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Abstract

Behavioral Foundation Models (BFMs) proved successful in producing policies for1

arbitrary tasks in a zero-shot manner, requiring no test-time training or task-specific2

fine-tuning. Among the most promising BFMs are the ones that estimate the3

successor measure learned in an unsupervised way from task-agnostic offline data.4

However, these methods fail to react to changes in the dynamics, making them5

inefficient under partial observability or when the transition function changes. This6

hinders the applicability of BFMs in a real-world setting, e.g., in robotics, where the7

dynamics can unexpectedly change at test time. In this work, we demonstrate that8

Forward–Backward (FB) representation, one of the methods from the BFM family,9

cannot distinguish between distinct dynamics, leading to an interference among the10

latent directions, which parametrize different policies. To address this, we propose11

a FB model with a transformer-based belief estimator, which greatly facilitates12

zero-shot adaptation. We also show that partitioning the policy encoding space into13

dynamics-specific clusters, aligned with the context-embedding directions, yields14

additional gain in performance. These traits allow our method to respond to the15

dynamics observed during training and to generalize to unseen ones. Empirically,16

in the changing dynamics setting, our approach achieves up to a 2x higher zero-shot17

returns compared to the baselines for both discrete and continuous tasks.18

1 Introduction19

One very desirable property of reinforcement learning (RL) agents is their rapid adaptation to new20

tasks or to environment changes during test-time, without requiring any fine-tuning or planning.21

Achieving this in as few trials as possible would be even better: the ideal being the zero-shot22

adaptation [39], where the agent never interacts with the environment at test-time and relies solely23

on the data it was conditioned with. Behavioral Foundational Models (BFMs) [30, 37] may be24

considered as a step in this direction, because they can learn a variety of policies from offline data25

without knowing the rewards. During inference, it is possible to extract a task-specific policy that is26

optimal or near-optimal in terms of performance [38]. Recent work demonstrates [37] that one of the27

methods from the BFM family, based on Forward-Backward representation (FB) [38], is especially28

versatile and can successfully imitate behaviors from unlabeled data.29

At the same time, FB possesses a fundamental drawback that limits its adaptation ability. In our30

paper, we show that FB is unable to generalize across different dynamics, such as changes in a31

transition function (e.g., new obstacles) or an environment with some latent factor variation (e.g.,32

wind direction). This limitation stems from the way the successor measure [8] is estimated: FB33

averages the future-occupancy state distribution over all observed dynamics, which inevitably causes34

interference in policy representations. This fact alone may severely constrain the applicability of FB35

in the real-world scenarios. For example, one of the largest robotics dataset, Open X-Embodiment36

[7], consists of 22 different robot embodiments, and training FB on each of them simultaneously is37

infeasible. In Section 3.1, we discuss this limitation and support our claims theoretically.38
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Figure 1: Summary of results. Aggregate mean performance over seen (train) and unseen (test)
dynamics for zero-shot RL. The error bars indicate standard deviation over three seeds. Notably, both
BFB and RFB adapt not only to the dynamics seen during training but are also able to generalize to
unseen dynamics. There are 30 (20) training (test) dynamics for FourRooms and PointMass and 16
(4) for AntWind environments.

To remedy this, we introduce Belief-FB (BFB), a conditioning method for FB through a belief39

estimation, a popular technique of uncertainty quantification in Meta-RL [9, 46]. To implement this,40

we use a transformer encoder fdyn that, given a trajectory from data, outputs a dynamics-specific41

vector h we then pass as a condition to the future outcomes representation function F (·, ·, h, ·). We42

pre-train fdyn in a self-supervised fashion, thus posing no additional requirements on the data structure43

or the trajectory re-labeling. We discuss the implementation of Belief-FB in Section 3.2.44

Remarkably, Belief-FB enables the generalization capabilities of FB not only through the dynamics45

seen in the training dataset, but also on the unseen test dynamics never present in the offline data.46

We also find that in order to align belief estimation better with FB, one also needs to partition the47

policy space into dynamics-specific clusters, so we propose Rotation-FB (RFB) that accomplishes48

this partitioning. We present the theoretical support and the implementation details of Rotation-FB in49

Section 3.3. Empirically, both BFB and RFB outperform baselines for seen and unseen dynamics, as50

gathered in Figure 1 and discussed in Section 4.3.51

We believe that our work sufficiently broadens the possible applicability of BFMs, yet keeping the52

zero-shot setting unchanged. Our contributions are as follows:53

• We introduce the limitation of Forward-Backward (FB) representations [38], which lies54

in its inability to generalize per se across different dynamics both from train and test, where55

dynamics shift constitute of new layout grids or latent changes in the transition function that56

are hidden from an agent. Refer to Section 3.1 for more discussion.57

• We propose Belief–FB (BFB), which employs a transformer encoder to infer a belief over58

the agent’s current dynamics [9, 46]. Analyzing BFB’s policy space reveals that additional59

disentanglement is beneficial, motivating our Rotation–FB (RFB) extension. Section 3.260

examines Belief-FB, and Section 3.3 details Rotation-FB’s theoretical motivation and61

implementation.62

• We empirically demonstrate that both BFB and RFB can adapt to different dynamics,63

unlike its counterparts in the zero-shot setup. Refer to Section 4.3 for the discussion and64

Figure 1 for results.65

2 Behavioral Foundation Models66

For a reward-free Markov Decision Process (MDP), a Behavioral Foundation Model (BFM) [12, 27,67

31, 37] is a RL agent trained in an unsupervised manner on a task-agnostic dataset of transitions. The68
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objective of a BFM is to approximate an optimal policy for a broad class of reward functions that are69

specified only at inference.70

Forward-Backward Representation (FB) [38] approximates a successor measure for near-optimal71

policies across diverse tasks. The successor measure Mπ(s0, a0, X) for subset X ⊂ S is defined as72

cumulative discounted time spend at X starting at (s0, a0) and following π thereafter. More formally,73

for tabular example:74

Mπ(s0, a0, X) =
∑
t≥0

γtP(st ∈ X|s0, a0, π) , (1)

with the corresponding Q-function for a specific task r:75

Qπ
r (s0, a0) =

∑
s+∈X

r(s+)Mπ(s0, a0, s
+). (2)

In continuous case, the FB representation aims to approximate successor measure through finite-76

rank approximation under diverse policies through forward F : S × A × Z −→ Rd and backward77

B : S −→ Rd functions. Given a set of policies πz parametrized by task variable drawn uniformly78

from sphere zFB ∈ Unif(Z = S⌈−∞). Given ρ as a probability distribution over states within the79

offline dataset, the objective for FB is written as:80

Mπz (s0, a0, X) ≈
∫
s+∈X

F (s0, a0, z)
TB(s+)ρ(ds). (3)

Then the policy can be obtained greedily as:81

πz(s) ≈ argmax
a

F (s, a, z)T z. (4)

For continuous case, the greedy policy is parametrized as Gaussian. During test time the task policy82

parametrization is approximated as ztest ≈ E(s,a)∈Dtest
{rtest(s, a)B(s)}. If the inferred task vector83

ztest lies within the task sampling distribution (in a linear span) Z used during training, then the84

optimal policy for task rtest is obtained from Equation 2 as πz(s) ≈ argmaxaQ
πz
rtest(s, a). For85

more details on training and inference procedures of FB, we refer reader to Appendix A.3. More86

detailed discussion on the other related works is included in the Appendix A.87

3 Method88

Problem Statement. Our goal is to pre-train an agent in unsupervised regime in Ctrain = {ctrain ∈89

C} contexts so that it is able to generalize to unseen ones during test time, i.e., zero-shot1. We90

collect diverse dataset, consisting of mix of highly exploratory or expert-like unknown policies from91

varying environment layouts, differing either in dynamics (e.g., wind, friction, etc.) or environment92

specifications (e.g., positions of obstacles and doors). At test time, the agent is provided with small93

(up to episode termination steps) reward-free transitions from test context. Provided information94

must be used by an agent to recalibrate occupancy measure estimation corresponding to encountered95

environment. In an ideal scenario, the agent maximizes the expected discounted return across both96

train and test contexts. We refer to Appendix A for details.97

To formally study optimality guarantees of the problem above, we employ the following assumption98

commonly used for dynamics generalization [10, 16]:99

Assumption 1 (Coverage). Let Pc(st+1|st, at) be a transition probability given small dataset100

of reward-free random interactions either from test or train context. Then, Pctest(st+1|st, at) ⇒101

Pctrain(st+1|st, at) ∀st, st+1 ∈ S, at ∈ A .102

3.1 Investigating latent directions space under multiple dynamics103

We begin by addressing the following question: Why does FB representations fail to generalize104

effectively (both for train and test) to different situations under dynamics variations, i.e., if learned105

on data sampled from diverse CMDPs? While the answer may appear intuitive, a closer look into106

the geometric structure of learned latent directions zFB ∈ Z , which encode possible policies πz107

reveals critical insights which will be helpful later. We approach this question both theoretically and108

empirically on custom simplistic discrete partially-observable Randomized Doors (see Appendix109

1We use the term "zero-shot RL" following [38].
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Figure 2: Randomized-Doors environment for three different layouts, each produced through varying the
grid structure (exact randomization procedure is a hidden variable) (left-middle) From state s, the goal of
an agent is to capture a diamond at target location by picking up the most probable policy πz (yellow for the
first type and purple for the second) to move to the closest open door based on internal representation. (middle)
When there are multiple possible future outcomes in the training data from the same state, the πz’s (different
colors) interfere with each other, leading to picking up an averaged policy.

B.1) environment. Partial observability adds additional challenges and showcases the need to estimate110

belief state, which we discuss in the following sections.111

In this experiment the only source of dynamics variation is the grid layout type. That is, the positions112

of doors and walls are changed each new episode, depending on hidden configuration variable c. We113

collect a dataset of random trajectories drawn from multiple layouts, yielding near-uniform coverage114

of the entire (x, y) states. Now, consider a particular state s that an agent finds itself in three different115

layouts (see Figure 2). During FB training, we evaluate the forward representation F (s, ·, zFB) for116

latent directions zFB ∼ Uniform(Sd−1), where each zFB indexes a distinct policy starting at s.117

In this setting a single grid state can require different optimal actions, depending on the layout118

an agent is instantiated in. Because zFB does not enforce a separation of layout-specific futures,119

the FB model suffers from interference: latent directions encoding conflicting future outcomes120

overlap and become entangled in the latent space Z . For each of the layout configuration and fixed121

state s from above, Figure 3 depicts latent directions zFB, colored by optimal policy as acolor =122

argmaxa F (s, a, zFB)
T zFB. When FB is trained on first two layouts in isolation, a unique dominant123

direction emerges in Z , recovering the optimal goal-reaching policy π∗
z . In contrast, training on data124

which mixes transitions from various environment instances results in zFB to blend dynamics-specific125

information and instead to average over the possible futures, yielding a policy that is sub-optimal126

for every layout even from train set. Those observations are supported theoretically below.127

Let {Mπi}ki=1 be a collection of successor measures corresponding to optimal policies {πi}ki=1 for128

distinct CMDPs defined by hidden context configurations ci ∈ C. Assume that ρ is the state-action129

distribution supported on the offline dataset used for FB training and Mπi(s, a, ·) ≈ F (s, a, zi)TB(·)130

is approximated via rank d factors. Define the worst-case approximation error ϵk over context-131

dependent k successor measures as follows:132

ϵk := inf
F,B

max
1≤i≤k

||Mπi − F (·, ·, zi)TB(·)||L2(ρ). (5)

Then, the extracted policy πzi for (s, a) satisfies:133

Theorem 1 (Regret-bound for Multiple Dynamics). For any bounded reward ||r||∞ ≤ R and134

particular test-time CMDP,135

E(s,a)∼ρtest [Q
π∗

r (s, a)−Qπzi
r (s, a)] ≤ 2γϵk||r||∞

(1− γ)2
. (6)

Because ϵk+1 ≥ ϵk (monotonicity), the worst case regret per any CMDP at test time increases as136

more environments are included during training.137

We provide a proof in Appendix. Intuitively, Theorem 1 tells that adding transitions from more138

CMDPs only increases the worst-case optimality gap: as number of environments k grows, FB is139

forced to average over incompatible future dynamics. The proof relies on monotonicty property of140
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Figure 3: Three different environment configurations from Figure 2 are visualized (yellow, purple and
mixed trajectories). For a fixed state s and same goal across configurations, arrows depict latent directions
zFB ∈ Z and colored by optimal action as acolor = argmaxa F (s, a, zFB)

T zFB. (left-middle) When FB is
trained on the two distinct configurations in separation, most of the latent directions agree on the optimal policy
πz . (right) When FB is trained on mix of CMDPs and at test time tasked with any particular configuration from
train, obtained policy is ambiguous, since most policy-encoding directions do not agree on the action.

error term in Equation 5 and Theorem 9 from Touati and Ollivier [38]. In Section 3.3 we will refine141

this result and show that it is possible to remove explicit dependence of k, lowering the upper bound.142

This interference highlights a fundamental trade-off. FB is expressive enough to model any task, yet143

when it is trained in unsupervised manner across environments with distinct unobserved parameters,144

the lack of contextual conditioning forces it to average different dynamics rather than separate them.145

The resulting successor measure merges transitions from distinct layouts and entangles directions in146

the latent space Z . To disentangle these directions we must represent uncertainty about the hidden147

context explicitly. The next section introduces a belief-conditioned objective that infers the latent148

context and allows FB to maintain environment-specific successor features.149

Takeaway 1

Because FB training inherently averages over all possible future states, it cannot learn a
disentangled policy space and, therefore, fails to adapt to changes in dynamics.

150

3.2 Belief State Modeling151

To resolve the interference issue described in Section 3.1, we infer the latent context of an envi-152

ronment and augment FB input on that belief. We train a transformer encoder fdyn, by taking a153

set of transitions {(st, at, s′t+1)}Nt=1 and outputs an embedding h ∈ Rd. We denote the space of all154

possible inferred contexts asH, where each element h encodes dynamics for particular environment.155

Because the ordering is discarded and no rewards in transitions are provided, the encoder must focus156

on dynamics specific mismatches (e.g., layout geometry, friction or wind direction), rather than157

policy specifics. Such context encoder should be permutation invariant, since unobservable factors158

describing environment are independent of the order of transitions in an episode. This setting provides159

theoretical ground for zero-shot and few-shot learning [33].160

Concretely, dataset consists of episodes ({(st, at, s′t+1)ci}Nt=1 coming from CMDP with randomly161

instantiated hidden specification variable ci (different dynamics). We train a transformer encoder on162

random episodes (without episodic labels ci) of context length n to infer contextual (hidden) variable163

h which fully specifies the dynamics across given episode. The transformer encoder loss involves two164

main components: 1) h is encouraged to follow a Gaussian prior and is shared across trajectory, and165

2) projection head, which combines h with (st, at) to predict st+1. Those stages can be either trained166

end-to-end or separately. We observed that separating FB training from fdyn gives better results.167

For each trajectory we concatenate the inferred context vector h with the task vector zFB to obtain168

augmented input [h; zFB] and condition only forward network as:169

M̂πz (st, at, st+1) = F (st, at, [h; zFB])
TB(st+1). (7)

We empirically found that conditioning the backward network B degraded performance, producing170

smoothed out Q function, ignoring environment structure, so in our experiments B remains shared171

across contexts. Training procedure is summarized in Algorithm 1.172
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Figure 4: Visualization of inferred contexts h from space of all possible contextsH (depicted as arrows)
and task vectors zFB (depicted as points on sphere boundary). Transitions from same CMDP colored
the same. Concentration parameter κ defines spread of clusters. (left) Untrained transformer fdyn output
for different transitions is unstructured and same transitions coming from same CMDP (identical colors) are
not collinear. (middle) New sampling procedure aligns policy specific vectors zFB with context specific h, but
clusters overlap before training. (right) After training, h for transitions from the same context are aligned and
policies zFB do not interfere between different environment configurations.

At test time, the agent is provided with a short, reward-free trajectory and it is passed to fdyn to obtain173

h. By plugging the result into Equation 4, the greedy policy is obtained.174

Takeaway 2

We train a transformer in a self-supervised regime to estimate a belief over possible contexts,
augmenting FB inputs and enabling effective disentanglement of contextual representations.

175

3.3 Structuring directions in the latent space176

Insights from Section 3.1 showed that sampling task-vectors zFB uniformly on the hypersphere177

encodes averaged policies, while Section 3.3 provided a solution through explicit context identification.178

We now combine these observations together through enhanced sampling zFB around the inferred179

context h.180

In Vanilla-FB, each state s draws zFB ∼ Unif(Sd−1) with no inductive bias, so resulting policies πz181

conflict with each other in CMDP setting, even if additional explicit conditioning is introduced as182

before. We replace uniform prior with a von Mises-Fisher(vMP) distribution centered at the context183

direction for episode h = fdyn({(si, ai, si+1)}) as184

zh+FB ∼ vMF(µ = h, κ). (8)

with κ controlling the spread or diversity of policies (left and middle figures from Figure 4). In185

practice, to draw zh+FB we first pick a simple vector (e.g., the first basis vector), perturb with vMF186

noise, and finally rotate the result onto h with Householder reflection.187

This enhancement has several benefits: 1) because directions h that differ in dynamics now occupy188

disjoint cones on the hypersphere, FB can fit the successor measure locally inside each cone, avoiding189

the destructive averaging effect quantified in Section 3.1 and 2) alignment procedure encourages the190

agent to explore policies that are plausible under its current belief while still injecting controlled191

diversity through κ.192

Importantly, such a procedure not only has empirical benefits as we will show in Section 4, but also193

lowers bound from above in Theorem 1, making it non dependent on number of environments k.194

Theorem 2 (Regret bound under latent space partitioning). Define ϵk as worst-case approximation195

error as in Equation 5. The Gram matrix of the task directions {zFB}ki=1 is block diagonal w.r.t.196

partition {Sj}, with each Sj being the set of task-vector indices which satisfy ⟨zFB, h
j⟩ ≥ cos θmax197

with θmax being angle between any two latent vectors. Then,198

ϵk = max
j≤L

ϵj , ϵk ≤ ϵkmax , (9)

with kmax := maxj |Sj | being the size of the largest cone block.199
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Figure 5: Ablations on data diversity and context length of transformer encoder. We show the
influence of number of environments (data diversity) and context length on train and test performance
in Four-Rooms and Pointmass environments. For data-diversity ablation, we see a clear performance
boost up until some point, after which it platoes, as the Theorem 1 predicts. In our context-length
ablation, we observe similar behaviour: performance improves as the context grows up to the length
of a single episode, and then levels off. The results are averaged across three seeds, the opaque fill
indicates standard deviation.

Intuitively, Theorem 2 states that after the partitioning procedure of the latent space into non-200

overlapping clusters based on context representations h, the global worst-case FB approximation201

error ϵk = maxj≤L ϵj is determined only by the cluster whose error ϵj is largest. Importantly, this202

bound does not depend on number of training environments k. We provide a more formal treatment203

and a full proof in Appendix D.204

Takeaway 3

Adjusting the prior over task vectors zFB further mitigates the averaging effect and disentan-
gles policy representations better.

205

4 Experiments206

In this section, we compare proposed methods, namely: Belief-FB (BFB) (Section 3.2) and its207

enhancement Rotation-FB (RFB) (Section 3.3), against the baselines in both discrete and continuous208

settings. We outline each experiment design below; all necessary details are provided in Appendix209

C. Every environment is framed as a contextual MDP (CMDP), where the context differs by the210

underlying hidden variation (e.g., , grid layout or transition dynamics). During test time, we provide211

a single trajectory from random policy, which enables context configuration inference.212

4.1 Environments and Setup213

To support claims and theoretical insights made in previous sections, we consider the following214

experimental setups: (i) discrete, partially observable Randomized Four-Rooms (Appendix B.2), (ii)215

continuous AntWind (Appendix B.3), and lastly (iii) continuous partially observable Randomized-216

Pointmass (Appendix B.4). We vary the number of train layouts for each experiment, while fixing217

the number of held-out unseen context settings to 20 for Randomized Four-Rooms and Randomized-218

Pointmass, and 4 for Ant-Wind. We perform comparisons against following baselines:219

HILP [26] is a method that learns state representations from offline data so that the distance in the220

learned representation space is proportional to the number of steps between two states in original221

space. FB [38] is an original version of the FB, described in Section 2. Laplacian RL (LAP)222

[42] constructs a graph Laplacian over state transitions from experience replay, then computes223

its eigenvectors to form low-dimensional representations that capture the environment’s intrinsic224

structure. Random agent, which randomly explores the environment in a task-independent manner.225
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Randomized Four-Rooms is a discrete, deterministic, partially observable environment, where the226

task is to optimally move to the goal location. Training data is collected by executing random policies227

in N distinct grid layouts, that differ in doorway and wall locations.228

Ant-Wind is a continuous environment, where the goal is to make a four-legged ant walk forward as229

fast as possible. The environment dynamics are determined by the direction (angle) of a wind d.230
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Figure 6: Influence of κ in RFB on
performance. The results are aver-
aged across three seed, the opaque
fill represents standard deviation.

Randomized-Pointmass is a partially observable continuous231

environment, where the task is to move to the goal locations.232

Maze grid structure is generated randomly, where each cell233

either contains wall or empty, while ensuring there is a path234

between start and goal locations.235

4.2 Can the belief estimation enable adaptation in FB?236

Previously, we provided the theoretical foundations and spec-237

ulated on the matter why FB is unable to differentiate between238

distinct dynamics and how we can use the belief estimation to239

overcome this. We refer to Table 1 and Figure 1 that show our240

empirical findings to support our claims.241

Initially, we would like to highlight that neither FB nor LAP are242

able to outperform a simple random baseline in PointMass and243

FourRoom, indicating that the policy they learn is most likely244

stuck in some obstacle due to averaging (see Section 3.1. Only245

HILP, which uses a different way to learn policy representations,246

is able to perform better than random policy.247

In contrast, Belief-FB and Rotation-FB outperform every base-248

line method, indicating that belief estimation is indeed a missing249

piece for adaptation. Notably, our methods also demonstrate250

generalization capabilities beyond train data on unseen test251

tasks.252

4.3 Do BFB and RFB capture hidden properties of the environment?253

For an agent to refine its policy, it needs to keep track and update the uncertainty over possible254

environment configurations. Both Belief-FB and Rotation-FB accomplish this. Figure 7 illustrates255

this phenomenon visually. In Randomized-Door (left), the episodic trajectories from five layouts256

form non-overlapping clusters in the first two principal components of h, effectively disentangling257

different dynamics.258

In Ant-Wind, the embeddings lie almost perfectly on a circle whose azimuth matches the underlying259

wind direction, generalizing smoothly to the 4 held-out wind angles. The quantitative results for260

evaluation in Table 1 (averaged across all environments) reveal that the baseline methods fail to261

recover those environment-specific properties and therefore produce sub-optimal policies even for262

train cases. In particular, HILP tends to predict an average direction in Randomized Four-rooms263

and ignores obstacles, while FB outputs same policy and Q function for almost all environments.264

Figure 12 shows that Q function is properly estimated only for BFB and RFB, respecting wall265

positions.266

4.4 Does change in context length input to the fdyn impacts performance?267

In this experiment, we examine whether increasing the input trajectory length of improves perfor-268

mance. We vary the context length of fdyn from 50 to 200 and present the results in Figure 5 for both269

Randomized Four-Rooms and Randomized Pointmass environments, across train and test configu-270

rations. The results show that performance is poor when the context length is shorter than a single271

trajectory episode (100 steps), as short trajectories only capture local, near-term goals. Conversely,272

excessively long sequences provide no additional benefit due to redundancy, since fdyn already273

contains all neccessary information. Evaluations on both train and test environments demonstrate274

that fdyn produces representations h capable of distinguishing between different context instances275

while maintaining robustness.276
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(left) First two principal components are visualized for estimated zdyn from five trajectories, each representing
different layout type in Randomized-Doors. (right) Inferred context variables zdyn recover hidden wind direction
parameter in AntWind environment both for train and test, proving successful extrapolation properties.

4.5 Does increase in dataset diversity make policies more robust?277

We study whether diversifying training configurations of CMDPs results in better performance.278

Intuitively, larger the state-action space coverage, successor measure estimation should be more279

accurate. This intuition is also reflected in experiments: Figure 5 depicts that up to some number280

N (around 25) improvement rapidly grows for BFB and BFB, while baselines perform on par with281

random policy, supporting insights from previous sections. Once learned representations h from282

fdyn covered all modes of variation (i.e., contexts), adding more data yields marginal benefit (< 3%)283

marginal gain. These findings align with theoretical intuition from Theorem 1.284

4.6 How κ in RFB influences performance?285

As described in Section 3.3, RFB concentration κ regularizes the diversity of policies for each286

environment. One the one hand, concentration should be high to ensure non-overlapping policy287

parametrized clusters πz for different h, while at the same time it should not exceed certain value288

to control the diversity of policies in the environment, preventing collapsed solutions. Figure 6289

shows that lower values of κ, meaning task-vectors zFB are sampled with high deviation around h,290

likely producing overlapping clusters. As κ grows, task-vectors become more specialized, lowering291

variance which results in higher performance.292

5 Conclusion & Limitations293

In this work, we introduce Belief-FB (BFB) and Rotation-FB (RFB) two methods that extend294

the Forward-Backward (FB) representation to handle novel dynamics. We first identify a critical295

limitation in existing approaches: interference arises when naively sampling policy-parametrized296

latent directions during training on transitions from conflicting dynamics. To address this, we learn297

hidden context variables (belief states) via a permutation-invariant transformer encoder and use them298

for additional conditioning. We further improve latent-direction sampling by aligning task-relevant299

abstractions with environment-specific features, ensuring non-overlapping regions in latent space300

of policies. Both BFB and RFB demonstrate theoretical and empirical improvements over prior301

methods. However, limitations include evaluations on a narrow set of dynamics mismatches and the302

introduction of the additional hyperparameter κ that controls policy diversity across environments.303

Also, usage of transformer can be expensive if context length grows.304

As future research directions, it would be valuable to investigate whether other zero-shot RL methods,305

those not based on successor-measure estimation, exhibit similar interference issues, and to scale our306

approach to more complex benchmarks such as XLand-MiniGrid [24, 25] or Kinetix [22].307
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model well-specification, asymptotic approximations only holding locally). The authors481
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only tested on a few datasets or with a few runs. In general, empirical results often485

depend on implicit assumptions, which should be articulated.486

• The authors should reflect on the factors that influence the performance of the approach.487
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tant role in developing norms that preserve the integrity of the community. Reviewers500
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3. Theory assumptions and proofs502

Question: For each theoretical result, does the paper provide the full set of assumptions and503

a complete (and correct) proof?504

Answer:[Yes]505

Justification: we state two main theorems with corresponding assumptions (Theorem 1 and506

Theorem 2) in each of the corresponding sections, while providing full formal proof for507

both in the Appendix D.508
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• The answer NA means that the paper does not include theoretical results.510

• All the theorems, formulas, and proofs in the paper should be numbered and cross-511

referenced.512

• All assumptions should be clearly stated or referenced in the statement of any theorems.513

• The proofs can either appear in the main paper or the supplemental material, but if514

they appear in the supplemental material, the authors are encouraged to provide a short515

proof sketch to provide intuition.516

• Inversely, any informal proof provided in the core of the paper should be complemented517

by formal proofs provided in appendix or supplemental material.518

• Theorems and Lemmas that the proof relies upon should be properly referenced.519

4. Experimental result reproducibility520

Question: Does the paper fully disclose all the information needed to reproduce the main ex-521

perimental results of the paper to the extent that it affects the main claims and/or conclusions522

of the paper (regardless of whether the code and data are provided or not)?523

Answer: [Yes]524

Justification: we give a description of both our methods in Section 3.2 and Section 3.3,525

explain the experimental setup in Section 4.1 and give extended description in Appendix C.526

Guidelines:527

• The answer NA means that the paper does not include experiments.528

• If the paper includes experiments, a No answer to this question will not be perceived529

well by the reviewers: Making the paper reproducible is important, regardless of530

whether the code and data are provided or not.531

• If the contribution is a dataset and/or model, the authors should describe the steps taken532

to make their results reproducible or verifiable.533
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• Depending on the contribution, reproducibility can be accomplished in various ways.534

For example, if the contribution is a novel architecture, describing the architecture fully535

might suffice, or if the contribution is a specific model and empirical evaluation, it may536

be necessary to either make it possible for others to replicate the model with the same537

dataset, or provide access to the model. In general. releasing code and data is often538

one good way to accomplish this, but reproducibility can also be provided via detailed539

instructions for how to replicate the results, access to a hosted model (e.g., in the case540

of a large language model), releasing of a model checkpoint, or other means that are541

appropriate to the research performed.542
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sions to provide some reasonable avenue for reproducibility, which may depend on the544

nature of the contribution. For example545

(a) If the contribution is primarily a new algorithm, the paper should make it clear how546

to reproduce that algorithm.547

(b) If the contribution is primarily a new model architecture, the paper should describe548

the architecture clearly and fully.549

(c) If the contribution is a new model (e.g., a large language model), then there should550

either be a way to access this model for reproducing the results or a way to reproduce551
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the dataset).553
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authors are welcome to describe the particular way they provide for reproducibility.555

In the case of closed-source models, it may be that access to the model is limited in556

some way (e.g., to registered users), but it should be possible for other researchers557

to have some path to reproducing or verifying the results.558

5. Open access to data and code559

Question: Does the paper provide open access to the data and code, with sufficient instruc-560

tions to faithfully reproduce the main experimental results, as described in supplemental561

material?562

Answer: [Yes]563

Justification: we provide our code in supplementary materials with instructions on data564
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reproduce the results. See the NeurIPS code and data submission guidelines (https:575
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• At submission time, to preserve anonymity, the authors should release anonymized582

versions (if applicable).583
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Answer: [Yes]590

Justification: we report the hyperparameters and training details in Appendix E.1. The591

hyperparameters were chosen after a random hyperparameter tuning.592
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• The answer NA means that the paper does not include experiments.594

• The experimental setting should be presented in the core of the paper to a level of detail595

that is necessary to appreciate the results and make sense of them.596

• The full details can be provided either with the code, in appendix, or as supplemental597

material.598

7. Experiment statistical significance599

Question: Does the paper report error bars suitably and correctly defined or other appropriate600

information about the statistical significance of the experiments?601

Answer: [Yes]602

Justification: we report the error bars and specify their meaning throughout the paper.603
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A Extended Related Works and Background781

A.1 Background782

Contexual Markov Decision Process. Throughout paper we will be dealing with a Contextual783

Markov Decision Process (CMDP), defined by a tuple
〈
C,S,A, γ,M

〉
, where C is a context space and784

S,A are shared state and action spaces across environments. FunctionM maps particular context785

c ∈ C to respective MDP, i.e., M(c) =
〈
S,A, T c, Rc, µc, γ

〉
with context-dependent transition786

function T c : S ×A× C −→ S , µc being an initial distribution over states and γ ∈ (0, 1) a discount787

factor. Intuitively, the context c ∈ C represents a fixed environmental configuration, such as obstacle788

positions, layout geometry, dynamics vector parameters or seed. Throughout this work, the context789

remains static within each episode, consistent with prior literature [18, 23, 36]. A policy π : S −→ ∆A790

is optimal for context c for the reward function R if it maximizes expected discounted future reward,791

i.e., π∗
c,R(s0, a0) = argmaxπ E[

∑
γtR(st, at)|s0, a0, π, c].792

When the context is fully observable, augmenting the state space with the given context reduces the793

CMDP to a standard MDP, eliminating the need to model distinct dynamics T c, rewards Rc or initial794

states µc. However, if the context is partially observable, the learned model must infer and track the795

uncertainty over true hidden configuration to maintain theoretical optimality guarantees. Such task796

can be framed as posterior estimation p(c|H) or belief over possible contexts c given accumulated797

history H .798

Most successful methods for deriving an optimal policy across arbitrary tasks from a task-agnostic799

dataset leverage successor features [2, 6, 8, 26, 45] or their continuous counterpart, successor measures800

[1, 5, 17, 38, 39]. In this work, we focus on the latter framework, specifically its instantiation via801

forward-backward representations [38]. Below, we briefly outline its key properties.802

Zero-Shot RL. Given an offline dataset of transitions D = {(si, ai, si+1)}|D|
i=1 generated by an803

unknown behavior policies, the agent’s objective is to learn a unified abstraction of the environment804

without additional interaction. At test time, this abstraction helps to obtain optimal policy for any805

reward function rtest which defines a particular task. Reward function can be specified either as a806

small dataset of reward-labeled statesDtest = {(si, rtest(si)}ki=1 or as a direct mapping s −→ rtest(s).807

While some prior works assume access to the context labels [14], we focus on the setting where the808

context is unknown and must be inferred from the data. Alternative formulations of zero-shot RL809

exist under other formalisms, and we refer to [18] for comprehensive overview.810

A.2 Literature811

Domain Adaptation and Transfer Learning in RL. While our work will focus on domain adapta-812

tion applied to estimating successor measure for various dynamics mismatches, we start by briefly813

reviewing more general ideas in classic domain adaptation and refer to [19] for detailed overview.814

Most methods for domain adaptation can be categorized into importance-weighting [4, 34, 40] and815

domain-invariant feature learning [10, 11, 43, 44] approaches. Former methods estimate the likeli-816

hood ratio of examples under samples from target domain versus samples from source, which is then817

used to recalibrate examples from the source domain. The latter approaches learn a unified repre-818

sentation of the environment, targeting to extract only task-relevant abstraction, negating distracting819

information.820

The most relevant approach which enables FB representations to generalize across dynamics is Con-821

texual FB [16]. This approach uses importance-weighting formalism and introduces two classifiers,822

which estimate the likelihood of transitions (st, at) and (st, at, st+1) being from train or test context823

and augment the reward function to account for those discrepancies in the dynamics. If augmented824

reward function lies in the linear span of the Z space during FB training, then the policy can be825

extracted as described in Equation 4. However, such an approach requires training classifiers from826

scratch for each novel layout of the environment, limiting its applicability.827

Meta-RL. Another major line of related works, Meta-Reinforcement Learning (Meta-RL), focuses828

on few-shot domain adaptation to unseen tasks or dynamics [3]. The significant part of research in829

Meta-RL is dedicated to explicitly learning the belief by collecting a history of interactions with the830

environment on inference during test-time [9, 29, 46]. However, recent works show that it is possible831

to quantify the belief without learning the posterior implicitly [20, 21, 28, 32, 35, 47, 48]. Leveraging832

in-context ability of transformers [41], one can learn an end-to-end supervised model, while the833

transformer’s context will absorb into robust representation the adaptation-relevant information thus834
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enabling fast adaptation. We also leverage this in-context ability to construct the belief representation835

of the dynamics the agent currently in, but instead operating in a zero-shot manner.836

A.3 FB Training837

In this section we describe the training procedure of FB in more details. Everything follows the838

notation from Touati and Ollivier [38].839

Assume that ρ is supported over all provided data, i.e., it is non-zero everywhere.840

LFB = E(st,at,st+1,s+)∼D,z∼Z [(F (st, at, z)
TB(s+)− γF̂ (st+1, πz(st+1, z)

T B̂(s+))
2

− 2F (st, at, z)
TB(st+1)] (10)

Here, s+ is a future outcome either from the same trajectory or randomly sampled from data.841

F̂ , B̂ are target networks with Z being a task space, encoding all possible policies. The policy842

πz is trained in an actor-critic formulation and parametrized as Boltzmann policy πzi(·|si) =843

softmax(F (si, ·, zi)T zi/τ) for continuous environments. Additionally, B is forced to be orthogonal844

for different s, which is enforced by contrastive loss E(s,s+)[B(s)TB(s+)].845

B Environment Descriptions846

B.1 Randomized-Doors847

The Randomized-Doors MiniGrid environment (Figure 8) is a discrete-state, discrete-action finite848

horizon deterministic environment in which agent has an objective to go to goal location with849

maximum return of 1. Each episode terminates after 100 steps or after reaching goal location. The850

randomization determines possible open doors locations, fully specifying particular layout. In our851

experiments, the observation state of an agent consists of (x, y) coordinates tuple, making it partially852

observable. Such setting requires to properly update beliefs over unobservable layout configuration853

type. The action space consists of four actions, namely {up, down, right, left}, while (x, y)854

coordinates across both axes are bounded by grid size, which we take to be 9× 9.855

(a) First type (b) Second Type (c) Third Type

Figure 8: Several possible layouts are visualized, each corresponding to unique possible doors
configurations. The agent is denoted as a red triangle. The task specification (goal position) with
reward of 1 is denoted by green square and is also randomized. It is a custom implementation based
on Empty MiniGrid (https://minigrid.farama.org).

B.2 Randomized Four-Rooms856

The Randomized Four-Rooms MiniGrid environment Figure 10 is a modification of classic Four-857

Rooms and is a discrete-state, discrete-action, deterministic partially observable environment. For858

each episode, the maze layout (grid type) is generated randomly, ensuring all of the four rooms are859

connected with exactly single door. Observation state consists of (x, y) coordinates, making this860

environment hard and checks whether agent could successfully estimate uncertainty over hidden861

configurations solely based on number of occurrence of each transition, recovering dynamics. In our862

experiments, we consider 11× 11 bounds for height and width.863

Observation space consists of raw discrete (x, y) coordinates on the grid, while actions correspond864

to a set of possible moves {up, down, left, right}. For every layout we record 500 episodes865
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of length 100, yielding a dataset that covers almost all possible (s, a) transitions. For testing on866

unseen configurations, we fix agent starting position to coordinates of the first empty cell and evaluate867

performance across 3 static goal positions, farhest away from starting position.868

Figure 9: Different layout configurations from randomized Four-Rooms environment. During inference,
the goal for the agent (depicted in blue) is to achieve green location. In our experiments we fix starting agent
position and fix 3 goals, one for each room.

B.3 Ant-Wind869

The AntWind environment is a modified version of the Ant locomotion task from the MuJoCo870

simulator, commonly used to test an agent’s adaptability to changing dynamics. In this environment,871

an ant-like robot must learn to move forward while being subjected to external wind forces varying872

in magnitude and direction. In our experiments we consider 17 environments for training, covering873

three quadrants of possible wind directions on the circle, while leaving others for test, checking874

extrapolation on the fourth quadrant.875

For our experiment, we collect dataset by training SAC [15] on 3/4 of all possible directions, which876

results in 16 environments and hold out the other 1/4 for evaluation. Resulting dataset consists of877

3400 transition tuples, where each environment configuration is represented as trajectory of length878

256.879

B.4 Randomized Pointmass880

Randomized Pointmass is a modification of pointmass environment from D4RL [13]. Each episode881

the environment grid structure is randomized, ensuring all cells are interconnected. The observation882

space consists of (x, y) transitions. Start position is determined as a first empty cell, while goal883

location is chosen to be the fartherst away from start (based on Manhattan distance) and ensuring884

existence of at least one valid trajectory (e.g., through BFS).885

Observation space consists of (global x, global y) position, similar to Four-Rooms. We fix886

dataset size to be 1e6, only varying number of layouts and episodes per layout, while fixing episode887

length to 250. We use explore policy, which is a random policy with a portion of actions repeated888

("sticky-actions").889

Figure 10: Examples of pointmass grid variations.

C Experiments Details890

Randomized-Doors. For didactic example from Section 3.1 we collect diverse dataset from different891

layout configurations (open door locations) such that visitation distribution over all states is non-zero.892

Black color denotes obstacles. The episode length is set to be 100, which is equal to the context893

21



length of the transformer encoder for this experiment. Overall, we collect 500 episodes per layout894

and coverage heatmap is visualized in Figure 11.895

Table 1: Comparison of proposed approaches against baselines on test (unseen) environments.
Results for Fourrooms and Pointmass are averaged across 20 mazes configurations.

Environment (Test) Method

Random Vanilla-FB HILP Lap Belief-FB Rotation-FB
Randomized-Fourrooms 0.05 ±0.01 0.15 ±0.06 0.2 ±0.02 0.1 ±0.1 0.4 ±0.02 0.61 ±0.02

Randomized-Pointmass 0.03 ±0.01 0.1 ±0.1 0.25 ±0.02 0.1 ±0.1 0.45 ±0.05 0.55 ±0.05

Ant-Wind 250 ±200.0 250 ±98.5 410 ±40.5 290 ±22.5 550 ±50.5 640 ±30.7

Table 2: Comparison of proposed approaches against baselines on train environments.
Results for Fourrooms and Pointmass are averaged across 20 mazes configurations.

Environment (Train) Method

Random Vanilla-FB HILP Lap Belief-FB Rotation-FB
Randomized-Fourrooms 0.18 ±0.02 0.25 ±0.02 0.4 ±0.02 0.2 ±0.1 0.7 ±0.02 0.85 ±0.02

Randomized-Pointmass 0.0 ±0.05 0.2 ±0.2 0.45 ±0.1 0.15 ±0.15 0.76 ±0.18 0.88 ±0.2

Ant-Wind -190 ±250 390 ±120 410 ±90 340 ±150 680 ±80 740 ±70

(a) Randomized-Doors (b) Randomized Four-rooms

Figure 11: State occupancy measures visualizations for collected datasets for discrete-based environ-
ments.

C.1 Dataset Generation896

For Randomized Four-Rooms, we produce four training datasets with the following parameters:897

# Transitions # layouts # episodes
per layout

episode
length

1000000 10 1000 100
1000000 20 500 100
1000000 30 250 100
1000000 50 150 100

Table 3: Details for Randomized Four-Rooms datasets

Randomized Four-Rooms. For experiments on Randomized Four-Rooms during dataset collection898

we generate randomly grid layout, ensuring that each room is interconnected by exactly one door.899

For evalution we fix agent start position to (1, 1) with the goal of reaching 3 other goals, specified at900

other rooms. Each episode terminates after 100 steps. The evaluation protocol is averaged success901

rate across 3 across 20 environments.902
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Figure 12: Q-function and deterministic policy visualizations (Equation 4) on Randomized Four-Rooms
environment. Vanilla-FB ignores grid structure and resulting policy moves through obstacles. BFB and RFB do
not have such issue.

AntWind. For AntWind we first collect trajectories by varying wind direction d and training an903

expert-like SAC agent. After training, we collected evaluation trajectories from trained agent. This904

ensures that all directions are covered and explicitly sets dynamics context. As said in Experiments905

section, we train on 16 environments with wind directions corresponding to first 3 quadrants of circle,906

leaving other 4 (last quadrant) for hold out.907

D Proofs908

D.1 Theorem 1909

Preserving notation from Section 3.1, we provide a full proof of the Theorem 1. Let {Mπi
} be910

a collection of successor measure of the optimal policies {πi}ki=1 for k distinct CMDPs. Given a911

reference measure ρ on S ×A let worst case regret be defined as912

ϵk := inf
F,B

max
i≤i≤k

||Mπi
− F (·, ·, zi)TB(·)||L2

ρ
(11)

Theorem (Regret-bound for Multiple Dynamics). Then, for any bounded ||r∞|| ≤ R and any CMDP913

whose state-action distribution ρtest (assuming absolute continuity, i.e., dρtest/ρ is bounded), the914

policy extracted from F,B for that CMDP satisfies:915

E(s,a)∼ρtest [Q
π∗
(s, a)−Qπzi (s, a)] ≤ 2γϵk||r||∞

(1− γ)2

Since ϵk+1 ≥ ϵk (monotonicity) the worst case regret per any CMDP at test time increases as more916

environments are included during training.917

Lemma 1. Theorems 8-9 from Touati and Ollivier [38] prove this inequality for single instance918

of MDP, showing that if FB approximation error in L2(ρ) is at most ϵ then pointwise value gap is919

bounded by:920

(Q∗
r −Q

πzi
r ) ≤ γ

1− γ
(Pπ∗ − Pπz

)(I − γPπ∗)−1E(z)r) (12)

with E(z) being a point-wise error matrix over state-actions as E(z) = Mπz (s, a, s′) −921

F (s, a, z)TB(s, a). Since922

||(I − γP )−1||∞ ≤
1

1− γ
(13)
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results in coefficient 2γ/(1− γ)2 in Equation 1.923

Proof. Define a transition kernel Pi of CMDP at index i and Mπi its successor measure. Let924

Ei = Mπi
− F (s, a, zi)

TB(·) = Mπi
− M̂i. Then, using Q∗ = (I − γPπ∗)−1r value gap925

decomposes as926

Q∗ −Qπzi = γ(I − γPπ∗)−1(Pπ∗ − Pπzi
)(I − γPπzi

)−1r (14)

Since each of the resolvent factors (denote them as Ei)are at most 1/(1 − γ) in L∞, then from927

triangle inequality:928

||Q∗ −Qπzi ||∞ ≤
2γ

(1− γ)2
||Ei||L2

ρ
||r||∞ (15)

From Assumption 1 on absolute continuity,929

E(s,a)∼ρtest{Q
∗ −Qπzi} ≤ ||Q∗ −Qπzi ||∞ (16)

Substituting this into Equation 15, gives desired inequality bound in Theorem 1.930

D.2 Theorem 2931

Section 3.3 introduced a new sampling procedure of zFB, which improves upon usual uniform932

sampling. This procedure can also be studied more formally.933

Given an L possible contexual representations h of the environments coming from fdyn, define a934

cone around each of the context axes {h1, h2 . . . hL} ∈ Sd−1, with the angle between any two latent935

vectors θmax set936

Cj = {zFB ∈ Sd−1|⟨zFB, h
j⟩ ≥ cos θmax} (17)

Corresponding policy task vectors are defined for each cone ziFB ∈ Cc(i), with c(i) ∈ {1, . . . L}937

being a classification function, mapping index i to one of the predifined context axes. For functions938

F,B define per environment error as:939

Ei(F,B) := ||Mπi − F (·, ·, ziFB)
TB(·)||L2(ρ) (18)

With following optimization tasks:940

ϵk := inf
F,B

max
1≤i≤k

Ei(F,B), ϵj := inf
F,B

max
i∈Sj

Ei(F,B) (19)

with Sj = {i|c(i) = j} being a set of task vectors (zFB) indices that fall into the j-th cone of the941

latent space partition.942

Theorem (Regret-bound under latent space partitioning). Under assumptions above, the Gram matrix943

of the directions {zFB}ki=1 is block diagonal w.r.t. partition {Sj} and944

ϵk = max
j≤L

ϵj , ϵk ≤ ϵkmax (20)

with kmax := maxj |Sj | being the size of a largest cone block.945

In order to prove this theorem, assume that collection of contexual embeddings {hj}Li=1 obtained946

from L environments are almost orthogonal.947

Proof. Define a k × k Gram matrix as G = ⟨ziFB, z
j
FB⟩ with i, j corresponding to cone partition.948

Because cones, corresponding to different contexual embeddings h, are disjoint and lie in a span{hi},949

the resulting Gram matrix is block diagonal G = diag(G(1), G(2), .., GL). For a fixed rank d of F,B,950

the worst case approximation error is951

ϵk(F,B) = max
1≤i≤k

||Mπi
− M̂πi

||L2(ρ) = max
j≤L

max
i∈Sj

||Mπi
− M̂πi

||L2(ρ) (21)

Since matrix G is block-diagonal, optimization of F,B decouples over blocks of G. Namely,952

minimizer on the full set is obtained by minimizing each block separately, hence:953

ϵk = inf
F,B

ϵk(F,B) = max
j≤L

ϵj (22)

By taking kmax = maxj |Sj | and ϵk ≤ ϵkmax for each block, we obtain desired inequality.954

Notably, such orthogonal cone partitioning eliminates interference. Once each cone has its own955

slice of the latent space, adding more cones does not enlarge the worst-case error bound, and with956

representation capacity of F and B being d ≥ kmax the FB model can reach zero approximation error957

in principle.958
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Table 4: Hyperparameters for FB The additional hyperparameters for Belief-FB and Rotation-FB
are highlighted in

Hyperparameter Value
Latent dimension d 150 (100 for discrete)
F / ψ dimensions (1024, 1024)
B / φ dimensions (256, 256, 256)
Preprocessor dimensions (1024, 1024)
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000
Batch size 1024
Optimiser Adam
Learning rate 0.0001
Learning rate of fdyn 0.0001
Discount γ 0.99
Activations (unless otherwise stated) GeLU
Target network Polyak smoothing coefficient 0.05
z-inference labels 10,000
z mixing ratio 0.5

κ 50, 100 for Pointmass
Contexual representation h dimension 150 (100 for discrete)
Next state predictor gpred (256, 256, 256)

E Implementation Details959

E.1 Forward-Backward Representations960

E.1.1 GPUs961

We run each experiment on 4 Nvidia 4090.962

E.1.2 Architecture963

The forward-backward architecture described below mostly follows the implementation by [39]. All964

other additional hyperparameters are reported in Table 4.965

Forward Representation F (s, a, z). The input to the forward representation F is always prepro-966

cessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors which are967

feedforward MLPs that embed their inputs into a 512-dimensional space. These embeddings are con-968

catenated and passed through a third feedforward MLP F which outputs a d-dimensional embedding969

vector. Note: the forward representation F is identical to ψ used by USF so their implementations970

are identical (see Table 4).971

Backward Representation B(s). The backward representation B is a feedforward MLP that takes a972

state as input and outputs a d-dimensional embedding vector.973

Actor π(s, z). Like the forward representation, the inputs to the policy network are similarly974

preprocessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors which975

feedforward MLPs that embed their inputs into a 512-dimensional space. These embeddings are976

concatenated and passed through a third feedforward MLP which outputs a a-dimensional vector,977

where a is the action-space dimensionality. A Tanh activation is used on the last layer to normalise978

their scale. Note the actors used by FB and USFs are identical (see Table 4).979

Misc. Layer normalisation and Tanh activations are used in the first layer of all MLPs to standardise980

the inputs as recommended in original paper for both discrete and continuous becnhmarks.981

E.2 Task Sampling Distribution Z982

Vanilla-FB. FB representations require a method for sampling the task vector z at each learning step.983

[39] employ a mix of two methods, which we replicate:984
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1. Uniform sampling of z on the hypersphere surface of radius
√
d around the origin of Rd,985

2. Biased sampling of z by passing states s ∼ D through the backward representation z = B(s).986

This also yields vectors on the hypersphere surface due to the L2 normalization described987

above, but the distribution is non-uniform.988

We sample z 50:50 from these methods at each learning step as in original work by [38].989

Rotation-FB. After transformer fdyn pretraining stage, RFB at each gradient step chooses task-990

conditioning vector zFB based on i) context representation h acting as axes coming from fdyn and ii)991

drawing task encoding vectors zFB around this axes. We also perform normalization as in Vanilla-FB992

by projecting resulting vector on a surface of hypersphere of radius
√
d.993

Stage ii) is implemented as drawing samples as zFB ∼ vMF(µ = h, κ). In order to remove high994

computational costs, we implement this sampling procedure through Householder reflection around995

context axes, by first drawing z from one of the basis vectors (e.g., north pole) and then performing996

rotation. This is depicted Pseudocode section Section 1:997

E.3 Pseudocode998

Algorithm 1 Belief-FB Training
1: Input: offline diverse dataset D consisting of transitions based on hidden configuration variable ci
2: Initialize transformer encoder fdynθ

, Fη , Bω , number of gradient steps for transformer pre-training K,
context length T , Polyak coefficient, β, batch size B learning rates λf , λF , λB

3: while update steps < K do
4: sample batch of B trajectories of length T {(si,t, ai,t, si,t+1)}i=1,...B,t=1,...,T ∼ D
5: (µi; logσi),= fdynθ

(
{si,t, ai,t, si,t+1}Mt=1

)
, i = 1, . . . , B,

6: zi = µi + ϵi ⊙ exp
(
logσi

)
,

7: Zi,t = zdyni , t = 1, . . . , T # Representation zdyn is shared across each sequence
8: ŝi,t+1 = gpred(si,t, ai,t,Zi,t) t = 1, . . . , T, i = 1, . . . , B

9: Lcontext = 1
B T

∑B
i=1

∑T
t=1

∥∥ŝi,t+1 − si,t+1

∥∥2

2

10: θfdyn ← θfdyn − λf∇θLcontext(θ)
11: end while
12: while not converged do
13: ηF ← ηF − λF∇ηF J(F,B)(ηF ) # FB training, Equation 10
14: ωB ← ωB − λB∇ωBJ(F,B)(ωB)
15: end while

999

Algorithm 2 Sampling zFB for RFB

Input: B (batch size), d (latent dimension), anchor matrix H∈RB×d, κ (concentration)
Output: Z∈RB×d

1: Normalize anchors: ui ← Hi/(∥Hi∥2 + ε) ▷ for i = 1, . . . , B
2: S← VMF_SAMPLE_NORTHPOLE(B, d, κ) ▷ draw B VMF samples
3: for i← 1 to B do
4: Ri ← HOUSEHOLDER_ROTATION(ui)
5: zi ← Ri Si

6: end for
7: Z← PROJECT_TO_SPHERE

(
{zi}Bi=1

)
8: return Z
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