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Abstract

Language models often generate non-factual
statements, especially when handling complex
queries that require synthesizing information
from multiple sub-queries. Verifying the factu-
ality in such cases poses significant challenges
and often demands the use of large language
models, which can be computationally expen-
sive. In this work, we focus on one such sce-
nario: addressing non-factual statements within
a multi-hop question-answering setup using a
smaller model. We propose a novel approach
(Self-Resolve) inspired by the self-discovery
and self-check prompting techniques, enabling
language models to construct their own rea-
soning structures for fact verification and then
resolve the final answer based on a majority
voting mechanism. This integrated framework
outperforms closed-source models like GPT-
4 by 9% in F1 score for 2-hop query-answer
verification using Llama3-8B while achieving
competitive results in 3-hop and 4-hop settings.
These results underscore the effectiveness of
our approach and provide valuable insights into
the challenges and potential of fact-checking in
language models.

1 Introduction

Factual consistency is a critical aspect of evaluat-
ing the reliability of outputs generated by language
models. Despite their impressive language gen-
eration capabilities, these models frequently pro-
duce non-factual content, especially in response to
complex queries requiring compositional reason-
ing. Compositional reasoning involves tasks where
the meaning of a complex expression is determined
by its individual components and the rules govern-
ing their combination. Such scenarios are common
in daily life and involve the challenge of efficiently
orchestrating the use of appropriate tools in the
correct sequence. For instance, consider the query:
‘Which airline offers the cheapest flight from New
York to Mumbai that also provides an option for

vegetarian meals?’ Answering this requires a multi-
step (2-hop) process: first invoking an API to re-
trieve flight details and then using another API to
check meal options for vegetarian availability.

In recent years, significant progress has been
made in leveraging large language models (LLMs)
to address complex reasoning tasks. However, as
highlighted by (Augenstein et al., 2024), these tasks
often expose the limitations of LLMs’ reasoning
capabilities, emphasizing the critical role of fact
verification in ensuring the reliability of generated
outputs. While substantial efforts have focused
on addressing factual inconsistencies in general
NLP tasks, the domain of fact verification in com-
plex reasoning scenarios remains relatively under-
explored. Fact Verification involves assessing the
factual correctness of a statement based on refer-
ence evidence. In this work, we aim to advance re-
search in this area by focusing on detecting factual
correctness in setups where the input query com-
prises of multiple interconnected sub-queries. Al-
though approaches like those discussed in Manakul
et al. (2023); Arora et al. (2022); Dhuliawala et al.
(2023) utilize large LLMs such as GPT (Achiam
et al., 2023) for hallucination detection, these meth-
ods often suffer from high computational costs and
limited transparency posing significant challenges
for practical adoption.

Most studies have focused on using large lan-
guage models (LLMs) such as GPT-4 (Achiam
et al., 2023) for fact verification. These models,
although powerful, are computationally expensive
and often lack interpretability in their reasoning
processes. Current studies often leverage these
large models but fail to explore the potential of
smaller language models (under 10 billion param-
eters) for such tasks. Smaller models, if appro-
priately guided, can offer more transparent and
cost-effective solutions for detecting hallucinations
and verifying facts.

Direct prompting methods, which rely on ex-
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Figure 1: Self-Resolve (proposed framework): We begin by providing the model with initial heuristics (reasoning
modules), alongside the input and task definition. The Select module is then invoked to identify the most suitable
heuristics for the given task. Next, the Plan module generates a detailed, step-by-step reasoning plan tailored to
the specific query, incorporating both the Response and Context. Following this, the Execute module carries out
the reasoning plan, working towards the goal outlined in the Task Definition. This process is repeated across five
different temperature settings to introduce diversity in the reasoning paths. Finally, a majority voting mechanism is
applied to aggregate and resolve the outputs and determine the final result.

plicit cues in reference documents, have shown
limitations in handling complex reasoning tasks.
To address this, we draw inspiration from meta-
prompting approaches (Zhou et al., 2024; Fernando
et al., 2023), which prompt language models to gen-
erate their own prompts for reasoning tasks. While
these techniques are primarily designed for large
LLMs and focus on world knowledge, they often
neglect the intricacies of compositional reasoning.

In this work, we extend the meta-prompting
paradigm to smaller models, adapting it to handle
multi-hop queries by emphasizing reasoning over
world knowledge. Our proposed approach involves
finding the optimal solution by generating multiple
variants of the reasoning plan and resolving the fi-
nal answer through majority voting. The core idea
is inspired by how humans tackle complex prob-
lems: by considering various possible solutions and
prioritizing the one supported by the majority of
reasoning paths.

Our contributions are:

* An evaluation of meta-prompting capabilities
of smaller language models (less than 10 Bil-
lion) for hallucination detection (See Table 2).
To the best of our knowledge, this is the first
such study for smaller models.

* A novel approach for fact-verification inspired
by the thinking style of humans. The proposed
framework outperforms closed-source models

like GPT-4 by 9% in F1 score for 2-hop query-
answer verification using Llama3-8B while
achieving competitive results in 3-hop and 4-
hop settings (See Table 2).

¢ An extension of the MusiQue dataset with 600
instances containing hallucinated question-
answer pairs to facilitate the study of factual
inconsistency in multi-hop reasoning tasks
(See Table 1).

The motivation for this work stems from the
need to improve the reliability of smaller models in
handling complex natural language understanding
tasks. By enhancing the interpretability of halluci-
nation detection, we aim to increase transparency
in the reasoning processes underlying predictions.
Furthermore, this research has broader implications
for navigating complex tasks requiring multi-aspect
reasoning, such as diagnosing diseases based on
diverse symptoms.

Despite its promise, hallucination detection in
compositional reasoning setups presents significant
challenges. Smaller models face inherent limita-
tions in reasoning capabilities, making it difficult
to accurately detect factual inconsistencies in multi-
hop queries. This work addresses these challenges
by combining the cost-efficiency of smaller mod-
els with innovative reasoning-driven techniques,
paving the way for more reliable and interpretable
solutions in NLP.



2 Background

Recent advancements in hallucination detection in
natural language processing (NLP) have led to a
deeper understanding of the challenges and method-
ologies in this domain. Huang et al. (2023) pro-
vides a comprehensive survey of recent develop-
ments in hallucination detection, while Wang et al.
(2024) and Augenstein et al. (2024) explore these
advancements in the context of factuality. Notably,
Wang et al. (2024) distinguished hallucination from
fact verification, emphasizing that generated text
can diverge from the specifics of the input prompt
(hallucination) without necessarily being factually
incorrect if the content remains accurate.

Prompt-Based Approaches for Hallucination De-
tection: Prompt-based methods have emerged
as popular strategies for hallucination detection,
particularly when reference documents are unavail-
able. However, they often lack frameworks for
incorporating reference text for verification. For
instance, Manakul et al. (2023) proposed a method
that stochastically samples multiple outputs (e.g.,
20 responses at temperature 1) from language mod-
els and evaluated consistency across the generated
outputs. Similarly, Arora et al. (2022) aggregated
outputs generated from multiple prompts to de-
rive the final result. In contrast, Dhuliawala et al.
(2023) introduced a verification plan that uses an
initial prompt to generate and execute reasoning
steps for a verified response. Additionally, Min
et al. (2023) decomposed text generation into a se-
ries of atomic facts, computing the percentage of
these facts supported by reliable sources. While
promising, these approaches face challenges when
tasked with handling complex semantic composi-
tions, where atomic fact verification alone may not
suffice.

Factual Inconsistency in Summarization:  Fac-
tual inconsistency between abstractive summaries
and their source documents remains a critical area
of research. Yang et al. (2024) proposed a method
for fact verification in abstractive summarization
that involves decomposing summaries into atomic
facts and aligning them with source documents
through adaptive granularity expansion. Other ap-
proaches, such as those proposed by Tang et al.
(2024), Stacey et al. (2024), Liu et al. (2024), and
Ko et al. (2024), further explore methods to detect
and correct inconsistencies in summarization tasks.

A major challenge in prior work on fact veri-

fication is the reliance on large language models
(LLMs) and brittle prompt engineering methods,
which lack scalability, interpretability, and effec-
tive integration of reference documents for reason-
ing. Additionally, approaches that decompose out-
puts into atomic facts often struggle with semantic
composition, limiting their utility for complex rea-
soning tasks. Chandler et al. (2024) attempted to
detect factual inconsistencies by introducing mul-
tiple prompts and ensembling the outputs to per-
form final consistency checks. However, their ap-
proach does not incorporate grounding to source
documents, relying solely on manual prompt engi-
neering which may be brittle and sensitive to input
variations.

Our proposed solution addresses these chal-
lenges by leveraging meta-prompting techniques to
generate reasoning plans, enabling smaller LLMs
to perform fact verification effectively. We improve
reliability and robustness by combining multiple
reasoning variants with majority voting.

3 Datasets

One of the main goals of this work is to access
the meta-reasoning capabilities of smaller LLMs
which necessitates the requirement for complex
inputs. We consider MuSiQue Dataset (Trivedi
et al., 2022) for our experiments.

The MuSiQue dataset was chosen for its high-
quality compositional instances that prevent the use
of simple decomposition-based heuristics to deter-
mine the answer. This dataset provides question-
answer pairs along with supporting paragraphs con-
taining relevant information. An example of a 2-
hop query is illustrated in Figure 3.

For our experiments, we sampled 200 questions
each from 2-hop, 3-hop, and 4-hop categories,
and then replaced the answers to 300 questions
(100 from each category) with incorrect ones to
introduce factual inconsistencies (Refer Table 1).
To generate these incorrect answers, we utilized
GPT40-mini, prompting it to produce four plausi-
bly incorrect options for each sample. The most
appropriate incorrect answer among these options
was then selected manually.

2-hop  3-hop 4-hop Total (600)
Correct 100 100 100 300
Incorrect 100 100 100 300

Table 1: Dataset Statistics showing the distribution
across different hops.



Query Example

Question: What county was Tim Dubois born
in?

Answer: McDonald County

Available information:

Tim DuBois (born May 4, 1948 in Southwest
City, Missouri) is a Nashville, Tennessee-based
music executive. He attended Oklahoma State
University and received a B.A. and M.A. in
Accounting and in 2016 he was awarded an
honorary PHD in Accounting. He then entered
into the music business and has taken part in
multiple aspects of the industry including song-
writing, record labels, management, and pro-
duction. DuBois has been recognized for nu-
merous honors and awards for his contributions
to the music industry.’, ’Southwest City is a
city in McDonald County, Missouri, United
States. The population was 937 at the 2010
census, at which time it was a town. It is part of
the Fayetteville-Springdale—Rogers, AR-MO
Metropolitan Statistical Area and is located in
the southwestern corner of the state of Missouri.

Two-Hop Example: To answer, we first
identify Tim DuBois’s birthplace (South-
west City, Missouri) and then determine
its county (McDonald County)

When selecting the most suitable option, we en-
sure that the chosen answer aligns closely with the
context’s semantics and maintains high plausibility.
For instance, if the question pertains to the sports
domain, asking about the best footballer of all time
should not result in an overly implausible incorrect
answer, such as John F. Kennedy, which would be
too obvious for the model to identify as incorrect.
Instead, we select answers that are contextually rel-
evant yet still incorrect, such as Diego Maradona
or David Beckham. The prompt used for generating
these responses is provided in Appendix 6.

4 Methodology

Problem Formulation: Given a query (Q), a
response (R), and a context (C), the task is to ver-
ify whether the response is factually correct with
respect to the context or not.

In this section, we describe our proposed method-
ology Self-Resolve (see Figure 1). The approach

begins by equipping the model with initial heuris-
tics, along with input data and a task definition,
to help identify factual inconsistencies. Follow-
ing Fernando et al. (2023); Zhou et al. (2024), we
use the term “reasoning module" to refer to these
heuristics.

The next step is the SELECT STEP which per-
forms the selection of the most relevant heuristics
best suited to the specific input context. This is
followed by the PLAN STEP, where a structured,
step-by-step reasoning plan is designed for detect-
ing factual inconsistencies. Subsequently, in the
EXECUTE STEP, the reasoning plan is carried
out to achieve the final output.

To enhance reliability, this execution process is
repeated across five different temperature set-
tings (ranging from 0.1 to 0.5), and a majority
voting mechanism is employed to reach the final
result.

We now describe each component of the frame-
work in detail below:

Task Definition (7): In task definition we pro-
vide the question, answer and available informa-
tion to the prompt with instructions to validate the
generated output with predicted output after verifi-
cation. The prompt used for this step is discussed
in Appendix A, Figure 3.

Reasoning Modules (D): Reasoning modules
are the initial heuristics (or seed prompts) designed
to guide the development of specific reasoning
plans for fact verification. Inspired by Fernando
et al. (2023), we initially crafted 10 distinct reason-
ing plans tailored for this task. However, our initial
experiments revealed that the model performed
effectively with only a subset of these modules.
Based on qualitative analysis, we selected
three reasoning modules (Appendix A, Figure 4)
as the most suitable for the fact verification process:

1. Critical Thinking: This module involves
performing in-depth analysis of the provided
information to assess the relevance and accuracy
of the answer with respect to the question. LLMs
utilize this seed prompt to consider various
dimensions of the context, including syntax and
semantics, ensuring that the answer logically
aligns with the question.

2. Self-talk: Self-talk helps to engage in an
internal dialogue within the model to evaluate the
coherence and congruence of the answer with the
query. LLMs utilize these ideas to identify and



Method

|

2 hops

3 hops

4 hops

| P | R |F1 | P | R |F1| P | R |F

Llama 3.1 8B
Vanilla 0.94 | 037 | 0.53 | 0.78 | 0.06 | 0.12 | 1.0 | 0.02 | 0.04
CoT 0.94 | 0.54 | 0.69 | 0.89 | 0.15 | 0.26 | 0.72 | 0.09 | 0.16
CoT + Temp. Voting | 0.94 | 0.55 | 0.69 | 0.88 | 0.15 | 0.25 | 0.59 | 0.05 | 0.10
Self-Check 094 | 0.53 | 0.68 | 0.90 | 0.14 | 0.24 | 0.62 | 0.05 | 0.10
Query Decomposition | 0.73 | 0.10 | 0.18 | 0.39 | 0.03 | 0.06 | 0.82 | 0.07 | 0.14
Self-Resolve* 0.96 | 0.88 | 0.92 | 091 | 0.67 | 0.77 | 0.94 | 0.67 | 0.78

Gemma 2 9B
Vanilla 0.68 | 0.82 | 0.75 | 0.69 | 0.67 | 0.68 | 0.81 | 0.76 | 0.78
CoT 0.69 | 0.86 | 0.76 | 0.69 | 0.72 | 0.71 | 0.85 | 0.83 | 0.84
CoT + Temp. Voting | 0.69 | 0.85 | 0.76 | 0.69 | 0.74 | 0.71 | 0.85 | 0.82 | 0.84
Self-Check 0.69 | 0.87 | 0.77 | 0.70 | 0.72 | 0.71 | 0.87 | 0.77 | 0.82
Query Decomposition | 0.65 | 0.51 | 0.57 | 0.49 | 0.17 | 0.25 | 0.94 | 0.12 | 0.21
Self-Resolve* 0.93 1083|088 | 094|058 072|095 ]| 0.72 | 0.82

Mistral 7B

Vanilla 0.67 | 0.71 | 0.69 | 0.62 | 0.46 | 0.53 | 0.80 | 0.37 | 0.51
CoT 0.73 1 0.72 1 0.73 | 0.56 | 0.49 | 0.53 | 0.83 | 0.45 | 0.58
CoT + Temp. Voting | 0.69 | 0.77 | 0.73 | 0.56 | 0.59 | 0.57 | 0.80 | 0.57 | 0.67
Self-Check 0.73 1 071 | 0.72 | 0.57 | 0.50 | 0.53 | 0.86 | 0.48 | 0.62
Query Decomposition | 0.57 | 0.67 | 0.62 | 0.44 | 0.49 | 0.46 | 0.62 | 0.49 | 0.55
Self-Resolve* 092 | 0.69 | 0.79 | 0.82 | 0.58 | 0.68 | 0.88 | 0.52 | 0.65

GPT4-Omni

| 0.96 | 0.76 | 0.83 | 0.99 | 0.67 | 0.80 | 0.95 | 0.72 | 0.82

Table 2: Performance comparison of our methods (marked with *) for different compositions of queries.

clarify any uncertainty or inconsistencies within
the information and to reaffirm or dispute the
correctness of the answer based on the information
gathered.

3. Chain of Thought: Inspired by Wei et al.
(2022), this reasoning module aims to elicit a
step-by-step plan to verify the correctness of
the answer. The goal is to maintain clarity and
conciseness while methodically breaking down the
reasoning process.

The next step involves choosing the best reason-
ing module for the given input.

SELECT STEP: In this step, we provide the
question, answer and relevant information required
for the verification and ask the language model to
choose the best reasoning module as per the de-
fined Task Definition (7). The prompt used for this

step is referred to as Select Prompt S, (Appendix
A, Figure 5). This approach mirrors how humans
tackle complex problems: by first identifying the
most relevant domain or framework within which
to structure their reasoning.

DS = Sp({Qv Ra C> D’ T})

Here the input to .S, is Question (@), Response
(R), context (C'), Task Definition 7 and the set of
seed reasoning module descriptions (D), and the
output is a selected reasoning module (D).

PLAN STEP: In the Plan Step, the goal is to
adapt the selected reasoning module and prepare
a detailed plan for the final verification. This step
is guided by the Adapt Prompt (F,) (refer to Ap-
pendix A, Figure 7 for the prompt used). This step
mirrors the process of formulating a specific plan
within a broad domain, incorporating the unique
details of the situation at hand.

We mimic this scenario by prompting the lan-



guage model to devise a plan based on the selected
reasoning module. More specifically, we prompt
the language model to implement a step-by-step
reasoning plan by adapting the selected reasoning
modules in JSON format, where each key repre-
sents a question, and the corresponding value is the
answer to that question. This step also gives in-
sights into how smaller LLMs reason over complex
problems.

-Da = Pp({Qa R7 C7 DS7T})

Here the inputs to the Plan Prompt (F,) are:
Question (), Response (R), context (C'), set of se-
lected reasoning module descriptions (D) and the
Task Definition 7 and the output is a step-by-step
reasoning plan (D).

EXECUTE STEP: In this step, we use the
output plan from the previous step to reach the
final verdict.

0= Ep({Q7 R7 Cv Da7 T})

Here, the inputs to Execute Prompt (£),) are
Question (Q), Response (R), context (C), and the
generated plan (F,), Task Definition 7 and the out-
put (O) is hallucinated if the output is inconsistent
with the question and non-hallucinated if the an-
swer is consistent with the question.

Temperature Variation and Majority Voting:
To mimic human-like reasoning, we must account
for the multiple aspects of the reasoning plans.
Different situations might call for a creative ap-
proach, while others require a more deterministic,
straightforward solution. To capture this diversity
in thinking, we introduce the temperature varia-
tion and majority voting mechanism, which al-
lows the model to explore both creative and deter-
ministic reasoning processes and then reaches the
final output using a majority voting system.

Temperature (1) is a key parameter in natural
language processing models that controls the "cre-
ativity" of the generated response. The temperature
value ranges from O to 1. The temperature setting
influences the probabilities generated by the soft-
max function, adjusting how much weight is given
to less likely tokens.

The equation for temperature sampling is given

below:
eTi /T
softmax(z;) = (1)

Z] eCCj/T

By adjusting the temperature, we can influence
the extent to which the model produces more di-

verse or predictable responses. Higher temperature
encourages more creativity, while lower temper-
ature encourages more deterministic output. We
choose to account for both cases by introducing a
majority voting mechanism in this setting. Temper-
ature voting consists of two stages:

1. Temperature Variation: In this stage, the
three steps (Select, Plan and Execute) are exe-
cuted at five temperature values, starting at 0.1
and progressing through 0.2, 0.3, 0.4, and 0.5.
This variation allows the model to generate
both deterministic and creative responses.

2. Majority Voting: After generating responses
at different temperatures, we apply majority
voting to the answers. This step aggregates
the model’s responses and resolves the final
output based on the majority consensus, re-
flecting the model’s confidence in the correct-
ness or incorrectness of its response within
the context provided.

S Experimental setup

In this section, we discuss the experiment designs
of our framework and all the hyper parameters nec-
essary to reproduce the results.

5.1 Models

We use Llama 3.1-8B (Grattafiori et al., 2024),
Gemma 2-9B(Team et al., 2024), and Mistral-v0.3-
7B (Jiang et al., 2023) models, all instruction tuned
variants. We specifically chose the instruction-
tuned model due to its ability to adhere to the ex-
plicit instructions mentioned in the prompt. We
have performed our experiments on NVIDIA A100
80GB GPUs with max new tokens 1000, and top p
value of 1 in a single inference setting.

5.2 Baselines

We compare Self-Resolve with other methods de-
scribed below:

Vanilla: In this baseline, we prompt the model
to generate the output without giving any explicit
reasoning instructions or heuristics required for
the process of verification. This experiment is per-
formed to assess if LLMs can reason over multiple
pieces of information independently.

Chain of Thought (CoT): This approach adds
the phrase "Let’s think step by step” to the prompt,
as in (Wei et al., 2022), to guide the model through
breaking down multi-hop queries for reasoning.



CoT with Temperature Voting: The concept
of incorporating temperature voting with CoT is
aimed at assessing a model’s confidence in its gen-
erated outputs as the level of creativity progres-
sively increases. We use the CoT prompt as dis-
cussed previously and prompt the model five times
with temperature values 0.1, 0.2, 0.3, 0.4, and 0.5.
The purpose of introducing this baseline is to estab-
lish a direct comparison with our meta-prompting
setup, where temperature voting is employed to
assess the model’s reasoning process.

Self Check: In this technique, the LLM is
prompted to generate a diverse set of reasoning
paths and then choose the most consistent answer
from the final answers. We keep the temperature to
1 and prompt the model 20 times similar to Man-
akul et al. (2023) and then choose the most consis-
tent answer as the final answer. Using this setup
we aim to mimic the Self-checkGPT work where a
reference text is present.

Query Decomposition: One of the most intu-
itive heuristics to verify the multi-hop is to break
the given query into sub-queries and then collate
the answers from individual queries to verify the
given answer. We implement this technique in a
three-stage process. First, we prompt the model to
decompose the question into multiple independent
sub-questions. Second is the answer stage, where
answers to these sub-questions are found. In the
final stage, the given question’s answer is verified
by comparing it with the supporting context, which
was generated in the second stage by answering the
independent sub-questions.

GPT4-Omni: We prompt GPT-40 (OpenAl
et al., 2024) (November 20, 2024 release) to verify
the answer to a given task. This benchmarks the
reasoning capabilities of large LLMs and allows us
to compare their performance with smaller LLMs
enhanced by the proposed method.

6 Results

In this section, we discuss the results and some gen-
eral observations of the proposed approach. The
Table 2 compares the performance of various meth-
ods across different models (Llama 3.1 8B, Gemma
2 9B, Mistral 7B, and GPT4-Omni) for tasks requir-
ing reasoning over 2, 3, and 4 hops. Performance
metrics include Precision (P), Recall (R), and F1
score (F1). In general, the proposed Self-Resolve
outperforms other methods in most cases across
most models and hop levels in terms of F1 score,

indicating its superior ability to balance precision
and recall effectively. Query Decomposition gen-
erally underperforms compared to other methods,
with significant drops in F1 scores, especially as
the number of hops increases.

Model Specific Insights: We describe our anal-
ysis of the predictive behaviour of the individual
predictive models below:

Llama 3.1 8B: Performs poorly with methods
like Vanilla, CoT, and Self-Check, having very
low recall and F1 scores. However, Self-Resolve
achieves the best results (F1 of 0.92 for two hops,
0.77 for three hops, and 0.78 for four hops). While
using the baselines, we note that the model is
strongly biased towards the “Incorrect” label. This
is mainly due to the model’s tendency to explicitly
search for the given answer in the relevant infor-
mation, which is very unlikely in our setup. Our
method Self-Resolve, generates explicit informa-
tion by capturing the relevant parts present in the
given information which are required to answer
correctly. This can explain the significant gains in
the proposed approach.

Gemma2-9B: Demonstrates strong performance
overall, with higher F1 scores compared to other
models and also outperforms GPT4-Omni using
the proposed methods by 5%. We note that ‘Self-
Resolve’ achieves the best performance in F1
scores for two hops and three hops while show-
ing competitive performance with other baselines
in the four-hop settings.

Mistral-7B: Shows moderate performance com-
pared to other models (lower than Gemma2-9B
and better than Llama3.1 8B) with a noticeable im-
provement when using "Self-Resolve" for 2-hop
and 3-hop verification while showing competitive
results when somewhat similar performance with
other baselines in 4-hop setting.

Impact of Hops: We observe a non-monotonic
trend in the performance when we increase the total
hops in the given input query. More specifically,
We observe that most models perform really well in
2 hop setting and worse in 3 hop setting even when
compared to 4 hops setting. Upon analysis, we
note that the instances in the three-hop setting had
significantly more uncertainty and non-linearity
in hop arrangement. This may have reduced the
complexity of the 4-hop compared to the 3-hop
data instances.



7 Error Analysis

Lack of Pragmatic Understanding: we observe
that some instances in the dataset lack essential
hints required to infer relationships between the
target entities. In the given example ( Figure 7),
the reasoning plan provided by the LLM for mark-
ing the answer as incorrect states that, based on
the available information, Cabo Delgado Province
does not border Niassa Province. However, it
fails to infer that if the Niassa Reserve spans both
Cabo Delgado Province and Niassa Province, these
provinces must share a border. Consequently, the
LLM outputs "Incorrect” claiming the given answer
is wrong despite it being correct. This highlights
the limitation of LLMs in pragmatic understanding
where the query requires information which is not
present in the content.

Lack of Pragmatic Understanding

Question: What province shares a border with
the province where Lago District is located?
Answer: Cabo Delgado Province

Available Information: Niassa Reserve is a
nature reserve in Cabo Delgado Province and
Niassa Province, Mozambique. Covering over,
it is the largest protected area in the country.
The reserve is part of the Trans-Frontier Conser-
vation Area and links to the Tanzanian Lukwika-
Lumesule Game Reserve. It will connect to the
Lake Niassa Reserve when it is completed.’,
’Lago District is a district of Niassa Province
in north-western Mozambique. The principal
town is Metangula. Lago District is bordered
to the west by Lake Nyasa, on the south by
Lichinga, and on the east by Sanga District.

Correct Context Transfer: In several scenar-
ios, the model successfully executed the planning
step for verification but failed to identify that the
initial answer provided was incorrect. During the
planning stage, the model correctly deduced the
right answer and clearly articulated the reasoning
steps to reach it. This contextual information in-
creased the semantic significance of the correct
answer more than the original answer. The model
provided the verification verdict for the correct an-
swer instead of the original answer leading to the
incorrect verification. In the example reasoning
plan (Figure 2) given below, the provided answer
was ‘Aaja Nachle’ which was incorrect, the LLM
was able to deduce correctly the correct answer

from the available information but failed to com-
pare the answer with the given context. By skipping
this verification step, the model incorrectly marked
the given answer as correct, even though it was
actually incorrect.

Correct Context Transfer

Question: What is the movie starring Preity
Zinta, Madhuri Dixit and the spouse of Kajol?
Answer: Aaja Nachle

Reasoning plan (Gemma 2-9B): Here’s how
we can adapt the "Chain of Thought" reasoning
approach to solve this task:

1. Identify Key Information:

Question: We need to find a movie starring
Preity Zinta, Madhuri Dixit, and Kajol’s spouse.
Available Information: We have a biography
of Anil Devgan (Kajol’s brother-in-law) and
details about the movie Yeh Raaste Hain Pyaar
Ke.

2. Chain of Thought

1. Kajol’s spouse is Ajay Devgan.

2. Yeh Raaste Hain Pyaar Ke stars Madhuri
Dixit and Preity Zinta.

3. Yeh Raaste Hain Pyaar Ke also stars Ajay
Devgan.

3. Conclusion Since all the required actors are
present in the movie Yeh Raaste Hain Pyaar
Ke, the answer is correct.

Figure 2: Context Transfer: This example demonstrates
the transfer of correct reasoning context to the execute
stage directing to incorrect verification of the answer

8 Conclusion and Future Work

In this work, we introduce the Self-Resolve frame-
work, which leverages the meta-reasoning capa-
bilities of smaller language models (LLMs). Our
approach aims to extend the reasoning capabilities
of smaller LLLMs by resolving the correct output
through majority voting on stochastically sampled
reasoning structures. We demonstrate that meta-
reasoning with smaller LLM:s is feasible and shows
significant improvements in fact verification tasks
within a multi-hop setup, where the model utilizes
its own reasoning plans. Looking ahead, the pro-
posed method can be extended to mitigating hal-
lucinations in language models. Future work will
explore combining multiple LLMs from different
families to enhance hallucination detection and mit-
igation further.



9 Limitations

Despite the improvements achieved through our
framework for fact verification, several limitations
remain. One significant challenge is pragmatic
reasoning, which involves scenarios where world
knowledge is essential for validating outputs. Mod-
els, particularly those with fewer parameters, often
lack sufficient training data to effectively address
the pragmatic aspects of a query. Additionally, the
proposed framework relies heavily on the reason-
ing capabilities of the language models considered.
Therefore, language models with poor reasoning
capabilities might not be suitable for the proposed
approach.
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A Self-Resolve Prompts

In this section, we discuss all the prompts used
in the proposed framework (Self-Resolve). We
discuss the prompts used for generating the Task
definition (Figure 3), Select step (Figure 5), Plan
step (Figure 7) and Execute step (Figure 8). We
also show the 3 different reasoning modules (Figure
4).

Task Definition

Given a question and an answer, verify if the
provided answer is accurate with respect to the
question based on available information. Output
"verificatioin result": "correct" if the answer is
correct with respect to the question; otherwise,

output “verification result” : “incorrect”.

Question: {}
Answer: {}

Given Information: {}

Figure 3: Task Definition given to the model in the
prompts
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Reasoning Modules

1. Try Critical Thinking: This style involves
analyzing the problem from different perspec-
tives, questioning assumptions, and evaluating
the evidence or information available.

2. Try Self Talk: This approach entails
engaging in an internal dialogue to break down
the provided question, and confirming the
correctness of the answer.

3. Devise a plan to verify if the given answer
is correct or incorrect. Be very precise and do
not mention any unnecessary steps or any extra
information. Follow the plan to step by step to
get the answer.

Figure 4: Reasoning Modules- These reasoning mod-
ules were used in the proposed pipeline. Only one these
module is selected for a given query in further step

Select Prompt

Assume you are an expert in selecting the most
appropriate reasoning modules for fact verifica-
tion.

You have to select only one of the reasoning
module that are crucial for solving the below
task from the given set of reasoning modules:
<Task>

{Task}

</Task>

Reasoning Modules set:
{reasoning_modules}

Do not output anything else, only print the se-
lected modules.

Figure 5: Select Prompt- This prompt was use to select
the reasoning module specific to the query given in the
input.

B Dataset Creation:

In this section, we describe the prompts used to
create an extension of the MusiQue dataset.

Data generation Prompt

Provide four different options which are plausi-
ble but incorrect answers to the given question.
You have to provide only these options. Do
not output anything else. You can follow the
given examples: Example 1: Question: Who di-
rected the movie "Inception"? Answer: Christo-
pher Nolan Output: [Steven Spielberg; Quentin
Tarantino; Martin Scorsese; Ridley Scott] Ex-
ample 2: Question: What is the capital city
of Brazil? Answer: Brasilia Output: [Rio de
Janeiro; Sdo Paulo; Buenos Aires; Lima]

Question: {}
Answer: {}

Figure 6: Initial Data generation pipeline- This prompt
was used for generating the options for a given set of
questions, answers and relevant information.

Plan Prompt

Assume you are an expert in adapting the
reasoning modules for a given problem.
Adapt the given reasoning module into an
improvised plan to solve the given task
better:

<Task>

{Task}

</Task>

Reasoning module descriptions:
{selected_reasoning_modules}

Figure 7: Plan Prompt- This prompt was used to adapt
the selected reasoning module into an plan specific to

query.



Execute Prompt

Assume you are an expert in structured reason-
ing and fact verification.

For the given task: <Task>

{Task}

</Task>

Execute the given reasoning plan in a step-by-
step manner to verify the given answer to the
question using the given information.

The output must be in JSON format only and
make sure the final result is in the form "verifi-
cation result": "correct" if the answer is correct
with respect to the question; otherwise, output
"verification result": "incorrect". Note that out-
put must be either ’correct’ or “incorrect’.
Given reasoning plan:

{adapted_reasoning_modules}

Figure 8: Execute Prompt- This prompt was used to
execute the reasoning plan in a step by step manner to
get the final verification result.

C Baseline Prompts

In this section, we discuss all the baseline prompts
used in this work.

C.1 Vanilla
Vanilla Prompt

You are an expert in verifying the correctness
of answers. Given a question, an answer, and
relevant information, determine if the answer
correctly addresses the question based on the
provided information.

If the answer is correct, output "Correct." If the
answer is incorrect, output "Incorrect."

Only output one of these two values without
any additional text.

Question: {}
Answer: {}

Given Information: {}

Output:

Figure 9: Vanilla Prompt- In this prompt, we simply
provide question, answer and relevant information and
ask to verify the answer with respect to the relevant
information given.
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C.2 Chain of thought
Chain of Thought Prompt

Assume you are an expert in verifying the facts.
Given a question and an answer, verify if the
provided answer accurately responds to the
question based on available information. Let’s
think step by step.

You have to output *Correct’ if the question is
answered correctly with respect to the given In-
formation; otherwise, output ’Incorrect’.Please
note that Output can take only 2 possible values,
either "Correct" or "Incorrect".

Only generate the output, do not print any other
text.

Question: {}
Answer: {}
Given Information: {}

Output:

Figure 10: CoT Prompt- In this prompt, we follow the
convention of (Wei et al., 2022) and include the phrase
‘Let’s think step-by-step.

C.3 Query Decomposition

In this setup, we aim to decompose the given query
into smaller subpart and reconstruct the answer
after answering each sub-queries individually. We
describe our three staged process below:

Decompose Prompt

You are an Al assistant designed to decompose
complex questions into simple, stand-alone sub-
questions.

Given a multi-hop question, break it down into
a list of minimal, independent sub-questions.
Each sub-question should address only one as-
pect or step required to answer the original ques-
tion without relying on information from other
sub-questions.

Question: {{given_question}}

Output Format:
["sub-question1”, "sub-question2”,
"sub-question3”, ...]



Figure 11: Decompose Prompt- This prompt was used
to decompose the given multi-hop queries to smaller sub
queries which are independent from other sub-queries

Answer Prompt

You are a helpful AT assistant tasked with an-
swering questions using provided information.
For each question below, provide a concise and
accurate answer based on the given informa-
tion. Ensure each response directly addresses
its corresponding question.

Questions: {{decomposed_question}}

Given Information:
{{given_information}}

Output Format:
["question”:"subquestion1”,
"answer":"answer1", "question”:

n,n

"sub-question2”,"answer"”:"answer2"...]

Figure 12: Answer Prompt- This prompt was used to
answer the decomposed queries to generate the final
answer

Verify Prompt

You are an Al assistant trained to evaluate
Your task is to verify whether a
provided answer to a main question is accurate
based on answers to decomposed sub-questions.
Your output should be strictly "Correct” if the
answer is accurate, or "Incorrect” if it is not.
Do not include any additional text.

answers.

Main Question: {{given_question}}
Main Answer: {{given_answer}}
Supporting_Information
(from_sub-questions):
{{decomposed_question_answer}}

Figure 13: Verify Prompt- This prompt was used to
verify the final answer based on the decomposed queries
and their generated answeres.
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GPT4 Prompt

Given a question, an answer, and relevant
information, determine if the answer correctly
addresses the question based on the provided
information. If the answer is correct, output
"Correct" If the answer is incorrect, output
"Incorrect” Only output one of these two values
without any additional text.

Question: {}
Answer: {}
Given Information: {}

Figure 14: GPT4 Prompt- This prompt was used for the
verification process by GPT4-Omni.
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