, 2}, e1 = 0 and e2 = 1 by definition. Therefore, each client will
need the label information shared from the other clients. Our idea is to rebuild the distribution of
noisy label Ỹ in the server and send it to the clients so that the clients can be trained with the noisy
label Ỹ and Ỹ ’s distribution.

4 PROPOSED METHOD

Recall our design goal is to implement either loss ℓPL(f(xn), ỹn) or ℓCORES(f(xn), ỹn) as if data are
centralized. If this goal is achieved, our solution in the openset FL setting will inherit the established
properties in peer loss. As discussed earlier, the first challenge we have is each local client does not
have the information to draw the peer sample label Ỹ ∼ DỸ |D̃.

We propose the following label communication-aided algorithm FedPeer, which we also illustrate
in Figure 1. There are two critical stages to guarantee the success of the proposed methods with
good DP protection:
• Stage 1: Privacy-preserving global label communication given in Section 4.1
• Stage 2: Peer gradient updates at the local client using ℓPL given in Section 4.2 and the shared

label information from Stage 1.

4.1 LABEL COMMUNICATION

Label privacy protection is an essential feature of FL so we cannot pass Ỹ to the other clients,
directly. To protect privacy, we adopt the label differential privacy (DP) as Definition 2.
Definition 2 (Label Differential Privacy (Ghazi et al., 2021)). Let ϵ > 0. A randomized algorithm
A is said to be ϵ-label differentially private (ϵ-labelDP) if for any two training datasets D and D′

that differ in the label of a single example, and for any subset S of outputs of A,
P(A(D) ∈ S) ≤ eϵ · P(A(D′) ∈ S).
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Figure 1: The illustration of FedPeer. Step 1 is the TDP generation where the server generates TDP
according to ϵ and sends it to each client. After receiving TDP, Step 2 is the label communication.
Every client c calculates DP label Y̌c according to TDP and the noisy label Ỹc. Clients send Y̌c to
the server. The server aggregates every Y̌c, calculates the posterior label distribution p̌ and sends
(T⊤

DP)
−1p̌ to every client for the peer term sampling. Step 3 is the loss calculation using the noisy

label Ỹc on every client c, the model prediction Ŷc and Y ′
c sampled from (T⊤

DP)
−1p̌ and calculate

loss. Step 4 is the back-propagation for peer gradient updates.

The high-level idea is to achieve label privacy (DP), each client c will use a symmetric noise transi-
tion matrix TDP to flip their local labels to protect their labelDP:

TDP[y, ỹ] := P(Ỹ = ỹ|Y = y) =

{
eϵ

eϵ+K−1 , if ỹ = y,
1

eϵ+K−1 , if ỹ ̸= y.

where K is the number of classes.Then only the flipped labels are shared between the clients and
the server. It is easy to show that sharing the flipped labels using TDP suffices to preserve labelDP:
Theorem 1 (Label Privacy in FedPeer). Label sharing in FedPeer is ϵ-labelDP.

Since we have already known that ℓCORES is equal to ℓPL in expectation so we can calculate the
second term of ℓPL only with the distribution P(Ỹ |D̃). Denote by p̃c

n the one-hot encoding of
ỹcn. The whole label communication process is presented in Algorithm 1. At the beginning of the
algorithm, the server will initialize TDP according to ϵ and broadcast TDP to all C clients. For each
client c, it calculates the DP label distribution of every data point (xc

n, ỹ
c
n) as p̌c

n = T⊤
DPp̃

c
n, where

p̌c
n is the distribution of DP label in client c. With this distribution, the client generates the DP

private label y̌cn, n ∈ [Nc] for every data point and every client sends all y̌cn back to the server. After
obtaining all y̌cn from the clients, the server aggregates the label and calculates the posterior label
distribution p̌. To restore the correct distribution of Ỹ , the server calculates (T⊤

DP)
−1p̌. Note that

(T⊤
DP )

−1T⊤
DP (

∑C
i=1 p̃

c
n)/C = p̃. To apply TDP and (TDP)

−1 sequentially, FedPeer enables the
clients to share the information with the others while DP is guaranteed. Finally, the client calculates
the local loss according to Equation 4 where Ỹ sampled from P(Ỹ = i) := ((T⊤

DP)
−1p̌)[i]. This

label communication procedures guarantees ϵ-DP.

4.2 FEDPEER

Based on the distribution P(Ỹ |D̃), we propose a novel framework based on FedAvg, FedPeer to
solve openset noise problem. Denote by ∆

(r)
c := θr+1

c − θrc , the variation of model parameters in
the r-th round of the local training in client c. Recall θc is the parameter of fc.

As shown in Proposition 1, in centralized training, ℓPL is proved to be robust to label noise. For
each local client, if the label of the second term of ℓPL is sampled from the distribution of P(Ỹ |D̃),
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Algorithm 1 Label Communication in FedPeer
1: Initialization: The server initialize TDP according to ϵ and broadcast TDP to all clients.
2: for c in C clients do ▷ Client label differential privacy protection
3: calculate p̌c

n = T⊤
DPp̃

c
n,∀n ∈ [Nc].

4: generate the private label y̌cn using P(y̌cn = i) = p̌c
n[i],∀i ∈ [K], n ∈ [Nc].

5: send {y̌cn}n∈[Nc] to the server
6: end for
7: The server aggregates the label {y̌cn}n∈[Nc] sent from all C clients.
8: The server calculates the posterior label distribution p̌: p̌[i] := 1

N

∑C
c=1

∑N
n=1 1(y̌

c
n = i).

9: The server calculates (T⊤
DP)

−1p̌ and sends it to each client c.
10: The client c samples the Ỹ in Eqn. (4) following P(Ỹ = i) = ((T⊤

DP)
−1p̌)[i].

there would be no difference between FedPeer and centralized training in convergence although the
client is openset noisy. Denote by ∆(r) := θr+1 − θr the variation of model parameters in the r-th
round of the corresponding global gradient descent update assuming the local data are collected to
a central server. Define P(Dc|D) := P((X,Y ) ∼ Dc | (X,Y ) ∼ D). In detail, it is calculated as
Nc/N for client c given D. We have the following theorem that guarantees the calibration property
of FedPeer.

Theorem 2 (Local clients with FedAvg). The aggregated model update of FedPeer is the same as
the corresponding centralized model update, i.e.,∑

c∈[C]

P(Dc|D) ·∆(r)
c = ∆(r),

The details of FedPeer are shown in Algorithm 2. At the beginning of FedPeer, the server and
the clients c initialize the model and each client c initialize its own dataset Dc = {Xc, Ỹc} and
loss function ℓ. After this, the server generates the DP matrix TDP and sends it to every client and
every client c can generate DP labels y̌cn. Next, every client c sends y̌cn to the server, and the server
aggregates DP labels according to Section 4.1. After aggregation at the server, a posterior label
distribution p̌ can be computed and the server sends (T⊤

DP)
−1p̌ back to the client so that the client

can sample the peer label from this distribution.

Until now, the preparation is finished and we can start the training process. To simulate the practical
usage, only part of rather than all clients will participate in the training in one round. The clients are
chosen randomly according to the federated fraction λ. The selected clients sample the “contrastive
label” Y ′

c from the distribution (T⊤
DP)

−1p̌ and calculate the loss Lc according to (Liu & Guo, 2020)
by using the output of the model Ŷc. The model weight is updated by Lc and the server weight
is averaged according to FedAvg (McMahan et al., 2017), which is the end of one communication
round.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTS SETUP

To validate the generality and effectiveness of FedPeer, we select several public datasets with vari-
ous levels of difficulties including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) as benchmark
datasets and Clothing-1M (Xiao et al., 2015), CIFAR-N (Wei et al., 2022b) as real-world datasets.
To simulate the practical usage, we first apply the noise on the label and generate the openset can-
didates according to the number of classes K for every client because only the noisy label is visible
to the client in the real world. On CIFAR-10 and CIFAR-100, we apply the symmetric noise for
benchmark testing while we apply random noise for practical simulation. Furthermore, we also test
the performance using Clothing-1M and CIFAR-N to test the performance of FedPeer in real-world
scenarios.

For baseline methods, we use FedAvg (McMahan et al., 2017), forward loss correction (LC) (Patrini
et al., 2017), FedProx (Li et al., 2020b), Co-teaching (Han et al., 2018) and T-revision (Xia et al.,
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Algorithm 2 FedPeer.
1: Server: initialize model fg , global step size αg and global communication round R.
2: Each Client c: initialize model fc , the dataset Dc = {(xc

n, ỹ
c
n)}n∈[Nc], local learning rate αc

and local updating iterations E.
3: The server generates and broadcasts TDP to all clients according to Definition 2.
4: Clients generate DP labels y̌cn and send y̌cn to the server according to Section 4.1.
5: The server aggregates y̌cn and calculate the posterior label distribution p̌.
6: The server send (T⊤

DP)
−1p̌ to each client.

7: for i = 1→ R do
8: Randomly select C ′ clients from C according to λ
9: for c in C ′ clients do

10: fc ← f ▷ Receive the updated weight from the server
11: for j = 1→ E do
12: ŷcn ← fc(x

c
n),∀n ∈ [Nc] ▷ Model Prediction

13: Sample (ync )
′ according to (T⊤

DP)
−1p̌,∀n ∈ [Nc].

14: Calculate loss as Lc ← 1
Nc

∑Nc

n=1(ℓ(ŷ
c
n, ỹ

c
n)− ℓ(ŷcn, (y

n
c )

′)) ▷ Calculate ℓPL

15: fc ← fc − αc · ∇Lc ▷ Model weight updated
16: end for
17: end for
18: f ← f − αg ·

∑C′

c=1(fc − f) ▷ FL aggregation
19: end for

2019) methods. The local updating iteration E is 5 and the federated fraction λ is 0.1. The archi-
tecture of the network is ResNet-18 (He et al., 2016) for CIFAR dataset and ResNet-50 (He et al.,
2016) with ImageNet (Deng et al., 2009) pre-trained weight for Clothing-1M. The local learning
rate αl is 0.01 and the batch size is 32. The total communication round with the server R is 300 and
differential privacy ϵ are 3.58, 5.98 and 3.95 for CIFAR-10, CIFAR-100 and Clothing-1M, respec-
tively. All the experiments are run for 3 times with different random seeds to validate the generality
of our methods. Due to the privacy issue in federated learning settings, it is hard to find the best
model for practical usage. Thus, we report both the best in the following tables and the last accuracy
in Appendix on the testing set. The details of the implementation of every baseline method in the
FL setting can be found in the Appendix.

5.2 SYNTHETIC LABEL NOISE

There are two strategies to synthesize the openset label noise in FL.
• Symmetric: We first add symmetric label noise (Xia et al., 2019; Han et al., 2018) to dataset
D and get D̃, then distribute D̃ to D̃c,∀c following the uniform allocation in Section 3.2. The
transition matrix T for the symmetric label noise satisfies Tij = η/(K − 1),∀i ̸= j and Tii =
1− η,∀i ∈ [K], where η ∈ {0.2, 0.4, 0.6, 0.8} is the average noise rate.

• Random: We first add random label noise (Zhu et al., 2022) to dataset D and get D̃, then distribute
D̃ to D̃c,∀c following the non-uniform allocation in Section 3.2. The T of random noise is
generated as follows. The diagonal elements of T for the random label noise is generated by η +
Unif(−0.05, 0.05), where η is the average noise rate, Unif(−0.05, 0.05) is the uniform distribution
bounded by −0.05 and 0.05. The off-diagonal elements in each row of T follow the Dirichlet
distribution (1−Tii) ·Dir(1), where 1 = [1, · · · , 1] (K− 1 values). The random strategy is more
practical than the symmetric one.

Results and Discussion Table 1 shows FedPeer is significantly better than all the baseline methods
in the symmetric strategy across almost all the noise rate settings. It is also better than the other
methods in most settings of the random strategy. FedPeer is very competitive in all the settings.
Table 1 also shows directly applying the methods for centralized learning with noisy labels cannot be
statistically better than the traditional federated learning solution (FedAvg) and its adapted version
(FedProx), indicating the openset label noise in FL is indeed challenging and special treatments are
necessary to generalize the centralized solution to the FL setting. We also report the accuracy of the
last epoch in Table 5 and 6 in Appendix.
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Table 1: The performance (the best accuracy) of all methods on CIFAR-10 and CIFAR-100

Dataset Methods Symmetric Random
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

FedAvg 76.84±0.91 63.34±1.82 43.83±0.51 22.13±1.25 76.24±1.58 59.19±1.01 46.80±2.63 21.80±0.28
LC 79.14±0.35 63.57±0.61 44.33±1.13 22.98±1.60 74.96±1.92 61.49±3.02 40.52±2.18 23.84±3.37

FedProx 67.31±0.38 57.76±0.72 43.84±0.78 25.08±0.35 65.42±0.62 54.51±0.73 46.08±1.22 26.77±0.42
CIFAR-10 Co-teaching 78.64±0.45 70.60±0.47 48.63±0.57 21.06±2.10 75.11±0.39 59.00±1.19 31.30±2.03 17.10±3.78

T-revision 69.16±6.20 51.86±6.64 31.93±2.56 15.27±1.87 64.69±5.08 46.22±1.17 31.81±2.83 17.12±0.73
FedPeer 84.77±0.12 75.75±1.96 55.50±1.33 24.64±0.55 82.15±0.24 72.69±1.57 59.06±1.38 27.55±1.49
FedAvg 47.78±0.50 32.63±0.27 20.32±0.51 10.62±0.26 47.75±0.29 31.06±0.79 20.14±0.32 9.71±0.43

LC 48.92±0.42 33.15±0.23 20.39±0.36 10.43±0.45 49.03±0.17 32.67±0.75 19.78±0.67 10.13±0.36
FedProx 40.42±4.04 29.21±0.49 20.36±0.68 12.60±0.65 37.38±0.38 28.44±0.25 21.38±0.03 11.64±0.64

CIFAR-100 Co-teaching 41.15±0.28 29.81±0.72 18.01±0.28 8.73±1.08 40.55±1.79 28.51±1.41 18.47±1.95 6.56±1.38
T-revision 48.21±0.56 31.35±0.46 17.41±0.22 7.79±0.28 48.24±0.47 30.91±0.55 16.95±0.78 7.46±0.20
FedPeer 53.39±0.43 34.99±1.66 21.35±0.69 11.02±0.66 51.73±0.36 34.43±0.72 21.35±0.72 10.64±0.43

Table 2: The performance (the best accuracy) of all methods on CIFAR-N and Clothing-1M

Datasets CIFAR-10 CIFAR-100 Clothing-1M

Methods Worst Random Aggregate Fine 1M Noisy Training

FedAvg 46.55±7.82 59.69±4.88 66.41±6.52 22.65±2.29 70.27
LC 46.67±8.21 59.27±5.72 67.27±4.76 22.59±1.66 70.05

FedProx 58.47±0.97 69.35±0.62 74.48±1.00 35.33±0.35 65.96
Co-teaching 24.80±2.27 47.34±21.05 62.04±11.26 17.83±0.39 40.33
T-revision 57.85±19.44 55.06±8.40 63.40±9.99 22.18±1.44 66.95
FedPeer 58.51±10.89 73.68±4.35 76.51±9.30 40.60±1.91 70.88

Table 3: The comparison of the influence of different ϵ on the performance.

ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 100 ϵ = 3.58

72.47±2.64 71.60±1.96 72.27±1.87 73.00±1.96 73.75±2.38 72.44±1.52

5.3 REAL-WORLD LABEL NOISE

We also test the performance on two real-world datasets: CIFAR-N (Wei et al., 2022b) and Clothing-
1M (Xiao et al., 2015). Different from the benchmark datasets, these datasets are corrupted naturally.
Clothing-1M is collected from the real website where both data and labels are from the real users.
The noisy ratio is about 0.4 in Clothing-1M. CIFAR-N consists of CIFAR-10 and CIFAR-100. D̃c is
generated according to the random setting given in Section 5.2. The labels of CIFAR-N are collected
from the human annotation. There are three levels of noisy ratio in CIFAR-10, worst, aggregate and
random while there is only one noisy level in CIFAR-100. It can be found that FedPeer outperforms
all the baseline methods in the real-world dataset, showing great potential in practical usage.

5.4 EFFECT OF DP LEVEL

According to Section 4.1 and 4.2, label communication and peer gradient updates at local clients are
two key steps in FedPeer. ϵ is the parameter to control the level of DP protection. Following Ghazi
et al. (2021), we study the influence of ϵ on the performance. We select the CIFAR-10 corrupted by
random noise whose ratio is 0.4 as the method. All the experiments are run with 10 random seeds.
In terms of the randomness of model initialization and the noise generation, it can be found that
FedPeer is stable with the change of ϵ, which agrees with our theoretical guarantee.

6 CONCLUSION

We have defined openset label noise in FL and proposed FedPeer to use globally communicated
contrastive labels to prevent local models from memorizing openset noise patterns. We have proved
that FedPeer is able to approximate a centralized solution with strong theoretical guarantees. Our
experiments also verified the advantage of FedPeer. Admittedly, FedPeer is only tested with different
label noise regimes with synthetic data partitions. Future works include testing FedPeer with real-
world FL data partitions and real-world clients such as mobile devices.
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APPENDIX

Roadmap The appendix is composed as follows. Section A presents all the notations and their
meaning we use in this paper. Section C introduces the implementation details of the experiments
and how to apply the centralized training methods to FL. Section D shows the experiment results
with more details that are not given in the main paper due to the page limit.

A NOTATION TABLE

Notation Explanation

η Noisy ratio
C Total number of clients
c Client c in federated learning
Ỹ Random variables for the noisy label
Ŷ Random variables for the output of the model
K Number of classes in Y
T Transition matrix
P The probability
E The expectation
λ Federated fraction to control the number of clients in every round
αg The global step size on the server side
αl The local learning rate on the client side
L, ℓ The loss, the loss function
R The global communication round
E The local updating round
TDP Differential privacy transition matrix
T Transition matrix
A The label communication algorithm
Y̌c Labels protected by differential privacy
p̃c
n one-hot encoding of ỹcn
p̌ The posterior label distribution after differential privacy corruption

θ, θrc The model parameters, the model parameters of client c at r-th round
∆

(r)
c The variation of model parameters in r-th round of the client c

X, Y Random variables for the feature and label
X ,Y The space of X , Y
fc,fg The client model, The global model
N,Nc Total number of samples, number of samples in client c
(xc

n, y
c
n) The n-th example in the client c

Dc := {(xc
n, y

c
n)}n∈[Nc] Dataset of client c

D := {(xn, yn)}n∈[N ] Dataset
Ik := {c|1c,k = 1, c ∈ [C]} The vector indicating whether client c can access class k or not

Table 4: Table of notations used in the paper

B PROOFS

In this section, we present all the proofs of the theorems.

B.1 PROOF OF THEOREM 1

Proof. Denote by A the label communication algorithm, where the input is y and the output is yDP .
Then after flipping the label y according to the noise transition matrix T , we have

P(A(y) = yDP) =

{
eϵ

eϵ+K−1 , if yDP = y,
1

eϵ+K−1 , if yDP ̸= y.

Accordingly, for another label y′, we have

P(A(y′) = yDP) =

{
eϵ

eϵ+K−1 , if yDP = y′,
1

eϵ+K−1 , if yDP ̸= y′.

14



Under review as a conference paper at ICLR 2023

Then the quotient of two probabilities can be upper bounded by

P(A(y) = yDP)

P(A(y′) = yDP)
≤ eϵ.

With Definition 2, we know the above equation is exactly the definition of ϵ-labelDP, i.e., the label
sharing algorithm is ϵ-labelDP.

B.2 PROOF OF THEOREM 2

Proof. The centralized peer loss on D is

ED[ℓpeer(f(X), Ỹ )] = ED

[
ℓ(f(X), Ỹ )− β · ED

Ỹ ′|D̃
[ℓ(f(X), Ỹ ′)]

]
.

For each client i, the local FedPeer loss is

EDi [ℓFedPeer(f(X), Ỹ )] = EDi

[
ℓ(f(X), Ỹ )− β · ED

Ỹ ′|D̃
[ℓ(f(X), Ỹ ′)]

]
.

Denote by P(Di|D) the probability of drawing a data point from client i. We have∑
i∈[C]

P(Di|D) = 1.

Then ∑
i∈[C]

P(Di|D)EDi [ℓFedPeer(f(X), Ỹ )]

=
∑
i∈[C]

P(Di|D)EDi

[
ℓ(f(X), Ỹ )− β · ED

Ỹ ′|D̃
[ℓ(f(X), Ỹ ′)]

]
=ED

[
ℓ(f(X), Ỹ )− β · ED

Ỹ ′|D̃
[ℓ(f(X), Ỹ ′)]

]
=ED[ℓpeer(f(X), Ỹ )].

Each round may include multiple epochs. Suppose there are t local epochs. The variation of model
parameters in the r-th round of the local training in client i can be decomposed by

∆
(r)
i :=θ

(r+1)
i − θ

(r)
i

=θ
(r+1,t)
i − θ

(r+1,t−1)
i + θ

(r+1,t−1)
i + · · · − θ

(r,1)
i

=
∂EDi

[ℓFedPeer(f(X), Ỹ ; θ)]

∂θ

∣∣∣∣
θ=θ

(r+1,t−1)
i

+ · · ·+ ∂EDi
[ℓFedPeer(f(X), Ỹ ; θ)]

∂θ

∣∣∣∣
θ=θ

(r+1,1)
i

.

Therefore,

∑
i∈[C]

P(Di|D)∆
(r)
i =

∂
∑

i∈[C] P(Di|D)EDi [ℓFedPeer(f(X), Ỹ ; θ
(r+1,t−1)
i )]

∂θ

+ · · ·+
∂
∑

i∈[C] P(Di|D)EDi [ℓFedPeer(f(X), Ỹ ; θ
(r+1,1)
i )]

∂θ

=
∂ED[ℓpeer(f(X), Ỹ ; θ(r+1,t−1))]

∂θ

+ · · ·+ ∂ED[ℓpeer(f(X), Ỹ ; θ(r+1,1))]

∂θ

=∆(r).
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C IMPLEMENTATION DETAILS

Platform and Programming Environment We train our model on NVIDIA RTX A500 server
with torch and torchvision 1.10 and 0.11, respectively. The details of the baseline methods are as
follows.

Loss correction We apply FedAvg in the first 150 rounds to make the weight stable. At the 150th
round, the transition matrix of every client will be estimated according to the confidential score of
95%. The predicted label whose confidential score is over 95% is considered as the ground truth
so that we can get every transition matrix of every client. We apply loss correction in the rest 150
rounds according to Equation 2.

Co-teaching Co-teaching uses two same networks to distinguish the noisy data and the clean data.
Similarly, we initialize two same networks when the client initializes and update the two clients in
the same way as the original co-teaching network. The server also keeps two models. In every
communication round, the weights of the two models will average correspondingly.

T-revision T-revision consists of three steps: estimation of T , loss correction, and T-revision. In
the first 20 communication rounds, the selected clients update the weight at every communication
round and all the clients estimate Tc. After the 20th round, the selected clients at every commu-
nication apply forward loss correction for another 140 rounds. After the 160th round, we apply
T-revision.

DivideMix DivideMix uses two same networks to distinguish the noisy label. One network is
used to assign the pseudo label, the other network is used to the classification. The pseudo label is
generated by a Gaussian mixture process. In addition, DivideMix uses mix-up data augmentation to
boost performance. In FL paradigm, every client will maintain two clients and do the same operation
as the centralized training in DivideMix.

D EXPERIMENT RESULTS

In addition to the results of the best accuracy of the methods, we also present the accuracy of the last
epoch. The results of symmetric noise are given in Table 5. The results of random noise are given
in Table 6. The results of real-world cases are given in Table 7.

Dataset Methods 0.2 0.4 0.6 0.8

FedAvg 66.90±6.26 51.87±6.26 32.73±4.90 15.79±1.51
LC 67.49±3.25 49.17±9.87 32.32±4.57 15.28±2.09

FedProx 66.57±0.35 53.50±0.23 38.01±0.66 20.28±0.90
CIFAR-10 Co-teaching 76.17±1.72 69.03±2.25 46.66±3.75 17.88±2.10

T-revision 63.62±3.75 49.76±3.99 29.83±3.85 15.34±1.02
FedPeer 78.59±5.12 58.35±6.61 46.22±1.31 20.87±2.37
FedAvg 46.79±0.79 30.59±0.28 17.15±0.58 7.53±0.26

LC 47.66±0.19 30.95±0.30 17.27±0.19 7.43±0.06
FedProx 37.32±0.82 28.27±0.40 19.80±1.05 11.41±0.31

CIFAR-100 Co-teaching 40.90±0.11 29.41±0.64 17.45±0.46 8.27±0.96
T-revision 48.02±0.05 31.22±0.40 17.48±0.72 7.65±0.28
FedPeer 52.58±0.84 33.17±1.16 18.10±0.32 7.78±0.04

Table 5: The performance (the last accuracy) of our methods on CIFAR-10 and CIFAR-100. The
noise is symmetric. We compare different methods under different noisy ratios.
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Dataset Methods 0.2 0.4 0.6 0.8

FedAvg 59.53±3.39 43.14±5.51 30.16±3.73 16.73±2.11
LC 60.63±6.31 43.09±5.71 30.11±2.28 15.15±1.89

FedProx 62.86±4.00 47.62±5.42 36.06±4.14 19.16±0.64
CIFAR-10 Co-teaching 64.81±3.91 54.41±0.80 26.02±2.66 13.43±2.68

T-revision 63.66±5.88 39.70±16.35 34.17±4.24 16.78±0.81
FedPeer 68.18±8.79 63.74±2.25 40.41±1.97 16.09±1.71

FedAvg 46.36±0.18 30.01±1.01 16.78±0.37 7.21±0.42
LC 48.34±0.50 30.69±1.19 17.11±0.40 7.80±0.04

FedProx 37.25±0.52 27.70±0.05 19.92±0.45 10.49±0.08
CIFAR-100 Co-teaching 36.08±6.17 25.57±3.61 18.38±1.81 6.49±1.45

T-revision 48.01±0.83 30.93±0.66 17.10±0.55 7.57±0.63
FedPeer 51.08±0.08 33.24±1.09 17,61±0.27 8.16±0.37

Table 6: The performance (the last accuracy) of our methods on CIFAR-10 and CIFAR-100. The
noise is random. We compare different methods under different noisy ratios.

Datasets CIFAR-10 CIFAR-100 Clothing-1M

Methods Worst Random Aggregate Fine 1M Noisy Training

FedAvg 41.85±5.83 57.33±6.45 65.00±6.51 22.13±2.54 66.91
LC 41.37±5.66 58.20±5.58 65.44±6.51 21.99±1.54 67.75

FedProx 51.10±7.52 65.19±5.73 72.30±2.11 34.77±0.01 66.97
Co-teaching 24.11±2.03 44.10±18.21 60.28±10.54 16.77±0.25 40.37
T-revision 56.16±21.37 50.90±8.67 58.04±18.13 22.52±1.32 66.79
FedPeer 51.95±7.33 64.50±12.05 74.40±8.91 39.78±1.72 69.70

Table 7: The performance (the last accuracy) of all methods on CIFAR-N and Clothing-1M.
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