
A Toy Model of Universality:
Reverse Engineering how Networks Learn Group Operations

Bilal Chughtai 1 Lawrence Chan 2 Neel Nanda 1

Abstract
Universality is a key hypothesis in mechanistic
interpretability – that different models learn simi-
lar features and circuits when trained on similar
tasks. In this work, we study the universality
hypothesis by examining how small neural net-
works learn to implement group composition. We
present a novel algorithm by which neural net-
works may implement composition for any finite
group via mathematical representation theory. We
then show that networks consistently learn this
algorithm by reverse engineering model logits
and weights, and confirm our understanding us-
ing ablations. By studying networks of differing
architectures trained on various groups, we find
mixed evidence for universality: using our algo-
rithm, we can completely characterize the family
of circuits and features that networks learn on this
task, but for a given network the precise circuits
learned – as well as the order they develop – are
arbitrary.

1. Introduction
Do models converge on the same solutions to a task, or are
the algorithms implemented arbitrary and unpredictable?
The universality hypothesis (Olah et al., 2020; Li et al.,
2016) asserts that models learn similar features and cir-
cuits across different models when trained on similar tasks.
This is an open question of significant importance to the
field of mechanistic interpretability. The field focuses on
reverse engineering state-of-the-art models by identifying
circuits (Elhage et al., 2021; Olsson et al., 2022; Nanda et al.,
2023; Wang et al., 2022), subgraphs of networks consist-
ing sets of tightly linked features and the weights between
them.(Olah et al., 2020). Recently, the field of mechanis-
tic interpretability has increasingly shifted towards finding
small, toy models easier to interpret, and employing labor in-
tensive approaches to reverse-engineering specific features

1Independent 2UC Berkeley. Correspondence to: Bilal Chugh-
tai <brchughtaii@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. The algorithm implemented by a one hidden layer MLP
for arbitrary group composition. Given two input group elements
a and b, the model learns representation matrices ρ(a) and ρ(b)
in its embeddings. Using the ReLU activations in its MLP layer,
it then multiplies these matrices, computing ρ(a)ρ(b) = ρ(ab).
Finally, it ‘reads off’ the logits for each output group element c
by computing characters – the matrix trace tr ρ(abc−1), denoted
χρ(abc

−1), which is maximized when c = ab.

and circuits in detail (Elhage et al., 2021; Wang et al., 2022;
Nanda et al., 2023). If the universality hypothesis holds,
then the insights and principles found by studying small
models will transfer to state-of-the-art models that are used
in practice. But if universality is false, then although we
may learn some general principles from small models, we
should shift focus to developing scalable, more automated
interpretability techniques that can directly interpret models
of genuine interest.

In this work, we study to what extent the universality hypoth-
esis is true by interpreting networks trained on composition
of group elements in various finite groups 1. We focus on
composition of arbitrary groups as this defines a large family
of related tasks, forming an algorithmic test bed for inves-
tigating universality. We first exhibit a general algorithm
by which networks can compute compositions of elements
in an arbitrary finite group, using concepts from the math-
ematical field of representation2 and character theory. We

1Code and a demo notebook are available at
https://github.com/bilal-chughtai/rep-theory-mech-interp

2We note our use of the word ‘representation’ is distinct to the

1

https://github.com/bilal-chughtai/rep-theory-mech-interp

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

do this by building upon the work of Nanda et al. (2023),
that reverse-engineered networks trained to grok modular
addition (mod p) and found the networks used a Fourier
transform and trigonometry (trig) identity based algorithm
to compute logits. We show that this ad-hoc, trig identity-
based algorithm is a special case of our algorithm and that
distinct Fourier modes are better thought of as distinct irre-
ducible representations of the cyclic group. Our algorithm
and how we find it implemented in network components is
described in Figure 1.

Representation theory bridges linear algebra and group the-
ory, and studies how group elements can be thought of as
matrices. At a high level, our algorithm embeds group ele-
ments as such matrices, uses its ReLU activations to perform
matrix multiplication, and uses the unembed to convert back
to group elements. We prove correctness of our algorithm
using results from representation theory in Section 4.

We verify our understanding of a model trained to perform
group composition with four lines of evidence in Section 5.
(1) the logits are as predicted by the algorithm over a set
of key representations ρ. (2) the embeddings and unem-
beddings purely consist of a memorized lookup table, con-
verting the inputs and outputs to the relevant representation
matrices ρ(a), ρ(b) and ρ(c−1). (3) the MLP neurons calcu-
late ρ(ab), and we can explicitly extract these representation
matrices from network activations. Further, we can read off
the neuron-logit map directly from weights, and neurons
cluster by representation. (4) ablating the components of
weights and activations predicted by our algorithm destroys
performance, while ablating parts we predict are noise does
not affect loss, and often improves it.

Finally, we use our mechanistic understanding of models
to investigate the universality hypothesis in Section 6. We
break universality down into strong and weak forms. Strong
universality claims that the same features and circuits arise
in all models that are trained in similar ways; weak uni-
versality claims that there are underlying principles to be
understood, but that any given model will implement these
principles in features and circuits in a somewhat arbitrary
way. While models consistently implement our algorithm
across groups and architectures by learning representation-
theoretic features and circuits, we find that the choice of
specific representations used by networks varies consider-
ably. Moreover, the number of representations learned and
order of representations learned is not consistent across
different hyperparameters or random seeds. We consider
this to be compelling evidence for weak universality, but
against strong universality: interpreting a single network is
insufficient for understanding behavior across networks.

usual use of the word representation in the ML literature.

0 50k 100k 150k 200k 250k
0

0.2

0.4

0.6

0.8

1

epoch

ac
cu
ra
cy

0 50k 100k 150k 200k 250k
1μ

10μ
100μ
0.001
0.01
0.1
1

10
100

epoch

lo
ss

Figure 2. Train (blue) and test (red) accuracy (left) and train and
test loss (right) of an MLP trained on group composition on S5,
the permutation group of order 5, over 50 random seeds. These
models consistently exhibit grokking: they quickly overfit early in
training, but then suddenly generalize much later. The bolded line
denotes average accuracy/loss.

2. Related Work
Comparing Neural Representations. In the past several
years, a wide variety of post-hoc approaches have been used
to study the relationship between the representations learned
by neural networks, initiated by Li et al. (2016). Methods
often compare internal representations of one network to
another, though it is unclear whether these methods truly
measure what we want, as networks are highly non linear
and may learn similar features in different ways. Empirically
however, techniques such as Canonical Correlation Analysis
(Morcos et al., 2018), Centered Kernel Alignment (Korn-
blith et al., 2019) and variations are able to quantify repre-
sentation similarity. Other techniques used include model
stitching (Bansal et al., 2021) and neuroscience-inspired
methods (Mehrer et al., 2020).

Mechanistic Interpretability and Universality. In con-
trast, we are able to compare the learned representations
of models to a known ground truth, through first reverse
engineering the employed algorithm completely and thereby
understanding the full set of features. We employ a Circuits-
based mechanistic interpretability approach, as pioneered
by Cammarata et al. (2020), Elhage et al. (2021) and Ols-
son et al. (2022). In mechanistic interpretability, neural
representation similarity is studied together with algorithm
similarity under the term ‘universality’. Olah et al. (2020)
demonstrated the universality hypothesis in image models
through the presence of curve detector and high-low fre-
quency detector features in early layers of many models,
while also showing the circuits implementing them are anal-
ogous.

Group Theory. Group theoretic tasks have in the past
been used to probe the capability of neural networks to
perform symbolic and algorithmic reasoning. (Zhang et al.,
2022) evaluate and fine tune language models to implement
group actions in context. Liu et al. (2022a) study how
Transformers learn group theoretic automata.

Phase Changes and Emergence. Recent work has ob-
served emergent behavior in neural networks: models often

2

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

quickly develop qualitatively different behavior as they are
scaled up (Ganguli et al., 2022; Wei et al., 2022). Brown
et al. (2020) find that, while total loss scales predictably
with model size, models’ ability to perform specific tasks
can change abruptly with scale. McGrath et al. (2022) find
that AlphaZero quickly learns many human chess concepts
between 10k and 30k training steps and reinvents human
opening theory between 25k and 60k training steps.

Grokking. Grokking is a form of emergence, first reported
by (Power et al., 2022), who trained small networks on al-
gorithmic tasks, finding that test accuracy often increased
sharply, long after maximizing train accuracy. Liu et al.
(2022b) construct further small examples of grokking, which
they use to compute phase diagrams with four separate
‘phases’ of learning. Davies et al. (2022) unify the phe-
nomena of grokking and double descent as instances of
phenomena dependent on ‘pattern learning speeds’. Our
findings agree with Liu et al. (2022c) in that grokking seems
intrinsically linked to the relationship between performance
and weight norms; and with Barak et al. (2023) and Nanda
et al. (2023) in showing that the networks make continuous
progress toward a generalizing algorithm, which may be
tracked over training using continuous progress measures.

3. Setup and Background
3.1. Task Description
We train models to perform group composition on finite
groups G of order |G| = n. The input to the model is an
ordered pair (a, b) with a, b ∈ G and we train to predict
the group element c = ab. In our mainline experiment, we
use an architecture consisting of left and right embeddings3,
a one hidden layer MLP, and unembedding WU . This ar-
chitecture is presented in Figure 1 and elaborated upon in
Appendix C. We note that the task presented in Nanda et al.
(2023) is a special case of our task, as addition mod 113 is
equivalent to composition for G = C113, the cyclic group
of 113 elements. We train our models in a similar manner
to Nanda et al. (2023), details may be found in Appendix C.

3.2. Mathematical Representation Theory
The core claims of our work build on a rich sub-field of pure
mathematics named Representation Theory. We introduce
the key definitions and results used throughout here, but
discuss and motivate other relevant results in Appendix D.
Further details and proofs beyond this may be found in e.g.
Alperin & Bell (1995).

A (real) representation is a homomorphism, i.e. a map
preserving the group structure, ρ : G → GL(Rd) from the
group G, to a d-dimensional general linear group, the set of
invertible square matrices of dimension d. Representations

3We do not tie the left and right embeddings as we study non
abelian groups.

are in general reducible, in a manner we make precise in the
Appendix. For each group G, there exist a finite set of fun-
damental irreducible representations. The character of a
representation is the trace of the representation χρ : G → R
given by χρ(g) = tr(ρ(g)). A key fact our algorithm de-
pends on is that character’s are maximal when ρ(g) = I , the
identity matrix (Theorem D.7). In particular, the character
of the identity element, χρ(e), is maximal.

Example. The cyclic group Cn is generated by a single
element r and naturally represents the set of rotational sym-
metries of an n-gon, where r corresponds to rotation by
2π/n. This motivates a 2 dimensional representation – a set
of n 2× 2 matrices, one for each group element:

ρ(rk) =

(
cos

(
2πk
n

)
− sin

(
2πk
n

)
sin

(
2πk
n

)
cos

(
2πk
n

))
for element rk, corresponding to rotation by θ = 2πk/n.
This representation is irreducible, since there is no subspace
of R2 on which the set of rotation matrices restricts – they
each rotate the whole space. The character of each repre-
sentation element is the trace χρ(r

k) = 2 cos θ, which is
maximized at θ = 0, where the group element r0 = e and
corresponding matrix I2 are both the identity.

4. An Algorithm for Group Composition
We now present an algorithm, which we call group compo-
sition via representations (GCR), on an arbitrary group G
equipped with a representation ρ of dimension d. The algo-
rithm and it’s map onto network components are described
in Figure 1. We are not aware of this algorithm existing in
any prior literature.

(1) Map inputs a and b to d× d matrices ρ(a), ρ(b).
(2) Compute the matrix product ρ(a)ρ(b) = ρ(ab).
(3) For each output logit c, compute the characters

tr(ρ(ab)ρ(c−1)) = tr(ρ(abc−1)) = χρ(abc
−1).

Crucially, Theorem D.7 implies ab ∈ argmaxc χρ(abc
−1),

so that logits are maximised on c∗ = ab, where abc−1 = e.
If ρ is faithful (see Definition D.5), this argmax is unique.

In our networks, we find the terms ρ(a) and ρ(b) in the
embeddings and ρ(ab) in MLP activations. Note, as ρ(ab)
is present in the final hidden layer activations and WU learns
ρ(c−1) in weights, the map to logits is entirely linear:

ρ(ab) → tr ρ(ab)ρ(c−1) =
∑
ij

(
ρ(ab)⊙ ρ(c−1)T

)
ij

(1)

where ⊙ denotes the element-wise product of matrices.

Each finite group G is equipped with a finite set of k irre-
ducible representations (Definition D.2) Since any represen-
tation may be decomposed into a finite set of irreducible

3

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

representations (Theorems D.3 and D.4) we may restrict
our attention to these irreducible representations. It is then
useful to think about our algorithm for a fixed group G as
a family of k independent circuits indexed by choice irre-
ducible representation ρ. In general, a single network may
choose any subset of these k circuits to implement, so that
the observed logits are a linear combination of characters
from multiple representations. From now on, each represen-
tation may be assumed to be irreducible, and we will drop
the word. Since each representation has χρ(abc

−1) maxi-
mized on the correct answers, using multiple representations
gives constructive interference at c∗ = ab, giving c∗ a large
logit. Theorem D.9 implies characters are orthogonal over
distinct representations, a fact we use in Section 5.1.

Example. Our GCR algorithm is a generalization of the
seemingly ad-hoc algorithm presented in Nanda et al. (2023)
for modular addition, which in our framing is composition
on the cyclic group of 113 elements, C113. Each element
of our algorithm maps onto their Fourier multiplication
algorithm, with representations ρ = 2k (which we define in
Appendix D.1.1) corresponding to frequency ωk = 2πk

n .

Nanda et al. (2023) found embeddings learn the terms
cos (ωka), sin (ωka), cos (ωkb) and sin (ωkb), precisely
the matrix elements of ρ(a) and ρ(b). The terms
cos (ωk(a+ b)) and sin (ωk(a+ b)) found in the MLP neu-
rons correspond directly to the matrix elements of ρ(ab).
Finally we find by direction calculation, or by using the
group homomorphism property of representations, that the
characters:

χ(abc−1)

= tr
(
ρ(abc−1)

)
= tr

(
cos (ωk(a+ b− c)) − sin (ωk(a+ b− c))
sin (ωk(a+ b− c)) cos (ωk(a+ b− c))

)
= 2 cos (ωk(a+ b− c))

are precisely the form of logits found, which summed over
many key frequencies k, corresponding to distinct irre-
ducible representations.

5. Reverse Engineering Permutation Group
Composition in a One Layer ReLU MLP

We follow the approach of Nanda et al. (2023) in reverse en-
gineering a single mainline model trained on a fixed group,
and then showing our interpretation is robust and generic
later in Section 6, by analyzing models of different archi-
tectures trained on composition on several different groups,
over different random initializations. We produce several
lines of mechanistic evidence that the GCR algorithm is
being employed, mostly mirroring those in Nanda et al.
(2023).

In our mainline experiment, we train the MLP architecture

described in Section 3.1 on the permutation (or symmetric)
group of 5 elements, S5, of order |G| = n = 120. Note
that unlike C113 studied by Nanda et al. (2023), S5 is not
abelian, so the composition is non-commutative. We present
a detailed analysis of this case as symmetric groups are in
some sense the most fundamental group, as every group
is isomorphic to a subgroup of a symmetric group (Cay-
ley’s Theorem D.10). So, understanding composition on
the symmetric group implies understanding, in theory, of
composition on any group. The (non trivial) irreducible rep-
resentations of S5 are named sign, standard, standard sign,
5d a, 5d b, and 6d, are of dimensions d = {1, 4, 4, 5, 5, 6}
and are listed in Appendix D.1.3.

The GCR algorithm predicts that logits are sums of char-
acters. This is a strong claim, which we directly verify in
a black-box manner – we need not peer directly into net-
work internals to check this. We do so by comparing the
model’s logits l(a, b, c) on all input pairs (a, b) and outputs
c with the algorithms character predictions χρ(abc

−1) for
each representation ρ. We find the logits can be explained
well with only a very sparse set of directions in logit space,
corresponding to the characters of the ‘standard’ and ‘sign’
representations. From now on we call these two representa-
tions the key representations.

The remainder of our approaches are white-box and involve
direct access to internal model weights and activations. First,
we inspect the mechanisms implemented in model weights.
We find the embeddings and unembeddings to be memorized
look up tables, converting inputs and outputs to the relevant
representation element in the key representations. As the
number of representations learned is low, the embedding
and unembedding matrices are low rank.

We then find MLP activations calculate ρ(ab), and are able
to explicitly extract these representation matrices. Addition-
ally, MLP neurons cluster into distinct representations, and
we can read off the linear map from neurons to logits as
being precisely the final step of the GCR algorithm.

Finally, we use ablations to confirm our interpretation is
faithful. We ablate components predicted by our algorithm
to verify performance is hampered, and ablate components
predicted to be noise, leaving only our algorithm, and show
performance is maintained.

5.1. Logit Attribution
Logit similarity. We call the correlation between the logits
l(a, b, c) and characters χρ(abc

−1) the logit similarity. We
call representations with logit similarity (see Appendix E.5)
greater than 0.005 ‘key’.

Our model has logit similarity 0.509 with χsign and 0.767
with χstandard, and zero with all other representation char-
acters. Theorem D.8 implies these character vectors are

4

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

0 50 100

100

80

60

40

20

0

0 50 100 0 50 100
−1

−0.5

0

0.5

1

b b b

a
observed sign + standard

Figure 3. The observed 0th logit (left) over all pairs of inputs a (y-
axis) and b (x-axis). The GCR algorithm’s logit predictions χsign

(middle) and χstandard (right) in the key representations. The
observed logit appears to be a linear combination of the characters
in the key representations. Note that all logits here have been
normalized to range [-1, 1].

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
sign
standard
standard_sign
5d_a
5d_b
6d

epoch

co
si

ne
 si

m
ila

rit
y

Figure 4. Evolution of logit similarity over training for each of the
six non trivial representations. We see the sign representation is
learned around epoch 250, and the standard around epoch 50k.
None of the other representations contribute to logits via the GCR
algorithm at the end of training. We therefore call the sign and
standard representations ‘key’.

orthogonal, so we may approximate the logits with these
two directions. Doing so explains 84.8% of the variance
of logits. This is surprising – the 120 output logits are ex-
plained well by only two directions. As confirmation for the
correctness of our algorithm, if we evaluate test loss only
using this logit approximation, we see a reduction in loss
by 70% relatively. If we ablate the remaining 15% of logits,
loss does not change.

5.2. Embeddings and Unembeddings
Each representation is a set of n d× d matrices, which by
flattening we can think of as a set of d2 vectors of dimension
n. We call the subspace of Rn spanned by these vectors
representation space. Theorem D.9 implies these subspaces
are orthogonal for distinct representations, and Theorem D.3
implies the direct sum of each of these subspaces over all
representations is Rn. Any embedding or unembedding of
n group elements lies in Rn×h for some h, so a natural
operation is to project embeddings and unembeddings onto
representation space over the n dimension. Our definitions
of embedding matrices Wa, Wb and WU may be found in
Appendix C.1, and details regarding how we perform the

projection in Appendix E.5.

We find evidence of representations in embeddings and
unembeddings. We find that the embedding matrices and
the unembed matrix are well approximated by a sparse set
of representations (Table 1), and that the representations
contained in all three are the same. This is surprising: each
embedding and unembedding can potentially be of rank
120, but is only of rank 16 + 1, corresponding precisely to
the two key representations. Qualitatively, the progress of
representation learning is similar across all three embedding
and unembedding matrices, with each representation being
learned suddenly at roughly the same time, see Figure 9.

Table 1. Percentage of embedding matrices explained by subspaces
corresponding to representations. We see the same two key repre-
sentations explain almost all of the variance of each embedding
matrix, and the non-key representations explain almost none.

Wa Wb WU

SIGN 6.95% 6.95% 9.58%
STANDARD 93.0% 93.0% 84.5%
RESIDUAL 0.00% 0.00% 5.96%

5.3. MLP Neurons
MLP neurons calculate ρ(ab). From the embeddings, neu-
rons have inputs ρ(a) and ρ(b), and use their non-linearity
to calculate ρ(ab). We make this calculation explicit in the
1d case in Appendix E.2. To demonstrate this, we follow
the approach taken with embeddings. We define for each
representation a hidden representation subspace of rank d2

of Rn2

, and consider the projection of the hidden layer onto
these subspaces.

Neurons cluster by representation. Our neurons cluster
into disjoint categories, corresponding to key representa-
tions. This clustering is identical on neuron inputs and
outputs. 7 neurons are ‘sign neurons’: these neurons com-
pletely represent ρsign(a) in the left embedding and ρsign(b)
in the right embedding. On post-activation outputs, they rep-
resent some linear combination of ρsign(a), ρsign(b), and
ρsign(ab), but not any other representation. 119 neurons are
correspondingly ‘standard neurons’. The final 2 neurons are
always off.

In Table 2 we find 88.0% of the variance of standard neu-
rons can be explained by the directions corresponding to
ρ(a), ρ(b) and ρ(ab). For sign neurons, this fraction of vari-
ance of neurons explained is 99.9%. We validate by ablation
the residual 12.0% of standard neurons does not affect per-
formance. We hypothesize this term is a side product of
the network performing multiplication with a single ReLU,
and discuss this multiplication step further in Appendix E.2.
Evolution of percentage of MLP activations explained by
each representation is presented in Figure 10.

5

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

Table 2. Percentage of the variance of MLP neurons explained by
subspaces corresponding to representations of group elements a,
b and ab. Almost all of the variance of neurons within each key
representation cluster is explained by subspaces corresponding to
the representation, and all neurons are in a single cluster.

CLUSTER ρ(a) ρ(b) ρ(ab) RESIDUAL

SIGN 33.3% 33.3% 33.3% 0.00%
STANDARD 39.6% 37.1% 11.3% 12.1%

Only the ρ(ab) component of MLP neurons is important.
The GCR algorithm doesn’t make use of ρ(a) or ρ(b) di-
rectly to compute χρ(abc

−1). We confirm the model too
only makes use of ρ(ab) type terms by ablating directions
corresponding to ρ(a) and ρ(b) or otherwise in MLP activa-
tions and verifying loss doesn’t change.

On the other hand, ablating directions corresponding to
ρ(ab) in the key representations severely damages loss.
Baseline loss is 2.38 × 10−6. Ablating ρstandard(ab) in-
creases loss to 7.55, while ablating ρsign(ab) increases loss
to 0.0009.

We may explicitly recover representation matrices from
hidden activations. By changing basis (via Figure 11)
on the hidden representation subspace corresponding to
ρ(ab), we may recover the matrices ρ(ab). The learned sign
representation matrices agree with ρsign(ab) completely,
and the learned standard representation matrices agree with
ρstandard(ab) with MSE loss < 10−8. We cannot recover
representation matrices for representations not learned.

5.4. Logit Computation
Maps to the logits are localised by representation. The
unembedding map WU restricts to each key representation
neuron cluster. This restricted map, following a similar
approach to Section 5.2, has almost all components in the
corresponding output representation subspace. Defining
Wρ as the map from ρ-neurons to logits, we find Wsign

has 99.9% variance explained by output sign representa-
tion space, and Wstandard has 93.4% explained by output
standard representation space.

The linear map in representation basis. As noted in Sec-
tion 4, the final step of the GCR algorithm may be imple-
mented in a single linear operation (Equation 1). Given
ρ(ab) is present in MLP neurons, the unembedding need
simply learn the inverse representation matrices ρ(c−1). We
verify the network implements this step as predicted by our
algorithm in Figure 5.

5.5. Correctness Checks: Ablations
In previous sections, we showed various components of the
model were well approximated by intermediate terms of the

0 5 10 15

14

12

10

8

6

4

2

0

−600k

−400k

−200k

0

200k

400k

600k

Figure 5. The map from the subspace corresponding to
ρstandard(ab) in the MLP neurons to logits. We obtain this by
changing basis of WU on both sides, to align with ρ(ab) repre-
sentation space on the left, and ρ(c−1) on the right. This ma-
trix implements step 3 in the GCR algorithm, mapping ρ(ab) to
χρ(abc

−1) = tr(ρ(ab)ρ(c−1)). The sparse and uniform matrix
shown corresponds precisely to the trace calculation between two
4× 4 matrices as in Equation 1.

proposed GCR algorithm. To verify these approximations
are faithful, we perform two types of additional ablations.
We exclude components in the algorithm and verify loss
increases, and we restrict to these same components and
demonstrate loss remains the same or decreases.

MLP neurons. In Section 5.3, we identified sets of neurons
that could be manipulated to recover representation matrix
elements ρ(ab). If we replace these neurons with the corre-
sponding representation matrix elements directly, we find
loss decreases by 70% (to 7.00× 10−7).

Unembeddings. In Section 5.4, we found WU is well ap-
proximated by 16+ 1 directions, corresponding to represen-
tation space on the two key representations. If we project
MLP neurons to only these directions, ablating the 5.96%
residual in WU , we find loss decreases by 12%, while if we
project to only this residual, loss increases to 4.80, random.

Logits. In Section 5.1 we found observed logits were well
approximated by the GCR algorithm in the key representa-
tions. We find ablating our algorithm’s predictions in the key
representations damages loss, to 0.0006 by excluding the
sign representation, to 7.23 excluding the standard represen-
tation, and to 7.60 excluding both, significantly worse than
random. Ablating other directions improves performance.

5.6. Understanding Training Dynamics using Progress
Measures

A limitation of prior work on using hidden progress mea-
sures from mechanistic explanations as a methodology for
understanding emergence (Nanda et al., 2023) is that the
technique developed may not generalize beyond one specific
task. We demonstrate their results are robust by replicating
them in our network trained on S5.

We argue that the network implements two classes of cir-

6

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

0 20k 40k 60k 80k 100k 120k

1μ

100μ

0.01

1
Train Loss
Test Loss
Restricted Loss
Excluded Loss

epoch

lo
ss

Figure 6. Evolution of the two progress measures over training.
The vertical lines delineate 3 phases of training: memorization,
circuit formation, and cleanup (and a final stable phase). Ex-
cluded loss tracks the progress of the memorization circuit, and
accordingly falls during the first phase, rising after during circuit
formation and cleanup. Restricted loss tracks the progress of the
generalized algorithm, and has started falling by the end of circuit
formation. Note that grokking occurs during cleanup, only after
restricted loss has started to fall.

cuit – first, ‘memorizing’ circuits, and later, ‘generalizing’
circuits. Both are valid solutions on the training distribu-
tion. To disentangle these, we define two progress measures.
Restricted loss tracks only the performance of the generaliz-
ing circuit via our algorithm. Excluded loss is the opposite,
tracking the performance of only the memorizing circuit,
and so is only evaluated on the training data. We find that
on our mainline model, training splits into three partially
overlapping phases – memorization, circuit formation, and
cleanup. During circuit formation, the network smoothly
transitions from memorizing to generalizing. Since test per-
formance requires a general solution and no memorization,
grokking occurs during cleanup. Further discussion may be
found in Appendix E.1.

In our mainline experiments, we use weight decay as the
primary regularization scheme. Other regularizers are also
capable of exhibiting grokking. Our results mirror (Nanda
et al., 2023): we find models grok generic group composi-
tion under dropout, and the methodology of progress mea-
sures can too be used to understand grokking in this case.

We sometimes find further phase changes. Figure 14 demon-
strates two phases of grokking in a seperate run, caused by
learning of different representations at distinct times.

6. Universality
In this section, we investigate to what extent the universality
hypothesis (Olah et al., 2020; Li et al., 2016) holds on our
collection of group composition tasks. Here, ‘features’ cor-
respond to irreducible representations of group elements4

and ‘circuits’ correspond to precisely how networks manip-
ulate these with their weights.

4Defining a ‘feature’ in a satisfying way is surprisingly hard.
Nanda (2022) discusses some of the commonly used definitions.

0 20 40

sign

standard

standard_sign

5d_a

5d_b

6d

frequency

re
pr
es
en
ta
tio

n

0 5 10 15 20
0

1

2

3

4

5

6

frequency

ke

y
re

ps

Figure 7. (Left) The number of times each representation is learned
over 50 seeds, for S5 trained on the MLP architecture. We see
the 1d sign and 4d standard representations are most commonly
learned, standard sign (4d), 5d a and 5d b are learned approxi-
mately equally and less often, and 6d is never learned. (Right) The
number of key representations of these 50 runs. Most commonly
we have two key representations (typically sign and standard), but
sometimes we learn more.

We interpret models of MLP and Transformer architec-
tures (Appendix C) trained on group composition for seven
groups: C113, C118, D59, D61, S5, S6 and A5, each on four
seeds. We find evidence for weak universality: our models
are all characterized by a family of circuits corresponding
to our GCR algorithm across all group representations. We
however find evidence against strong universality: our mod-
els learn different representations, implying that specific
features and circuits will differ across models.

All our networks implement the GCR algorithm. We first
argue for weak universality via universality of our algorithm
and universality of a family of features and circuits involving
them. Following the approach of Section 5, we understand
each layer of our network as steps in the algorithm as pre-
sented in Section 4. (Table 3). Steps 1 and 3 – we analyze
embedding and unembedding matrices, showing that their
fraction of variance explained (FVE) by subspaces corre-
sponding to the key representations is high. Each group has
its own family of representations, and each model learns
its own set of key representations (i.e. representations with
non-zero logit similarity). Where applicable, our metrics
track only these key representations of any given model. For
Step 2, we show the MLP activations are well explained by
the terms ρ(a), ρ(b), and importantly ρ(ab) in the key rep-
resentations. Finally, as evidence our algorithm is entirely
responsible for performance, we show the final values of the
progress measures of restricted and excluded loss.

Specific representations learned vary between random
seeds. Each group has several representations that can be
learned. Under strong universality, we would expect the
representations learned to be consistent across random seeds
when trained on the same group. In general, we do not
find this to be true (Figure 7). When there are multiple
valid solutions to a problem, the model somewhat arbitrarily
chooses between them – even when the training data and
architecture are identical.

7

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

Table 3. Results from all groups on both MLP and Transformer architectures, averaged over 4 seeds. We find that that features for matrices
in the key representations are learned consistently, and explain almost all of the variance of embeddings and unembeddings. We find that
terms corresponding to ρ(ab) are consistently present in the MLP neurons, as expected by our algorithm. Excluding and restricting to
these terms in the key representations damages performance/does not affect performance respectively.

MLP Transformer

FVE Loss FVE Loss

Group Wa Wb WU MLP ρ(ab) Test Exc. Res. WE WL MLP ρ(ab) Test Exc. Res.

C113 99.53% 99.39% 98.05% 90.25% 12.03% 1.63e-05 5.95 6.88e-03 95.18% 99.52% 92.12% 16.77% 2.67e-07 9.42 2.12e-02
C118 99.75% 99.74% 98.43% 95.84% 13.26% 5.39e-06 8.72 3.60e-03 94.05% 99.64% 94.63% 17.11% 1.73e-07 15.93 2.55e-01
D59 99.71% 99.73% 98.52% 87.68% 12.44% 6.34e-06 12.37 1.60e-06 98.58% 98.53% 85.01% 10.85% 3.20e-06 46.42 2.82e-05
D61 99.26% 99.45% 98.26% 87.61% 12.48% 1.79e-05 12.00 1.69e-06 98.33% 97.40% 85.59% 11.11% 1.63e-02 41.64 9.60e-02
S5 100.00% 99.99% 94.14% 88.91% 12.13% 1.02e-05 11.72 2.21e-07 99.84% 99.97% 85.28% 10.23% 1.43e-07 17.77 4.44e-09
S6 99.65% 99.78% 93.67% 86.38% 8.98% 4.95e-05 12.17 2.66e-06 99.94% 99.93% 86.32% 9.35% 2.21e-06 291.67 1.05e-06
A5 99.04% 99.31% 93.27% 86.69% 10.26% 1.94e-05 9.82 5.28e-07 97.53% 97.40% 83.56% 8.22% 4.88e-02 19.76 7.70e-04

It is not the case that networks learn simple representa-
tions over complex representations. If strong universality
is true, we hypothesized networks would learn ‘simple’ rep-
resentations over more complex ones, according to some
sensible measure of complexity.

We naively thought that the complexity of a general repre-
sentation would correlate with it’s dimension5. For S5, since
the 4 dimensional representations are the lowest faithful rep-
resentations, we expected representations of at most this
dimension to be learned, and the model to choose arbitrarily
between learning either of the two of them, or both. Empiri-
cally, we found this claim to be false. In particular, networks
commonly learned higher dimensional representations, as
can be seen in Figure 7. We also see in Figures 7 and 8
that the network preferred the standard representation over
the standard sign representation, when in fact standard sign
offers better performance for fixed weight norm.

While not deterministic, Figure 7 shows at least a prob-
abilistic trend between our naive feature complexity and
learning frequency, suggesting meaningful measures of fea-
ture complexity may exist. One complication here is that,
as discussed in Section 5.6, models are trading off weight
against performance. Representations with more degrees
of freedom may also offer better performance for fixed to-
tal weight norm, so which the model may prefer, and thus
which is least complex, is unclear.

Number of representations learned varies. Across seeds,
in addition to different representations being learned, we too
find different numbers of representations are learned, also
shown in Figure 7. This is surprising to us. We additionally
find that Transformers consistently learn fewer representa-
tions than MLPs, despite having more parameters. We view
this as further evidence against the strongest forms of circuit
and feature universality, and suggests there is a degree of

5In particular, we thought a reasonable definition would be the
number of linear degrees of freedom in the n× d2 tensor of flat-
tened representation matrices – i.e. the rank of the representation
subspace of Rn (from Section 5.2).

0 50k 100k 150k 200k 250k
0

0.1

0.2

0.3

0.4

0.5
sign
standard
standard_sign
5d_a
5d_b
6d

epoch
lo

gi
t s

im
ila

rit
y

Figure 8. Mean evolution of logit similarity of each non trivial
representation of S5 over training averaged over 50 random seeds.
We observe the sign representation is consistently learned early in
training, and the standard representation is also often learned. No-
tably, the standard sign representation is of comparable complexity
to the standard representation, but learned to a lesser degree.

randomness in what solutions models learn.

Lower dimensional representations are generally (but
not always) learned first. Under any reasonable definition
of complexity, the 1d sign representation is simpler than
other S5 representations. Figure 8 shows that the sign rep-
resentation is consistently learned first. While it is very
easily learned, it also generalizes poorly. In contrast, higher
dimensional faithful features are harder to learn but general-
ize better. These correspond to type 1 and type 3 patterns
according to the taxonomy presented in Davies et al. (2022).
We however do not find evidence that all representations
are learned in strict order of dimension, against our naive
hypothesis’s predictions, further evidence against strong
universality.

7. Conclusion and Discussion
In this work, we use mechanistic interpretability to show that
small neural networks perform group composition via an
interpretable, representation theory–based algorithm, across
several groups and architectures. We then define progress
measures (Barak et al., 2023; Nanda et al., 2023) to study
how the internals of networks develop over the course of

8

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

training. We use this understanding to study the universality
hypothesis – that networks trained on similar tasks learn
analogous features and algorithms. We find evidence for
weak but not strong forms of universality: while all the net-
works studied use a variant of the GCR algorithm, different
networks (with the same architecture) may learn different
sets of representations, and even networks that use the same
representations may learn them in different orders. This sug-
gests that reverse engineering particular behaviors in single
networks is insufficient for fully understanding that network
behavior in general. That being said, even if strong univer-
sality fails in general, there is still promise that a ‘periodic
table’ of universal features, akin to the representations in
our group theoretic task, may exist in general for real tasks.
We include further discussion on how this work fits into the
wider field of mechanistic interpretability in Appendix A.
Below, we discuss some areas of future work, with further
discussion in Appendix F.

Further investigation of universality in algorithmic tasks.
We raise many questions in Section 6 regarding which rep-
resentations networks learn. Better understanding the learn-
ing rates and generalization properties of features offers a
promising direction for future work in understanding net-
work universality. Further understanding the probabilistic
nature of which features are learned and at what time may
too have future relevance. In particular, lottery tickets (Fran-
kle & Carbin, 2019) may be present in initialized weights
that could allow the learned features of a trained network to
be anticipated before training.

More realistic tasks and models. In this work, we studied
the behaviour of small models on group composition tasks.
However, we did not explore whether our results apply to
larger models that perform practical tasks. Future work
could, for example, study universality in language models
in the style of induction heads in Olsson et al. (2022).

Understanding inductive biases of neural networks. A
key question in the science of deep learning is understanding
which classes of algorithms are natural for neural networks
to express. Our work suggests that the GCR algorithm
is in some sense a ‘natural’ way for networks to perform
group composition (Appendix G). A more comprehensive
understanding of the building blocks of neural networks
could speed up interpretability work while helping us better
understand larger models.

Author Contributions
Bilal Chughtai was the primary research contributor and
lead the project. He wrote the code, ran all experiments,
reverse engineered the weights of the network trained on
composition on S5 in Section 5, and used this to automate
the process of reverse engineering many more models in
Section 6. He also wrote the paper.

Lawrence Chan provided significant help clarifying, fram-
ing and distilling the results, and with editing the final
manuscript.

Neel Nanda supervised and mentored the entire project. He
developed the complete version of the GCR algorithm based
on Sam Marks’s original version, and showed that it suffices
to use a single faithful representation, and aided in editing
the final manuscript.

Acknowledgments
We would like to thank Joe Benton and Sam Marks for
a conversation at a party that sparked this project and for
seeing the connection between representation theory and
composition of S5, and additionally to Sam for contributing
the core idea of the GCR algorithm.

We are also grateful to Joe Benton, Joseph Bloom, Stephen
Casper, Ben Edelman, Jeremy Gillen, Stefan Heimersheim,
Adam Jermyn, Cassidy Laidlaw, Eric Michaud and Martin
Wattenberg for providing generous and valuable feedback
on our manuscript. Over the course of the project, our
thinking and exposition was also greatly clarified through
correspondence with Spencer Becker-Kahn, Paul Colognese,
Alan Cooney and Jacob Merizian.

BC would like to thank the SERI MATS 2.1 program, par-
ticularly Joe Collman and Maris Sala, for providing an ex-
cellent research environment during the entire project. BC
was also supported by SERI MATS for the duration of the
project.

We trained our models using PyTorch (Paszke et al., 2019)
and performed our data analysis using NumPy (Harris et al.,
2020) and Pandas (McKinney, 2010). We made use of
SymPy (Meurer et al., 2017) to handle permutation group
operations, and TransformerLens (Nanda, 2023) to
cache internal model activations for interpretability. Our
figures were made using Plotly (Inc., 2015).

References
Alperin, J. L. and Bell, R. B. Groups and Representations,

volume 162 of Graduate Texts in Mathematics. Springer,
New York, NY, 1995. ISBN 978-0-387-94526-2 978-1-
4612-0799-3. doi: 10.1007/978-1-4612-0799-3.

Bansal, Y., Nakkiran, P., and Barak, B. Revisiting Model
Stitching to Compare Neural Representations, June 2021.

Barak, B., Edelman, B. L., Goel, S., Kakade, S., Malach, E.,
and Zhang, C. Hidden Progress in Deep Learning: SGD
Learns Parities Near the Computational Limit, January
2023.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

9

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
Models are Few-Shot Learners, July 2020.

Cammarata, N., Carter, S., Goh, G., Olah, C., Petrov, M.,
Schubert, L., Voss, C., Egan, B., and Lim, S. K. Thread:
Circuits. Distill, 5(3):e24, March 2020. ISSN 2476-0757.
doi: 10.23915/distill.00024.

Davies, X., Langosco, L., and Krueger, D. Unifying
Grokking and Double Descent. In NeurIPS ML Safety
Workshop, December 2022.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
DasSarma, N., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Jones, A., Kernion, J., Lovitt, L.,
Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J.,
McCandlish, S., and Olah, C. A mathematical framework
for transformer circuits, 2021.

Frankle, J. and Carbin, M. The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks, March 2019.

Ganguli, D., Hernandez, D., Lovitt, L., DasSarma, N.,
Henighan, T., Jones, A., Joseph, N., Kernion, J., Mann, B.,
Askell, A., Bai, Y., Chen, A., Conerly, T., Drain, D., El-
hage, N., Showk, S. E., Fort, S., Hatfield-Dodds, Z., John-
ston, S., Kravec, S., Nanda, N., Ndousse, K., Olsson, C.,
Amodei, D., Amodei, D., Brown, T., Kaplan, J., McCan-
dlish, S., Olah, C., and Clark, J. Predictability and Sur-
prise in Large Generative Models. In 2022 ACM Confer-
ence on Fairness, Accountability, and Transparency, pp.
1747–1764, June 2022. doi: 10.1145/3531146.3533229.

Goh, G., †, N. C., †, C. V., Carter, S., Petrov, M., Schubert,
L., Radford, A., and Olah, C. Multimodal neurons in
artificial neural networks. Distill, 2021. doi: 10.23915/
distill.00030.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o, J. F.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and
Oliphant, T. E. Array programming with NumPy. Nature,
585(7825):357–362, September 2020. ISSN 1476-4687.
doi: 10.1038/s41586-020-2649-2.

Inc., P. T. Collaborative data science. https://plot.ly, 2015.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Simi-
larity of Neural Network Representations Revisited, July
2019.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H.,
and Wattenberg, M. Emergent World Representations:
Exploring a Sequence Model Trained on a Synthetic Task,
February 2023.

Li, Y., Yosinski, J., Clune, J., Lipson, H., and Hopcroft, J.
Convergent Learning: Do different neural networks learn
the same representations?, February 2016.

Lindner, D., Kramár, J., Rahtz, M., McGrath, T., and Miku-
lik, V. Tracr: Compiled Transformers as a Laboratory for
Interpretability, January 2023.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers Learn Shortcuts to Automata, October
2022a.

Liu, Z., Kitouni, O., Nolte, N., Michaud, E. J., Tegmark,
M., and Williams, M. Towards Understanding Grokking:
An Effective Theory of Representation Learning, October
2022b.

Liu, Z., Michaud, E. J., and Tegmark, M. Omnigrok:
Grokking Beyond Algorithmic Data, October 2022c.

McGrath, T., Kapishnikov, A., Tomašev, N., Pearce, A., Has-
sabis, D., Kim, B., Paquet, U., and Kramnik, V. Acquisi-
tion of Chess Knowledge in AlphaZero. Proceedings of
the National Academy of Sciences, 119(47):e2206625119,
November 2022. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.2206625119.

McKinney, W. Data Structures for Statistical Comput-
ing in Python. Proceedings of the 9th Python in Sci-
ence Conference, pp. 56–61, 2010. doi: 10.25080/
Majora-92bf1922-00a.

Mehrer, J., Spoerer, C. J., Kriegeskorte, N., and Kietz-
mann, T. C. Individual differences among deep neu-
ral network models. Nature Communications, 11(1):
5725, November 2020. ISSN 2041-1723. doi: 10.1038/
s41467-020-19632-w.

Meurer, A., Smith, C. P., Paprocki, M., Čertı́k, O., Kirpichev,
S. B., Rocklin, M., Kumar, Am., Ivanov, S., Moore, J. K.,
Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F.,
Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, Š.,
Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and
Scopatz, A. SymPy: Symbolic computing in Python.
PeerJ Computer Science, 3:e103, January 2017. ISSN
2376-5992. doi: 10.7717/peerj-cs.103.

Morcos, A. S., Raghu, M., and Bengio, S. Insights on repre-
sentational similarity in neural networks with canonical
correlation, October 2018.

10

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

Nanda, N. A Comprehensive Mechanistic Interpretability
Explainer & Glossary. https://www.neelnanda.io/glossary,
December 2022.

Nanda, N. TransformerLens, January 2023.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability, January 2023.

Neyshabur, B., Tomioka, R., and Srebro, N. In Search of
the Real Inductive Bias: On the Role of Implicit Regular-
ization in Deep Learning, April 2015.

Olah, C., Mordvintsev, A., and Schubert, L. Feature Vi-
sualization. Distill, 2(11):e7, November 2017. ISSN
2476-0757. doi: 10.23915/distill.00007.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom In: An Introduction to Circuits.
Distill, 5(3):e00024.001, March 2020. ISSN 2476-0757.
doi: 10.23915/distill.00024.001.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark,
J., Kaplan, J., McCandlish, S., and Olah, C. In-context
Learning and Induction Heads, September 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An Imperative
Style, High-Performance Deep Learning Library, Decem-
ber 2019.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization Beyond Overfitting
on Small Algorithmic Datasets, January 2022.

Sellam, T., Yadlowsky, S., Wei, J., Saphra, N., D’Amour,
A., Linzen, T., Bastings, J., Turc, I., Eisenstein, J., Das,
D., Tenney, I., and Pavlick, E. The MultiBERTs: BERT
Reproductions for Robustness Analysis, March 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
Is All You Need, December 2017.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the Wild: A Circuit for
Indirect Object Identification in GPT-2 small, November
2022.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang,
P., Dean, J., and Fedus, W. Emergent Abilities of Large
Language Models, October 2022.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking Like
Transformers, July 2021.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gunasekar,
S., and Wagner, T. Unveiling Transformers with LEGO:
A synthetic reasoning task, July 2022.

11

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

A. Relevance for Mechanistic Interpretality
How might this work influence interpretability work on real models? We view our work as a contribution towards where
to direct effort in the field. Mechanistic interpretability focuses on reverse engineering neural networks, and providing
mechanistic explanations for model behaviors.

Recently, the field has been making good progress towards understanding how networks implement behavior in a range of
contexts. Initial work successfully reverse engineered neurons in computer vision models, (Olah et al., 2020; 2017; Goh
et al., 2021), finding certain neurons represent interpretable human concepts. Other work has found interpretable components
of Transformer language models, such as ‘induction heads’, responsible for copying from earlier in the context window and
consequently in context learning (Olsson et al., 2022). Wang et al. (2022) were able to reverse engineer a large subgraph of
GPT-2, responsible for successful completions of the indirect object identification task (IOI). Nanda et al. (2023) were able
to reverse engineer Transformers trained to perform modular addition, and through doing so, understand why these models
grokked. Mechanistic interpretability has also been applied to AlphaZero and to a model trained to play Othello (McGrath
et al., 2022; Li et al., 2023) and has been able to demonstrate these networks too learn human understandable concepts.

Much of this work focuses on a single, small model, sometimes with the explicitly stated goal of generalizing to large
foundation models (Elhage et al., 2021). Wang et al. (2022) for instance only investigated one model (GPT-2 small). This is
often motivated by the universality hypothesis (Olah et al., 2020) - that there exist canonical solutions to tasks that networks
consistently implement - but investigations into single small models may be too specific. If the universality hypothesis is
true, work on small or single models may generalize directly to other/larger models of genuine interest. But if not, the
mechanistic interpretability community may be wasting substantial effort and should focus instead on directly interpreting
models of genuine interest, or creating tools to automate this process. Better understanding the universality hypothesis is
therefore important.

Prior work in mechanistic interpretability has sometimes found similar features and circuits across a range of models.
Different computer vision models were found to contain similar and interpretable “curve detector” and “high low frequency
detector” neurons in early layers (Olah et al., 2020). Sometimes, the same feature has been found to be computed by different
circuits - such as induction heads in Transformer language models, as noted in the appendix here (Olsson et al., 2022).
However, no one so far has comprehensively and systematically studied the question of how well mechanistic explanations
generalize across models, and how big a weakness focusing on a single model is.

In our work, we sought to answer this question. We chose a toy task, where we were (to our surprise) able to fully enumerate
all possible solutions through the different representations which were of varying complexity. Our methods allowed us to
inspect which of these ground truth features networks had learned. Through doing so, we found that reverse engineering
one model was insufficient to understand behavior in general. Our mainline S5 model only gave us insights into two of
the possible circuits used to solve the task (corresponding to the sign and standard representations), out of a possible six.
Only after studying many more models were we able to observe all the different mechanisms used to implement the single
behavior.

We view our work as a proof of concept that by reverse-engineering circuits in many models, one can build a comprehensive
periodic table of features that permits understanding of how networks implement behavior in general. Practically speaking,
we then suggest that those studying model behaviors should perform “robustness checks” in many models to truly understand
all possible mechanisms behind behavior. This may have future relevance to auditing models via mechanistic interpretability.
There exist resources that permit the study of universality in language models already, such as MultiBert (Sellam et al.,
2022), which offers a set of similar models trained on different random seeds, much like our models. One could begin by
studying the IOI circuit (Wang et al., 2022) in these models, and examining whether the same mechanism is universally
learned, and if not, how large the family of possible mechanisms truly are.

B. Similarities and differences with prior work on reverse engineering modular addition
Here, we summarize the prior work of Nanda et al. (2023) that we build on, and detail where our experimental approaches
differ. We note our contributions differ in that we use our mechanistic understanding to study universality. The authors train a
one-layer Transformer model, of same type as we use (Section C) on modular addition. They find strong evidence it performs
a completely understandable algorithm involving discrete Fourier transforms of the two inputs at various frequencies, and
then makes use of various trigonometric identities to combine these. The key result which we generalize is that given inputs
a and b the network computes cos (ω(a+ b− c)) for each possible output z over some fixed set of frequencies ω. Taking
the argmax of this expression over c gives the correct answer. One can track the progress of this computation faithfully

12

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

through the Transformers activations and weights.

Using this mechanistic understanding, the authors define the concept of a ‘progress measure’ that underlies the emergent
behavior of grokking, a qualitative and discontinuous change in model behavior. They find that the training history of the
model can be separated into three stages. First, the model memorizes the training data. Then, the circuit components for the
general algorithm form smoothly. Finally, the memorized algorithm is cleaned up and removed as it is more complex and
not favored by weight decay. Grokking occurs during cleanup, at the critical point after which the learned general algorithm
is competitive with the ‘memorized’ algorithm – performance of the general algorithm is heavily hampered by ‘noise’ from
the memorized algorithm. Crucially, the progress measures show that the components responsible for grokking arise before
the sharp discontinuity in test loss.

We follow this approach closely. Our techniques in Section 5 are heavily inspired by Nanda et al.’s approach. Our precise
analysis though differs substantially. Fourier transforms are elegant, but specific to the modular addition task. We instead
work with representation matrices, and subspaces.

On modular addition of 113 elements, i.e. group composition on C113, we are able to replicate their results in our framing.
As discussed in Section 4, their algorithm maps precisely onto our GCR algorithm, and both approaches may be used to
understand the cyclic group task. The mapping of their findings onto ours is fairly clear for embeddings, unembeddings and
logits. For MLP neurons, they found that most neurons were well explained by a quadratic form of sinusoidal functions of
the 9 terms within a single frequency. This quadratic form shared coefficients in such a way such that this had 2 redundant
degrees of freedom, giving 7 terms. In our case, MLP neurons contain information pertaining to ρ(a), ρ(b) and ρ(ab). In the
special case of cyclic representations (see Appendix D.1.1), each of these terms has 2 degrees of freedom by antisymmetry.
Adding a constant gives precisely the same seven terms.

C. Architecture Details
Our mainline model is trained on 40% of all n2 entries in the multiplication table of the group. We use full batch gradient
descent. We use weight decay with λ = 1, and the AdamW optimizer, with learning rate γ = 0.001, β1 = 0.9 and
β2 = 0.98. We perform 250, 000 epochs of training. As there are only n2 possible input pairs, we evaluate test loss and
accuracy on all pairs of inputs not used for training.

C.1. MLP
Our MLP architecture is summarized in Figure 1. Inputs a and b are encoded as n dimensional one-hot vectors. Each one-hot
vector is embedded with d = 256. These are concatenated to form a 512 dimensional vector, which is fed into a h = 128
linear layer, with no bias term. 6 The output is mapped via an unembedding linear map, WU , to n logits, corresponding
to each of the n group elements. We did not tie the left embedding, right embedding or unembedding matrices. This is a
simplified version of the Transformer architecture used by Nanda et al. (2023) (described below) which removes attention.
Attention is both empirically irrelevant in this prior work, and not predicted to be necessary by our algorithm. The form of
logits is therefore

Logits = W_U @ ReLU(W_MLP @ [W_left @ a, W_right @ b])

Note that the embedding matrices and linear layer have no non-linearity between them. When interpreting model calculations
we will tie these matrices, and think of the a and b embeddings as the result of passing inputs through both layers. This
methodology is inspired by (Elhage et al., 2021), 7. The remainder of the operation of the linear layer is then to add these
two ‘total’ embeddings and pass them through a ReLU. That is,

Logits = W_U @ ReLU(W_a @ a + W_b @ b)

where

W_a = W_MLP[:d, :] @ W_left W_b = W_MLP[d:, :] @ W_right

6Emperically, we found adding a bias made little difference to our results, though we hypothesize that training models with a bias may
improve the model’s ability to perform matrix multiplication of activations, and hence interpretability.

7Here, the authors tie Transformer’s Q and K matrices, and O and V matrices for the same reason.

13

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

C.1.1. CHOICE OF NETWORK SIZE

We note this architecture is over parameterized for our tasks. Smaller networks, with fewer parameters, often struggled to
generalize consistently due to optimization issues. We chose a hidden layer size of 128 to avoid these. We do not think
the choice of network size generally affected our results. To verify this, we repeated our mainline S5 experiment many
more times, on networks with hidden size ranging from 32 to 256. Of those that did generalize, we saw the GCR algorithm
was consistently implemented. We did not see a noticeable effect of network parameter count on which representations
were learned. Interestingly, networks consistently learned the sign representation early on, even if they did not successfully
generalize later. Sometimes, a generalized network with a small hidden layer would throw away the sign representation late
in training to make room for another, higher dimensional, representation, with more generalization power.

C.2. Transformer
Our Transformer architecture for other runs is a decoder only architecture is based on Vaswani et al. (2017). It is identical
to the set up for mainline experiments in Nanda et al. (2023). The input to the model is of the form “a b =”, where a
and b are encoded as n-dimensional one-hot vectors, and ‘=’ is a special token above which we read the output c. We
use a one-layer ReLU Transformer, token embeddings with d = 128, learned positional embeddings, 4 attention heads of
dimension d/4 = 32, and n = 512 hidden units in the MLP. At points we analyze it’s embedding WE , MLP layer, and map
to logits WL = WUWout, ignoring the residual skip connection, which we find empirically is not utilized significantly for
our tasks.

D. Mathematical Representation Theory
In this section we present the results from group, representation, and character theory we make use of. We begin by
motivating our use of representation theory in this context. Groups are an abstraction of the idea of symmetry. In practice
though, groups are not purely abstract objects, and tend to arise due to their action on other things. Often, these things are
naturally attached to some vector space V , such that G gives rise to a linear action ρ on V , which we call a representation.

Representation theory appears in several physical systems and is of fundamental importance to science. While groups encode
the symmetries of physical systems, representations prescribe the set of possible actions of these symmetries on physical
vector spaces. For instance, the representation theory of the particular Lie groups encoding symmetry transformations of
spacetime determine the particles predicted by the standard model, which we observe in the universe.

Definition D.1. A linear representation ρ is a group homomorphism ρ : G → GL(V) where GL(V) denotes the general
linear group of some vector space V over a field F, the set of linear maps on V .

We focus on real representations, i.e. group homomorphisms ρ : G → GL(Rd), the set of real invertible d× d matrices. We
give some concrete examples of such representations of particular groups in Section D.1. We hypothesize representations
are a natural way for a neural networks to implement operations on group elements. Representing group elements in a linear
algebra theoretic manner seems like it would be advantageous to a networks natural operations of matrix multiplication and
addition. We discuss this observation further in Appendix G.

Definition D.2. Let ρ : G → GL(V) be a linear representation. ρ is said to be irreducible if ρ has no G-stable subspace.
That is, there is no subspace of V on which ρ defines a sub-representation of G.

From now on, we will use the term irrep to refer to irreducible representations. Irreps are the key object of interest. This is
due to Maschke’s Theorem.

Theorem D.3. (Maschke) Every representation of a finite group G is a direct sum of irreducible representations. That is,
there exists some basis in which all representation matrices are block diagonal, where the block sizes d1, . . . , dk are the
same for all ρ(g) with g ∈ G.

Example. Every group G has a representation for any dimension d mapping each group element to identity matrix Id. This
is the direct sum of d one-dimensional irreducible representations named the ‘trivial’ representation, given by ρ(g) = 1 for
all g ∈ G.

This representation isn’t practically useful, as the network can not use these representations to perform calculations on group
elements. We will often exclude the trivial representation and refer to non-trivial representations. There are a finite number
of these due to

14

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

Theorem D.4. Let G be a group of order n and let ρi be distinct (up to isomorphism) irreducible representations of
G over some splitting field F. Let di be the dimension of ρi, and r be the number of irreducible representations. Then
n = d21 + · · ·+ d2r .

Some representations are more useful to the network than others:

Definition D.5. A representation ρ is said to be faithful if different elements g of G are represented by distinct linear maps
ρ(g). In other words, the group homomorphism ρ : G → GL(V) is injective.

Faithful representations are the most useful to the network, though we will often see networks also make use of lower degree
non-faithful representations too.

Character theory forms an important part of representation theory, and will be important to our use case.

Definition D.6. Let V be a finite-dimensional vector space over a field F and let ρ : G → GL(V) be a representation of a
group G on V. The character of ρ is the function χρ : G → F given by χρ(g) = tr ρ(g), the trace of the representation
matrix.

We now present some useful facts about characters. Character’s are class functions – that is, they take a constant value on
each conjugacy class of the group. Note too that

χ(g−1) = χ(g)

In the case of real representations this implies

χ(abc−1) = χ((abc−1)−1) = χ(c(ab)−1) = χ((ab)−1c)

where in the final step we used the cyclic property of trace. χ((ab)−1c) is naively an alternative valid computation the
network could use to compute correct answers, and this shows it is equivalent to the GCR algorithm.

Theorem D.7. Let G be a group, and ρ : G → GL(Rd) a real representation of it of dimension d. For g ∈ G,
χρ(g) = tr ρ(g) ≤ d with equality iff ρ(g) = I .

Proof. Let |G| = n. Since ρ is a group representation, and the order of elements in a group divide n, ρ(g)n = I for all
g. The eigenvalues of ρ(g) are therefore n’th roots of unity, so each character is a sum of roots of unity. By the triangle
inequality, the claim holds.

Theorem D.8. (Schur’s Orthogonality Relation of Characters) The space of complex-valued class functions of a finite
group G is endowed with a natural inner product, given by

⟨α, β⟩ = 1

|G|
∑
g∈G

α(g)β(g)

where β(g) denotes the complex conjugate. With respect to this inner product, the irreducible characters form an orthonormal
basis for the space of class functions, yielding the orthogonality relation

⟨χi, χj⟩ =

{
0 if i ̸= j

1 if i = j

Theorem D.9. (Schur’s Orthogonality Relation of Matrix Elements) Let ρλ be irreducible representations of a finite group
G of dimension dλ with matrix presentations Γλ

ij . Without loss of generality, we may assume Γλ is unitary, as any matrix
representation is equivalent to a unitary representation.

Then ∑
g∈G

Γλ(g)ijΓ
µ
i′j′ = δλµδii′δjj′

|G|
dλ

15

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

Note that the overbar denotes a complex conjugate, and the unitarity assumption only affects the constant, not the
orthogonality.

D.1. Explicit Groups and Representations
Our methods for reverse engineering networks require mechanistic understanding of the precise form of representations. Here,
we describe the irreducible representation matrices for particular groups. The classification of irreducible representations for
any given group requires some machinery not presented here, and which we don’t require for the purposes of our work. We
just state the key results.

D.1.1. IRREDUCIBLE REPRESENTATIONS OF THE CYCLIC GROUP

The cyclic group Cn encodes rotational symmetries of an n-gon. Over the reals, the irreducible representations of Cn fall
into three classes. Note that Theorem D.4 does not apply here as C is a splitting field for Cn, but R is not.

1. the 1-dimensional trivial representation 1

2. the 1-dimensional sign representation 1sgn, which only appears if the group order is even.

3. the 2-dimensional standard representations 2k of rotations in the Euclidean plane by angles that are integer multiples
of 2πk

n for k ∈ N 0 < k < n/2. The representation matrices may be written explicitly as

ρk(x) =

(
cos

(
2πk
n x

)
− sin

(
2πk
n x

)
sin

(
2πk
n x

)
cos

(
2πk
n x

))
Note the complex representations are much simpler, consisting of the n’th roots of unity. The sign representation appears
then due to −1 being a root of unity iff n even. For k = n/2, the 2d representation is the direct sum of two copies of the
sign representation, so is not irreducible, and for k > n/2 we have the isomorphism 2n−k ⋍ 2k.

D.1.2. IRREDUCIBLE REPRESENTATIONS OF THE DIHEDRAL GROUP

We focus on dihedral groups Dn = ⟨r, s|rn = s2 = e, srs = r−1⟩, with n odd. These encode all symmetries of an n-gon,
rotational and reflectional. The representations of these groups are much the same as those of cyclic groups, and fall into
three categories.

1. the 1-dimensional trivial representation 1

2. the 1-dimensional sign representation 1sgn, mapping ⟨r⟩, i.e. rotations, to 1, and the coset, i.e. reflections to −1.

3. the 2-dimensional standard representations 2k, corresponding to rotations and reflections in the Euclidean plane.

ρk(r
l) =

(
cos

(
2πk
n l

)
− sin

(
2πk
n l

)
sin

(
2πk
n l

)
cos

(
2πk
n l

))

ρk(r
ls) =

(
cos

(
2πk
n l

)
sin

(
2πk
n l

)
sin

(
2πk
n l

)
− cos

(
2πk
n l

))
D.1.3. IRREDUCIBLE REPRESENTATIONS OF THE SYMMETRIC GROUP

Our mainline experiments involve the permutation, or symmetric, group of 5 elements, denoted S5. We denote general
permutation groups of n elements Sn. This is an interested group to look at due to Cayley’s Theorem:

Theorem D.10. (Cayley) Every group is isomorphic to a subgroup of a symmetric group.

We list the lowest dimensional irreps of Sn in Table 4. These may be fairly easily constructed. We constructed trivial irreps
in Appendix D, but to recap, this just maps every group element to the scalar 1.

The sign representation are a set of 1 × 1 matrices representing a kind of parity. Permutations may be decomposed as a
(non unique) sequence of swaps. The parity of this number of swaps is in fact well defined, and defines a subgroup of the
symmetric group named the alternating group. Mapping this alternating group to +1, and the coset to −1 gives the sign

16

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

Table 4. The lowest degree irreps for Sn for n ≥ 7, and their dimension. For n ≤ 7, additional symmetries give rise to other low
dimensional irreps on top of these.

Sn IRREP DIMENSION

TRIVIAL 1
SIGN 1
STANDARD n− 1
STANDARD ⊗ SIGN n− 1

representation. In general, any group containing a subgroup of index 2 is naturally endowed with a sign representation in a
similar manner.

Next is the standard representation. This is essentially the set of permutation matrices – n× n square binary matrices, with
only one 1 in each row and column, and 0s elsewhere. This representation has dimension n, though, not n − 1. This is
because it turns out to be reducible. Recalling Definition D.2, this has an invariant subspace under the action of G, spanned
by the vector sum of all basis elements. The irreducible representations recovered are the standard and trivial representations.

Standard ⊗ Sign denotes the tensor product of the standard and sign representations, which is just their matrix product as
the sign representation is 1 dimensional.

S5 has three higher degree representations, which I denote 5d a, 5d b, 6d. We omit their construction here.

D.1.4. IRREDUCIBLE REPRESENTATIONS OF A5

As a subgroup of S5, A5 inherits representations from S5. However, the six dimensional representation of S5 becomes
reducible, splitting into two three dimensional irreps of A5. We omit details here.

E. Additional Reverse Engineering of Mainline Model
Here we give further evidence our mainline model trained on S5 performs the GCR algorithm as detailed in Section 4, and
give further details regarding our methods.

17

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2

0

0.2

0.4

0.6

0.8

sign
standard
standard_sign
5d_a
5d_b
6d

epoch

fr
ac

tio
n

of
 v

ar
ia

nc
e

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2

0

0.2

0.4

0.6

0.8

sign
standard
standard_sign
5d_a
5d_b
6d

epoch

fr
ac

tio
n

of
 v

ar
ia

nc
e

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 sign
standard
standard_sign
5d_a
5d_b
6d

epoch

fr
ac

tio
n

of
 v

ar
ia

nc
e

Figure 9. Evolution of the fraction of the left embedding (top left), right embedding (top right), and unembedding (bottom) explained by
ρ(a), ρ(b) and ρ(c−1) respectively. Representations are learned suddenly and at approximately the same time across all the embeddings,
evidence that they are learned as part of the GCR algorithm. As the representation spaces form an orthogonal decomposition of Rn, the
terms will always add up to 1, so we draw the reader’s attention to the sparsity over embeddings. At initialization, each representation
explains d2/|G| of the embedding due to randomness.

E.1. Progress Measures
Here, we provide further discussion on how we use progress measures to understand grokking generalization in our models.
We first give more full definitions of our progress measures below.

Restricted Loss. We restrict the MLP activations to the terms corresponding to ρ(ab) in the key representations, a 16 + 1
dimensional subspace of R128, and then map this restricted MLP layer to logits. By doing so, we isolate the performance of
the generalising algorithm. This assumes that the memorising algorithm has no privileged subspace in the MLP layer.

Excluded Loss. The opposite of restricted loss. Instead of keeping the key representations, we remove only those
representations from the MLP neurons, and see how this affects loss. Having removed the generalising solution, this isolates
the performance of the memorising solution. This therefore makes sense to measure only on the training data, which we do.

The three phases of training we define are as follows, and can be seen in Figures 6 and 12.

Memorization. (Epochs 0-2k) We first observe a decline of both excluded and train loss, with test and restricted loss both
remaining high. In other words, the model memorizes the training data. The sum of squared weights peaks at the end of
memorization, so weight decay does not prefer these memorized circuits. As test loss increases but restricted loss stays
constant as no progress towards generalization is made, the ratio of test loss to restricted loss rises.

Circuit Formation. (Epochs 2.2k-87k) In this phase, excluded loss rises, sum of squared weights falls (Figure 12), restricted
loss starts to fall, and train and test loss stay flat. This suggests that the models behavior on the train set transitions smoothly
from the memorising solution to the generalizing solution. The fall in the sum of squared weights suggests that circuit
formation likely happens due to weight decay. Notably, the circuit is formed well before grokking.

Cleanup. (Epochs 87k-120k) In this phase, restricted loss continues to drop, test loss suddenly drops, sum of squared weights
sharply drops, and the ratio of test to restricted loss is variable and then sharply decreases (Figure 12). As the generalising
circuit both solves the task well and has lower weight at comparable performance as compared with memorisation circuits
on the training set, weight decay encourages the network to shed the memorised solution. Weight decay contributes an
important inductive bias of our networks (Neyshabur et al., 2015). The slight rise in restricted loss at the very end of training

18

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 sign
standard
standard_sign
5d_a
5d_b
6d

epoch

fr
ac

tio
n

of
 v

ar
ia

nc
e

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
sign
standard
standard_sign
5d_a
5d_b
6d

epoch

fr
ac

tio
n

of
 v

ar
ia

nc
e

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2

0

0.02

0.04

0.06

0.08

0.1 sign
standard
standard_sign
5d_a
5d_b
6d

epoch

fr
ac

tio
n

of
 v

ar
ia

nc
e

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

epoch
fr

ac
tio

n
of

 v
ar

ia
nc

e

Figure 10. Evolution of the fraction of the MLP neurons explained by ρ(a) (top left), ρ(b) (top right), ρ(ab) (bottom left), and the
sum of all three over all representations (bottom right). These track the same timing as representation learning in the embeddings and
unembeddings, further evidence for our algorithm. Note that in order to perform step 2 in the GCR algorithm, ρ(ab) must be calculated.
If a representation has ρ(a) and ρ(b) represented but not ρ(ab) then the representation has not been learned.

0 20 40 60 80 100 120
15
10

5
0

−0.4

−0.2

0

0.2

0.4

neuron basis

re
p

ba
si

s

Figure 11. Change of basis matrix from projected MLP space standard representation space. Note some neurons correspond to blocks of 4
cells in the representation basis – these correspond to standard representation matrix rows. Neurons in other clusters can be explicitly seen
as being off in this change of basis matrix.

is too a result of weight being traded off against performance – multiplying the entire circuit by a fixed constant r > 1 will
reduce loss, though also requires more weight.

E.2. Full Circuit Analysis: Sign Representation
In Nanda et al. (2023), the authors primarily analyze 2d representations via Fourier transforms, and we primarily analyze
4d standard representations in our mainline model. Treating sines and cosines as separate objects adds complexity, which
we avoid by unifying them as matrix elements of the same representation. However, two dimensional features retain some
redundancy over choice of basis, or equivalently, choice of rotation axis. So in general, some manipulation of activations
and weights is necessary to interpret the model.

The sign representation on the other hand is a one dimensional representation of certain groups. This computational subgraph
may be understood by directly inspecting activations and weights, without ever having to change basis. We demonstrate this

19

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

0 20k 40k 60k 80k 100k 120k
0

5k

10k

15k

20k

epoch

su
m

 o
f s

qu
ar

ed
 w

ei
gh

ts

0 20k 40k 60k 80k 100k 120k
89
1

2
3
4
5
67
89

10

2
3
4
5
67
89

100

2

epoch

ra
tio

Figure 12. The sum of squared weights (left), and ratio of test loss and restricted loss (right). The sum of squared weights decreases
smoothly during circuit formation and more sharply during cleanup, indicating both phases are linked to weight decay. Intuitively,
restricted loss is us artificially cleaning up some the model (besides WU), while test loss requires both circuit formation and cleanup. So a
large discrepancy shows the rate of circuit formation outstrips the rate of cleanup during grokking.

0 20k 40k 60k 80k 100k 120k
1μ

10μ

100μ

0.001

0.01

0.1

1

10 sign
standard
standard_sign
5d_a
5d_b
6d

epoch

Ex
cl

ud
ed

 L
os

s

0 20k 40k 60k 80k 100k 120k
10μ

2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

sign
standard
standard_sign
5d_a
5d_b
6d

epoch

R
es

tri
ct

ed
 L

os
s

Figure 13. Excluded (left) and restricted loss (right), separated out by representation. As with the results of Section 5.6, this shows the
model interpolates between memorizing and generalizing. In the restricted loss plot, we see the sign representation is incapable of solving
the task alone, but contributes several orders of loss improvement when coupled with the standard representation, as can be seen in
excluded loss.

simplicity on our mainline model.

MLP neuron activations are ‘blocky’. We can identify interpretable activation patterns by inspection. Working backwards
we identify embeddings directly learn ±sign(a) and ±sign(b).

We then can write out, for x, y some positive constants and ni neuron i:

n2 = xReLU (+sign(a) + sign(b))

n8 = xReLU (−sign(a)− sign(b))

n17 = xReLU (+sign(a) + sign(b))

n65 = xReLU (−sign(a)− sign(b))

n111 = xReLU (+sign(a)− sign(b))

n113 = yReLU (−sign(a) + sign(b))

n120 = xReLU (+sign(a)− sign(b))

In general, interpreting the matrix multiplication operation is challenging, though in the one dimensional case it turns out to
be simple. We see that the MLP performs multiplication of signs via ReLU and addition. For instance

n2 + n8 + n111 + n113 = 2x× sign(a)× sign(b)

20

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

0 50k 100k 150k 200k 250k
1μ

10μ

100μ

0.001

0.01

0.1

1

10

100
Train Loss
Test Loss

epoch

lo
ss

0 50k 100k 150k 200k 250k
0

0.1

0.2

0.3

0.4

0.5

0.6
sign
standard
standard_sign
5d_a
5d_b
6d

epoch

co
si

ne
 si

m
ila

rit
y

Figure 14. (Left) Train and test loss of the mainline model, only on a different random seed. (Right) Logit similarity of this run over
training. We see two phases of grokking. The model initially groks as the memorizing circuit is cleaned up in presence of the valid general
standard circuit. Loss then plateaus as the 5d b circuit is learned around epoch 100k, before the model groks again as cleanup continues.

−5

0

5

b b b b b b b

a

2 8 17 65 111 113 120

Figure 15. The seven ‘sign neuron’ activations over the whole distribution of inputs. Each activates uniformly on inputs, with form some
multiple of 1(sign(a) = ±1)1(sign(b) = ±1), where ± are independent.

This is essentially computing an XOR gate on the inputs, and in particular not multiplication of arbitrary inputs, which is
why the network can implement this operation perfectly. Note that we need a minimum of four neurons to implement this
operation in this manner 8. Empirically, we found that the number of sign neurons was often four exactly. In this case,
neuron 113 appears to be used in two such multiplication calculations.

We expect that higher dimensional matrix multiplication is implemented similarly – see further discussion in Appendix E.3.

Map to logits. Calling neurons 2, 8, 17 and 65 positive, and neurons 111, 113, and 120 negative, we find that WU |+ ∼
+sign(c−1) and WU |− ∼ −sign(c−1), thus this circuit contributes positively to logits on correct signs and negatively to
wrong signs, giving a contribution χsign(abc

−1) to logits.

E.3. Implementing Multiplication via ReLUs
Here we briefly discuss how networks may implement multiplication in a single layer. Our GCR algorithm necessitates this
in step 2, and we provide a simple example of this occurring in Appendix E.2.

Networks can multiply activations to some extent in one layer, though may not be able to do so perfectly, and also may
put redundant information into additional directions (as we suspect comprises the 12% residual of standard MLP neurons
in Section 5.3). Note in this context that multiplication is not generic multiplication, but multiplication of a fixed set of
elements. Most of our representation matrices have entries {0,−1, 1} on which multiplication can be implemented in a
finite set of ReLU’s with a bias as for instance

x× y = ReLU(x+ y − 1) +ReLU(−x− y − 1)−ReLU(x− y − 1)−ReLU(−x+ y − 1)

Changing the network architecture may aid it’s ability to perform multiplication. Changing activation function to x2 for
instance permits multiplication generically as

8If x, y ∈ {0, 1} then x XOR y = ReLU(x− y) +ReLU(y − x) is a solution in two neurons.

21

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

x× y =
1

4

(
(x+ y)2 − (x− y)2

)
We hypothesize that the number of neurons in each representation cluster learned is linked to the number of such ReLU
activations required to compute the matrix multiply, explaining why we have many more standard neurons than sign
even after accounting for higher dimensionality of representation. Of course networks won’t implement elementwise
multiplication but rather some efficient matrix algorithm, such as Strassens.

E.4. Visualizing the Embeddings and Unembeddings.
Power et al. (2022) found it useful to use t-SNE to vizualize the unembedding in their networks trained on S5. Here, we
replicate their results, and show an additional meaningful visualization in Figure 16. We did not find the unembedding WU

to cluster into subgroups as they did via t-SNE, but did via PCA. We did find clustering in embeddings into cosets of a
subgroup of S5, though found the cosets to be of a different subgroup. Over different runs, these subgroups were arbitrary,
though given the stochastic nature of t-SNE it is hard to say whether this observation is meaningful.

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

t-SNE component 1

t-S
N

E
co

m
po

ne
nt

 2

−60 −40 −20 0 20 40

−60

−40

−20

0

20

40

60

t-SNE component 1

t-S
N

E
co

m
po

ne
nt

 2

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

PCA component 1

PC
A

 c
om

po
ne

nt
 2

Figure 16. Left embedding (left) and right embedding (right) visualized in two dimensions via t-SNE. We see a large amount of structure.
Clusters correspond to cosets of an order 12 subgroup of S5. (Bottom) Visualization of the unembedding via PCA. The two clusters
correspond to cosets of A5, the alternating group i.e. the sign of group elements.

E.5. Further Reverse Engineering Details
Logit Similarity. Observed logits l(a, b, c) are an n3 dimensional tensor over all input pairs (a, b) and outputs c. The GCR
algorithm’s character predictions χ(abc−1) are also an n3 tensor. We compute the correlation of these by flattening each
tensor into a vector of dimension n3, and computing the cosine similarity of these.

Representation Space and Projection. We perform an operation analogous to extracting the Fourier modes of a periodic
function at each frequency. 9 Each representation gives a set of n d× d matrices, one for each group element. We wish to
investigate to what degree these are present in various model weights or activations. We can think of each representation as
an n × d2 tensor of flattened matrices R. We call the n-dimensional space spanned by these d2 columns representation
space. In order to project onto this space, we apply QR decomposition to R, obtaining R̃.

Any embedding or unembedding can be thought of an an n× h tensor W . Then R̃TW is a d2 × h matrix. By inspecting the

9The Fourier transform of a C valued function over G can in fact be defined rigorously via representation theory. We omit details here.

22

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

h dimension of this matrix, we may understand neuron clustering, and by comparing the norm of it relative to the norm
of the embedding or unembedding, we understand the percentage contribution of the subspace. An entirely analogous
methodology is applied to understanding the MLP neurons via hidden representation spaces.

Centering. Neural network activations often contain large biases, even without the presence of explicit bias terms in the
architecture. MLP neurons follow a ReLU activation, so necessarily have a mean positive activation. Accounting for this
would artificially increase all ‘fraction of variance explained’ metrics. To avoid this, we remove this bias by subtracting the
mean over the batch dimension before interpreting the MLP activations.

Similarly, since softmax is a function of relative logit difference, on each fixed input logits have some learned and unimportant
bias. Accounting for this would artificially contribute to ‘logit similarity’ under the trivial representation, and artificially
increase the fraction of logits explained metric. To avoid this, we remove this by subtracting the mean over output dimension.

F. Further Future Work
Below, we outline an additional area of future work.

Further group theoretic tasks. In this work we focus on the task of group composition. Power et al. (2022) find that several
other binary operations on pairs of input elements also grok, some of which are valid on any group. A trivial extension
would be to the task (a, b) → ab−1, which may be solved simply by learning a permutation of the right embedding. A non
trivial extension would be to conjugacy (a, b) → aba−1, which is of mathematical significance. Or to (a, b, c) → abc. Each
of these may be solved via similar representation theoretic algorithms, though we hypothesize would require two ReLU
layers to implement two matrix multiplies. Other classes of group theoretic tasks include those of group actions (a superset
of group composition type tasks) or to group theoretic automata, where we expect representation theoretic algorithms to
apply too. Extending to semigroups (arbitrary associative multiplication tables) expands the set of tasks one could model,
though there is no equivalent of representation theory for semigroups.

G. Further Discussion on Inductive Biases
A key question in ML is of understanding the inductive biases of a network: what are the class of algorithms natural for a
network to express? In addition to being useful across the board, results in this area could help guide hypothesis formation
in mechanistic interpretability. Examples of preliminary work on understanding Transformer inductive biases is presented in
Weiss et al. (2021) and Lindner et al. (2023).

Our work is useful in demonstrating the importance of linearity in networks. At a first glance, our algorithm seems
an overly complex solution to the problem to us, requiring some advanced mathematics to understand. Yet, networks
are extremely good at multiplying vectors of activations by matrices of parameters. Our algorithm consists mostly of
these operations, with a single step of activation-activation multiplication in the middle to implement the matrix multiply
ρ(a), ρ(b) → ρ(a)ρ(b). We discuss how networks may implement this operation in Appendix E.3. Note that the distinction
between parameter-activation multiplication and activation-activation is important, with the former substantially easier for
networks to implement. We also use a factored architecture (Appendix C), which results in a low-rank implicit bias, which
may encourage a sparse number of representations to be learned. More subjectively, we found the process of reasoning
through the algorithm and its implementation in the model to be insightful for better understanding networks ourselves.

We view this as evidence that the class of functions natural to humans and natural to networks are fundamentally different.
Gaining examples like these is a step forward, but much more future work remains to be done in gaining a better understanding
on these topics. Findings like these have in the past been beneficial in understanding real behaviour in networks, for instance
the induction heads found by Olsson et al. (2022) are an important part of the circuit for indirect object identification found
by Wang et al. (2022).

H. Universality Results
Here, we give full, unaveraged summary statistics of our runs on 4 seeds discussed in Section 6. We omit the 50 MLP S5

runs.

Why are logit FVE scores relatively low? We note that our algorithm’s prediction does not explain all of the logits, as can
be seen from FVE being less than 100%. Here, we provide some discussion on this. We do not believe this is evidence
against our claim that we completely understand the important algorithms our network is implementing. Rather, we believe

23

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

this is a side product of limitations of our architecture. In particular, as we discuss in Section 5.3 and Appendix E.3,
the model uses the ReLU activations to implement matrix multiplication of ρ(a) and ρ(b) to ρ(ab). This can only be
approximated by ReLUs, and produces other terms, notably significant components of ρ(a) and ρ(b). This means that the
network cannot perfectly extract the components of ρ(ab) because they do not correspond to directions orthogonal to all
other terms, resulting in the map to logits WU extracting other terms and non-character terms being present in the logits.
We suspect the high FVE of models trained on composition in the cyclic group is related to orthogonality properties of the
discrete Fourier transform not shared by general irreducible representations.

24

A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations

Table 5. Results from MLP runs on various groups and seeds. Our algorithm is universally learned. Key representations are listed in order
learned.

Loss FVE

Group Seed Key Representations Test Exc. Res. Logit Wa Wb WU MLP ρ(ab)

C113 1 32, 50, 44, 16, 17, 34, 4, 11, 22, 1, 8, 13, 25 2.86e-05 6.22 9.84e-03 93.68% 99.23% 99.07% 97.95% 91.08% 11.80%
C113 2 7, 22, 25, 24, 36, 30, 14, 41, 44, 48, 50 5.89e-06 5.15 1.96e-06 98.08% 99.65% 99.81% 98.35% 89.95% 11.71%
C113 3 37, 14, 55, 47, 52, 34, 9, 5, 54, 45, 2, 3, 18, 28, 39 2.46e-05 5.69 8.29e-03 92.69% 99.57% 98.96% 97.85% 90.01% 12.14%
C113 4 55, 11, 30, 27, 43, 34, 29, 22, 3, 53 6.15e-06 6.74 9.38e-03 97.89% 99.65% 99.72% 98.06% 89.98% 12.46%
C118 1 31, 49, 1, 12, 22, 45, 2, 20, 24, 28, 44, 56 5.75e-06 8.53 3.90e-06 97.22% 99.55% 99.55% 98.46% 94.61% 12.66%
C118 2 47, 23, 19, 29, 16, 44, sign, 30, 32, 38, 46, 58 5.19e-06 7.52 2.90e-03 98.25% 99.88% 99.81% 98.36% 94.67% 13.59%
C118 3 16, 30, 39, 8, 43, 48, sign, 11, 32, 40, 58 5.51e-06 10.92 7.93e-03 96.84% 99.84% 99.77% 98.40% 99.00% 13.63%
C118 4 sign, 14, 5, 25, 57, 1, 22, 2, 4, 10, 28, 50 5.11e-06 7.90 3.56e-03 98.19% 99.73% 99.82% 98.49% 95.09% 13.17%
D59 1 19, 20, 15, 6, 14, 8, 3, 7, 12, 16, 21, 29 9.50e-06 9.17 7.41e-07 48.65% 99.46% 99.40% 98.58% 86.81% 11.65%
D59 2 18, 10, sign, 19, 6, 26, 7, 20, 21, 23 4.30e-06 12.74 1.77e-06 54.92% 99.90% 99.93% 98.57% 88.05% 12.66%
D59 3 sign, 20, 22, 16, 9, 12, 11, 15, 18, 19, 24 6.88e-06 11.06 1.91e-06 56.79% 99.57% 99.71% 98.50% 87.82% 13.05%
D59 4 sign, 7, 10, 15, 21, 17, 19, 20, 29 4.68e-06 16.52 1.98e-06 53.05% 99.90% 99.89% 98.42% 88.03% 12.41%
D61 1 sign, 19, 23, 6, 7, 3, 24, 5, 12, 13, 14, 15 2.33e-05 11.21 1.76e-06 51.46% 99.17% 99.63% 98.05% 87.71% 12.05%
D61 2 sign, 4, 29, 8, 27, 26, 19, 28, 14, 9, 2, 7, 3, 16, 18 2.87e-05 10.20 1.48e-06 53.04% 99.30% 99.05% 98.44% 87.15% 13.00%
D61 3 15, 14, 9, 26, 2, 25, sign, 28, 4, 18, 30 5.58e-06 14.86 1.74e-06 54.99% 99.68% 99.89% 98.28% 88.44% 12.60%
D61 4 20, 21, 19, 7, 17, 15, 23, sign, 14, 27, 30 1.39e-05 11.75 1.77e-06 50.33% 98.90% 99.24% 98.28% 87.15% 12.26%
S5 1 sign, standard-sign, standard, 5d-a 3.14e-05 10.09 1.52e-07 39.05% 100.00% 99.96% 94.38% 87.95% 10.53%
S5 2 sign, standard 2.94e-06 7.59 7.08e-07 84.81% 100.00% 100.00% 94.05% 88.88% 12.97%
S5 3 sign, standard, 5d-b 4.32e-06 11.97 2.17e-08 59.89% 100.00% 99.99% 94.97% 88.85% 12.38%
S5 4 sign, standard 2.25e-06 17.21 1.96e-09 59.25% 100.00% 100.00% 93.18% 89.95% 12.66%
S6 1 5d-b, standard-sign, 5d-a, standard 5.12e-05 12.97 1.98e-06 34.50% 99.77% 99.87% 93.25% 86.69% 8.38%
S6 2 sign, standard, 5d-b 1.36e-05 13.42 2.52e-07 64.15% 100.00% 100.00% 93.42% 87.05% 10.27%
S6 3 sign, standard-sign, 5d-a, 5d-b, standard 9.09e-05 10.86 6.87e-06 40.97% 98.96% 99.42% 94.42% 84.15% 7.52%
S6 4 sign, 5d-b, standard-sign, standard 4.21e-05 11.41 1.54e-06 56.96% 99.86% 99.83% 93.60% 87.64% 9.75%
A5 1 standard, 3d-a, 3d-b 6.27e-05 7.23 1.56e-06 51.38% 98.52% 98.69% 93.08% 84.13% 9.46%
A5 2 standard, 3d-a, 3d-b 5.09e-06 9.45 3.96e-07 43.86% 98.99% 99.08% 92.94% 85.11% 10.62%
A5 3 3d-a, 5d-a, standard 3.73e-06 11.55 5.70e-08 49.96% 99.53% 99.74% 92.73% 89.12% 10.81%
A5 4 5d-a, 3d-a, standard, 3d-b 5.93e-06 11.03 9.81e-08 45.57% 99.14% 99.73% 94.32% 88.39% 10.14%

Table 6. Results from Transformer runs on various groups and seeds. Our algorithm is universally learned. Key representations are listed
in order learned.

Loss FVE

Group Seed Key Representations Test Exc. Res. Logit WE WU MLP ρ(ab)

C113 1 16, 30, 56 1.88e-07 9.77 2.26e-02 96.85% 90.08% 99.49% 92.67% 16.05%
C113 2 43, 53, 52, 49 3.89e-07 8.45 1.45e-02 96.70% 96.91% 99.71% 89.72% 17.17%
C113 3 25, 56, 33, 19 3.39e-07 8.76 8.19e-03 95.21% 95.70% 99.23% 93.32% 16.23%
C113 4 11, 12, 18 1.53e-07 10.69 3.96e-02 97.93% 98.05% 99.64% 92.77% 17.62%
C118 1 37, 10, 16, sign, 19 1.67e-07 9.54 1.63e-03 98.55% 93.88% 99.82% 94.81% 17.54%
C118 2 8, 12, 27, 57 1.94e-07 12.67 2.42e-03 98.35% 98.12% 99.49% 92.76% 16.36%
C118 3 53, 51, 4, 46 1.74e-07 6.25 3.16e-03 98.59% 92.74% 99.84% 93.49% 14.48%
C118 4 17, sign, 29 1.59e-07 35.28 1.01e+00 97.29% 91.46% 99.42% 97.46% 20.05%
D59 1 sign, 21, 5, 2 7.83e-06 54.66 1.06e-04 46.36% 98.36% 95.46% 85.38% 11.30%
D59 2 1, 15, 23 3.76e-06 69.84 6.62e-08 51.28% 98.10% 99.80% 84.26% 10.00%
D59 3 22, 20, 26 4.21e-07 31.95 6.76e-06 67.51% 99.12% 99.36% 85.09% 10.57%
D59 4 1, 16, sign, 24, 4 8.07e-07 29.24 1.23e-07 51.58% 98.76% 99.49% 85.31% 11.53%
D61 1 13, 26, 6, 16, 4, 1, 14, 12, 18 6.50e-02 27.57 3.41e-03 59.47% 95.48% 95.39% 86.08% 10.62%
D61 2 sign, 24, 4, 18 9.56e-06 51.42 3.80e-01 40.88% 98.91% 94.59% 85.70% 11.50%
D61 3 8, sign, 23, 28 4.23e-07 53.44 6.87e-08 51.71% 99.06% 99.82% 85.38% 11.30%
D61 4 2, 6, 13 1.89e-07 34.13 7.29e-08 56.37% 99.88% 99.79% 85.20% 11.04%
S5 1 sign, standard-sign 1.42e-07 16.63 1.78e-09 62.85% 99.86% 99.98% 80.51% 8.44%
S5 2 sign, standard-sign 2.41e-07 12.66 1.60e-08 73.46% 99.69% 99.92% 80.85% 7.58%
S5 3 sign, standard 9.39e-08 20.86 1.73e-11 59.06% 99.91% 99.99% 89.87% 12.44%
S5 4 sign, standard 9.51e-08 20.93 1.77e-11 59.07% 99.90% 99.99% 89.88% 12.46%
S6 1 5d-b 2.26e-06 531.31 4.93e-16 44.50% 99.97% 100.00% 88.06% 9.57%
S6 2 sign, 5d-b 2.91e-06 62.67 4.19e-06 65.69% 99.86% 99.74% 80.58% 7.90%
S6 3 sign, 5d-b 1.82e-06 286.64 9.78e-12 49.53% 99.96% 100.00% 88.32% 9.96%
S6 4 sign, 5d-b 1.87e-06 286.08 1.02e-11 49.58% 99.96% 100.00% 88.32% 9.96%
A5 1 3d-a, 3d-b 1.35e-07 15.65 1.40e-03 63.19% 94.62% 95.00% 77.00% 6.30%
A5 2 3d-a, 3d-b 1.30e-07 15.52 1.68e-03 63.29% 94.55% 94.95% 77.08% 6.33%
A5 3 5d-a, 3d-b, 3d-a 1.95e-01 27.92 1.30e-10 25.23% 101.04% 99.68% 90.65% 8.52%
A5 4 standard 8.06e-08 19.95 1.21e-11 52.84% 99.92% 99.98% 89.52% 11.75%

25

	Introduction
	Related Work
	Setup and Background
	Task Description
	Mathematical Representation Theory

	An Algorithm for Group Composition
	Reverse Engineering Permutation Group Composition in a One Layer ReLU MLP
	Logit Attribution
	Embeddings and Unembeddings
	MLP Neurons
	Logit Computation
	Correctness Checks: Ablations
	Understanding Training Dynamics using Progress Measures

	Universality
	Conclusion and Discussion
	Relevance for Mechanistic Interpretality
	Similarities and differences with prior work on reverse engineering modular addition
	Architecture Details
	MLP
	Choice of network size

	Transformer

	Mathematical Representation Theory
	Explicit Groups and Representations
	Irreducible Representations of the Cyclic Group
	Irreducible Representations of the Dihedral Group
	Irreducible Representations of the Symmetric Group
	Irreducible Representations of A5

	Additional Reverse Engineering of Mainline Model
	Progress Measures
	Full Circuit Analysis: Sign Representation
	Implementing Multiplication via ReLUs
	Visualizing the Embeddings and Unembeddings.
	Further Reverse Engineering Details

	Further Future Work
	Further Discussion on Inductive Biases
	Universality Results

