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Abstract

Behavioral Foundation Models (BFMs) proved successful in producing policies for
arbitrary tasks in a zero-shot manner, requiring no test-time training or task-specific
fine-tuning. Among the most promising BFMs are the ones that estimate the
successor measure learned in an unsupervised way from task-agnostic offline data.
However, these methods fail to react to changes in the dynamics, making them
inefficient under partial observability or when the transition function changes. This
hinders the applicability of BFMs in a real-world setting, e.g., in robotics, where the
dynamics can unexpectedly change at test time. In this work, we demonstrate that
Forward-Backward (FB) representation, one of the methods from the BFM family,
cannot distinguish between distinct dynamics, leading to an interference among the
latent directions, which parametrize different policies. To address this, we propose
a FB model with a transformer-based belief estimator, which greatly facilitates
zero-shot adaptation. We also show that partitioning the policy encoding space into
dynamics-specific clusters, aligned with the context-embedding directions, yields
additional gain in performance. These traits allow our method to respond to the
dynamics observed during training and to generalize to unseen ones. Empirically,
in the changing dynamics setting, our approach achieves up to a 2x higher zero-shot
returns compared to the baselines for both discrete and continuous tasks.

1 Introduction

One very desirable property of reinforcement learning (RL) agents is their rapid adaptation to new
tasks or to environment changes during test-time, without requiring any fine-tuning or planning.
Achieving this in as few trials as possible would be even better: the ideal being the zero-shot
adaptation [39], where the agent never interacts with the environment at test-time and relies solely
on the data it was conditioned with. Behavioral Foundational Models (BFMs) [30, 37] may be
considered as a step in this direction, because they can learn a variety of policies from offline data
without knowing the rewards. During inference, it is possible to extract a task-specific policy that is
optimal or near-optimal in terms of performance [38]. Recent work demonstrates [37] that one of the
methods from the BFM family, based on Forward-Backward representation (FB) [38], is especially
versatile and can successfully imitate behaviors from unlabeled data.

At the same time, FB possesses a fundamental drawback that limits its adaptation ability. In our
paper, we show that FB is unable to generalize across different dynamics, such as changes in a
transition function (e.g., new obstacles) or an environment with some latent factor variation (e.g.,
wind direction). This limitation stems from the way the successor measure [8] is estimated: FB
averages the future-occupancy state distribution over all observed dynamics, which inevitably causes
interference in policy representations. This fact alone may severely constrain the applicability of FB
in the real-world scenarios. For example, one of the largest robotics dataset, Open X-Embodiment
[7], consists of 22 different robot embodiments, and training FB on each of them simultaneously is
infeasible. In Section 3.1, we discuss this limitation and support our claims theoretically.
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Figure 1: Summary of results. Aggregate mean performance over seen (train) and unseen (test)
dynamics for zero-shot RL. The error bars indicate standard deviation over three seeds. Notably, both
BFB and RFB adapt not only to the dynamics seen during training but are also able to generalize to
unseen dynamics. There are 30 (20) training (test) dynamics for FourRooms and PointMass and 16
(4) for AntWind environments.

To remedy this, we introduce Belief-FB (BFB), a conditioning method for FB through a belief
estimation, a popular technique of uncertainty quantification in Meta-RL [9, 46]. To implement this,
we use a transformer encoder fqy, that, given a trajectory from data, outputs a dynamics-specific
vector h we then pass as a condition to the future outcomes representation function F'(-, -, h, ). We
pre-train fgy, in a self-supervised fashion, thus posing no additional requirements on the data structure
or the trajectory re-labeling. We discuss the implementation of Belief-FB in Section 3.2.

Remarkably, Belief-FB enables the generalization capabilities of FB not only through the dynamics
seen in the training dataset, but also on the unseen test dynamics never present in the offline data.
We also find that in order to align belief estimation better with FB, one also needs to partition the
policy space into dynamics-specific clusters, so we propose Rotation-FB (RFB) that accomplishes
this partitioning. We present the theoretical support and the implementation details of Rotation-FB in
Section 3.3. Empirically, both BFB and RFB outperform baselines for seen and unseen dynamics, as
gathered in Figure 1 and discussed in Section 4.3.

We believe that our work sufficiently broadens the possible applicability of BFMs, yet keeping the
zero-shot setting unchanged. Our contributions are as follows:

¢ We introduce the limitation of Forward-Backward (FB) representations [38], which lies
in its inability to generalize per se across different dynamics both from train and test, where
dynamics shift constitute of new layout grids or latent changes in the transition function that
are hidden from an agent. Refer to Section 3.1 for more discussion.

* We propose Belief-FB (BFB), which employs a transformer encoder to infer a belief over
the agent’s current dynamics [9, 46]. Analyzing BFB’s policy space reveals that additional
disentanglement is beneficial, motivating our Rotation—FB (RFB) extension. Section 3.2
examines Belief-FB, and Section 3.3 details Rotation-FB’s theoretical motivation and
implementation.

* We empirically demonstrate that both BFB and RFB can adapt to different dynamics,
unlike its counterparts in the zero-shot setup. Refer to Section 4.3 for the discussion and
Figure 1 for results.

2 Behavioral Foundation Models

For a reward-free Markov Decision Process (MDP), a Behavioral Foundation Model (BEM) [12, 27,
31, 37] is a RL agent trained in an unsupervised manner on a task-agnostic dataset of transitions. The
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objective of a BFM is to approximate an optimal policy for a broad class of reward functions that are
specified only at inference.

Forward-Backward Representation (FB) [38] approximates a successor measure for near-optimal
policies across diverse tasks. The successor measure M7 (s, ag, X ) for subset X C S is defined as
cumulative discounted time spend at X starting at (s, ag) and following 7 thereafter. More formally,
for tabular example:
MW(SO;GOaX):Z’ytP(StEX‘SO7a077r)) (1)
t>0

with the corresponding Q-function for a specific task 7:

Q7 (so,a0) = Y r(sT)M™(s0,a0,s"). )

steX

In continuous case, the FB representation aims to approximate successor measure through finite-
rank approximation under diverse policies through forward F : S x A x Z — R% and backward
B : S — R? functions. Given a set of policies 7, parametrized by task variable drawn uniformly
from sphere zpg € Unif(Z = gf—oo). Given p as a probability distribution over states within the
offline dataset, the objective for FB is written as:

M (s0, dg, X) ~ /  Flso,a0,2) BsT)p(ds) 3)
steX

Then the policy can be obtained greedily as:
7.(s) ~ argmax F(s,a, 2)" 2. )

For continuous case, the greedy policy is parametrized as Gaussian. During test time the task policy
parametrization is approximated as z¢est ~ E(s o)ep,.., {Ttest (5, a) B(s)}. If the inferred task vector
Ztest lies within the task sampling distribution (in a linear span) Z used during training, then the
optimal policy for task rs.s; is obtained from Equation 2 as 7.(s) ~ argmax, Q7> (s,a). For

more details on training and inference procedures of FB, we refer reader to Appendix A.3. More
detailed discussion on the other related works is included in the Appendix A.

3 Method

Problem Statement. Our goal is to pre-train an agent in unsupervised regime in Cirqin = {Ctrain €
C} contexts so that it is able to generalize to unseen ones during test time, i.e., zero-shot'. We
collect diverse dataset, consisting of mix of highly exploratory or expert-like unknown policies from
varying environment layouts, differing either in dynamics (e.g., wind, friction, etc.) or environment
specifications (e.g., positions of obstacles and doors). At test time, the agent is provided with small
(up to episode termination steps) reward-free transitions from test context. Provided information
must be used by an agent to recalibrate occupancy measure estimation corresponding to encountered
environment. In an ideal scenario, the agent maximizes the expected discounted return across both
train and test contexts. We refer to Appendix A for details.

To formally study optimality guarantees of the problem above, we employ the following assumption
commonly used for dynamics generalization [10, 16]:

Assumption 1 (Coverage). Let P(s;11]8+, a:) be a transition probability given small dataset
of reward-free random interactions either from test or train context. Then, P (s 1|s¢, ar) =
Pc‘r“i"(8t+1 |St, at) \V/St, St+1 € S, a; € A.

3.1 Investigating latent directions space under multiple dynamics

We begin by addressing the following question: Why does FB representations fail to generalize
effectively (both for train and test) to different situations under dynamics variations, i.e., if learned
on data sampled from diverse CMDPs? While the answer may appear intuitive, a closer look into
the geometric structure of learned latent directions zgg € Z, which encode possible policies 7,
reveals critical insights which will be helpful later. We approach this question both theoretically and
empirically on custom simplistic discrete partially-observable Randomized Doors (see Appendix

'We use the term "zero-shot RL" following [38].
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Figure 2: Randomized-Doors environment for three different layouts, each produced through varying the
grid structure (exact randomization procedure is a hidden variable) (left-middle) From state s, the goal of
an agent is to capture a diamond at target location by picking up the most probable policy 7. (yellow for the
first type and purple for the second) to move to the closest open door based on internal representation. (middle)
When there are multiple possible future outcomes in the training data from the same state, the 7. ’s (different
colors) interfere with each other, leading to picking up an averaged policy.

B.1) environment. Partial observability adds additional challenges and showcases the need to estimate
belief state, which we discuss in the following sections.

In this experiment the only source of dynamics variation is the grid layout type. That is, the positions
of doors and walls are changed each new episode, depending on hidden configuration variable c. We
collect a dataset of random trajectories drawn from multiple layouts, yielding near-uniform coverage
of the entire (x, y) states. Now, consider a particular state s that an agent finds itself in three different
layouts (see Figure 2). During FB training, we evaluate the forward representation F'(s, -, zpg) for
latent directions zgg ~ Uniform(S%~1), where each zpg indexes a distinct policy starting at s.

In this setting a single grid state can require different optimal actions, depending on the layout
an agent is instantiated in. Because zpg does not enforce a separation of layout-specific futures,
the FB model suffers from interference: latent directions encoding conflicting future outcomes
overlap and become entangled in the latent space Z. For each of the layout configuration and fixed
state s from above, Figure 3 depicts latent directions zgg, colored by optimal policy as acolor =
arg max, F'(s,a, ZFB)TZFB. When FB is trained on first two layouts in isolation, a unique dominant
direction emerges in Z, recovering the optimal goal-reaching policy 7. In contrast, training on data
which mixes transitions from various environment instances results in zgg to blend dynamics-specific
information and instead to average over the possible futures, yielding a policy that is sub-optimal
for every layout even from train set. Those observations are supported theoretically below.

Let {M™i}*_, be a collection of successor measures corresponding to optimal policies {r; }%_; for
distinct CMDPs defined by hidden context configurations ¢; € C. Assume that p is the state-action
distribution supported on the offline dataset used for FB training and M ™ (s, a,-) ~ F(s,a, z;)T B(-)
is approximated via rank d factors. Define the worst-case approximation error €; over context-
dependent k successor measures as follows:

T T
e = Inf max |[M™ —F(, 2)" BO)llra()- ®)

Then, the extracted policy 7., for (s, a) satisfies:

Theorem 1 (Regret-bound for Multiple Dynamics). For any bounded reward ||r||oc < R and

particular test-time CMDP,

2verrlloo
(1=m)2"

Because €11 > €}, (monotonicity), the worst case regret per any CMDP at test time increases as

more environments are included during training.

E(Saa)NP/esl [Q:‘T* (57 a) - Q:Zz (Sv a)] S (6)

We provide a proof in Appendix. Intuitively, Theorem 1 tells that adding transitions from more
CMDPs only increases the worst-case optimality gap: as number of environments k grows, FB is
forced to average over incompatible future dynamics. The proof relies on monotonicty property of
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Figure 3: Three different environment configurations from Figure 2 are visualized (yellow, purple and
mixed trajectories). For a fixed state s and same goal across configurations, arrows depict latent directions
zrg € Z and colored by optimal action as acolor = arg max, F(s,a, zpB)TzFB. (left-middle) When FB is
trained on the two distinct configurations in separation, most of the latent directions agree on the optimal policy
7. (right) When FB is trained on mix of CMDPs and at test time tasked with any particular configuration from
train, obtained policy is ambiguous, since most policy-encoding directions do not agree on the action.

error term in Equation 5 and Theorem 9 from Touati and Ollivier [38]. In Section 3.3 we will refine
this result and show that it is possible to remove explicit dependence of k, lowering the upper bound.

This interference highlights a fundamental trade-off. FB is expressive enough to model any task, yet
when it is trained in unsupervised manner across environments with distinct unobserved parameters,
the lack of contextual conditioning forces it to average different dynamics rather than separate them.
The resulting successor measure merges transitions from distinct layouts and entangles directions in
the latent space Z. To disentangle these directions we must represent uncertainty about the hidden
context explicitly. The next section introduces a belief-conditioned objective that infers the latent
context and allows FB to maintain environment-specific successor features.

Takeaway 1

Because FB training inherently averages over all possible future states, it cannot learn a
disentangled policy space and, therefore, fails to adapt to changes in dynamics.

3.2 Belief State Modeling

To resolve the interference issue described in Section 3.1, we infer the latent context of an envi-
ronment and augment FB input on that belief. We train a transformer encoder fqyn, by taking a
set of transitions {(s, at, s}, 1) }i~, and outputs an embedding i € R?. We denote the space of all
possible inferred contexts as H, where each element / encodes dynamics for particular environment.
Because the ordering is discarded and no rewards in transitions are provided, the encoder must focus
on dynamics specific mismatches (e.g., layout geometry, friction or wind direction), rather than
policy specifics. Such context encoder should be permutation invariant, since unobservable factors
describing environment are independent of the order of transitions in an episode. This setting provides
theoretical ground for zero-shot and few-shot learning [33].

Concretely, dataset consists of episodes ({(s¢, at, s),1)c, }1-; coming from CMDP with randomly
instantiated hidden specification variable ¢; (different dynamics). We train a transformer encoder on
random episodes (without episodic labels ¢;) of context length n to infer contextual (hidden) variable
h which fully specifies the dynamics across given episode. The transformer encoder loss involves two
main components: 1) h is encouraged to follow a Gaussian prior and is shared across trajectory, and
2) projection head, which combines h with (s;, a;) to predict s;1. Those stages can be either trained
end-to-end or separately. We observed that separating FB training from fyy, gives better results.

For each trajectory we concatenate the inferred context vector h with the task vector zgg to obtain
augmented input [h; zpg] and condition only forward network as:

My (8¢, a1, 5041) = F(si, a, [h; ze8])T B(se41).- @)

We empirically found that conditioning the backward network B degraded performance, producing
smoothed out () function, ignoring environment structure, so in our experiments B remains shared
across contexts. Training procedure is summarized in Algorithm 1.
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Figure 4: Visualization of inferred contexts /» from space of all possible contexts # (depicted as arrows)
and task vectors zrg (depicted as points on sphere boundary). Transitions from same CMDP colored
the same. Concentration parameter ~ defines spread of clusters. (leff) Untrained transformer fqy, output
for different transitions is unstructured and same transitions coming from same CMDP (identical colors) are
not collinear. (middle) New sampling procedure aligns policy specific vectors zrg with context specific h, but
clusters overlap before training. (right) After training, h for transitions from the same context are aligned and
policies zrg do not interfere between different environment configurations.

At test time, the agent is provided with a short, reward-free trajectory and it is passed to fayn to obtain
h. By plugging the result into Equation 4, the greedy policy is obtained.

Takeaway 2

We train a transformer in a self-supervised regime to estimate a belief over possible contexts,
augmenting FB inputs and enabling effective disentanglement of contextual representations.

3.3 Structuring directions in the latent space

Insights from Section 3.1 showed that sampling task-vectors zgg uniformly on the hypersphere
encodes averaged policies, while Section 3.3 provided a solution through explicit context identification.
We now combine these observations together through enhanced sampling zpg around the inferred
context h.

In Vanilla-FB, each state s draws zgg ~ Unif(Sd_l) with no inductive bias, so resulting policies 7,
conflict with each other in CMDP setting, even if additional explicit conditioning is introduced as
before. We replace uniform prior with a von Mises-Fisher(vMP) distribution centered at the context
direction for episode i = fayn({(5s, @i, si+1)}) as

Zh+rB ~ VMF(u = h, k). )

with x controlling the spread or diversity of policies (left and middle figures from Figure 4). In
practice, to draw z;, g we first pick a simple vector (e.g., the first basis vector), perturb with vMF
noise, and finally rotate the result onto h with Householder reflection.

This enhancement has several benefits: 1) because directions A that differ in dynamics now occupy
disjoint cones on the hypersphere, FB can fit the successor measure locally inside each cone, avoiding
the destructive averaging effect quantified in Section 3.1 and 2) alignment procedure encourages the
agent to explore policies that are plausible under its current belief while still injecting controlled
diversity through &.

Importantly, such a procedure not only has empirical benefits as we will show in Section 4, but also
lowers bound from above in Theorem 1, making it non dependent on number of environments k.

Theorem 2 (Regret bound under latent space partitioning). Define €, as worst-case approximation
error as in Equation 5. The Gram matrix of the task directions {zrp}¥_, is block diagonal w.r.t.
partition {S;}, with each S; being the set of task-vector indices which satisfy (zpp, h7) > €08 Opax
with 0, being angle between any two latent vectors. Then,

€ = Maxe€;, € < €k, ©)
J<L

with kyayx := max; |\S;| being the size of the largest cone block.
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Figure 5: Ablations on data diversity and context length of transformer encoder. We show the
influence of number of environments (data diversity) and context length on train and test performance
in Four-Rooms and Pointmass environments. For data-diversity ablation, we see a clear performance
boost up until some point, after which it platoes, as the Theorem 1 predicts. In our context-length
ablation, we observe similar behaviour: performance improves as the context grows up to the length
of a single episode, and then levels off. The results are averaged across three seeds, the opaque fill
indicates standard deviation.

Intuitively, Theorem 2 states that after the partitioning procedure of the latent space into non-
overlapping clusters based on context representations h, the global worst-case FB approximation
eITor €5, = max;<r, €; is determined only by the cluster whose error ¢; is largest. Importantly, this
bound does not depend on number of training environments k. We provide a more formal treatment
and a full proof in Appendix D.

Takeaway 3

Adjusting the prior over task vectors zgg further mitigates the averaging effect and disentan-
gles policy representations better.

4 Experiments

In this section, we compare proposed methods, namely: Belief-FB (BFB) (Section 3.2) and its
enhancement Rotation-FB (RFB) (Section 3.3), against the baselines in both discrete and continuous
settings. We outline each experiment design below; all necessary details are provided in Appendix
C. Every environment is framed as a contextual MDP (CMDP), where the context differs by the
underlying hidden variation (e.g., , grid layout or transition dynamics). During test time, we provide
a single trajectory from random policy, which enables context configuration inference.

4.1 Environments and Setup

To support claims and theoretical insights made in previous sections, we consider the following
experimental setups: (i) discrete, partially observable Randomized Four-Rooms (Appendix B.2), (ii)
continuous AntWind (Appendix B.3), and lastly (iii) continuous partially observable Randomized-
Pointmass (Appendix B.4). We vary the number of train layouts for each experiment, while fixing
the number of held-out unseen context settings to 20 for Randomized Four-Rooms and Randomized-
Pointmass, and 4 for Ant-Wind. We perform comparisons against following baselines:

HILP [26] is a method that learns state representations from offline data so that the distance in the
learned representation space is proportional to the number of steps between two states in original
space. FB [38] is an original version of the FB, described in Section 2. Laplacian RL (LAP)
[42] constructs a graph Laplacian over state transitions from experience replay, then computes
its eigenvectors to form low-dimensional representations that capture the environment’s intrinsic
structure. Random agent, which randomly explores the environment in a task-independent manner.
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Randomized Four-Rooms is a discrete, deterministic, partially observable environment, where the
task is to optimally move to the goal location. Training data is collected by executing random policies
in N distinct grid layouts, that differ in doorway and wall locations.

Ant-Wind is a continuous environment, where the goal is to make a four-legged ant walk forward as
fast as possible. The environment dynamics are determined by the direction (angle) of a wind d.

Randomized-Pointmass is a partially observable continuous Randomized Four-Rooms
environment, where the task is to move to the goal locations. 1.0 TeSF
Maze grid structure is generated randomly, where each cell Train
: ; ; / . c 0.75
either contains wall or empty, while ensuring there is a path &
between start and goal locations. 2 o5
5 0.
(24
4.2 Can the belief estimation enable adaptation in FB? 0.25 >
Previously, we provided the theoretical foundations and spec- 0.01, = i
ulated on the matter why FB is unable to differentiate between Pointmass
distinct dynamics and how we can use the belief estimation to 1.0
overcome this. We refer to Table 1 and Figure 1 that show our
oo ; ; €0.75
empirical findings to support our claims. 5
=
Initially, we would like to highlight that neither FB nor LAPare @ 0.5
. L . (04
able to outperform a simple random baseline in PointMass and
FourRoom, indicating that the policy they learn is most likely 0.25
stuck in some obstacle due to averaging (see Section 3.1. Only 0.0 g
HILP, which uses a different way to learn policy representations, 10 30 50 100
is able to perform better than random policy. K

In contrast, Belief-FB and Rotation-FB outperform every base-
line method, indicating that belief estimation is indeed a missing
piece for adaptation. Notably, our methods also demonstrate
generalization capabilities beyond train data on unseen test
tasks.

Figure 6: Influence of « in RFB on
performance. The results are aver-
aged across three seed, the opaque
fill represents standard deviation.

4.3 Do BFB and RFB capture hidden properties of the environment?

For an agent to refine its policy, it needs to keep track and update the uncertainty over possible
environment configurations. Both Belief-FB and Rotation-FB accomplish this. Figure 7 illustrates
this phenomenon visually. In Randomized-Door (left), the episodic trajectories from five layouts
form non-overlapping clusters in the first two principal components of h, effectively disentangling
different dynamics.

In Ant-Wind, the embeddings lie almost perfectly on a circle whose azimuth matches the underlying
wind direction, generalizing smoothly to the 4 held-out wind angles. The quantitative results for
evaluation in Table 1 (averaged across all environments) reveal that the baseline methods fail to
recover those environment-specific properties and therefore produce sub-optimal policies even for
train cases. In particular, HILP tends to predict an average direction in Randomized Four-rooms
and ignores obstacles, while FB outputs same policy and () function for almost all environments.
Figure 12 shows that () function is properly estimated only for BFB and RFB, respecting wall
positions.

4.4 Does change in context length input to the fq,, impacts performance?

In this experiment, we examine whether increasing the input trajectory length of improves perfor-
mance. We vary the context length of fgy, from 50 to 200 and present the results in Figure 5 for both
Randomized Four-Rooms and Randomized Pointmass environments, across train and test configu-
rations. The results show that performance is poor when the context length is shorter than a single
trajectory episode (100 steps), as short trajectories only capture local, near-term goals. Conversely,
excessively long sequences provide no additional benefit due to redundancy, since fqyn already
contains all neccessary information. Evaluations on both train and test environments demonstrate
that f4yn produces representations h capable of distinguishing between different context instances
while maintaining robustness.
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Figure 7: 2D projections of z4y, inferred from different trajectories across number of different contexts
(color), showing effective disentangling environments based on transition function or other mismatches.
(left) First two principal components are visualized for estimated 24y, from five trajectories, each representing
different layout type in Randomized-Doors. (right) Inferred context variables zayn recover hidden wind direction
parameter in AntWind environment both for train and test, proving successful extrapolation properties.

4.5 Does increase in dataset diversity make policies more robust?

We study whether diversifying training configurations of CMDPs results in better performance.
Intuitively, larger the state-action space coverage, successor measure estimation should be more
accurate. This intuition is also reflected in experiments: Figure 5 depicts that up to some number
N (around 25) improvement rapidly grows for BFB and BFB, while baselines perform on par with
random policy, supporting insights from previous sections. Once learned representations i from
fayn covered all modes of variation (i.e., contexts), adding more data yields marginal benefit (< 3%)
marginal gain. These findings align with theoretical intuition from Theorem 1.

4.6 How « in RFB influences performance?

As described in Section 3.3, RFB concentration x regularizes the diversity of policies for each
environment. One the one hand, concentration should be high to ensure non-overlapping policy
parametrized clusters 7, for different h, while at the same time it should not exceed certain value
to control the diversity of policies in the environment, preventing collapsed solutions. Figure 6
shows that lower values of x, meaning task-vectors zpg are sampled with high deviation around h,
likely producing overlapping clusters. As x grows, task-vectors become more specialized, lowering
variance which results in higher performance.

5 Conclusion & Limitations

In this work, we introduce Belief-FB (BFB) and Rotation-FB (RFB) two methods that extend
the Forward-Backward (FB) representation to handle novel dynamics. We first identify a critical
limitation in existing approaches: interference arises when naively sampling policy-parametrized
latent directions during training on transitions from conflicting dynamics. To address this, we learn
hidden context variables (belief states) via a permutation-invariant transformer encoder and use them
for additional conditioning. We further improve latent-direction sampling by aligning task-relevant
abstractions with environment-specific features, ensuring non-overlapping regions in latent space
of policies. Both BFB and RFB demonstrate theoretical and empirical improvements over prior
methods. However, limitations include evaluations on a narrow set of dynamics mismatches and the
introduction of the additional hyperparameter x that controls policy diversity across environments.
Also, usage of transformer can be expensive if context length grows.

As future research directions, it would be valuable to investigate whether other zero-shot RL methods,
those not based on successor-measure estimation, exhibit similar interference issues, and to scale our
approach to more complex benchmarks such as XLand-MiniGrid [24, 25] or Kinetix [22].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: in Section 3.1 we investigate the crucial limitation of previous works, showing
the need to properly address interference problem. Based on this, we show that proposed
solutions BFB and RFB both theoretically Section 3.1, Section 3.3 and empirically improve
performance over baselines Section 4, addressing fully limitation above.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]

Justification: we state limitations in the Section 5, which include evaluations on state-based
benchmarks, which have dynamics mismatches of only certain type (either grid layout,
or wind direction). In our work we consider only FB from BFMs family, while leaving
investigating other methods for future works.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
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model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[Yes]

Justification: we state two main theorems with corresponding assumptions (Theorem 1 and
Theorem 2) in each of the corresponding sections, while providing full formal proof for
both in the Appendix D.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we give a description of both our methods in Section 3.2 and Section 3.3,
explain the experimental setup in Section 4.1 and give extended description in Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: we provide our code in supplementary materials with instructions on data
generation and model training.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: we report the hyperparameters and training details in Appendix E.1. The
hyperparameters were chosen after a random hyperparameter tuning.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: we report the error bars and specify their meaning throughout the paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: we provide this information in Appendix E.I.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: we have reviewed and agreed to comply with the NeurIPS Code of Ethics
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: the main societal impact of our work is to advance the field of Machine
Learning in general, however, we do not think our work has any direct negative societal
impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: we believe our work does not pose any such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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12.

13.

14.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: our work does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: there are no new assets released by our work.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: crowdsourcing is not involved.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: crowdsourcing is not involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Extended Related Works and Background
A.1 Background

Contexual Markov Decision Process. Throughout paper we will be dealing with a Contextual
Markov Decision Process (CMDP), defined by a tuple <C , S Ay, M >, where C is a context space and
S, A are shared state and action spaces across environments. Function M maps particular context
¢ € C to respective MDP, i.e., M(c) =<S A, T R, uc,fy> with context-dependent transition
function 7¢: S x A x C — S, u€ being an initial distribution over states and v € (0, 1) a discount
factor. Intuitively, the context ¢ € C represents a fixed environmental configuration, such as obstacle
positions, layout geometry, dynamics vector parameters or seed. Throughout this work, the context
remains static within each episode, consistent with prior literature [18, 23, 36]. A policy 7 : S — AA
is optimal for context c for the reward function R if it maximizes expected discounted future reward,
i.e., m; n(s0,a0) = argmax, E[3- v R(s¢, ar)|so, ao, 7, c].

When the context is fully observable, augmenting the state space with the given context reduces the
CMDP to a standard MDP, eliminating the need to model distinct dynamics 7 ¢, rewards R° or initial
states 11°. However, if the context is partially observable, the learned model must infer and track the
uncertainty over true hidden configuration to maintain theoretical optimality guarantees. Such task
can be framed as posterior estimation p(c|H) or belief over possible contexts ¢ given accumulated
history H.

Most successful methods for deriving an optimal policy across arbitrary tasks from a task-agnostic
dataset leverage successor features [2, 6, 8, 26, 45] or their continuous counterpart, successor measures
[1,5, 17, 38, 39]. In this work, we focus on the latter framework, specifically its instantiation via
forward-backward representations [38]. Below, we briefly outline its key properties.

Zero-Shot RL. Given an offline dataset of transitions D = {(s;, a;, si+1)}£|1 generated by an
unknown behavior policies, the agent’s objective is to learn a unified abstraction of the environment
without additional interaction. At test time, this abstraction helps to obtain optimal policy for any
reward function r;.5; which defines a particular task. Reward function can be specified either as a
small dataset of reward-labeled states Dyes; = {(5;, Trest (i)} or as a direct mapping s — 74es¢(5).
While some prior works assume access to the context labels [14], we focus on the setting where the
context is unknown and must be inferred from the data. Alternative formulations of zero-shot RL
exist under other formalisms, and we refer to [18] for comprehensive overview.

A.2 Literature

Domain Adaptation and Transfer Learning in RL. While our work will focus on domain adapta-
tion applied to estimating successor measure for various dynamics mismatches, we start by briefly
reviewing more general ideas in classic domain adaptation and refer to [19] for detailed overview.
Most methods for domain adaptation can be categorized into importance-weighting [4, 34, 40] and
domain-invariant feature learning [10, 11, 43, 44] approaches. Former methods estimate the likeli-
hood ratio of examples under samples from target domain versus samples from source, which is then
used to recalibrate examples from the source domain. The latter approaches learn a unified repre-
sentation of the environment, targeting to extract only task-relevant abstraction, negating distracting
information.

The most relevant approach which enables FB representations to generalize across dynamics is Con-
texual FB [16]. This approach uses importance-weighting formalism and introduces two classifiers,
which estimate the likelihood of transitions (s, a;) and (s, a¢, $¢41) being from train or test context
and augment the reward function to account for those discrepancies in the dynamics. If augmented
reward function lies in the linear span of the Z space during FB training, then the policy can be
extracted as described in Equation 4. However, such an approach requires training classifiers from
scratch for each novel layout of the environment, limiting its applicability.

Meta-RL. Another major line of related works, Meta-Reinforcement Learning (Meta-RL), focuses
on few-shot domain adaptation to unseen tasks or dynamics [3]. The significant part of research in
Meta-RL is dedicated to explicitly learning the belief by collecting a history of interactions with the
environment on inference during test-time [9, 29, 46]. However, recent works show that it is possible
to quantify the belief without learning the posterior implicitly [20, 21, 28, 32, 35, 47, 48]. Leveraging
in-context ability of transformers [41], one can learn an end-to-end supervised model, while the
transformer’s context will absorb into robust representation the adaptation-relevant information thus
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enabling fast adaptation. We also leverage this in-context ability to construct the belief representation
of the dynamics the agent currently in, but instead operating in a zero-shot manner.

A.3 FB Training

In this section we describe the training procedure of FB in more details. Everything follows the
notation from Touati and Ollivier [38].

Assume that p is supported over all provided data, i.e., it is non-zero everywhere.

Lrp = E(St,at,8t+1,s+)ND,z~Z[(F(St, ag, Z)TB(5+) - ’Yﬁ(st—o—la T (St41, Z)TB(S-F))z
— 2F(s4,a4,2)" B(sg41)]  (10)

Here, sy is a future outcome either from the same trajectory or randomly sampled from data.
F, B are target networks with Z being a task space, encoding all possible policies. The policy
7, is trained in an actor-critic formulation and parametrized as Boltzmann policy 7, (:|s;) =
softmax(F(s;,-, 2;)T z;/7) for continuous environments. Additionally, B is forced to be orthogonal
for different s, which is enforced by contrastive loss E s s+ [B(s)” B(s4)].

B Environment Descriptions

B.1 Randomized-Doors

The Randomized-Doors MiniGrid environment (Figure 8) is a discrete-state, discrete-action finite
horizon deterministic environment in which agent has an objective to go to goal location with
maximum return of 1. Each episode terminates after 100 steps or after reaching goal location. The
randomization determines possible open doors locations, fully specifying particular layout. In our
experiments, the observation state of an agent consists of (x, y) coordinates tuple, making it partially
observable. Such setting requires to properly update beliefs over unobservable layout configuration
type. The action space consists of four actions, namely {up, down, right, left}, while (x,y)
coordinates across both axes are bounded by grid size, which we take tobe 9 x 9.

(a) First type (b) Second Type (c) Third Type

Figure 8: Several possible layouts are visualized, each corresponding to unique possible doors
configurations. The agent is denoted as a red triangle. The task specification (goal position) with
reward of 1 is denoted by green square and is also randomized. It is a custom implementation based
on Empty MiniGrid (https://minigrid.farama.org).

B.2 Randomized Four-Rooms

The Randomized Four-Rooms MiniGrid environment Figure 10 is a modification of classic Four-
Rooms and is a discrete-state, discrete-action, deterministic partially observable environment. For
each episode, the maze layout (grid type) is generated randomly, ensuring all of the four rooms are
connected with exactly single door. Observation state consists of (x,y) coordinates, making this
environment hard and checks whether agent could successfully estimate uncertainty over hidden
configurations solely based on number of occurrence of each transition, recovering dynamics. In our
experiments, we consider 11 x 11 bounds for height and width.

Observation space consists of raw discrete (x, y) coordinates on the grid, while actions correspond
to a set of possible moves {up, down, left, right}. For every layout we record 500 episodes
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of length 100, yielding a dataset that covers almost all possible (s, a) transitions. For testing on
unseen configurations, we fix agent starting position to coordinates of the first empty cell and evaluate
performance across 3 static goal positions, farhest away from starting position.

Figure 9: Different layout configurations from randomized Four-Rooms environment. During inference,
the goal for the agent (depicted in blue) is to achieve green location. In our experiments we fix starting agent
position and fix 3 goals, one for each room.

B.3 Ant-Wind

The AntWind environment is a modified version of the Ant locomotion task from the MuJoCo
simulator, commonly used to test an agent’s adaptability to changing dynamics. In this environment,
an ant-like robot must learn to move forward while being subjected to external wind forces varying
in magnitude and direction. In our experiments we consider 17 environments for training, covering
three quadrants of possible wind directions on the circle, while leaving others for test, checking
extrapolation on the fourth quadrant.

For our experiment, we collect dataset by training SAC [15] on 3/4 of all possible directions, which
results in 16 environments and hold out the other 1/4 for evaluation. Resulting dataset consists of
3400 transition tuples, where each environment configuration is represented as trajectory of length
256.

B.4 Randomized Pointmass

Randomized Pointmass is a modification of pointmass environment from D4RL [13]. Each episode
the environment grid structure is randomized, ensuring all cells are interconnected. The observation
space consists of (x,y) transitions. Start position is determined as a first empty cell, while goal
location is chosen to be the fartherst away from start (based on Manhattan distance) and ensuring
existence of at least one valid trajectory (e.g., through BFS).

Observation space consists of (global x,global y) position, similar to Four-Rooms. We fix
dataset size to be 1e%, only varying number of layouts and episodes per layout, while fixing episode
length to 250. We use explore policy, which is a random policy with a portion of actions repeated
("sticky-actions").

Ay

Figure 10: Examples of pointmass grid variations.

C Experiments Details

Randomized-Doors. For didactic example from Section 3.1 we collect diverse dataset from different
layout configurations (open door locations) such that visitation distribution over all states is non-zero.
Black color denotes obstacles. The episode length is set to be 100, which is equal to the context
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length of the transformer encoder for this experiment. Overall, we collect 500 episodes per layout
and coverage heatmap is visualized in Figure 11.

Table 1: Comparison of proposed approaches against baselines on test (unseen) environments.
Results for Fourrooms and Pointmass are averaged across 20 mazes configurations.

. Method
Environment (Test)

Random  Vanilla-FB HILP Lap Belief-FB  Rotation-FB
Randomized-Fourrooms  0.05 +o.01 0.15 +o.06 0.2 +0.02 0.1 +o0.1 0.4 +0.02 0.61 +0.02
Randomized-Pointmass  0.03 +o.01 0.1 +o0.1 0.25 1002 0.1 £o1 0.45 +0.05 0.55 +0.05
Ant-Wind 250 +200.0 250 +os.5 410 +105 290 1225 550 +505 640 +30.7

Table 2: Comparison of proposed approaches against baselines on train environments.
Results for Fourrooms and Pointmass are averaged across 20 mazes configurations.

. . Method
Environment (Train)
Random  Vanilla-FB HILP Lap Belief-FB  Rotation-FB
Randomized-Fourrooms 0.18 <002 0.25 t0.02 0.4 +0.02 0.2 t0.1 0.7 +0.02 0.85 +0.02
Randomized-Pointmass 0.0 +o0.05 0.2 t02 045 101 0.15 t015  0.76 2015 0.88 +0.2
Ant-Wind -190 +250 390 +120 410 +90 340 +150 680 +s0 740 +70

(a) Randomized-Doors (b) Randomized Four-rooms

Figure 11: State occupancy measures visualizations for collected datasets for discrete-based environ-
ments.

C.1 Dataset Generation

For Randomized Four-Rooms, we produce four training datasets with the following parameters:

# Transitions # layouts # episodes episode
per layout length
1000000 10 1000 100
1000000 20 500 100
1000000 30 250 0
1000000 50 150 100

Table 3: Details for Randomized Four-Rooms datasets

Randomized Four-Rooms. For experiments on Randomized Four-Rooms during dataset collection
we generate randomly grid layout, ensuring that each room is interconnected by exactly one door.
For evalution we fix agent start position to (1, 1) with the goal of reaching 3 other goals, specified at
other rooms. Each episode terminates after 100 steps. The evaluation protocol is averaged success
rate across 3 across 20 environments.
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Vanilla-FB

Figure 12: Q-function and deterministic policy visualizations (Equation 4) on Randomized Four-Rooms
environment. Vanilla-FB ignores grid structure and resulting policy moves through obstacles. BFB and RFB do
not have such issue.

AntWind. For AntWind we first collect trajectories by varying wind direction d and training an
expert-like SAC agent. After training, we collected evaluation trajectories from trained agent. This
ensures that all directions are covered and explicitly sets dynamics context. As said in Experiments
section, we train on 16 environments with wind directions corresponding to first 3 quadrants of circle,
leaving other 4 (last quadrant) for hold out.

D Proofs
D.1 Theorem 1

Preserving notation from Section 3.1, we provide a full proof of the Theorem 1. Let {M,.} be
a collection of successor measure of the optimal policies {;}¥_; for k distinct CMDPs. Given a
reference measure p on S x A let worst case regret be defined as
— 1 — . . - T .
ek = Inf max ||Mxr, — F(,,2)" B()l|z (11)
Theorem (Regret-bound for Multiple Dynamics). Then, for any bounded ||r|| < R and any CMDP

whose state-action distribution pies; (assuming absolute continuity, i.e., dpiest/p is bounded), the
policy extracted from F, B for that CMDP satisfies:

« 2ver||r
E(Sva)Nmer [Qﬂ— (S’ a) - QﬂZi (S’ a’)] S M

(1—7)?

Since €11 > €k (monotonicity) the worst case regret per any CMDP at test time increases as more
environments are included during training.

Lemma 1. Theorems 8-9 from Touati and Ollivier [38] prove this inequality for single instance

of MDP, showing that if FB approximation error in L*(p) is at most € then pointwise value gap is
bounded by:

(@7 = QF) < 1= (P = Pr)(I = 7Pe) " B(2)1) (12)
with E(z; being a point-wise error matrix over state-actions as E(z) = M™(s,a,s") —
F(s,a,z)" B(s,a). Since

1
T—~AP) Yo < —— 13
10 =2P) o < 1 (13)
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results in coefficient 27/ (1 — ~)? in Equation 1.

Proof. Define a transition kernel P; of CMDP at index ¢ and M, its successor measure. Let
E; = M., — F(s,a,z)"B(-) = M,, — M;. Then, using Q* = (I — vyPy-)"'r value gap
decomposes as

Q" = Q™ =y(I —=yPr+) ' (Pr. — Pr, (I —7Px, )" 'r (14)
Since each of the resolvent factors (denote them as FE;)are at most 1/(1 — ) in L°°, then from
triangle inequality:

1" = @l <
===

From Assumption 1 on absolute continuity,

Elsa)mped@F — Q™ } <|Q" — Q™ |0 (16)

Substituting this into Equation 15, gives desired inequality bound in Theorem 1. O

1Bzl (15)

D.2 Theorem 2

Section 3.3 introduced a new sampling procedure of zpg, which improves upon usual uniform
sampling. This procedure can also be studied more formally.

Given an L possible contexual representations h of the environments coming from fqyn, define a
cone around each of the context axes {h', h?... hl'} € S4=1, with the angle between any two latent
vectors 0.5 Set ‘

Cj = {ZFB € Sd_1|<ZFB, h]> > cos Qmax} 17
Corresponding policy task vectors are defined for each cone 2y € Ce(iy» with ¢(i) € {1,... L}
being a classification function, mapping index ¢ to one of the predifined context axes. For functions
F, B define per environment error as:

gt(F7B) = HMm - F(" "Z%B)TB(')HLQ(p) (18)
With following optimization tasks:
€ 1= %n]ig’ 1r£1ia§Xk€i(F, B), ¢j:= }?I}]g Iilé%:;(é'i(F,B) (19)

with S; = {i|c(i) = j} being a set of task vectors (zpg) indices that fall into the j-th cone of the
latent space partition.

Theorem (Regret-bound under latent space partitioning). Under assumptions above, the Gram matrix
of the directions {zpp}¥_, is block diagonal w.rt. partition {S;} and

(20)

max

€, = maxe;, € <€
B=AXE), € S €k
with kyax := max; |\S;| being the size of a largest cone block.

In order to prove this theorem, assume that collection of contexual embeddings {h;}~ ; obtained
from L environments are almost orthogonal.

Proof. Define a k x k Gram matrix as G = (ziy, 25) with 4, j corresponding to cone partition.
Because cones, corresponding to different contexual embeddings b, are disjoint and lie in a span{h;},
the resulting Gram matrix is block diagonal G = diag(G™"), G(?) .., G*). For a fixed rank d of F, B,
the worst case approximation error is

fk'(Fv B) = fg?SXk ||Mm - Mm”Lz(p) = Igngal}frzrel%}]{ ||M7r1 - MmHLQ(p) (21)

Since matrix G is block-diagonal, optimization of F, B decouples over blocks of G. Namely,
minimizer on the full set is obtained by minimizing each block separately, hence:

€ = llg’n]g ex(F,B) = max e (22)

By taking kpmax = max; \Sj| and ¢ < ¢, for each block, we obtain desired inequality. O

Notably, such orthogonal cone partitioning eliminates interference. Once each cone has its own
slice of the latent space, adding more cones does not enlarge the worst-case error bound, and with
representation capacity of F and B being d > kp,x the FB model can reach zero approximation error
in principle.
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Table 4: Hyperparameters for FB The additional hyperparameters for Belief-FB and Rotation-FB

F' /¢ dimensions
B / ¢ dimensions
Preprocessor dimensions

are highlighted in
Hyperparameter Value
Latent dimension d 150 (100 for discrete)

(1024, 1024)
(256, 256, 256)
(1024, 1024)

Std. deviation for policy smoothing o 0.2

Truncation level for policy smoothing 0.3

Learning steps 1,000,000

Batch size 1024

Optimiser Adam

Learning rate 0.0001

Learning rate of fqyn 0.0001

Discount v 0.99

Activations (unless otherwise stated) GeLU

Target network Polyak smoothing coefficient 0.05

z-inference labels 10,000

z mixing ratio 0.5

K 50, 100 for Pointmass
Contexual representation h dimension 150 (100 for discrete)

Next state predictor gpreq

(256, 256, 256)

E Implementation Details

E.1 Forward-Backward Representations
E.1.1 GPUs

We run each experiment on 4 Nvidia 4090.

E.1.2 Architecture

The forward-backward architecture described below mostly follows the implementation by [39]. All
other additional hyperparameters are reported in Table 4.

Forward Representation F'(s, a, z). The input to the forward representation F' is always prepro-
cessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors which are
feedforward MLPs that embed their inputs into a 512-dimensional space. These embeddings are con-
catenated and passed through a third feedforward MLP F' which outputs a d-dimensional embedding
vector. Note: the forward representation F' is identical to 1) used by USF so their implementations
are identical (see Table 4).

Backward Representation B(s). The backward representation B is a feedforward MLP that takes a
state as input and outputs a d-dimensional embedding vector.

Actor 7(s,z). Like the forward representation, the inputs to the policy network are similarly
preprocessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors which
feedforward MLPs that embed their inputs into a 512-dimensional space. These embeddings are
concatenated and passed through a third feedforward MLP which outputs a a-dimensional vector,
where a is the action-space dimensionality. A Tanh activation is used on the last layer to normalise
their scale. Note the actors used by FB and USFs are identical (see Table 4).

Misc. Layer normalisation and Tanh activations are used in the first layer of all MLPs to standardise
the inputs as recommended in original paper for both discrete and continuous becnhmarks.
E.2 Task Sampling Distribution Z

Vanilla-FB. FB representations require a method for sampling the task vector z at each learning step.
[39] employ a mix of two methods, which we replicate:
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1. Uniform sampling of z on the hypersphere surface of radius v/d around the origin of R¢,

2. Biased sampling of z by passing states s ~ D through the backward representation z = B(s).
This also yields vectors on the hypersphere surface due to the L2 normalization described
above, but the distribution is non-uniform.

We sample z 50:50 from these methods at each learning step as in original work by [38].

Rotation-FB. After transformer fq4y, pretraining stage, RFB at each gradient step chooses task-
conditioning vector zpg based on i) context representation h acting as axes coming from fgy, and ii)
drawing task encoding vectors zpg around this axes. We also perform normalization as in Vanilla-FB
by projecting resulting vector on a surface of hypersphere of radius v/d.

Stage ii) is implemented as drawing samples as zgg ~ VMF(u = h, k). In order to remove high
computational costs, we implement this sampling procedure through Householder reflection around

context axes, by first drawing z from one of the basis vectors (e.g., north pole) and then performing
rotation. This is depicted Pseudocode section Section 1:

E.3 Pseudocode

Algorithm 1 Belief-FB Training

1: Input: offline diverse dataset D consisting of transitions based on hidden configuration variable c;
2: Initialize transformer encoder fayn,, I, B, number of gradient steps for transformer pre-training K,
context length 7', Polyak coefficient, 3, batch size B learning rates A ¢, Ar, Ap

3: while update steps < K do

4:  sample batch of B trajectories of length T" {(s;,¢, Gi¢, Si,t41) bi=1,...B,t=1,....7 ~ D
5 (wi; log o), = fdyng({si,h Qi t, Si¢+1}£1),i =1,...,B,

6:  zi=pi+ € Oexp(logo),

7 Zi: = zam,, t =1,...,T #Representation zqy, is shared across each sequence

8: Si,t4+1 =gpred(si,t,ai7t,zi,t) t=1,...,7T,i=1,...,B

9: Leontext = ﬁxil 23:1 H§i,t+1 — Si,t+1”§

10: Hfdyn < Gfdyn — )\fVQ[:comex[(Q)

11: end while

12: while not converged do

130 nr < nr — ArVaypJp ey (nr) #FB training, Equation 10
14:  wp +wp — ABVugJirp)(ws

15: end while

Algorithm 2 Sampling zpg for RFB

Input: B (batch size), d (latent dimension), anchor matrix H e RB*4

Output: ZcRBE*4
1: Normalize anchors: u; < H,/(||H;||2 + ¢) >fori=1,...,B
2: S + VMF_SAMPLE_NORTHPOLE(B, d, k) > draw B VMF samples
3: fori < 1to Bdo

4: R, + HOUSEHOLDER_ROTATION(u;)

5: z; +— R; S;
6
7
8

, k (concentration)

: end for
: Z < PROJECT_TO_SPHERE ({z;}2.,)
: return Z
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