Zero-Shot Adaptation of Behavioral Foundation Models to Unseen Dynamics

Anonymous Author(s)

Affiliation Address email

Abstract

Behavioral Foundation Models (BFMs) proved successful in producing policies for arbitrary tasks in a zero-shot manner, requiring no test-time training or task-specific fine-tuning. Among the most promising BFMs are the ones that estimate the successor measure learned in an unsupervised way from task-agnostic offline data. However, these methods fail to react to changes in the dynamics, making them inefficient under partial observability or when the transition function changes. This hinders the applicability of BFMs in a real-world setting, e.g., in robotics, where the dynamics can unexpectedly change at test time. In this work, we demonstrate that Forward–Backward (FB) representation, one of the methods from the BFM family, cannot distinguish between distinct dynamics, leading to an interference among the latent directions, which parametrize different policies. To address this, we propose a FB model with a transformer-based belief estimator, which greatly facilitates zero-shot adaptation. We also show that partitioning the policy encoding space into dynamics-specific clusters, aligned with the context-embedding directions, yields additional gain in performance. These traits allow our method to respond to the dynamics observed during training and to generalize to unseen ones. Empirically, in the changing dynamics setting, our approach achieves up to a 2x higher zero-shot returns compared to the baselines for both discrete and continuous tasks.

1 Introduction

2

3

5

6

8

9

10

11

12

13

14

15

16

17

18

19

21

23

24

25

26

27

28

29

One very desirable property of reinforcement learning (RL) agents is their rapid adaptation to new tasks or to environment changes during test-time, without requiring any fine-tuning or planning. Achieving this in as few trials as possible would be even better: the ideal being the zero-shot adaptation [39], where the agent never interacts with the environment at test-time and relies solely on the data it was conditioned with. Behavioral Foundational Models (BFMs) [30, 37] may be considered as a step in this direction, because they can learn a variety of policies from offline data without knowing the rewards. During inference, it is possible to extract a task-specific policy that is optimal or near-optimal in terms of performance [38]. Recent work demonstrates [37] that one of the methods from the BFM family, based on Forward-Backward representation (FB) [38], is especially versatile and can successfully imitate behaviors from unlabeled data.

At the same time, FB possesses a fundamental drawback that limits its adaptation ability. In our paper, we show that FB is unable to generalize across different dynamics, such as changes in a transition function (*e.g.*, new obstacles) or an environment with some latent factor variation (*e.g.*, wind direction). This limitation stems from the way the *successor measure* [8] is estimated: FB averages the future-occupancy state distribution over all observed dynamics, which inevitably causes interference in policy representations. This fact alone may severely constrain the applicability of FB in the real-world scenarios. For example, one of the largest robotics dataset, Open X-Embodiment [7], consists of 22 different robot embodiments, and training FB on each of them simultaneously is infeasible. In Section 3.1, we discuss this limitation and support our claims theoretically.

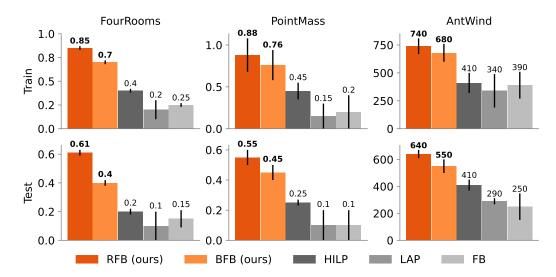


Figure 1: **Summary of results**. Aggregate mean performance over *seen* (train) and *unseen* (test) dynamics for zero-shot RL. The error bars indicate standard deviation over three seeds. Notably, both BFB and RFB adapt not only to the dynamics seen during training but are also able to generalize to unseen dynamics. There are 30 (20) training (test) dynamics for FourRooms and PointMass and 16 (4) for AntWind environments.

To remedy this, we introduce Belief-FB (BFB), a conditioning method for FB through a *belief* estimation, a popular technique of uncertainty quantification in Meta-RL [9, 46]. To implement this, we use a transformer encoder $f_{\rm dyn}$ that, given a trajectory from data, outputs a dynamics-specific vector h we then pass as a condition to the future outcomes representation function $F(\cdot,\cdot,h,\cdot)$. We pre-train $f_{\rm dyn}$ in a self-supervised fashion, thus posing no additional requirements on the data structure or the trajectory re-labeling. We discuss the implementation of Belief-FB in Section 3.2.

Remarkably, Belief-FB enables the generalization capabilities of FB not only through the dynamics seen **in the training dataset**, but also on the **unseen test dynamics** never present in the offline data. We also find that in order to align *belief* estimation better with FB, one also needs to partition the policy space into dynamics-specific clusters, so we propose Rotation-FB (RFB) that accomplishes this partitioning. We present the theoretical support and the implementation details of Rotation-FB in Section 3.3. Empirically, both BFB and RFB outperform baselines for seen and unseen dynamics, as gathered in Figure 1 and discussed in Section 4.3.

We believe that our work sufficiently broadens the possible applicability of BFMs, yet keeping the zero-shot setting unchanged. Our contributions are as follows:

- We introduce the limitation of Forward-Backward (FB) representations [38], which lies in its inability to generalize *per se* across different dynamics both from train and test, where dynamics shift constitute of new layout grids or latent changes in the transition function that are hidden from an agent. Refer to Section 3.1 for more discussion.
- We propose Belief-FB (BFB), which employs a transformer encoder to infer a belief over the agent's current dynamics [9, 46]. Analyzing BFB's policy space reveals that additional disentanglement is beneficial, motivating our Rotation-FB (RFB) extension. Section 3.2 examines Belief-FB, and Section 3.3 details Rotation-FB's theoretical motivation and implementation.
- We empirically demonstrate that both BFB and RFB can adapt to different dynamics, unlike its counterparts in the zero-shot setup. Refer to Section 4.3 for the discussion and Figure 1 for results.

2 Behavioral Foundation Models

For a reward-free Markov Decision Process (MDP), a Behavioral Foundation Model (BFM) [12, 27, 31, 37] is a RL agent trained in an unsupervised manner on a task-agnostic dataset of transitions. The

objective of a BFM is to approximate an optimal policy for a broad class of reward functions that are specified only at inference.

Forward-Backward Representation (FB) [38] approximates a successor measure for near-optimal policies across diverse tasks. The successor measure $M^{\pi}(s_0, a_0, X)$ for subset $X \subset \mathcal{S}$ is defined as cumulative discounted time spend at X starting at (s_0, a_0) and following π thereafter. More formally, for tabular example:

$$M^{\pi}(s_0, a_0, X) = \sum_{t>0} \gamma^t P(s_t \in X | s_0, a_0, \pi),$$
(1)

with the corresponding Q-function for a specific task r:

$$Q_r^{\pi}(s_0, a_0) = \sum_{s^+ \in X} r(s^+) M^{\pi}(s_0, a_0, s^+). \tag{2}$$

In continuous case, the FB representation aims to approximate successor measure through finiterank approximation under diverse policies through forward $F: \mathcal{S} \times \mathcal{A} \times \mathcal{Z} \to \mathbb{R}^d$ and backward $B: \mathcal{S} \to \mathbb{R}^d$ functions. Given a set of policies π_z parametrized by task variable drawn uniformly from sphere $z_{\text{FB}} \in \text{Unif}(\mathcal{Z} = \mathbb{S}^{\lceil -\infty})$. Given ρ as a probability distribution over states within the offline dataset, the objective for FB is written as:

$$M^{\pi_z}(s_0, a_0, X) \approx \int_{s^+ \in X} F(s_0, a_0, z)^T B(s^+) \rho(ds).$$
 (3)

81 Then the policy can be obtained greedily as:

$$\pi_z(s) \approx \arg\max_a F(s, a, z)^T z.$$
 (4)

For continuous case, the greedy policy is parametrized as Gaussian. During test time the task policy parametrization is approximated as $z_{test} \approx \mathbb{E}_{(s,a) \in \mathcal{D}_{test}} \{r_{test}(s,a)B(s)\}$. If the inferred task vector z_{test} lies within the task sampling distribution (in a linear span) \mathcal{Z} used during training, then the optimal policy for task r_{test} is obtained from Equation 2 as $\pi_z(s) \approx \arg\max_a Q_{r_{test}}^{\pi_z}(s,a)$. For more details on training and inference procedures of FB, we refer reader to Appendix A.3. More detailed discussion on the other related works is included in the Appendix A.

3 Method

88

89

90

91

92

93

94

95

96

97

103

104

105

106

107

108

109

Problem Statement. Our goal is to pre-train an agent in unsupervised regime in $C_{train} = \{c_{train} \in C\}$ contexts so that it is able to generalize to unseen ones during test time, *i.e.*, zero-shot¹. We collect diverse dataset, consisting of mix of highly exploratory or expert-like unknown policies from varying environment layouts, differing either in dynamics (e.g., wind, friction, etc.) or environment specifications (e.g., positions of obstacles and doors). At test time, the agent is provided with small (up to episode termination steps) reward-free transitions from test context. Provided information must be used by an agent to recalibrate occupancy measure estimation corresponding to encountered environment. In an ideal scenario, the agent maximizes the expected discounted return across both train and test contexts. We refer to Appendix A for details.

To formally study optimality guarantees of the problem above, we employ the following assumption commonly used for dynamics generalization [10, 16]:

Assumption 1 (Coverage). Let $\mathcal{P}^{c}(s_{t+1}|s_{t},a_{t})$ be a transition probability given small dataset of reward-free random interactions either from test or train context. Then, $\mathcal{P}^{c_{\text{test}}}(s_{t+1}|s_{t},a_{t}) \Rightarrow \mathcal{P}^{c_{\text{train}}}(s_{t+1}|s_{t},a_{t}) \ \forall s_{t},s_{t+1} \in \mathcal{S}, a_{t} \in \mathcal{A}$.

3.1 Investigating latent directions space under multiple dynamics

We begin by addressing the following question: Why does FB representations fail to generalize effectively (both for train and test) to different situations under dynamics variations, *i.e.*, if learned on data sampled from diverse CMDPs? While the answer may appear intuitive, a closer look into the geometric structure of learned latent directions $z_{\text{FB}} \in \mathcal{Z}$, which encode possible policies π_z reveals critical insights which will be helpful later. We approach this question both theoretically and empirically on custom simplistic discrete partially-observable Randomized Doors (see Appendix

¹We use the term "zero-shot RL" following [38].

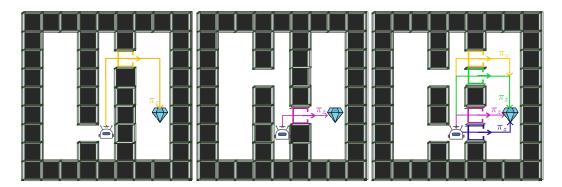


Figure 2: Randomized-Doors environment for three different layouts, each produced through varying the grid structure (exact randomization procedure is a hidden variable) (left-middle) From state s, the goal of an agent is to capture a diamond at target location by picking up the most probable policy π_z (yellow for the first type and purple for the second) to move to the closest open door based on internal representation. (middle) When there are multiple possible future outcomes in the training data from the same state, the π_z 's (different colors) interfere with each other, leading to picking up an averaged policy.

110 B.1) environment. Partial observability adds additional challenges and showcases the need to estimate belief state, which we discuss in the following sections.

In this experiment the only source of dynamics variation is the grid layout type. That is, the positions of doors and walls are changed each new episode, depending on hidden configuration variable c. We collect a dataset of random trajectories drawn from multiple layouts, yielding near-uniform coverage of the entire (x,y) states. Now, consider a particular state s that an agent finds itself in three different layouts (see Figure 2). During FB training, we evaluate the forward representation $F(s,\cdot,z_{\rm FB})$ for latent directions $z_{\rm FB} \sim {\rm Uniform}(\mathbb{S}^{d-1})$, where each $z_{\rm FB}$ indexes a distinct policy starting at s.

In this setting a single grid state can require different optimal actions, depending on the layout an agent is instantiated in. Because $z_{\rm FB}$ does not enforce a separation of layout-specific futures, the FB model suffers from *interference*: latent directions encoding conflicting future outcomes overlap and become entangled in the latent space \mathcal{Z} . For each of the layout configuration and fixed state s from above, Figure 3 depicts latent directions $z_{\rm FB}$, colored by optimal policy as $a_{\rm color} = \arg\max_a F(s,a,z_{\rm FB})^T z_{\rm FB}$. When FB is trained on first two layouts in isolation, a unique dominant direction emerges in \mathcal{Z} , recovering the optimal goal-reaching policy π_z^* . In contrast, training on data which mixes transitions from various environment instances results in $z_{\rm FB}$ to **blend dynamics-specific information** and instead to **average over the possible futures**, yielding a policy that is sub-optimal for every layout even from train set. Those observations are supported theoretically below.

Let $\{M^{\pi_i}\}_{i=1}^k$ be a collection of successor measures corresponding to optimal policies $\{\pi_i\}_{i=1}^k$ for distinct CMDPs defined by hidden context configurations $c_i \in C$. Assume that ρ is the state-action distribution supported on the offline dataset used for FB training and $M^{\pi_i}(s,a,\cdot) \approx F(s,a,z_i)^T B(\cdot)$ is approximated via rank d factors. Define the worst-case approximation error ϵ_k over context-dependent k successor measures as follows:

$$\epsilon_k := \inf_{F,B} \max_{1 \le i \le k} ||M^{\pi_i} - F(\cdot, \cdot, z_i)^T B(\cdot)||_{L^2(\rho)}.$$
(5)

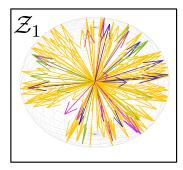
Then, the extracted policy π_{z_i} for (s, a) satisfies:

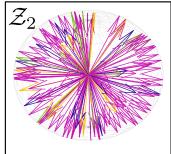
Theorem 1 (Regret-bound for Multiple Dynamics). For any bounded reward $||r||_{\infty} \leq R$ and particular test-time CMDP,

$$\mathbb{E}_{(s,a)\sim\rho_{test}}[Q_r^{\pi^*}(s,a) - Q_r^{\pi_{z_i}}(s,a)] \le \frac{2\gamma\epsilon_k||r||_{\infty}}{(1-\gamma)^2}.$$
 (6)

Because $\epsilon_{k+1} \ge \epsilon_k$ (monotonicity), the worst case regret per any CMDP at test time increases as more environments are included during training.

We provide a proof in Appendix. Intuitively, Theorem 1 tells that adding transitions from more CMDPs only increases the worst-case optimality gap: as number of environments k grows, **FB** is forced to average over incompatible future dynamics. The proof relies on monotonicty property of





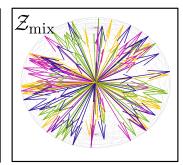


Figure 3: Three different environment configurations from Figure 2 are visualized (yellow, purple and mixed trajectories). For a fixed state s and same goal across configurations, arrows depict latent directions $z_{\rm FB} \in \mathcal{Z}$ and colored by optimal action as $a_{color} = \arg\max_a F(s, a, z_{\rm FB})^T z_{\rm FB}$. (left-middle) When FB is trained on the two distinct configurations in separation, most of the latent directions agree on the optimal policy π_z . (right) When FB is trained on mix of CMDPs and at test time tasked with any particular configuration from train, obtained policy is ambiguous, since most policy-encoding directions do not agree on the action.

error term in Equation 5 and Theorem 9 from Touati and Ollivier [38]. In Section 3.3 we will refine this result and show that it is possible to remove explicit dependence of k, lowering the upper bound.

This interference highlights a fundamental trade-off. FB is expressive enough to model any task, yet when it is trained in unsupervised manner across environments with distinct unobserved parameters, the lack of contextual conditioning forces it to average different dynamics rather than separate them. The resulting successor measure merges transitions from distinct layouts and entangles directions in the latent space \mathcal{Z} . To disentangle these directions we must represent uncertainty about the hidden context explicitly. The next section introduces a belief-conditioned objective that infers the latent context and allows FB to maintain environment-specific successor features.

Takeaway 1

Because FB training inherently averages over all possible future states, it cannot learn a disentangled policy space and, therefore, fails to adapt to changes in dynamics.

3.2 Belief State Modeling

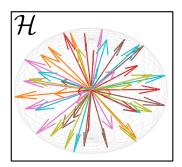
To resolve the interference issue described in Section 3.1, we infer the latent context of an environment and augment FB input on that belief. We train a transformer encoder $f_{\rm dyn}$, by taking a set of transitions $\{(s_t, a_t, s'_{t+1})\}_{t=1}^N$ and outputs an embedding $h \in \mathbb{R}^d$. We denote the space of all possible inferred contexts as \mathcal{H} , where each element h encodes dynamics for particular environment. Because the ordering is discarded and no rewards in transitions are provided, the encoder must focus on dynamics specific mismatches (e.g., layout geometry, friction or wind direction), rather than policy specifics. Such context encoder should be permutation invariant, since unobservable factors describing environment are independent of the order of transitions in an episode. This setting provides theoretical ground for zero-shot and few-shot learning [33].

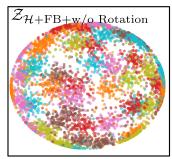
Concretely, dataset consists of episodes $(\{(s_t, a_t, s'_{t+1})_{c_i}\}_{t=1}^N$ coming from CMDP with randomly instantiated hidden specification variable c_i (different dynamics). We train a transformer encoder on random episodes (without episodic labels c_i) of context length n to infer contextual (hidden) variable h which fully specifies the dynamics across given episode. The transformer encoder loss involves two main components: 1) h is encouraged to follow a Gaussian prior and is shared across trajectory, and 2) projection head, which combines h with (s_t, a_t) to predict s_{t+1} . Those stages can be either trained end-to-end or separately. We observed that separating FB training from $f_{\rm dyn}$ gives better results.

For each trajectory we concatenate the inferred context vector h with the task vector h to obtain augmented input h; h; h; h; and condition only forward network as:

$$\hat{M}_{\pi_z}(s_t, a_t, s_{t+1}) = F(s_t, a_t, [h; z_{\text{FB}}])^T B(s_{t+1}). \tag{7}$$

We empirically found that conditioning the backward network B degraded performance, producing smoothed out Q function, ignoring environment structure, so in our experiments B remains shared across contexts. Training procedure is summarized in Algorithm 1.





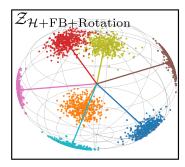


Figure 4: Visualization of inferred contexts h from space of all possible contexts \mathcal{H} (depicted as arrows) and task vectors z_{FB} (depicted as points on sphere boundary). Transitions from same CMDP colored the same. Concentration parameter κ defines spread of clusters. (left) Untrained transformer $f_{\rm dyn}$ output for different transitions is unstructured and same transitions coming from same CMDP (identical colors) are not collinear. (middle) New sampling procedure aligns policy specific vectors z_{FB} with context specific h, but clusters overlap before training. (right) After training, h for transitions from the same context are aligned and policies $z_{\rm FB}$ do not interfere between different environment configurations.

At test time, the agent is provided with a short, reward-free trajectory and it is passed to f_{dyn} to obtain h. By plugging the result into Equation 4, the greedy policy is obtained.

Takeaway 2

175

176

177

178

179

180

181

182

183

195

196 197

198

We train a transformer in a self-supervised regime to estimate a belief over possible contexts, augmenting FB inputs and enabling effective disentanglement of contextual representations.

3.3 Structuring directions in the latent space

Insights from Section 3.1 showed that sampling task-vectors $z_{\rm FB}$ uniformly on the hypersphere encodes averaged policies, while Section 3.3 provided a solution through explicit context identification. We now combine these observations together through enhanced sampling $z_{\rm FB}$ around the inferred context h.

In Vanilla-FB, each state s draws $z_{\rm FB} \sim {\rm Unif}(\mathbb{S}^{d-1})$ with no inductive bias, so resulting policies π_z conflict with each other in CMDP setting, even if additional explicit conditioning is introduced as before. We replace uniform prior with a von Mises-Fisher (vMP) distribution centered at the context direction for episode $h = f_{\text{dyn}}(\{(s_i, a_i, s_{i+1})\})$ as 184

$$z_{h+\text{FB}} \sim \text{vMF}(\mu = h, \kappa).$$
 (8)

with κ controlling the spread or *diversity* of policies (left and middle figures from Figure 4). In 185 practice, to draw z_{h+FB} we first pick a simple vector (e.g., the first basis vector), perturb with vMF 186 noise, and finally rotate the result onto h with Householder reflection. 187

This enhancement has several benefits: 1) because directions h that differ in dynamics now occupy 188 disjoint cones on the hypersphere, FB can fit the successor measure locally inside each cone, avoiding 189 the destructive averaging effect quantified in Section 3.1 and 2) alignment procedure encourages the 190 agent to explore policies that are plausible under its current belief while still injecting controlled 191 diversity through κ . 192

Importantly, such a procedure not only has empirical benefits as we will show in Section 4, but also 193 lowers bound from above in Theorem 1, making it non dependent on number of environments k. 194

Theorem 2 (Regret bound under latent space partitioning). Define ϵ_k as worst-case approximation error as in Equation 5. The Gram matrix of the task directions $\{z_{FB}\}_{i=1}^k$ is block diagonal w.r.t. partition $\{S_j\}$, with each S_j being the set of task-vector indices which satisfy $\langle z_{FB}, h^j \rangle \geq \cos \theta_{max}$ with θ_{max} being angle between any two latent vectors. Then,

$$\epsilon_k = \max_{j \le L} \epsilon_j, \quad \epsilon_k \le \epsilon_{k_{max}},$$
(9)

with $k_{max} := \max_{i} |S_i|$ being the size of the largest cone block.

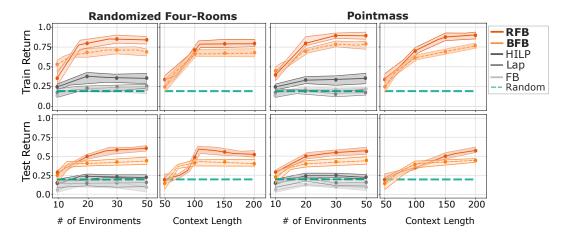


Figure 5: **Ablations on data diversity and context length of transformer encoder.** We show the influence of number of environments (data diversity) and context length on train and test performance in Four-Rooms and Pointmass environments. For data-diversity ablation, we see a clear performance boost up until some point, after which it platoes, as the Theorem 1 predicts. In our context-length ablation, we observe similar behaviour: performance improves as the context grows up to the length of a single episode, and then levels off. The results are averaged across three seeds, the opaque fill indicates standard deviation.

Intuitively, Theorem 2 states that after the partitioning procedure of the latent space into nonoverlapping clusters based on context representations h, the global worst-case FB approximation error $\epsilon_k = \max_{j \leq L} \epsilon_j$ is determined only by the cluster whose error ϵ_j is largest. Importantly, this bound *does not depend on number of training environments* k. We provide a more formal treatment and a full proof in Appendix D.

Takeaway 3

Adjusting the prior over task vectors $z_{\rm FB}$ further mitigates the averaging effect and disentangles policy representations better.

4 Experiments

In this section, we compare proposed methods, namely: **Belief-FB** (**BFB**) (Section 3.2) and its enhancement **Rotation-FB** (**RFB**) (Section 3.3), against the baselines in both discrete and continuous settings. We outline each experiment design below; all necessary details are provided in Appendix C. Every environment is framed as a contextual MDP (CMDP), where the context differs by the underlying hidden variation (*e.g.*, , grid layout or transition dynamics). During test time, we provide a single trajectory from random policy, which enables context configuration inference.

4.1 Environments and Setup

To support claims and theoretical insights made in previous sections, we consider the following experimental setups: (i) discrete, partially observable Randomized Four-Rooms (Appendix B.2), (ii) continuous AntWind (Appendix B.3), and lastly (iii) continuous partially observable Randomized-Pointmass (Appendix B.4). We vary the number of train layouts for each experiment, while fixing the number of held-out *unseen* context settings to 20 for Randomized Four-Rooms and Randomized-Pointmass, and 4 for Ant-Wind. We perform comparisons against following baselines:

HILP [26] is a method that learns state representations from offline data so that the distance in the learned representation space is proportional to the number of steps between two states in original space. FB [38] is an original version of the FB, described in Section 2. Laplacian RL (LAP) [42] constructs a graph Laplacian over state transitions from experience replay, then computes its eigenvectors to form low-dimensional representations that capture the environment's intrinsic structure. Random agent, which randomly explores the environment in a task-independent manner.

Randomized Four-Rooms is a discrete, deterministic, partially observable environment, where the task is to optimally move to the goal location. Training data is collected by executing random policies in N distinct grid layouts, that differ in doorway and wall locations.

Ant-Wind is a continuous environment, where the goal is to make a four-legged ant walk forward as fast as possible. The environment dynamics are determined by the direction (angle) of a wind d.

Randomized-Pointmass is a partially observable continuous environment, where the task is to move to the goal locations. Maze grid structure is generated randomly, where each cell either contains wall or empty, while ensuring there is a path between start and goal locations.

4.2 Can the belief estimation enable adaptation in FB?

Previously, we provided the theoretical foundations and speculated on the matter why FB is unable to differentiate between distinct dynamics and how we can use the belief estimation to overcome this. We refer to Table 1 and Figure 1 that show our empirical findings to support our claims.

Initially, we would like to highlight that neither FB nor LAP are able to outperform a simple random baseline in PointMass and FourRoom, indicating that the policy they learn is most likely stuck in some obstacle due to averaging (see Section 3.1. Only HILP, which uses a different way to learn policy representations, is able to perform better than random policy.

In contrast, Belief-FB and Rotation-FB outperform every baseline method, indicating that belief estimation is indeed a missing piece for adaptation. Notably, our methods also demonstrate generalization capabilities beyond train data on unseen test tasks.

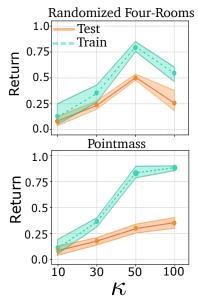


Figure 6: Influence of κ in RFB on performance. The results are averaged across three seed, the opaque fill represents standard deviation.

4.3 Do BFB and RFB capture hidden properties of the environment?

For an agent to refine its policy, it needs to keep track and update the uncertainty over possible environment configurations. Both Belief-FB and Rotation-FB accomplish this. Figure 7 illustrates this phenomenon visually. In Randomized-Door (left), the episodic trajectories from five layouts form non-overlapping clusters in the first two principal components of h, effectively disentangling different dynamics.

In Ant-Wind, the embeddings lie almost perfectly on a circle whose azimuth matches the underlying wind direction, generalizing smoothly to the 4 held-out wind angles. The quantitative results for evaluation in Table 1 (averaged across all environments) reveal that the baseline methods fail to recover those environment-specific properties and therefore produce sub-optimal policies even for train cases. In particular, HILP tends to predict an average direction in Randomized Four-rooms and ignores obstacles, while FB outputs same policy and Q function for almost all environments. Figure 12 shows that Q function is properly estimated only for BFB and RFB, respecting wall positions.

4.4 Does change in context length input to the f_{dyn} impacts performance?

In this experiment, we examine whether increasing the input trajectory length of improves performance. We vary the context length of $f_{\rm dyn}$ from 50 to 200 and present the results in Figure 5 for both Randomized Four-Rooms and Randomized Pointmass environments, across train and test configurations. The results show that performance is poor when the context length is shorter than a single trajectory episode (100 steps), as short trajectories only capture local, near-term goals. Conversely, excessively long sequences provide no additional benefit due to redundancy, since $f_{\rm dyn}$ already contains all neccessary information. Evaluations on both train and test environments demonstrate that $f_{\rm dyn}$ produces representations h capable of distinguishing between different context instances while maintaining robustness.

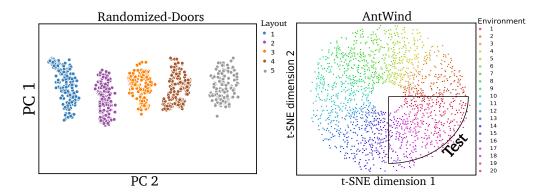


Figure 7: 2D projections of z_{dyn} inferred from different trajectories across number of different contexts (color), showing effective disentangling environments based on transition function or other mismatches. (*left*) First two principal components are visualized for estimated z_{dyn} from five trajectories, each representing different layout type in Randomized-Doors. (*right*) Inferred context variables z_{dyn} recover hidden wind direction parameter in AntWind environment both for train and test, proving successful extrapolation properties.

4.5 Does increase in dataset diversity make policies more robust?

We study whether diversifying training configurations of CMDPs results in better performance. Intuitively, larger the state-action space coverage, successor measure estimation should be more accurate. This intuition is also reflected in experiments: Figure 5 depicts that up to some number N (around 25) improvement rapidly grows for BFB and BFB, while baselines perform on par with random policy, supporting insights from previous sections. Once learned representations h from $f_{\rm dyn}$ covered all modes of variation (i.e., contexts), adding more data yields marginal benefit (< 3%) marginal gain. These findings align with theoretical intuition from Theorem 1.

4.6 How κ in RFB influences performance?

As described in Section 3.3, RFB concentration κ regularizes the diversity of policies for each environment. One the one hand, concentration should be high to ensure non-overlapping policy parametrized clusters π_z for different h, while at the same time it should not exceed certain value to control the diversity of policies in the environment, preventing collapsed solutions. Figure 6 shows that lower values of κ , meaning task-vectors z_{FB} are sampled with high deviation around h, likely producing overlapping clusters. As κ grows, task-vectors become more specialized, lowering variance which results in higher performance.

5 Conclusion & Limitations

In this work, we introduce **Belief-FB** (**BFB**) and **Rotation-FB** (**RFB**) two methods that extend the Forward-Backward (FB) representation to handle novel dynamics. We first identify a critical limitation in existing approaches: interference arises when naively sampling policy-parametrized latent directions during training on transitions from conflicting dynamics. To address this, we learn hidden context variables (belief states) via a permutation-invariant transformer encoder and use them for additional conditioning. We further improve latent-direction sampling by aligning task-relevant abstractions with environment-specific features, ensuring non-overlapping regions in latent space of policies. Both BFB and RFB demonstrate theoretical and empirical improvements over prior methods. However, limitations include evaluations on a narrow set of dynamics mismatches and the introduction of the additional hyperparameter κ that controls policy diversity across environments. Also, usage of transformer can be expensive if context length grows.

As future research directions, it would be valuable to investigate whether other zero-shot RL methods, those not based on successor-measure estimation, exhibit similar interference issues, and to scale our approach to more complex benchmarks such as XLand-MiniGrid [24, 25] or Kinetix [22].

References

[1] Siddhant Agarwal, Harshit Sikchi, Peter Stone, and Amy Zhang. Proto successor measure: Representing the space of all possible solutions of reinforcement learning, 2025. URL https://openreview.net/forum?id=s9SV1WOcLt.

- Andre Barreto, Will Dabney, Remi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and David Silver. Successor features for transfer in reinforcement learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/350db081a661525235354dd3e19b8c05-Paper.pdf.
- [3] Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon
 Whiteson. A survey of meta-reinforcement learning, 2024. URL https://arxiv.org/abs/2301.
 08028.
- Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning for differing training and
 test distributions. In *Proceedings of the 24th international conference on Machine learning*, pages 81–88,
 2007.
- [5] Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.
- Diana Borsa, Andre Barreto, John Quan, Daniel J. Mankowitz, Hado van Hasselt, Remi Munos, David
 Silver, and Tom Schaul. Universal successor features approximators. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=S1VWjiRcKX.
- If Open X-Embodiment Collaboration. Open X-Embodiment: Robotic learning datasets and RT-X models. https://arxiv.org/abs/2310.08864, 2023.
- 1330 [8] Peter Dayan. Improving generalization for temporal difference learning: The successor representation.

 Neural computation, 5(4):613–624, 1993.
- [9] Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta learning of exploration, 2021. URL https://arxiv.org/abs/2008.02598.
- [10] Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey Levine, and Ruslan Salakhutdinov. Off-dynamics reinforcement learning: Training for transfer with domain classifiers. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=eqBwg3AcIAK.
- 133 [11] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In *Proceedings of the IEEE international conference on computer vision*, pages 2960–2967, 2013.
- Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Unsupervised zero-shot reinforcement learning via functional reward encodings. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pages 13927–13942. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/frans24a.html.
- Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.
- 347 [14] Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aaron van den
 348 Oord. Shaping belief states with generative environment models for rl. In H. Wallach, H. Larochelle,
 349 A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
 350 Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
 351 files/paper/2019/file/2c048d74b3410237704eb7f93a10c9d7-Paper.pdf.
- Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *International conference on machine learning*, pages 1861–1870. Pmlr, 2018.
- Scott Jeen and Jonathan Cullen. Dynamics generalisation with behaviour foundation models. In Workshop on Training Agents with Foundation Models at RLC 2024, 2024. URL https://openreview.net/forum?id=A1u8YM7vuP.
- 17] Scott Jeen, Tom Bewley, and Jonathan Cullen. Zero-shot reinforcement learning from low quality data. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=79eWvkLjib.
- Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot generalisation in deep reinforcement learning. *Journal of Artificial Intelligence Research*, 76:201–264, 2023.
- Wouter M Kouw and Marco Loog. A review of domain adaptation without target labels. *IEEE transactions* on pattern analysis and machine intelligence, 43(3):766–785, 2019.
- Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
 DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, Maxime Gazeau, Himanshu Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm distillation, 2022. URL https://arxiv.org/abs/2210.14215.
- Jonathan N. Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
 Brunskill. Supervised pretraining can learn in-context reinforcement learning, 2023. URL https:

- 371 //arxiv.org/abs/2306.14892.
- 372 [22] Michael Matthews, Michael Beukman, Chris Lu, and Jakob Nicolaus Foerster. Kinetix: Investigating
 373 the training of general agents through open-ended physics-based control tasks. In *The Thirteenth Inter-*374 national Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
 375 zCxGCdzreM.
- 376 [23] Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes with continuous side information. In *Algorithmic learning theory*, pages 597–618. PMLR, 2018.
- 378 [24] Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Artem Agarkov, Viacheslav Sinii, and Sergey Kolesnikov. Xland-minigrid: Scalable meta-reinforcement learning environments in jax, 2024. URL https://arxiv.org/abs/2312.12044.
- [25] Alexander Nikulin, Ilya Zisman, Alexey Zemtsov, and Vladislav Kurenkov. Xland-100b: A large-scale multi-task dataset for in-context reinforcement learning, 2025. URL https://arxiv.org/abs/2406.08973.
- Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations.
 In Forty-first International Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=LhNsSaAKub.
- Matteo Pirotta, Andrea Tirinzoni, Ahmed Touati, Alessandro Lazaric, and Yann Ollivier. Fast imitation via
 behavior foundation models. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023.
 URL https://openreview.net/forum?id=SHNjk4h0jn.
- [28] Andrey Polubarov, Nikita Lyubaykin, Alexander Derevyagin, Ilya Zisman, Denis Tarasov, Alexander
 Nikulin, and Vladislav Kurenkov. Vintix: Action model via in-context reinforcement learning, 2025. URL
 https://arxiv.org/abs/2501.19400.
- [29] Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-policy meta reinforcement learning via probabilistic context variables, 2019. URL https://arxiv.org/abs/1903.
 08254.
- [30] Harshit Sikchi, Siddhant Agarwal, Pranaya Jajoo, Samyak Parajuli, Caleb Chuck, Max Rudolph, Peter
 Stone, Amy Zhang, and Scott Niekum. Rl zero: Zero-shot language to behaviors without any supervision.
 arXiv preprint arXiv:2412.05718, 2024.
- [31] Harshit Sikchi, Andrea Tirinzoni, Ahmed Touati, Yingchen Xu, Anssi Kanervisto, Scott Niekum, Amy
 Zhang, Alessandro Lazaric, and Matteo Pirotta. Fast adaptation with behavioral foundation models. arXiv
 preprint arXiv:2504.07896, 2025.
- 402 [32] Viacheslav Sinii, Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, and Sergey Kolesnikov. In-context 403 reinforcement learning for variable action spaces, 2024. URL https://arxiv.org/abs/2312.13327.
- 404 [33] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning, 2017. URL https://openreview.net/forum?id=B1-Hhnslg.
- 406 [34] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amortised map inference for image super-resolution. *arXiv preprint arXiv:1610.04490*, 2016.
- 408 [35] Denis Tarasov, Alexander Nikulin, Ilya Zisman, Albina Klepach, Andrei Polubarov, Lyubaykin Nikita,
 409 Alexander Derevyagin, Igor Kiselev, and Vladislav Kurenkov. Yes, q-learning helps offline in-context
 410 RL. In Scaling Self-Improving Foundation Models without Human Supervision, 2025. URL https:
 411 //openreview.net/forum?id=B86JMHZUnc.
- 412 [36] Jayden Teoh, Pradeep Varakantham, and Peter Vamplew. On generalization across environments in multi-413 objective reinforcement learning. In *The Thirteenth International Conference on Learning Representations*, 414 2025. URL https://openreview.net/forum?id=tuEP424UQ5.
- 415 [37] Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen Xu,
 416 Alessandro Lazaric, and Matteo Pirotta. Zero-shot whole-body humanoid control via behavioral foundation
 417 models.
- 418 [38] Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. *Advances in Neural Information Processing Systems*, 34:13–23, 2021.
- 420 [39] Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist? *arXiv* preprint arXiv:2209.14935, 2022.
- 422 [40] Masatoshi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. Generative adversarial nets from a density ratio estimation perspective. *arXiv preprint arXiv:1610.02920*, 2016.
- 424 [41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
 425 Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
 426 R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
 427 volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
 428 paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

- 429 [42] Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in RL: Learning representations with efficient approximations. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=HJlNpoA5YQ.
- [43] Jinwei Xing, Takashi Nagata, Kexin Chen, Xinyun Zou, Emre Neftci, and Jeffrey L Krichmar. Domain
 433 adaptation in reinforcement learning via latent unified state representation. In *Proceedings of the AAAI* 434 *Conference on Artificial Intelligence*, volume 35, pages 10452–10459, 2021.
- 435 [44] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning invariant representations for reinforcement learning without reconstruction. *arXiv* preprint *arXiv*:2006.10742, 2020.
- 437 [45] Chuning Zhu, Xinqi Wang, Tyler Han, Simon Shaolei Du, and Abhishek Gupta. Distributional successor features enable zero-shot policy optimization. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=8IysmgZte4.
- 440 [46] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
 441 Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning, 2020. URL
 442 https://arxiv.org/abs/1910.08348.
- [47] Ilya Zisman, Vladislav Kurenkov, Alexander Nikulin, Viacheslav Sinii, and Sergey Kolesnikov. Emergence
 of in-context reinforcement learning from noise distillation. In Forty-first International Conference on
 Machine Learning, 2024. URL https://openreview.net/forum?id=Y8KsHT1kTV.
- [48] Ilya Zisman, Alexander Nikulin, Viacheslav Sinii, Denis Tarasov, Nikita Lyubaykin, Andrei Polubarov,
 Igor Kiselev, and Vladislav Kurenkov. N-gram induction heads for in-context rl: Improving stability and
 reducing data needs, 2025. URL https://arxiv.org/abs/2411.01958.

NeurIPS Paper Checklist

1. Claims

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469 470

471

473

474

475

476

478

480

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: in Section 3.1 we investigate the crucial limitation of previous works, showing the need to properly address interference problem. Based on this, we show that proposed solutions BFB and RFB both theoretically Section 3.1, Section 3.3 and empirically improve performance over baselines Section 4, addressing fully limitation above.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: we state limitations in the Section 5, which include evaluations on state-based benchmarks, which have dynamics mismatches of only certain type (either grid layout, or wind direction). In our work we consider only FB from BFMs family, while leaving investigating other methods for future works.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings,

- model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: Yes

Justification: we state two main theorems with corresponding assumptions (Theorem 1 and Theorem 2) in each of the corresponding sections, while providing full formal proof for both in the Appendix D.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we give a description of both our methods in Section 3.2 and Section 3.3, explain the experimental setup in Section 4.1 and give extended description in Appendix C.

aracimes.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.

- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: we provide our code in supplementary materials with instructions on data generation and model training.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

590 Answer: [Yes]

591

592

593

594

595

596

597

598

599

600 601

602

603

604

605

606

607

608

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

628 629

630

631

632

634

635

636

638

639

640

Justification: we report the hyperparameters and training details in Appendix E.1. The hyperparameters were chosen after a random hyperparameter tuning.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail
 that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: we report the error bars and specify their meaning throughout the paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: we provide this information in Appendix E.1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: Yes

Justification: we have reviewed and agreed to comply with the NeurIPS Code of Ethics

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: the main societal impact of our work is to advance the field of Machine Learning in general, however, we do not think our work has any direct negative societal impacts.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
 impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: we believe our work does not pose any such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.

- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

693

694

695

696

697

698

699

700

701

702

703 704

705

706

707

708

709

710

711

713

715 716

717

718

719

720 721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

741

742

Justification: our work does not use existing assets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: there are no new assets released by our work.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: crowdsourcing is not involved.

Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: crowdsourcing is not involved.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any important, original, or non-standard components

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Extended Related Works and Background 781

Background

782

803

804

807

808

809

810

811

831

Contexual Markov Decision Process. Throughout paper we will be dealing with a Contextual 783 Markov Decision Process (CMDP), defined by a tuple $\langle \mathcal{C}, \mathcal{S}, \mathcal{A}, \gamma, \mathcal{M} \rangle$, where \mathcal{C} is a context space and 784 \mathcal{S}, \mathcal{A} are shared state and action spaces across environments. Function \mathcal{M} maps particular context 785 $c \in \mathcal{C}$ to respective MDP, i.e., $\mathcal{M}(c) = \langle \mathcal{S}, \mathcal{A}, \mathcal{T}^c, R^c, \mu^c, \gamma \rangle$ with context-dependent transition 786 function $\mathcal{T}^c: \mathcal{S} \times \mathcal{A} \times \mathcal{C} \to \mathcal{S}$, μ^c being an initial distribution over states and $\gamma \in (0,1)$ a discount 787 factor. Intuitively, the context $c \in \mathcal{C}$ represents a fixed environmental configuration, such as obstacle 788 positions, layout geometry, dynamics vector parameters or seed. Throughout this work, the context 789 remains static within each episode, consistent with prior literature [18, 23, 36]. A policy $\pi: \mathcal{S} \to \Delta \mathcal{A}$ 790 is optimal for context c for the reward function R if it maximizes expected discounted future reward, 791 i.e., $\pi_{c,R}^*(s_0, a_0) = \arg\max_{\pi} \mathbb{E}[\sum \gamma^t R(s_t, a_t) | s_0, a_0, \pi, c].$ 792

When the context is fully observable, augmenting the state space with the given context reduces the 793 CMDP to a standard MDP, eliminating the need to model distinct dynamics \mathcal{T}^c , rewards R^c or initial 794 states μ^c . However, if the context is partially observable, the learned model must infer and track the 795 uncertainty over true hidden configuration to maintain theoretical optimality guarantees. Such task 796 can be framed as posterior estimation $p(c|\mathcal{H})$ or belief over possible contexts c given accumulated 797 history H. 798

Most successful methods for deriving an optimal policy across arbitrary tasks from a task-agnostic 799 dataset leverage successor features [2, 6, 8, 26, 45] or their continuous counterpart, successor measures 800 [1, 5, 17, 38, 39]. In this work, we focus on the latter framework, specifically its instantiation via 801 forward-backward representations [38]. Below, we briefly outline its key properties. 802

Zero-Shot RL. Given an offline dataset of transitions $\mathcal{D} = \{(s_i, a_i, s_{i+1})\}_{i=1}^{|\mathcal{D}|}$ generated by an unknown behavior policies, the agent's objective is to learn a unified abstraction of the environment without additional interaction. At test time, this abstraction helps to obtain optimal policy for any reward function r_{test} which defines a particular task. Reward function can be specified either as a small dataset of reward-labeled states $\mathcal{D}_{test} = \{(s_i, r_{test}(s_i))\}_{i=1}^k$ or as a direct mapping $s \to r_{test}(s)$. While some prior works assume access to the context labels [14], we focus on the setting where the context is unknown and must be inferred from the data. Alternative formulations of zero-shot RL exist under other formalisms, and we refer to [18] for comprehensive overview.

A.2 Literature

Domain Adaptation and Transfer Learning in RL. While our work will focus on domain adapta-812 tion applied to estimating successor measure for various dynamics mismatches, we start by briefly reviewing more general ideas in classic domain adaptation and refer to [19] for detailed overview. 814 Most methods for domain adaptation can be categorized into importance-weighting [4, 34, 40] and 815 domain-invariant feature learning [10, 11, 43, 44] approaches. Former methods estimate the likeli-816 hood ratio of examples under samples from target domain versus samples from source, which is then 817 used to recalibrate examples from the source domain. The latter approaches learn a unified repre-818 sentation of the environment, targeting to extract only task-relevant abstraction, negating distracting 819 information.

821 The most relevant approach which enables FB representations to generalize across dynamics is Contexual FB [16]. This approach uses importance-weighting formalism and introduces two classifiers, 822 which estimate the likelihood of transitions (s_t, a_t) and (s_t, a_t, s_{t+1}) being from train or test context 823 and augment the reward function to account for those discrepancies in the dynamics. If augmented 824 825 reward function lies in the linear span of the Z space during FB training, then the policy can be extracted as described in Equation 4. However, such an approach requires training classifiers from 826 scratch for each novel layout of the environment, limiting its applicability.

Meta-RL. Another major line of related works, Meta-Reinforcement Learning (Meta-RL), focuses 828 on few-shot domain adaptation to unseen tasks or dynamics [3]. The significant part of research in 829 Meta-RL is dedicated to explicitly learning the *belief* by collecting a history of interactions with the 830 environment on inference during test-time [9, 29, 46]. However, recent works show that it is possible to quantify the belief without learning the posterior implicitly [20, 21, 28, 32, 35, 47, 48]. Leveraging 832 in-context ability of transformers [41], one can learn an end-to-end supervised model, while the transformer's context will absorb into robust representation the adaptation-relevant information thus enabling fast adaptation. We also leverage this in-context ability to construct the belief representation of the dynamics the agent currently in, but instead operating in a zero-shot manner.

837 A.3 FB Training

In this section we describe the training procedure of FB in more details. Everything follows the notation from Touati and Ollivier [38].

Assume that ρ is supported over all provided data, *i.e.*, it is non-zero everywhere.

$$\mathcal{L}_{FB} = \mathbb{E}_{(s_t, a_t, s_{t+1}, s_+) \sim \mathcal{D}, z \sim \mathcal{Z}} [(F(s_t, a_t, z)^T B(s_+) - \gamma \hat{F}(s_{t+1}, \pi_z(s_{t+1}, z)^T \hat{B}(s_+))^2 - 2F(s_t, a_t, z)^T B(s_{t+1})]$$
(10)

Here, s_+ is a future outcome either from the same trajectory or randomly sampled from data. \hat{F}, \hat{B} are target networks with Z being a task space, encoding all possible policies. The policy π_z is trained in an actor-critic formulation and parametrized as Boltzmann policy $\pi_{z_i}(\cdot|s_i) = \text{softmax}(F(s_i,\cdot,z_i)^Tz_i/\tau)$ for continuous environments. Additionally, B is forced to be orthogonal for different s, which is enforced by contrastive loss $\mathbb{E}_{(s,s+)}[B(s)^TB(s_+)]$.

846 B Environment Descriptions

B.1 Randomized-Doors

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

The Randomized-Doors MiniGrid environment (Figure 8) is a discrete-state, discrete-action finite horizon deterministic environment in which agent has an objective to go to goal location with maximum return of 1. Each episode terminates after 100 steps or after reaching goal location. The randomization determines possible open doors locations, fully specifying particular layout. In our experiments, the observation state of an agent consists of (x,y) coordinates tuple, making it partially observable. Such setting requires to properly update beliefs over unobservable layout configuration type. The action space consists of four actions, namely $\{up, down, right, left\}$, while (x,y) coordinates across both axes are bounded by grid size, which we take to be 9×9 .

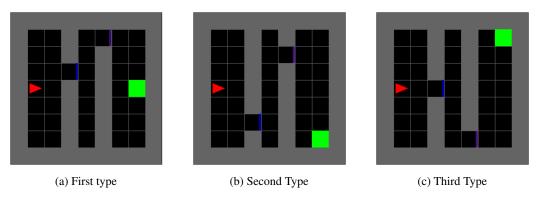


Figure 8: Several possible layouts are visualized, each corresponding to unique possible doors configurations. The agent is denoted as a red triangle. The task specification (goal position) with reward of 1 is denoted by green square and is also randomized. It is a custom implementation based on Empty MiniGrid (https://minigrid.farama.org).

B.2 Randomized Four-Rooms

The Randomized Four-Rooms MiniGrid environment Figure 10 is a modification of classic Four-Rooms and is a discrete-state, discrete-action, deterministic partially observable environment. For each episode, the maze layout (grid type) is generated randomly, ensuring all of the four rooms are connected with exactly single door. Observation state consists of (x,y) coordinates, making this environment hard and checks whether agent could successfully estimate uncertainty over hidden configurations solely based on number of occurrence of each transition, recovering dynamics. In our experiments, we consider 11×11 bounds for height and width.

Observation space consists of raw discrete (x, y) coordinates on the grid, while actions correspond to a set of possible moves {up, down, left, right}. For every layout we record 500 episodes

of length 100, yielding a dataset that covers almost all possible (s,a) transitions. For testing on unseen configurations, we fix agent starting position to coordinates of the first empty cell and evaluate performance across 3 static goal positions, farhest away from starting position.

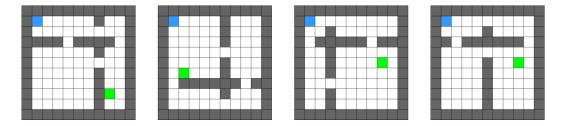


Figure 9: **Different layout configurations from randomized Four-Rooms environment.** During inference, the goal for the agent (depicted in blue) is to achieve green location. In our experiments we fix starting agent position and fix 3 goals, one for each room.

B.3 Ant-Wind

869

870

871

872

873

874

875

880

881

882

884

885

891

The AntWind environment is a modified version of the Ant locomotion task from the MuJoCo simulator, commonly used to test an agent's adaptability to changing dynamics. In this environment, an ant-like robot must learn to move forward while being subjected to external wind forces varying in magnitude and direction. In our experiments we consider 17 environments for training, covering three quadrants of possible wind directions on the circle, while leaving others for test, checking extrapolation on the fourth quadrant.

For our experiment, we collect dataset by training SAC [15] on 3/4 of all possible directions, which results in 16 environments and hold out the other 1/4 for evaluation. Resulting dataset consists of 3400 transition tuples, where each environment configuration is represented as trajectory of length 256.

B.4 Randomized Pointmass

Randomized Pointmass is a modification of pointmass environment from D4RL [13]. Each episode the environment grid structure is randomized, ensuring all cells are interconnected. The observation space consists of (x,y) transitions. Start position is determined as a first empty cell, while goal location is chosen to be the fartherst away from start (based on Manhattan distance) and ensuring existence of at least one valid trajectory (e.g., through BFS).

Observation space consists of (global x, global y) position, similar to Four-Rooms. We fix dataset size to be $1e^6$, only varying number of layouts and episodes per layout, while fixing episode length to 250. We use explore policy, which is a random policy with a portion of actions repeated ("sticky-actions").

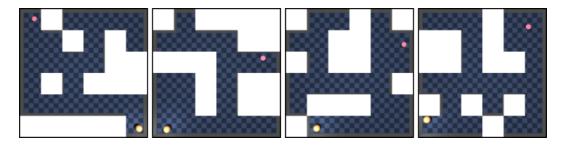


Figure 10: Examples of pointmass grid variations.

C Experiments Details

Randomized-Doors. For didactic example from Section 3.1 we collect diverse dataset from different layout configurations (open door locations) such that visitation distribution over all states is non-zero. Black color denotes obstacles. The episode length is set to be 100, which is equal to the context

length of the transformer encoder for this experiment. Overall, we collect 500 episodes per layout and coverage heatmap is visualized in Figure 11.

Table 1: Comparison of proposed approaches against baselines on **test** (unseen) environments. Results for Fourrooms and Pointmass are averaged across 20 mazes configurations.

Environment (Test)			Method			
Ziiviioiiiieii (1666)	Random	Vanilla-FB	HILP	Lap	Belief-FB	Rotation-FB
Randomized-Fourrooms	0.05 ± 0.01	0.15 ± 0.06	$0.2{\scriptstyle~ \pm 0.02}$	$0.1_{\pm 0.1}$	$0.4{\scriptstyle~ \pm 0.02}$	0.61 ± 0.02
Randomized-Pointmass	$0.03{\scriptstyle~\pm 0.01}$	$0.1_{\pm 0.1}$	$0.25{\scriptstyle~\pm 0.02}$	$0.1{\scriptstyle~\pm 0.1}$	$0.45{\scriptstyle~\pm 0.05}$	0.55 ± 0.05
Ant-Wind	250 ± 200.0	$250{\scriptstyle~\pm 98.5}$	$410{\scriptstyle~\pm40.5}$	$290{\scriptstyle~\pm 22.5}$	$550{\scriptstyle~\pm50.5}$	640 ± 30.7

Table 2: Comparison of proposed approaches against baselines on **train** environments. Results for Fourrooms and Pointmass are averaged across 20 mazes configurations.

Environment (Train)	Method					
2(1)	Random	Vanilla-FB	HILP	Lap	Belief-FB	Rotation-FB
Randomized-Fourrooms Randomized-Pointmass Ant-Wind	$\begin{array}{c} 0.18 \pm 0.02 \\ 0.0 \pm 0.05 \\ -190 \pm 250 \end{array}$	$\begin{array}{c} 0.25 \pm 0.02 \\ 0.2 \pm 0.2 \\ 390 \pm 120 \end{array}$	$\begin{array}{c} 0.4 \pm \! 0.02 \\ 0.45 \pm \! 0.1 \\ 410 \pm \! 90 \end{array}$	$\begin{array}{c} 0.2 \pm 0.1 \\ 0.15 \pm 0.15 \\ 340 \pm 150 \end{array}$	$\begin{array}{c} 0.7 \pm \! \! 0.02 \\ 0.76 \pm \! \! 0.18 \\ 680 \pm \! \! 80 \end{array}$	$\begin{array}{c} 0.85 \pm \! 0.02 \\ 0.88 \pm \! 0.2 \\ 740 \pm \! 70 \end{array}$

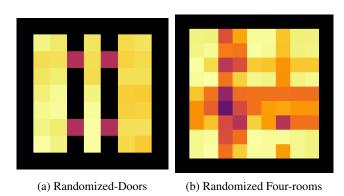


Figure 11: State occupancy measures visualizations for collected datasets for discrete-based environments.

96 C.1 Dataset Generation

898

899

900

901

902

897 For Randomized Four-Rooms, we produce four training datasets with the following parameters:

# Transitions	# layouts	# episodes per layout	episode length
1000000	10	1000	100
1000000	20	500	100
1000000	30	250	100
1000000	50	150	100

Table 3: Details for Randomized Four-Rooms datasets

Randomized Four-Rooms. For experiments on Randomized Four-Rooms during dataset collection we generate randomly grid layout, ensuring that each room is interconnected by exactly one door. For evalution we fix agent start position to (1,1) with the goal of reaching 3 other goals, specified at other rooms. Each episode terminates after 100 steps. The evaluation protocol is averaged success rate across 3 across 20 environments.

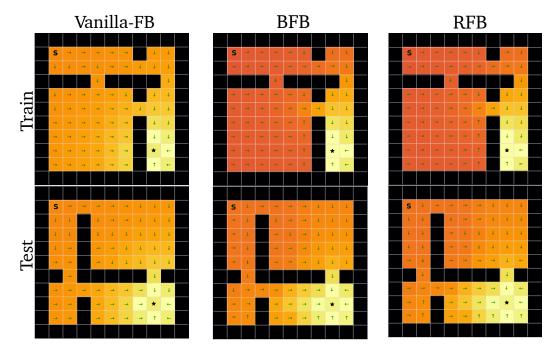


Figure 12: **Q-function and deterministic policy visualizations** (Equation 4) on Randomized Four-Rooms environment. Vanilla-FB ignores grid structure and resulting policy moves through obstacles. BFB and RFB do not have such issue.

AntWind. For AntWind we first collect trajectories by varying wind direction d and training an expert-like SAC agent. After training, we collected evaluation trajectories from trained agent. This ensures that all directions are covered and explicitly sets dynamics context. As said in Experiments section, we train on 16 environments with wind directions corresponding to first 3 quadrants of circle, leaving other 4 (last quadrant) for hold out.

D Proofs

903

904

905

906

907

908

909 **D.1 Theorem 1**

Preserving notation from Section 3.1, we provide a full proof of the Theorem 1. Let $\{M_{\pi_i}\}$ be a collection of successor measure of the optimal policies $\{\pi_i\}_{i=1}^k$ for k distinct CMDPs. Given a reference measure ρ on $\mathcal{S} \times \mathcal{A}$ let worst case regret be defined as

$$\epsilon_k := \inf_{F,B} \max_{i \le i \le k} ||M_{\pi_i} - F(\cdot, \cdot, z_i)^T B(\cdot)||_{L^2_{\rho}}$$
(11)

Theorem (Regret-bound for Multiple Dynamics). Then, for any bounded $||r_{\infty}|| \le R$ and any CMDP whose state-action distribution ρ_{test} (assuming absolute continuity, i.e., $d\rho_{test}/\rho$ is bounded), the policy extracted from F,B for that CMDP satisfies:

$$\mathbb{E}_{(s,a)\sim\rho_{\textit{lest}}}[Q^{\pi^*}(s,a) - Q^{\pi_{z_i}}(s,a)] \leq \frac{2\gamma\epsilon_k||r||_{\infty}}{(1-\gamma)^2}$$

Since $\epsilon_{k+1} \ge \epsilon_k$ (monotonicity) the worst case regret per any CMDP at test time increases as more environments are included during training.

Lemma 1. Theorems 8-9 from Touati and Ollivier [38] prove this inequality for single instance of MDP, showing that if FB approximation error in $L^2(\rho)$ is at most ϵ then pointwise value gap is bounded by:

$$(Q_r^* - Q_r^{\pi_{z_i}}) \le \frac{\gamma}{1 - \gamma} (P_{\pi^*} - P_{\pi_z}) (I - \gamma P_{\pi^*})^{-1} E(z) r)$$
(12)

with E(z) being a point-wise error matrix over state-actions as $E(z)=M^{\pi_z}(s,a,s')-F(s,a,z)^TB(s,a)$. Since

$$||(I - \gamma P)^{-1}||_{\infty} \le \frac{1}{1 - \gamma}$$
 (13)

- results in coefficient $2\gamma/(1-\gamma)^2$ in Equation 1.
- *Proof.* Define a transition kernel P_i of CMDP at index i and M_{π_i} its successor measure. Let 924
- $E_i = M_{\pi_i} F(s, a, z_i)^T B(\cdot) = M_{\pi_i} \hat{M}_i$. Then, using $Q^* = (I \gamma P_{\pi^*})^{-1} r$ value gap 925
- decomposes as 926

$$Q^* - Q^{\pi_{z_i}} = \gamma (I - \gamma P_{\pi^*})^{-1} (P_{\pi_*} - P_{\pi_{z_i}}) (I - \gamma P_{\pi_{z_i}})^{-1} r$$
(14)

- Since each of the resolvent factors (denote them as E_i) are at most $1/(1-\gamma)$ in L^{∞} , then from 927
- triangle inequality: 928

$$||Q^* - Q^{\pi_{z_i}}||_{\infty} \le \frac{2\gamma}{(1-\gamma)^2} ||E_i||_{L^2_{\rho}} ||r||_{\infty}$$
(15)

From Assumption 1 on absolute continuity, 929

$$\mathbb{E}_{(s,a) \sim \rho_{\text{test}}} \{ Q^* - Q^{\pi_{z_i}} \} \le ||Q^* - Q^{\pi_{z_i}}||_{\infty}$$
 (16)

Substituting this into Equation 15, gives desired inequality bound in Theorem 1. 930

D.2 Theorem 2 931

- Section 3.3 introduced a new sampling procedure of $z_{\rm FB}$, which improves upon usual uniform 932
- sampling. This procedure can also be studied more formally. 933
- Given an L possible contexual representations h of the environments coming from f_{dyn} , define a 934
- *cone* around each of the context axes $\{h^1, h^2 \dots h^L\} \in \mathbb{S}^{d-1}$, with the angle between any two latent 935
- vectors $\theta_{\rm max}$ set 936

$$C_j = \{ z_{FB} \in \mathbb{S}^{d-1} | \langle z_{FB}, h^j \rangle \ge \cos \theta_{\text{max}} \}$$
 (17)

- 937
- Corresponding policy task vectors are defined for each cone $z_{FB}^i \in C_{c(i)}$, with $c(i) \in \{1, \dots L\}$ being a classification function, mapping index i to one of the predifined context axes. For functions 938
- F, B define per environment error as: 939

$$\mathcal{E}_{i}(F,B) := ||M^{\pi_{i}} - F(\cdot, \cdot, z_{FB}^{i})^{T} B(\cdot)||_{L^{2}(\rho)}$$
(18)

With following optimization tasks: 940

$$\epsilon_k := \inf_{F,B} \max_{1 \le i \le k} \mathcal{E}_i(F,B), \quad \epsilon_j := \inf_{F,B} \max_{i \in \mathcal{S}_j} \mathcal{E}_i(F,B)$$
(19)

- with $S_j = \{i | c(i) = j\}$ being a set of task vectors (z_{FB}) indices that fall into the j-th cone of the 941
- latent space partition. 942
- **Theorem** (Regret-bound under latent space partitioning). Under assumptions above, the Gram matrix 943
- of the directions $\{z_{FB}\}_{i=1}^k$ is block diagonal w.r.t. partition $\{S_j\}$ and $\epsilon_k = \max_{j \leq L} \epsilon_j, \quad \epsilon_k \leq \epsilon_{k_{max}}$ 944

$$\epsilon_k = \max_{j \le L} \epsilon_j, \quad \epsilon_k \le \epsilon_{k_{max}}$$
 (20)

- with $k_{max} := \max_{i} |S_i|$ being the size of a largest cone block. 945
- In order to prove this theorem, assume that collection of contexual embeddings $\{h_i\}_{i=1}^L$ obtained 946
- from L environments are almost orthogonal. 947
- *Proof.* Define a $k \times k$ Gram matrix as $G = \langle z_{\rm FB}^i, z_{\rm FB}^j \rangle$ with i,j corresponding to cone partition. Because cones, corresponding to different contexual embeddings h, are disjoint and lie in a span $\{h_i\}$,
- 949
- the resulting Gram matrix is block diagonal $G = \operatorname{diag}(G^{(1)}, G^{(2)}, ..., G^L)$. For a fixed rank d of F, B, 950
- the worst case approximation error is 951

$$\epsilon_k(F, B) = \max_{1 \le i \le k} ||M_{\pi_i} - \hat{M}_{\pi_i}||_{L^2(\rho)} = \max_{j \le L} \max_{i \in S_j} ||M_{\pi_i} - \hat{M}_{\pi_i}||_{L^2(\rho)}$$
(21)

- Since matrix G is block-diagonal, optimization of F, B decouples over blocks of G. Namely, 952
- minimizer on the full set is obtained by minimizing each block separately, hence: 953

$$\epsilon_k = \inf_{F,B} \epsilon_k(F,B) = \max_{j \le L} \epsilon_j \tag{22}$$

- By taking $k_{\text{max}} = \max_{i} |S_i|$ and $\epsilon_k \le \epsilon_{k_{\text{max}}}$ for each block, we obtain desired inequality. 954
- Notably, such orthogonal cone partitioning eliminates interference. Once each cone has its own 955
- slice of the latent space, adding more cones does not enlarge the worst-case error bound, and with 956
- representation capacity of F and B being $d \geq k_{\text{max}}$ the FB model can reach zero approximation error
- in principle.

Table 4: **Hyperparameters for FB** The additional hyperparameters for Belief-FB and Rotation-FB are highlighted in

Hyperparameter	Value
Latent dimension d	150 (100 for discrete)
F / ψ dimensions	(1024, 1024)
B / φ dimensions	(256, 256, 256)
Preprocessor dimensions	(1024, 1024)
Std. deviation for policy smoothing σ	0.2
Truncation level for policy smoothing	0.3
Learning steps	1,000,000
Batch size	1024
Optimiser	Adam
Learning rate	0.0001
Learning rate of $f_{\rm dyn}$	0.0001
Discount γ	0.99
Activations (unless otherwise stated)	GeLU
Target network Polyak smoothing coefficient	0.05
z-inference labels	10,000
z mixing ratio	0.5
К	50, 100 for Pointmass
Contexual representation h dimension	150 (100 for discrete)
Next state predictor g_{pred}	(256, 256, 256)

959 E Implementation Details

960 E.1 Forward-Backward Representations

961 E.1.1 GPUs

We run each experiment on 4 Nvidia 4090.

E.1.2 Architecture

The forward-backward architecture described below mostly follows the implementation by [39]. All other additional hyperparameters are reported in Table 4.

Forward Representation F(s,a,z). The input to the forward representation F is always preprocessed. State-action pairs (s,a) and state-task pairs (s,z) have their own preprocessors which are feedforward MLPs that embed their inputs into a 512-dimensional space. These embeddings are concatenated and passed through a third feedforward MLP F which outputs a d-dimensional embedding vector. Note: the forward representation F is identical to ψ used by USF so their implementations are identical (see Table 4).

Backward Representation B(s). The backward representation B is a feedforward MLP that takes a state as input and outputs a d-dimensional embedding vector.

Actor $\pi(s,z)$. Like the forward representation, the inputs to the policy network are similarly preprocessed. State-action pairs (s,a) and state-task pairs (s,z) have their own preprocessors which feedforward MLPs that embed their inputs into a 512-dimensional space. These embeddings are concatenated and passed through a third feedforward MLP which outputs a a-dimensional vector, where a is the action-space dimensionality. A Tanh activation is used on the last layer to normalise their scale. Note the actors used by FB and USFs are identical (see Table 4).

Misc. Layer normalisation and Tanh activations are used in the first layer of all MLPs to standardise the inputs as recommended in original paper for both discrete and continuous beenhmarks.

982 E.2 Task Sampling Distribution \mathcal{Z}

Vanilla-FB. FB representations require a method for sampling the task vector z at each learning step. [39] employ a mix of two methods, which we replicate:

- 1. Uniform sampling of z on the hypersphere surface of radius \sqrt{d} around the origin of \mathbb{R}^d ,
- 2. Biased sampling of z by passing states $s \sim \mathcal{D}$ through the backward representation z = B(s). This also yields vectors on the hypersphere surface due to the L2 normalization described above, but the distribution is non-uniform.

We sample z 50:50 from these methods at each learning step as in original work by [38].

Rotation-FB. After transformer $f_{\rm dyn}$ pretraining stage, RFB at each gradient step chooses task-conditioning vector $z_{\rm FB}$ based on i) context representation h acting as axes coming from $f_{\rm dyn}$ and ii) drawing task encoding vectors $z_{\rm FB}$ around this axes. We also perform normalization as in Vanilla-FB by projecting resulting vector on a surface of hypersphere of radius \sqrt{d} .

Stage ii) is implemented as drawing samples as $z_{\rm FB} \sim {\rm vMF}(\mu=h,\kappa)$. In order to remove high computational costs, we implement this sampling procedure through Householder reflection around context axes, by first drawing z from one of the basis vectors (e.g., north pole) and then performing rotation. This is depicted Pseudocode section Section 1:

E.3 Pseudocode

985

986

987

988

Algorithm 1 Belief-FB Training

```
1: Input: offline diverse dataset \mathcal{D} consisting of transitions based on hidden configuration variable c_i
           2: Initialize transformer encoder f_{\text{dyn}_{\theta}}, F_{\eta}, B_{\omega}, number of gradient steps for transformer pre-training K,
                 context length T, Polyak coefficient, \beta, batch size B learning rates \lambda_f, \lambda_F, \lambda_B
           3: while update steps < K do
                     sample batch of B trajectories of length T\{(s_{i,t}, a_{i,t}, s_{i,t+1})\}_{i=1,...B,t=1,...,T} \sim \mathcal{D}
                     (\boldsymbol{\mu}_i; \log \boldsymbol{\sigma}_i) = f_{\text{dyn}_{\theta}}(\{s_{i,t}, a_{i,t}, s_{i,t+1}\}_{t=1}^M), i = 1, \dots, B,
           5:
                     z_i = \mu_i + \epsilon_i \odot \exp(\log \sigma_i),
                    \mathbf{Z}_{i,t} = \mathbf{z}_{	ext{dyn}_i}, \ t = 1, \dots, T # Representation z_{	ext{dyn}} is shared across each sequence \hat{s}_{i,t+1} = g_{	ext{pred}}(s_{i,t}, a_{i,t}, \mathbf{Z}_{i,t}) t = 1, \dots, T, \ i = 1, \dots, B
999
           7:
                    \mathcal{L}_{\text{context}} = \frac{1}{BT} \sum_{i=1}^{B} \sum_{t=1}^{T} \left\| \hat{s}_{i,t+1} - s_{i,t+1} \right\|_{2}^{2}
\theta_{f_{\text{dyn}}} \leftarrow \theta_{f_{\text{dyn}}} - \lambda_{f} \nabla_{\theta} \mathcal{L}_{\text{context}}(\theta)
           9:
         10:
         11: end while
         12: while not converged do
                      \eta_F \leftarrow \eta_F - \lambda_F \nabla_{\eta_F} J_{(F,B)}(\eta_F) # FB training, Equation 10
         13:
                      \omega_B \leftarrow \omega_B - \lambda_B \nabla_{\omega_B} J_{(F,B)}(\omega_B)
         14:
         15: end while
```

Algorithm 2 Sampling z_{FB} for RFB

```
Input: B (batch size), d (latent dimension), anchor matrix \mathbf{H} \in \mathbb{R}^{B \times d}, \kappa (concentration)

Output: \mathbf{Z} \in \mathbb{R}^{B \times d}

1: Normalize anchors: \mathbf{u}_i \leftarrow \mathbf{H}_i/(\|\mathbf{H}_i\|_2 + \varepsilon) \triangleright for i = 1, \dots, B

2: \mathbf{S} \leftarrow \mathsf{VMF\_SAMPLE\_NORTHPOLE}(B, d, \kappa) \triangleright draw B VMF samples

3: for i \leftarrow 1 to B do

4: \mathbf{R}_i \leftarrow \mathsf{HOUSEHOLDER\_ROTATION}(\mathbf{u}_i)

5: \mathbf{z}_i \leftarrow \mathbf{R}_i \mathbf{S}_i

6: end for

7: \mathbf{Z} \leftarrow \mathsf{PROJECT\_To\_SPHERE}(\{\mathbf{z}_i\}_{i=1}^B)

8: return \mathbf{Z}
```