
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPH TOKENIZATION FOR BRIDGING GRAPHS AND
TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

The success of large pretrained Transformers is closely tied to tokenizers, which
convert raw input into discrete symbols. Extending these models to graph-
structured data remains a significant challenge. In this work, we introduce a graph
tokenization framework that generates sequential representations of graphs by
combining reversible graph serialization, which preserves graph information, with
Byte Pair Encoding (BPE), a widely adopted tokenizer in large language models
(LLMs). To better capture structural information, the graph serialization process is
guided by global statistics of graph substructures, ensuring that frequently occur-
ring substructures appear more often in the sequence and can be merged by BPE
into meaningful tokens. Empirical results demonstrate that the proposed tokenizer
enables Transformers such as BERT to be directly applied to graph benchmarks
without architectural modifications. The proposed approach achieves state-of-the-
art results on 14 benchmark datasets and frequently outperforms both graph neural
networks and specialized graph transformers. This work bridges the gap between
graph-structured data and the ecosystem of sequence models.

1 INTRODUCTION

Large pretrained Transformer models (Vaswani et al., 2017; Minaee et al., 2024), exemplified by
LLMs, have achieved state-of-the-art results across diverse domains (Dosovitskiy et al., 2020; Gong
et al., 2021). A key component of this success is the tokenizer, which converts raw input into se-
quences of discrete symbols. By structuring information into learnable units, the tokenizer provides
the interface between complex data and Transformer architectures, supporting the scalability and
performance of these models.

Research on extending Transformers to graph-structured data has explored two main strategies, each
with inherent limitations (Yu et al., 2025). One strategy modifies the architecture by incorporating
attention mechanisms into Graph Neural Networks (GNNs) to create specialized Graph Transform-
ers (Yun et al., 2019). These approaches require graph-specific designs that diverge from standard
sequence models and their ecosystem. The other strategy converts graphs into continuous embed-
dings for use with Transformers (Tang et al., 2024), but this often causes information loss or unstable
representations, which can degrade model performance (Chen et al., 2024).

Developing a principled graph tokenizer requires reexamining the notion of tokenization in the con-
text of graph-structured data. Specifically, text can be modeled as a path graph, where the linear
sequence of tokens provides both a fixed neighborhood structure and a canonical ordering, making
tokenization relatively straightforward. In contrast, general graphs pose additional challenges, as
their neighborhoods can branch in multiple directions rather than follow a simple linear sequence.
They also lack permutation invariance, where graphs under node permutations are considered equiv-
alent. Furthermore, co-occurrence statistics widely used in text, such as n-gram frequencies based
on contiguous tokens, are not directly applicable to graphs.

We propose a framework that addresses these challenges by integrating graph serialization with Byte
Pair Encoding (BPE), a data-driven compression algorithm widely applied in text tokenization (Shi-
bata et al., 1999). To ensure that graph structure and labels are preserved, we adopt reversible se-
rialization methods such as extended Euler circuits and minimal-weight graph traversals. Ordering
ambiguity is resolved by using global statistics to deterministically guide the serialization process,
which translates common substructures into frequent and adjacent symbol patterns that BPE is well
suited to merge. Specifically, BPE iteratively merges the most frequent pairs of symbols into new
tokens, thereby reducing sequence length while preserving common substructures. As a result,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

applying BPE to serialized graphs enables the construction of a vocabulary of frequent graph neigh-
borhoods, producing discrete tokens that are both informative and well aligned with Transformer
architectures.

In this work, our contributions can be summarized as follows:

• General Framework for Graph Tokenization. We introduce a tokenization framework
that combines reversible graph serialization with BPE. By decoupling the encoding of
graph structure from the model architecture, this framework provides an effective inter-
face that enables standard off-the-shelf Transformer models to be applied directly to graph-
structured data without requiring any architectural modifications.

• Structure-Guided Serialization for BPE. We propose a deterministic serialization pro-
cess guided by global statistics of graph substructures. The process addresses ordering
ambiguities in graphs and aligns frequently occurring substructures into adjacent sequence
patterns. Structure-Guided Serialization provides an effective basis for BPE to learn a
meaningful and interpretable vocabulary of structural graph tokens.

• State-of-the-Art Performance on Downstream Tasks. Our tokenizer enables standard
Transformer backbones to achieve state-of-the-art results across a diverse suite of 14 bench-
marks for graph classification and regression. The proposed approach frequently out-
performs both established Graph Neural Networks and specialized Graph Transformers,
demonstrating its effectiveness and generalization.

2 RELATED WORKS

Graph Neural Networks. Graph Neural Networks (Kipf, 2016; Luo et al., 2025) are the prevail-
ing framework for learning on graph-structured data. They rely on message passing, where node
representations are updated by iteratively aggregating information from local neighbors, enabling
effective modeling of local graph structure (Chen et al., 2019). To capture dependencies beyond lo-
cal neighborhoods, subsequent work introduced self-attention, leading to Graph Transformers (Yun
et al., 2019; Wu et al., 2023)and hybrid global-local models (He et al., 2023; Zhang et al., 2023).
More recently, graph representation learning has been combined with Graph Foundation Models,
often by mapping graph structure and features into the embedding space of pretrained LLMs (Tang
et al., 2024; Chen et al., 2024). These approaches depend on cross-modal alignment, with perfor-
mance influenced by the semantic compatibility between graph features and natural language. Our
objective is to design an interface that enables graphs to be processed directly by standard, off-the-
shelf Transformers.

Graph Serialization. Serialization of a graph into a sequence was one of the earliest strategies
for applying sequence-based models. Early methods such as DeepWalk generated node sequences
through random walks and processed them with shallow neural networks (Perozzi et al., 2014; Zhang
et al., 2020). This direction was later surpassed by the message passing paradigm of GNNs (Gilmer
et al., 2017), which became the dominant approach to learning graph representations. More re-
cently, the success of sequence-native architectures such as the Transformer has renewed interest
in serialization-based methods (Wang et al., 2024). Many existing graph-to-sequence pipelines are
not reversible. Specifically, walk-based serializations break the graph into local fragments. Each
sequence reflects only part of the graph, and even combining many walks cannot reconstruct the
original structure or capture global connectivity (Xia et al., 2019). In another case, traversal-based
serializations are sensitive to node ordering and starting choices, so even isomorphic graphs may
produce different graph traversal circuit (Gao et al., 2025). In contrast, our method is reversible and
almost invariant to graph permutation.

Tokenization The Transformer architecture has become the standard paradigm for sequence mod-
eling (Vaswani et al., 2017). Its success is closely tied to the use of effective tokenization (Floridi
& Chiriatti, 2020; Guo et al., 2025), which is especially critical in LLMs. A tokenizer converts raw
input (e.g., text) into a sequence of discrete symbols, with BPE being a widely adopted data-driven
approach that builds a vocabulary by iteratively merging frequent symbol pairs (Shibata et al., 1999).
In prior work on graph data, the term graph tokenization has been used with different meanings. It
has referred to neural encoders that produce continuous embeddings (Tang et al., 2024), pooling or
coarsening modules that compress subgraphs into super-nodes (Shen & Póczos, 2024), and vector
quantization components that discretize node features or latent representations (Yang et al., 2023).
In this paper, we adopt the common sense in natural language processing, where a tokenizer is a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

procedure that maps a labeled graph to a sequence of discrete symbols for direct use by sequence
models.

3 METHOD

3.1 PRELIMINARIES

Graph. A graph is a tuple G = (V, E), composed of a finite set of nodes V and a set of edges
E . Our work focuses on labeled graphs, which we define as a tuple G = (G,L,Σ), where Σ
is a finite alphabet of symbols and L : V ∪ E → Σ is a labeling function. Two labeled graphs
G1 = (G1, L1,Σ) and G2 = (G2, L2,Σ) are isomorphic, denoted G1 ∼= G2, if there exists a graph
isomorphism ϕ : V1 → V2 between G1 and G2 that also preserves all labels.
Graph Serialization. In general, a graph serialization function f maps a graph to a finite sequence
of symbols. Let A denote the universe of possible sequence elements. The mapping is defined as

f : G 7→ (s1, s2, . . . , sk) s.t. si ∈ A for 1 ≤ i ≤ k. (1)

The choice of A depends on the serialization method. It may consist of node identifiers (A = V),
continuous embeddings (A = Rd), or discrete labels (A = Z). For the purpose of building a discrete
tokenizer, we focus on serializations where the output sequence is composed of symbols from the
graph’s alphabet, i.e.,A = Σ. To serve as a reliable interface, such a serialization should satisfy two
key properties:

• Reversibility. A serialization f is reversible if the original labeled graph G can be recovered
from its sequence S = f(G) up to isomorphism. Formally, let f−1(S) denote the set of
all graphs that could produce sequence S. The serialization is reversible if for any G in the
domain of f , there exists a reversed graph G′ ∈ f−1(f(G)) such that G′ ∼= G.

• Determinism. A serialization function f is deterministic if, for any labeled graph G, it
consistently produces the same sequence S. This property is essential for addressing the
permutation-invariance of graphs. A deterministic serialization generates a stable sequence
for all graphs within an isomorphism class.

Graph Tokenization. A graph tokenizer Φ maps a labeled graph G to a finite sequence of discrete
symbols, referred to as tokens.

Φ : G 7→ ST = (t1, . . . , tm), tj ∈ VT . (2)

In this work, we construct the graph tokenizer Φ by composing a graph serialization function f with
a sequence tokenizer T inspired by the text tokenizers used in LLMs. The sequence tokenizer T
maps a sequence over the initial alphabet Σ to a new sequence over a target vocabulary VT , where
the vocabulary is typically learned from data using BPE. The overall mapping is given by

Φ = T ◦ f. (3)

When a decoding procedure is available, the original graph can be reconstructed up to isomorphism
by applying the inverse operations T−1 followed by f−1. Specifically, the term graph tokenizer
refers to methods that produce a discrete sequence. Methods that only discretize embeddings (Yang
et al., 2023) or apply pooling or coarsening (Shen & Póczos, 2024) are not considered tokenizers in
this sense.

3.2 GRAPH TOKENIZER

We construct our graph tokenizer Φ by composing a reversible and structure-guided serialization
function f with a tokenization step T based on BPE. To ensure graph structural information is
preserved, f is designed to be reversible, and to produce stable sequences, we enforce a deterministic
guiding policy for f . We propose a data-driven graph tokenizer Φ that is learned from a training
corpus of graphs rather than relying on hand-crafted heuristics. Specifically, Algorithm 1 details the
training, encoding, and decoding procedures of GraphTokenizer, and Figure 1 illustrates the
overall framework.
Local Structural Pattern Statistics. The training procedure begins with the computation of
dataset-level statistics of local patterns, which provide a data-driven basis for ensuring determinism
in graph serialization. As illustrated in Fig. 1A, we count how often small labeled patterns appear in
the training graphs, using molecular graphs and edge patterns as an example. These counts are then
normalized into relative frequencies.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Graph Tokenizer

Br

Cl

C
O

CO

O

O

C O

C. Byte Pair Encoding

C=O=C-O-C-O-C-C=O=C-O-C-C-Cl-C-Br-C-O-C

Freq

......(C,-) (-,C) (C,=) (=,C) (=,O) (-,Br)
Pair

1: (C,-) → �1

C=O=�1O-�1O-�1C=O=�1O-�1�1Cl-C-Br-�1O-C

…

sequence models

�x�y�z......

A. Count freq

pattern

Freq

C

C

C

C O

C

N

C

···
C

Cl

B. Serialize

C=O=C-O-C-O- C -C=O=C-O-C- C -Cl- C -Br- C -O-C
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

START

1

2

3
4 5 6

7 8

9

10
1112

13

14

15

16
1718

Br

Cl

C
O

CO

O

O

C O

Figure 1: Framework of the proposed graph tokenizer. (A) Substructure frequencies are collected
from the training graphs. (B) Structure-guided and reversible serialization is performed using a
frequency-guided Eulerian circuit, where the next edge is selected according to a priority rule (e.g.,
red C: 7→13→15→17). (C) A BPE vocabulary is trained on the serialized corpus, and graphs are
encoded into discrete tokens for use in downstream sequence models.

For a labeled graph G = ((V, E), L,Σ), we define a basic local pattern as a labeled edge
p = (lu, le, lv) ∈ Σ3, which captures the labels of the source node, the edge, and the target node.
Intuitively, this is the smallest substructure that still reflects a typed relation between two labeled
entities. Compared with larger subgraphs, it is computationally inexpensive, permutation-invariant
over node indices, and stable under isomorphisms, which makes it a practical choice for tie-breaking
during graph serialization. The count of p in G is given by

Count(G, p) =
∣∣{ e = (u, v) ∈ E | (L(u), L(e), L(v)) = p }

∣∣. (4)

Aggregating over the training set D, we obtain raw counts and their normalized relative frequencies
as

C(p) =
∑
G∈D

Count(G, p) F (p) =
C(p)∑

p′∈Σ3 C(p′)
. (5)

F (p) denotes the normalized relative frequency, while raw counts C(p) are introduced here as an
intermediate definition.
Structure-Guided Reversible Serialization. We proceed to the next step of our framework,
where each graph is converted into a sequence of symbols (Algorithm 1, line 5). In this proce-
dure, line 4 corresponds to estimating F from data, and the resulting frequency map will guides the
structure-aware serialization function fg(·, F). The function fg addresses traversal ambiguities by
prioritizing edges whose incident labeled pattern has higher F (p) from itself and neighbors, with
fixed lexical rules applied to break any remaining ties.

Table 1: Properties of graph serialization methods. For Random Walk, L is walk length and R the
number of walks. Implementation details are in Appendix B.

Method Reversibility Determinism Time Complexity
Random Walk No No O(RL)
Node-list BFS/DFS No No O(|V|+ |E|)
Topological Sort No No O(|V|+ |E|)
Eulerian circuit Yes No O(|E|)
SMILES (non-canonical) Yes No O(|V|+ |E|)
Canonical SMILES Yes Yes O(|V|+ |E|)
Chinese Postman Problem Yes No O(|V|3)
Frequency-Guided Eulerian circuit Yes Yes O(|E|)
Frequency-Guided CPP Yes Yes O(|V|3)

Fig. 1B illustrates this serialization process on a molecular graph. Specifically, at the red node C, the
next step is chosen by the F -guided priority rather than arbitrarily(e.g., choose the green node C be-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

cause ”C-C” pair has the highest frequency). To ensure that graph serialization yields faithful graph
representations, we require it to satisfy the properties of reversibility and determinism discussed in
Section 3.1. Ensuring that these two properties hold simultaneously for general graphs is a signif-
icant challenge. To motivate our approach, we first review classical serialization methods against
these criteria. To provide a clear overview, Table 1 summarizes the properties of existing serial-
ization methods. A key limitation is that no classical method is simultaneously broadly applicable,
fully reversible, and inherently deterministic.

Early approaches such as Random Walks (Perozzi et al., 2014) are inherently stochastic and typi-
cally explore only a local portion of the graph per sample. Even when many walks are aggregated,
substructures are split across sequences without markers, so reconstruction is not guaranteed, and
the procedure remains non-deterministic. Standard traversal algorithms like Breadth-First Search
(BFS) (Moore, 1959) and Depth-First Search (DFS) (Even & Even, 2011) also fail to meet these re-
quirements. Their non-determinism arises from arbitrary neighbor selection when multiple choices
are available, and their node-list output omits edge connectivity, which prevents reconstruction of
the original graph. Topological Sort (Kahn, 1962), which produces linear orderings for Directed
Acyclic Graphs (DAGs), is limited to DAGs and admits multiple valid orderings, making it non-
deterministic. Moreover, like other node-list traversals, it is not reversible because the precise edge
connectivity information necessary for reconstruction is discarded.

Algorithm 1 The GraphTokenizer Framework

1: Procedure TRAIN(D,K)
2: Input: A training graph dataset D; number of BPE merges K.
3: Output: frequency map F ; BPE codebook C = (VT ,R).
4: F (p)←

∑
G∈D Count(G, p), ∀p ∈ Σ3

5: DS ← { fg(G, F) | G ∈ D }
6: VT ← Σ; R ← ∅
7: for k = 1 to K do
8: (s∗a, s

∗
b)← argmax(sa,sb)

∑
S∈DS

Count(S, (sa, sb))
9: snew ← s∗a · s∗b

10: VT ← VT ∪ {snew}
11: R ← R∪ {(s∗a, s∗b)→ snew}
12: for each S ∈ DS do
13: replace all disjoint adjacent pairs (s∗a, s

∗
b) in S with snew

14: return (F, C)
15:
16: Procedure ENCODE(G, F, C)
17: Input: graph G; frequency map F ; the codebook C = (VT ,R).
18: Output: A token sequence ST .
19: S ← fg(G, F)
20: for each (sa, sb)→ snew inR do
21: replace all disjoint adjacent pairs (sa, sb) in S with snew
22: ST ← S
23: return ST

24:
25: Procedure DECODE(ST , C, f−1)
26: Input: token sequence ST ; codebook C = (VT ,R); inverse serialization function f−1.
27: Output: A reconstructed graph Ĝ.
28: S ← ST

29: for each (sa, sb)→ snew in reversed(R) do
30: replace every snew in S with the pair (sa, sb)
31: Ĝ ← f−1(S)

32: return Ĝ
In contrast to node-based traversals, methods that cover every edge of the graph are naturally re-
versible. A representative example is the Eulerian circuit (Biggs et al., 1986), which visits each
edge exactly once. By treating each undirected edge as two opposing directed edges, the method
can extend to any connected graph (Gao et al., 2025). During traversal, emitting an alternating
node–edge–node sequence ensures that adjacent symbols share an endpoint, which preserves the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

information needed by f−1 to reconstruct the edges. Despite this reversibility, the method remains
non-deterministic because the classical Hierholzer’s algorithm (Hierholzer & Wiener, 1873) must
make arbitrary choices whenever a node has multiple unvisited edges. A related approach is the
Chinese Postman Problem (CPP) (Kwan, 1960), which seeks a minimum weight traversal that cov-
ers all edges and thereby also preserves the complete graph structure. Non-determinism in CPP,
although more constrained, is intrinsic to its solution process, typically solved using Edmonds’
blossom algorithm (Edmonds & Johnson, 1973). The standard procedure first identifies all odd-
degree nodes and constructs an auxiliary complete graph on them, with edge weights representing
shortest path distances in the original graph. A minimum-weight perfect matching is then computed
to determine which paths should be duplicated. If multiple minimum-weight matchings exist, the
selection between them is arbitrary, which dictates the different possible traversals.

Domain-specific serialization methods for molecular graphs, such as SMILES (Weininger, 1988),
represent a widely adopted approach in cheminformatics. Non-canonical SMILES is reversible but
not deterministic, whereas canonical SMILES achieves determinism by applying an explicit canon-
icalization procedure under a fixed scheme. These procedures rely on chemistry-specific perception
rules (e.g., aromaticity, implicit hydrogens, and structural notations) and therefore do not generalize
to arbitrary labeled graphs. Furthermore, the determinism of canonical SMILES is defined rela-
tive to the chosen canonicalization algorithm and perception rules, and implementations may differ
slightly across toolkits.

Building on the preceding analysis, our strategy is to impose determinism on traversal methods that
are inherently reversible. This is accomplished by introducing a guiding mechanism that leverages
the global frequency map F to resolve traversal ambiguities. In this way, we obtain a structure-
guided graph serialization function fg that simultaneously satisfies reversibility and determinism for
general graphs.

Frequency-Guided Eulerian circuit adapts Hierholzer’s algorithm by introducing a priority rule. At
any node u with unvisited outgoing edges Eu, the next edge e∗ is selected deterministically as

e∗ = argmax
ei∈Eu

π(ei, F), (6)

where π(ei, F) assigns a scalar priority, for example π(ei, F) = F (pi) for the pattern pi =
(L(u), L(ei), L(v)). Although traversal may begin from any node, the resulting circuit differs only
by a cyclic shift.

For example, in Fig. 1B, when the traversal reaches the red C, there are four candidate neighbors
(including the incoming one). According to the dataset-level statistics F , the C–C labeled-edge
pattern has the highest F (p), so fg takes that step (step 3). When it later returns to the same red C,
it selects among the remaining three neighbors: the edge to Cl has the next-highest F (p) (step 5),
followed by steps 7 and 9.

Frequency-Guided CPP incorporates frequency statistics into the edge weights used by the solver.
For an edge e with associated pattern pe, the weight is defined as

w(e) = α · 1 + (1− α) · g(F (pe)), (7)
where g is a decreasing function of frequency (e.g., 1/F (pe)) and α ∈ [0, 1] is a tunable hyperpa-
rameter. Ties that arise during matching or tour construction are resolved using the priority policy
specified in Eq. 6. For disconnected graphs, each component is serialized independently and the
results are concatenated in a fixed order.
Vocabulary Learning via BPE. After converting the graph dataset D into a corpus of symbol
sequences DS , the final stage of training is to learn a vocabulary from this corpus. We employ
Byte Pair Encoding (BPE), inspired by the text tokenizers used in LLMs, corresponding to the main
loop in Algorithm 1 (lines 6–14). BPE iteratively identifies the most frequently occurring adjacent
pair of symbols in the corpus and merges it into a new symbol added to the vocabulary. Fig. 1C
illustrates the vocabulary learning procedure on a serialized molecular sequence. In this example,
a pair denotes an adjacent atom–bond symbol, e.g. (C,−). At each iteration i, the most frequent
pair is replaced at all disjoint occurrences by a new token Ti, and the corresponding merge rule
(sa, sb)→ Ti is added to the codebook C. The updated sequence is then passed back to the counting
step, forming an iterative training loop.

The key insight of our framework lies in the interplay between structure-guided serialization and the
BPE algorithm. The serialization function fg is not merely a format conversion tool but leverages the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

global frequency map F to ensure that statistically common local graph structures are systematically
encoded as frequently adjacent symbol pairs in the sequence corpus DS . This structured corpus
forms an ideal input for BPE’s greedy merging strategy. When BPE merges the most frequent pair
(s∗a, s

∗
b) (line 8), the operation is not arbitrary compression but the discovery of statistically salient

tokens derived from graph data. Each merged token represents a larger subgraph fragment that can
be recovered from the serialization. The resulting vocabulary VT provides a data-driven, structurally
informed representation of the graph for the downstream Transformer.

Encoding and Decoding. After training, the procedure produces two components for inference:
the frequency map F and the BPE codebook C. To encode a new graph, the ENCODE procedure
in Algorithm 1 is applied. The graph is first serialized into a symbol sequence by the function f ,
we apply the merge rules R from C in the learned order to obtain the final token sequence ST .
The DECODE procedure in Algorithm 1 reverses this process. The tokens in ST are first expanded
back into the original symbol sequence by applying the inverse of R, and the inverse serialization
function f−1 then reconstructs the graph. These procedures ensure that the mapping between graphs
and sequences is both reversible and deterministic, providing a bidirectional interface between the
two domains.

Applications. The primary output of our framework is a discrete sequence of tokens ST that faith-
fully encodes the original graph. This sequential representation provides an interface through which
the Transformer ecosystem can be directly applied to graph-structured data (Vaswani et al., 2017).
For graph-level prediction tasks such as classification or regression, the token sequence can be pro-
cessed by an encoder-only model (e.g., BERT). A special [CLS] token may be prepended, or the
final hidden states pooled, to derive a vector representation for the entire graph (Perozzi et al., 2014).
For generative tasks, a decoder-only model (e.g., GPT) can be trained to generate graphs auto-
regressively by predicting the next token in the sequence, supporting applications such as molecular
or material discovery (Radford et al., 2019). Multimodal models can also support tasks such as graph
summarization, where we use pretrained graph representations from the proposed tokenizer with a
large language model to generate concise descriptions of input graphs (Yamagata et al., 2023).

In summary, the proposed graph tokenizer reframes graph representation learning as a sequence
modeling problem. Our method decouples the structural complexity of graphs from the architectural
design of the model and enables direct use of advances in sequence modeling, such as longer context
windows (Ding et al., 2022) and more efficient attention mechanisms (Dao et al., 2022) for a wide
range of graph learning tasks.

4 EXPERIMENTS

In this section, we evaluate our proposed graph tokenizer, GraphTokenizer (GT). We aim to
answer the following questions: (1) How effectively does BPE compress the serialized graph repre-
sentations, and what is the efficiency of our approach in terms of sequence length, processing speed,
and training throughput? (2) How does our framework, when paired with standard Transformer
models, perform against state-of-the-art graph representation learning methods? (3) How do differ-
ent design choices, such as the serialization method and BPE usage, affect performance? (4) Can
the learned vocabulary and model attention provide interpretable insights into graph structures?
4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on 14 diverse public datasets for graph classification and re-
gression. The benchmarks span multiple domains, including molecular graphs such as Mutagenicity
(Muta) and Proteins (Riesen & Bunke, 2008), OGBG-molhiv (Hu et al., 2020), ZINC (Irwin et al.,
2012), AQSOL (Sorkun et al., 2019),and QM9 (Wu et al., 2018); computer vision graphs like COIL-
DEL (Rossi & Ahmed, 2015); graph theory like Colors-3 (Knyazev et al., 2019) and Synthetic (Fer-
agen et al., 2013); biomedical graphs like DD (Dobson & Doig, 2003) (Bechler-Speicher et al.,
2024) and Peptides (Freitas et al., 2020); social networks (Twitter (Pan et al., 2015)); and academic
networks (DBLP (Pan et al., 2013)). A summary of dataset statistics is provided in Appendix C.1.

Baselines. Our approach is benchmarked against a comprehensive set of baselines, ranging from
classic GNNs (GCN (Kipf, 2016), GIN (Chen et al., 2019)) to state-of-the-art models, including the
powerful GCN+ (Luo et al., 2025), Graph Transformers like GraphGPS (Rampášek et al., 2022),
and the serialization-based GraphMamba (Wang et al., 2024). To ensure a fair comparison, all
baseline results are from official implementations run on our unified data splits and preprocessing
pipeline (Dwivedi et al., 2023; Luo et al., 2025; 2023; Bechler-Speicher et al., 2024). Results on key
benchmarks are in the main text; the rest are in Appendix D. The baseline results in our main tables

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

are primarily obtained by running the official or widely used open-source implementations on our
unified data splits and preprocessing pipeline, ensuring a fair comparison (Dwivedi et al., 2023; Luo
et al., 2025; 2023; Bechler-Speicher et al., 2024).Results on widely used standard benchmarks are
included in the main text, and results on the remaining datasets are provided in Appendix D.

Implementation Details. Our proposed method, GraphTokenizer (GT), encodes graphs into
token sequences that are subsequently processed by a standard Transformer model for downstream
tasks. We report results with two Transformer backbones: (1) GT+BERT, which adopts the BERT-
small architecture (Devlin et al., 2019), and (2) GT+GTE, which uses the more recent GTE model
with a parameter count comparable to BERT-base (Zhang et al., 2024). Unless otherwise speci-
fied, the tokenizer applies the Frequency-Guided Eulerian circuit (Feuler) serialization method
followed by Byte Pair Encoding (BPE) on the resulting sequences. Further details on model archi-
tectures, dataset splits, and hyperparameter settings are provided in Appendix C.3.
4.2 PERFORMANCE RESULTS

We present the main performance comparison on a representative subset of classification and regres-
sion benchmarks in Tables 2. For each dataset, we report the mean and standard deviation of the
primary evaluation metric on five independent runs.
Sequence length and efficiency. Figure 2 illustrates the impact of our tokenizer on efficiency.
As shown in Figure 2a, BPE achieves a high compression ratio, reducing sequence lengths from
reversible methods to approximately 10% of their original size. Notably, the frequency-guided
Eulerian method (Feuler) produces more compact sequences post-BPE than its unguided coun-
terpart, confirming that our structure-guided serialization is particularly well-suited for BPE. This
compression translates directly to improved training efficiency. Figure 2b shows that with BPE,
our approach using a standard Transformer backbone becomes significantly more efficient than spe-
cialized Graph Transformers like GraphGPS and even surpasses classic GNNs such as GatedGCN.
While the speedup (e.g., ∼2.5× on zinc for a 10× compression) is not linear due to model over-
head, the gains are substantial. This demonstrates that our graph tokenization framework not only
enables standard sequence models to process graphs but also makes them a highly efficient and
performant option for graph learning tasks.

DFS BFS TOPO SMILESEulerian Feuler CPP FCPP
Method

0

2000

4000

6000

8000

10000

12000

14000

Se
qu

en
ce

 L
en

gt
h

(K
)

w/o BPE
w/ BPE
Compression Ratio

2

4

6

8

10

12

14

C
om

pr
es

s
R

at
io

7.24x

6.08x

8.49x

5.68x

10.46x 10.84x
10.15x 10.16x

(a) BPE achieves high compression ratios.

DFS Eulerian CPP GatedGCN GraphGPS GMamba
Method

0

5

10

15

20

Ep
oc

h
Ti

m
e

(s
)

5.4s

8.6s
7.5s

2.1s
3.2s 2.7s

5.2s

21.0s

6.8s

w/o BPE
w/ BPE
GNN

(b) Training time per epoch.

Figure 2: Efficiency analysis on the ZINC dataset. (a) BPE greatly reduces token sequence length
from serialization. (b) Graph tokenization leads to substantial training speedup by enabling efficient
processing with standard Transformers.
Classification and Regression. Table 2 presents the performance on classification and regression
benchmarks, reporting the mean and standard deviation over five independent runs. Our approach,
particularly with the GTE backbone (GT+GTE), achieves state-of-the-art results on a majority of the
14 benchmarks. On the ogbg-molhiv benchmark, for instance, GT+GTE attains an ROC-AUC of
0.876 on our test split (val 0.903), significantly exceeding reported leaderboard results (test 0.8475,
val 0.8275). This strong performance is achieved using an off-the-shelf sequence model without any
graph-specific architectural modifications. Furthermore, the framework’s effectiveness is evident
even with the compact GT+BERT model, which already outperforms strong baselines on several
datasets. Critically, scaling up to the larger GT+GTE backbone yields consistent performance gains
across the board, demonstrating a clear advantage over many GNN architectures that can suffer from
performance degradation with increased model capacity due to issues like over-smoothing.

4.3 ABLATION STUDIES

We conduct ablation studies to evaluate the impact of different serialization methods and the BPE
tokenization step while keeping the GT+GTE backbone fixed. Table 3 shows that the choice of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Results of classification (left block) and regression (right block). The best scores are shown
in bold, the second-best are underlined, and standard deviations are given in parentheses. Results
for the remaining datasets are presented in Appendix D.

Model
molhiv

auc↑
p-func

ap↑
mutag

acc↑
coildel

acc↑
dblp
acc↑

qm9
mae↓

zinc
mae↓

aqsol
mae↓

p-struct
avg mae↓

GCN 74.0 (0.9) 53.2 (1.4) 79.7 (1.7) 74.6 (0.4) 76.6 (0.8) 0.134 (0.004) 0.399 (0.006) 1.345 (0.013) 0.342 (0.003)

GIN 76.1 (1.1) 61.4 (0.7) 80.4 (1.2) 72.0 (0.8) 73.8 (0.9) 0.176 (0.006) 0.379 (0.007) 2.053 (0.058) 0.338 (0.002)

GAT 72.1 (0.8) 51.2 (1.1) 80.1 (0.9) 74.4 (1.1) 76.3 (0.7) 0.114 (0.015) 0.445 (0.015) 1.388 (0.008) 0.316 (0.003)

GatedGCN 80.6 (0.6) 51.2 (1.0) 83.6 (0.8) 83.7 (0.4) 86.0 (0.4) 0.096 (0.007) 0.370 (0.011) 0.940 (0.016) 0.312 (0.004)

GraphGPS 78.5 (1.5) 53.5 (0.7) 84.3 (0.9) 80.5 (0.8) 71.6 (0.8) 0.084 (0.004) 0.310 (0.005) 1.587 (0.011) 0.251 (0.001)

Exphormer 82.3 (0.7) 64.5 (0.9) 82.7 (1.1) 91.5 (0.2) 84.9 (0.8) 0.080 (0.005) 0.281 (0.006) 0.749 (0.006) 0.251 (0.002)

GraphMamba 81.2 (0.5) 67.7 (0.9) 85.0 (1.0) 74.5 (1.1) 87.6 (0.5) 0.083 (0.005) 0.209 (0.009) 1.133 (0.014) 0.248 (0.002)

GCN+ 80.1 (0.6) 72.6 (0.6) 88.7 (0.6) 88.9 (0.3) 89.6 (0.4) 0.077 (0.003) 0.116 (0.009) 0.712 (0.009) 0.244 (0.001)

GT+BERT 82.6 (0.4) 68.5 (0.5) 87.5 (0.9) 74.1 (0.4) 93.2 (0.1) 0.122 (0.008) 0.241 (0.011) 0.648 (0.008) 0.247 (0.002)

GT+GTE 87.4 (0.2) 73.1 (0.2) 90.1 (0.7) 89.6 (0.2) 93.6 (0.1) 0.071 (0.004) 0.131 (0.007) 0.609 (0.016) 0.242 (0.001)

serialization has a significant impact on performance. Reversible methods that traverse every edge
(e.g., Eulerian and CPP variants) significantly outperform non-reversible node-list traversals, with
only a few exceptions detailed in Appendix D. Within the reversible category, the frequency-guided
Eulerian circuit (Feuler) demonstrates a clear advantage over its unguided counterpart, not only
in mean performance but also in reduced variance, indicating greater stability. In contrast, the per-
formance gap between CPP and its frequency-guided version (FCPP) remains minimal. A plausible
explanation is that CPP’s objective of finding a minimum-weight traversal already yields a highly
structured sequence, leaving limited room for further improvement from frequency-based guidance.
Although FCPP performs comparably to Feuler, Feuler provides substantial benefits in algo-
rithmic complexity (Appendix B.4) and scalability, making it more practical choice for larger graphs.

A second key finding is that applying BPE to serialized sequences substantially improves model
performance. Across nearly all configurations, BPE yields higher scores with a clear performance
margin. This improvement is accompanied by reduced standard deviation, indicating more stable
and reliable training. Moreover, these performance gains come in addition to the substantial effi-
ciency improvements discussed previously in Figure 2. Therefore, BPE is a critical component of
our framework, enhancing both accuracy and computational efficiency.

Table 3: Ablation of serialization method orderings with and without BPE. The best scores are shown
in bold, the second-best are underlined, and standard deviations are given in parentheses. A dash
(“—”) under the SMILES method indicates that the dataset either lacks SMILES representations or
does not correspond to a molecular graph.

Method
molhiv

auc↑
coildel

acc↑
p-func

ap↑
zinc
mae↓

qm9
mae↓

w w/o w w/o w w/o w w/o w w/o

BFS 72.3 (0.6) 81.2 (0.9) 81.2 (0.9) 80.1 (1.3) 68.5 (0.6) 67.2 (0.2) 0.453 (0.011) 0.696 (0.013) 0.311 (0.009) 0.292 (0.011)

DFS 76.0 (0.4) 79.1 (0.5) 80.5 (0.4) 79.8 (0.8) 71.0 (1.1) 68.4 (0.3) 0.446 (0.009) 0.705 (0.008) 0.291 (0.007) 0.277 (0.010)

TOPO 73.2 (0.6) 75.6 (0.8) 82.6 (0.8) 81.4 (1.2) 67.9 (0.3) 64.5 (0.5) 0.416 (0.010) 0.634 (0.011) 0.293 (0.010) 0.275 (0.013)

Eulerian 84.5 (0.7) 81.0 (1.0) 84.1 (1.5) 84.0 (1.5) 69.1 (0.6) 66.8 (1.1) 0.164 (0.009) 0.160 (0.016) 0.083 (0.004) 0.104 (0.008)

Feuler 87.4 (0.4) 81.3 (0.5) 88.0 (0.7) 85.6 (0.6) 73.1 (0.3) 68.1 (0.9) 0.131 (0.007) 0.171 (0.013) 0.071 (0.005) 0.088 (0.007)

CPP 86.9 (0.3) 81.2 (0.5) 89.6 (0.1) 86.7 (0.3) 69.2 (0.2) 67.0 (0.8) 0.141 (0.006) 0.145 (0.009) 0.073 (0.004) 0.093 (0.006)

FCPP 86.4 (0.3) 81.0 (0.6) 89.4 (0.3) 86.8 (1.0) 69.2 (0.3) 66.3 (0.5) 0.140 (0.005) 0.151 (0.008) 0.079 (0.005) 0.095 (0.007)

SMILES — — — — — — 0.201 (0.012) 0.339 (0.009) 0.092 (0.008) 0.081 (0.014)

5 CONCLUSION
In this paper, we introduce a general framework for graph tokenization that bridges graph-structured
data with the Transformer ecosystem. Our approach combines reversible, structure-guided graph
serialization with BPE to construct a faithful and efficient interface that encodes graphs into discrete
token sequences. Fundamentally, the framework decouples the design of graph representations from
the underlying model architecture, thereby reframing graph learning as a sequence modeling prob-
lem. This perspective enables graph data to be directly integrated into general-purpose Transform-
ers, allowing the graph learning field to leverage rapid advancements in model architectures, training
strategies, and scaling capabilities. Empirically, we demonstrate that this approach enables standard
off-the-shelf Transformers to process graph data effectively and achieve state-of-the-art results on a
diverse set of benchmarks, outperforming established GNNs and specialized Graph Transformers.
Limitations of this work and directions for future research are discussed in Appendix A.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The authors of this work have read and commit to adhering to the Code of Ethics. Our research
proposes a foundational framework for graph tokenization and, to the best of our knowledge, does
not present any direct ethical concerns. The work does not involve the use of personally identifi-
able information, sensitive human-subject data, or applications with immediate potential for societal
harm.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, our complete source code is provided in the supplementary materials.
This source code contains training configuration files for all experiments, and the necessary scripts
to preprocess datasets from their original sources. For convenience, ready-to-use versions of the
datasets are also provided. Comprehensive details on the experimental setup are documented in the
Appendix, including the datasets (Appendix C.1), model architectures (Appendix C.2), hyperparam-
eter configuration (Appendix C.3), and runtime environment (Appendix C.4).

REFERENCES

Maya Bechler-Speicher, Amir Globerson, and Ran Gilad-Bachrach. The intelligible and effective
graph neural additive network. Advances in Neural Information Processing Systems, 37:90552–
90578, 2024.

N. Biggs, E.K. Lloyd, and R.J. Wilson. Graph Theory, 1736-1936. Clarendon Press, 1986. ISBN
9780198539162. URL https://books.google.pn/books?id=XqYTk0sXmpoC.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language
and graph assistant. arXiv preprint arXiv:2402.08170, 2024.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in neural information
processing systems, 32, 2019.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Lei Ding, Dong Lin, Shaofu Lin, Jing Zhang, Xiaojie Cui, Yuebin Wang, Hao Tang, and Lorenzo
Bruzzone. Looking outside the window: Wide-context transformer for the semantic segmentation
of high-resolution remote sensing images. IEEE Transactions on Geoscience and Remote Sensing,
60:1–13, 2022.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

Jack Edmonds and Ellis L. Johnson. Matching, euler tours and the chinese postman. Mathe-
matical Programming, 5:88–124, 1973. URL https://api.semanticscholar.org/
CorpusID:15249924.

10

https://books.google.pn/books?id=XqYTk0sXmpoC
https://api.semanticscholar.org/CorpusID:15249924
https://api.semanticscholar.org/CorpusID:15249924

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

S. Even and G. Even. Graph Algorithms. Cambridge University Press, 2011. ISBN 9781139504157.
URL https://books.google.com/books?id=m3QTSMYm5rkC.

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen De Bruijne, and Karsten Borgwardt. Scal-
able kernels for graphs with continuous attributes. Advances in neural information processing
systems, 26, 2013.

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. Minds
and machines, 30(4):681–694, 2020.

Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. A large-scale database for graph
representation learning. arXiv preprint arXiv:2011.07682, 2020.

Jian Gao, Weidong Cao, Junyi Yang, and Xuan Zhang. Analoggenie: A generative engine for
automatic discovery of analog circuit topologies. The Thirteenth International Conference on
Learning Representations, 2025.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. Pmlr, 2017.

Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer. arXiv preprint
arXiv:2104.01778, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In International conference on machine learning, pp.
12724–12745. PMLR, 2023.

Carl Hierholzer and Chr Wiener. Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und
ohne Unterbrechung zu umfahren. Mathematische Annalen, 6(1):30–32, March 1873. ISSN 1432-
1807. doi: 10.1007/BF01442866. URL https://doi.org/10.1007/BF01442866.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling, 52
(7):1757–1768, 2012.

A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562, November
1962. ISSN 0001-0782. doi: 10.1145/368996.369025. URL https://doi.org/10.1145/
368996.369025.

TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization
in graph neural networks. Advances in neural information processing systems, 32, 2019.

Mei-ko Kwan. Graphic programming using odd or even points. Acta Mathematica Sinica, 10:263–
266, 1960. Also translated in Chinese Mathematics 1, American Mathematical Society, 1962, pp.
273-277.

Xiao Luo, Yusheng Zhao, Zhengyang Mao, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou Sun.
Rignn: A rationale perspective for semi-supervised open-world graph classification. Transactions
on Machine Learning Research, 2023.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Can classic gnns be strong baselines for graph-level
tasks? simple architectures meet excellence. arXiv preprint arXiv:2502.09263, 2025.

11

https://books.google.com/books?id=m3QTSMYm5rkC
https://doi.org/10.1007/BF01442866
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/368996.369025

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

E. F. Moore. The shortest path through a maze. In Proc. International Symposium on the Theory of
Switching, Part II. harvard, 1959.

Shirui Pan, Xingquan Zhu, Chengqi Zhang, and Philip S Yu. Graph stream classification using
labeled and unlabeled graphs. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pp. 398–409. IEEE, 2013.

Shirui Pan, Jia Wu, and Xingquan Zhu. Cogboost: Boosting for fast cost-sensitive graph classifica-
tion. IEEE Transactions on Knowledge and Data Engineering, 27(11):2933–2946, 2015.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Kaspar Riesen and Horst Bunke. Iam graph database repository for graph based pattern recogni-
tion and machine learning. In Joint IAPR international workshops on statistical techniques in
pattern recognition (SPR) and structural and syntactic pattern recognition (SSPR), pp. 287–297.
Springer, 2008.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics
and visualization. In AAAI, 2015. URL https://networkrepository.com.

Yuchen Shen and Barnabás Póczos. Graphbpe: Molecular graphs meet byte-pair encoding. arXiv
preprint arXiv:2407.19039, 2024.

Yusuxke Shibata, Takuya Kida, Shuichi Fukamachi, Masayuki Takeda, Ayumi Shinohara, Takeshi
Shinohara, and Setsuo Arikawa. Byte pair encoding: A text compression scheme that accelerates
pattern matching. Technical Report DOI-TR-161, Department of Informatics, Kyushu University,
1999.

Murat Cihan Sorkun, Abhishek Khetan, and Süleyman Er. Aqsoldb, a curated reference set of
aqueous solubility and 2d descriptors for a diverse set of compounds. Scientific data, 6(1):143,
2019.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
491–500, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Sgformer: Simplifying and empowering transformers for large-graph representations.
Advances in Neural Information Processing Systems, 36:64753–64773, 2023.

12

https://networkrepository.com

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and Xiangjie Kong. Random
walks: A review of algorithms and applications. IEEE Transactions on Emerging Topics in Com-
putational Intelligence, 4(2):95–107, 2019.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, Bin Cui,
Muhan Zhang, and Jure Leskovec. Vqgraph: Rethinking graph representation space for bridging
gnns and mlps. arXiv preprint arXiv:2308.02117, 2023.

Shuo Yu, Yingbo Wang, Ruolin Li, Guchun Liu, Yanming Shen, Shaoxiong Ji, Bowen Li, Fengling
Han, Xiuzhen Zhang, and Feng Xia. Graph2text or graph2token: A perspective of large language
models for graph learning. arXiv preprint arXiv:2501.01124, 2025.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. Advances in neural information processing systems, 32, 2019.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Shuaicheng Zhang, Haohui Wang, Si Zhang, and Dawei Zhou. Gpatcher: A simple and adaptive
mlp model for alleviating graph heterophily. arXiv preprint arXiv:2306.14340, 2023.

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
Yang, Pengjun Xie, Fei Huang, et al. mgte: Generalized long-context text representation and
reranking models for multilingual text retrieval. In Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing: Industry Track, pp. 1393–1412, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A DISCUSSION

This section provides a candid discussion of our framework’s limitations and outlines promising
avenues for future research.

A.1 LIMITATIONS

Graphs with Continuous Features. Our framework operates by first converting a labeled graph
into a sequence of discrete symbols, which subsequently forms the input for Byte Pair Encoding
(BPE). This process implicitly assumes that the features associated with nodes and edges are discrete
and can be directly mapped to an initial symbol alphabet. Consequently, graphs where attributes are
primarily continuous (e.g., real-valued vectors) cannot be handled natively. The required conversion
of continuous attributes into a finite set of discrete symbols always need a quantization step, which
is inherently lossy. This directly conflicts with our framework’s core principle of creating a faithful
and reversible representation. Integrating continuous features in a principled manner alongside our
discrete tokenization process therefore remains a key limitation.

Node and Edge Level Tasks. The current framework is primarily evaluated on graph-level pre-
diction tasks. Adapting it for fine-grained objectives, such as node classification or link prediction,
raises a general consideration for graph tokenization: the Byte Pair Encoding (BPE) process, which
is essential for building an efficient vocabulary, may merge the specific target node or edge into a
larger, composite token. As a result, the discrete identity of the target entity can be obscured, making
it difficult to formulate a direct prediction objective.

Computational Complexity and Scalability. A key scalability limitation in our framework arises
from the trade-off between different serialization methods. The Chinese Postman Problem (CPP)
based approach, for instance, introduces a significant bottleneck: its O(|V|3) complexity renders it
impractical for datasets with large graphs. Consequently, we primarily adopt the highly efficient,
linear-time Feuler method. With this choice, the main computational workload shifts to the BPE
vocabulary training. However, this is a far more manageable constraint, as BPE training is a one-
time, offline cost, and its practical runtime impact is a constant-factor consideration rather than a
prohibitive asymptotic scaling issue(as detailed in Appendix B.4). A separate, downstream con-
straint is the Transformer’s fixed context window, which limits the maximum size of a single graph.
While this is an inherent limitation of the model architecture, our BPE compression significantly
alleviates the issue, and adopting long-context models provides a clear path for future scaling.

A.2 FUTURE WORKS

Our work opens several promising avenues for future research. Below, we outline these potential
directions, ordered based on our perspective of their potential impact and research scope.

• Graphs with Continuous Features. To extend our framework to graphs with continuous
features, a straightforward approach would be to first discretize them using methods like
vector quantization (Yang et al., 2023) and then apply our pipeline. However, we argue
this direction is suboptimal, as such quantization is inherently lossy and conflicts with
our framework’s core principle of creating a faithful, reversible representation. A more
promising direction is to treat discrete and continuous information in parallel channels. For
instance, features learned via message passing could be incorporated as a continuous bias
added to the discrete token embeddings, analogous to how positional encodings supplement
token information in standard Transformers. Alternatively, spectral graph theory offers a
principled way to derive global information; the eigenvectors of the graph Laplacian could
be used to generate a unique continuous encoding for each token’s position within the
global structure, complementing the discrete sequence.

• Node and Edge Level Tasks. For adapting the framework to node or edge-level tasks,
an intuitive strategy might be to predict the entire composite token that contains the target
entity. However, this approach is problematic as it makes the learning signal less direct and
can amplify prediction errors. A more targeted and principled approach would be to modify

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the BPE procedure itself. Specifically, we propose fixing the target entities so they are
excluded from merging during tokenization. This would preserve the target’s granularity
for direct prediction, introducing an interesting trade-off between task-specific fidelity and
overall vocabulary efficiency that warrants further investigation.

• Large-Scale Pre-training and Cross-Domain Generalization. A key advantage of our
sequence-based representation is its potential for large-scale pre-training. A natural next
step is to explore pre-training on large corpora of graphs from within the same domain (e.g.,
by combining multiple molecular datasets) to enhance in-domain performance and transfer-
ability. More ambitiously, our framework offers a new perspective on the grand challenge
of cross-domain generalization. Since our method transforms any graph into a standard
sequential format, we hypothesize that graphs from disparate domains can be treated as
different ‘languages’ in NLP. Consequently, training a single, large-scale Transformer on
a diverse, multi-domain corpus of tokenized graphs could facilitate unprecedented knowl-
edge transfer, potentially giving rise to the scaling laws and unified representations that are
foundational to true Graph Foundation Models. Finally, such pre-training may also serve
as a novel tool for analyzing datasets. Our preliminary results suggest that a dataset’s size
does not always correlate with its ‘information density,’ and monitoring a model’s over-
fitting on a masked prediction task could provide a new way to quantify a graph dataset’s
quality and diversity.

• Further Extensions and Applications. Our framework also opens several avenues for di-
rect applications and algorithmic refinements. By reframing graph learning as a sequence
modeling problem, it immediately enables the use of powerful autoregressive models, such
as GPT-style architectures, for graph generation tasks like controllable molecular design.
Furthermore, the sequential representation allows our method to seamlessly integrate with
emerging long-context architectures to enhance scalability for massive graphs. Finally, a
more fundamental extension could involve making the serialization process itself learn-
able, where traversal decisions are optimized end-to-end for a specific downstream task.
While this could create a highly specialized graph-to-sequence interface, it also introduces
significant challenges regarding generalization and stability.

A.3 USE OF LARGE LANGUAGE MODELS

In this work, we used large language models (LLMs) to assist with two non-substantive aspects of
the research workflow. No part of the scientific contributions—such as algorithm design, model
architecture, theoretical formulation, or experimental evaluation—was generated by or delegated to
an LLM.

• Manuscript Editing. LLMs were used to help polish the language of the manuscript.
This includes surface-level edits such as improving clarity, grammar, and conciseness of
English expressions. All technical content, algorithmic designs, and empirical results were
authored and validated by the authors.

• Code Documentation and Cleanup. At the time of open-sourcing our implementation,
LLMs were used to assist in non-algorithmic tasks including: adding docstrings and in-
line comments, generating basic usage documentation, removing deprecated or redundant
code, and improving logging output for better reproducibility. All code functionality and
correctness were manually verified by the authors.

B FURTHER METHODOLOGICAL DETAILS

This section provides a formal and detailed supplement to the methodological discussions in Sec-
tion 3. We aim to precisely define how classical graph traversal algorithms are adapted for the task
of graph serialization, and to rigorously analyze their resulting properties of reversibility and deter-
minism, pinpointing the exact sources of their respective strengths and weaknesses for our frame-
work. All notations, unless specified otherwise, follow the definitions established in Section 3.1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.1 FORMAL ANALYSIS OF NODE-LIST SERIALIZATION METHODS

We first consider the class of methods that generate a sequence composed solely of node identifiers.

Formal Definition. When applied to graph serialization, a node-list traversal method is a function
fnode : G 7→ S that maps a labeled graph G = ((V, E), L,Σ) to a sequence of node labels S =
(s1, s2, . . . , s|V|). This sequence is generated by a traversal that visits every node in V exactly once.
Let the sequence of visited nodes be (v1, v2, . . . , v|V|), where {v1, . . . , v|V|} = V . The output
sequence is then S = (L(v1), L(v2), . . . , L(v|V|)).

• For Breadth-First Search (BFS) and Topological Sort, the order of nodes in the sequence
reflects the layer-by-layer or dependency-based traversal order. It is crucial to note that for
i ∈ [1, |V| − 1], an edge (vi, vi+1) is not guaranteed to exist in E .

• For Depth-First Search (DFS), the standard algorithm produces a sequence where each
node vi+1 is an unvisited neighbor of vi (or a node reached after backtracking). The se-
quence of *first discovery* implies a tree structure (the DFS tree), but the output sequence
itself does not encode this structure explicitly.

Reversibility. These methods are fundamentally irreversible. A serialization function f is re-
versible if, for its output S = f(G), the set of pre-images f−1(S) contains a graph G′ such that
G′ ∼= G. For node-list methods, this condition fails. The output sequence S discards all ex-
plicit edge connectivity information. Consequently, a vast number of non-isomorphic graphs can
produce the exact same node-label sequence. For example, consider two graphs on three nodes
{A,B,C} with identical labels: a path graph G1 with edges {(A,B), (B,C)} and a star graph G2
with edges {(A,B), (A,C)}. A valid BFS starting from node A in G1 could produce the sequence
(L(A), L(B), L(C)), and a BFS starting from A in G2 could also produce the same sequence. From
the sequence alone, it is impossible to distinguish G1 from G2, thus violating reversibility.

Determinism. These methods are inherently non-deterministic. The source of non-determinism
lies in the arbitrary selection of the next node to visit from a set of valid candidates. Formally, at
any step of the traversal from a node u, let Nvalid(u) be the set of unvisited neighbors (for BFS/DFS)
or nodes with no remaining incoming edges (for Topological Sort). Since Nvalid(u) is an unordered
set, any choice of v ∈ Nvalid(u) is permissible by the standard algorithm’s definition. The final
sequence is thus contingent on implementation-specific details, such as the memory layout of the
graph’s adjacency list, which are not canonical properties of the graph itself. This leads to different
sequences for the same graph, violating determinism.

B.2 FORMAL ANALYSIS OF EDGE-COVERING SERIALIZATION METHODS

This class of methods generates sequences by performing a walk that traverses every edge in the
graph at least once.

Formal Definition. A walk W in a graph G is a finite sequence of alternating nodes and edges,
W = (v0, e1, v1, e2, . . . , ek, vk), where vi ∈ V , ei ∈ E , and for all i ∈ [1, k], edge ei = (vi−1, vi) ∈
E . An edge-covering serialization function fedge : G 7→ S maps G to the label sequence correspond-
ing to such a walk, S = (L(v0), L(e1), L(v1), . . . , L(vk)), under the constraint that the multiset of
edges in the walk, {e1, . . . , ek}, covers the entire edge set of the graph, i.e., E ⊆ {e1, . . . , ek}.

• For an Eulerian circuit, the algorithm is applied to a graph where every undirected edge
{u, v} ∈ E is treated as a pair of directed edges, (u, v) and (v, u), forming an edge set E ′
(Gao et al., 2025). The resulting walk traverses every edge in E ′ exactly once.

• For the Chinese Postman Problem (CPP), the algorithm finds a walk W that covers E
while minimizing the total weight of the walk,

∑k
i=1 w(ei), where w(e) is the weight of

edge e (typically 1 for unweighted graphs). This means some edges in E may be traversed
multiple times.

Reversibility. By definition, these methods are reversible. The output sequence S is composed
of a series of labeled triplets (L(vi−1), L(ei), L(vi)). From this sequence, one can reconstruct the
complete multiset of labeled edge traversals. Since this multiset is guaranteed to contain every edge
from the original graph E at least once, the full topology of G can be losslessly recovered up to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

isomorphism. The mapping from the graph’s structure to the information contained in the sequence
is injective.
Determinism. In their classical forms, these methods are non-deterministic.

• For an Eulerian Path, the non-determinism stems from Hierholzer’s algorithm. At any
node u during the tour construction, let Eunvisited

u be the set of untraversed edges incident to
u. The algorithm proceeds by selecting an arbitrary edge from this set. As Eunvisited

u is an
unordered set, this choice introduces ambiguity, leading to different valid Eulerian circuits
and thus different output sequences.

• For the CPP, the primary source of non-determinism arises during the solution process.
The algorithm first identifies the set of odd-degree nodes, Vodd. It then computes a
minimum-weight perfect matching on a complete auxiliary graph constructed on Vodd. If
multiple distinct perfect matchings exist that share the same minimum total weight, the
choice between them is arbitrary. This choice dictates which paths in the original graph are
duplicated to form an Eulerian supergraph, ultimately resulting in different minimum-cost
tours and thus different sequences.

Our proposed frequency-guided mechanism (Section 3.2) addresses these specific sources of non-
determinism by providing a canonical, data-driven rule for making these choices.

B.3 DISCONNECTED GRAPHS

For completeness, we specify our procedure for handling graphs that are not connected. To ensure
the overall serialization remains deterministic, an input graph G is first decomposed into its set of
connected components, {G1,G2, . . . ,Gc}. Each component Gi is independently serialized into a
sequence Si using the chosen method. The resulting set of sequences {S1, . . . , Sc} is then sorted
to produce a canonical ordering. The sorting criterion is primarily the length of the sequence in
descending order, any ties are resolved using standard lexicographical comparison. The final output
is the concatenation of these sorted sequences. This guarantees that any given graph, regardless of
its connectivity, maps to a single, unique sequence.

B.4 COMPLEXITY ANALYSIS

CPP Complexity. For CPP–based serialization, the end-to-end cost is O(|V|3 + |E|): O(|V|3)
from the minimum-weight perfect matching on odd-degree vertices, and O(|E|) from finding the
Euler circuit after augmentation. Since |E| ≤ |V|2 (even |E| = Θ(|V|2) for a complete graph), we
have O(|V|3 + |E|) = O(|V|3), so throughout we denote the CPP family as O(|V|3).
Pipeline Complexity. We analyze the computational complexity of the GraphTokenizer train-
ing procedure. Let D = {G1, . . . ,GN} be the training dataset, where Gi = (Vi, Ei). We define
VS =

∑N
i=1 |Vi| and ES =

∑N
i=1 |Ei| as the total number of nodes and edges in the dataset, respec-

tively. Let K be the number of BPE merge operations and L̄ be the average initial sequence length,
where L̄ ≈ ES/N .

Statistics Collection. This stage requires a single pass over all edges in the dataset to count local
patterns. The complexity is therefore O(ES).

Graph Serialization. As summarized in Table 1, the complexity depends on the chosen method.
Traversal-based methods such as Eulerian (and its guided variant Feuler) are linear in graph
size, with a total cost for the dataset of O(VS + ES). In contrast, CPP (and its guided variant
FCPP) is dominated by solving a minimum-weight perfect matching for each graph, yielding a total
complexity of O(

∑N
i=1 |Vi|3). Assuming a relatively homogeneous distribution of graph sizes, this

can be expressed as O(N · (VS

N)3) = O(VS
3

N2).

BPE Training. The complexity of the BPE training phase (Lines 6-14) is dominated by the se-
quence merge operation. For a standard implementation using dynamic arrays, the cost of a merge
is proportional to sequence length. We analyze the total complexity under two bounding scenarios.

First, consider the case where a small number of pairs are merged per iteration. The work is domi-
nated by rewriting all N sequences for each of the K iterations, leading to a total complexity of:

C1 = O(K ·N · L̄) (8)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Second, consider the case where a maximal number of pairs are merged, halving the total corpus
length n = NL̄

2 in each step. The work performed can be described by the recurrence relation:

T (n) = T (
n

2
) + f(n) (9)

where f(n) is the cost of a single merge pass. For a naive array-based merge, f(n) = O(N ·(n
N)2) =

O(n
2

N). By the Master Theorem, with a = 1, b = 2, d = 2, we have d > logb a, so the total
complexity is dominated by the root node’s work:

C2,naive = O(
n2

N
) = O(NL̄2) (10)

If the merge operation were optimized to be O(1) per merged pair (e.g., using a linked list represen-
tation or mark new token only at range endpoint to be replaced), then f(n) = O(n). In this case,
d = 1 > log2 1, so the complexity would be:

C2,opt = O(n) = O(NL̄) (11)

The final complexity depends on the termination criterion. We employ a fixed number of iterations,
K, to allow for flexible control over the final vocabulary size and compression ratio across experi-
ments. In typical settings, K (e.g., 103 − 104) is much larger than the average sequence length L̄
(e.g., 102), making the C1 term the dominant factor. Alternatively, if one were to terminate based
on a minimum frequency threshold, the process would resemble the recursive scenario, making C2

the more relevant complexity model. Given our fixed-iteration approach, the overall BPE training
complexity is:

CBPE = O(K ·N · L̄) = O(K ·ES) (12)

Overall Training Complexity. For serialization with Feuler and other method with linear time
complexity, the total complexity is dominated by the BPE training, resulting in O(K · ES). If a
minimum-frequency stopping criterion were used, the complexity would instead be dominated by
the C2,naive term, becoming O(ES +NL̄2) = O(NL̄2) = O(

E2
S

N). For serialization with FCPP, the
total complexity is dominated by the most expensive component, yielding O(VS

3

N2 + K · ES) =

O(VS
3

N2), which in practice for large graphs, infers that the serialization becomes bottleneck.

C EXPERIMENTAL SETUP

This section provides the comprehensive configuration details required to fully reproduce all exper-
iments presented in this paper.

C.1 DATASETS

Our evaluation is conducted on a diverse suite of benchmark datasets. The aqsol and zinc
datasets are sourced from the benchmark collection proposed by (Dwivedi et al., 2023), while the
remaining datasets are standard benchmarks obtained from libraries such as PyTorch Geometric
(PyG) and DGL. Table 4 below offers a comprehensive summary of their statistical properties and
raw feature dimensions.

C.2 MODEL ARCHITECTURES

We employed two Transformer backbones in our experiments. The first, which we denote as
GT+BERT, is based on a BERT-Small architecture. The second, GT+GTE, utilizes a more re-
cent and powerful GTE-Base model. The precise architectural parameters for each are detailed
side-by-side in Table 5. This format facilitates direct comparison and is designed to accommodate
additional model configurations in future scaling law studies. Note that the vocabulary size is de-
termined dynamically based on the dataset and tokenization strategy, causing the total parameter
count to vary slightly across experiments, the result reported here included the embedding layer size
corresponding to the vocabulary encoded using BPE on the zinc dataset

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Comprehensive statistics and feature dimensions for all benchmark datasets. Node and
edge counts are presented as mean± standard deviation. ”Raw Dim” refers to the dimensionality of
the original features before they are mapped to discrete integer symbols.

Dataset # Graphs Task # Targets Nodes (Mean ± Std) Edges (Mean ± Std) Node Raw Dim Edge Raw Dim
aqsol 9,823 Regression 1 33.7± 24.5 67.9± 50.0 65 5
coildel 3,900 Classification 100 21.5± 13.2 108.5± 77.0 2 1
colors3 10,500 Classification 11 61.3± 60.5 182.1± 187.3 4 —
dblp 19,456 Classification 2 10.5± 8.5 39.3± 39.3 1 1
dd 1,178 Classification 2 284.3± 272.1 1431.3± 1388.4 1 —
molhiv 41,127 Classification 2 25.5± 12.1 54.9± 26.4 9 3
muta 4,337 Classification 2 30.3± 20.1 61.5± 33.6 1 1
p-func 15,535 MT-Classification 10 150.9± 84.2 307.3± 172.2 9 3
p-struct 15,535 MT-Regression 11 150.9± 84.2 307.3± 172.2 9 3
proteins 1,113 Classification 2 39.1± 45.8 145.6± 169.3 2 —
qm9 130,831 Regression 16 18.0± 2.9 37.3± 6.3 16 4
synthetic 300 Classification 2 100.0± 0.0 392.0± 0.0 2 —
twitter 144,033 Classification 2 4.0± 1.7 10.0± 9.1 1 1
zinc 12,000 Regression 1 43.8± 8.5 91.1± 18.1 28 4

Table 5: Architectural parameters of the Transformer backbones used in our experiments.

Parameter GT+BERT GT+GTE
Model Configuration BERT-Small GTE-Base

Number of Hidden Layers (N) 4 12
Hidden Size (dmodel) 512 768
Number of Attention Heads (h) 4 12
FFN Intermediate Size (dff) 2048 3072
Activation Function GELU GELU
Dropout Rate (Attention & Hidden) 0.1 0.1
Position Embedding Learned Abs RoPE
Max Sequence Length 768 8192
Layer Normalization ϵ 1e-12 1e-12

Total Parameters (Approx.) ≈ 15M ≈ 115M

C.3 HYPERPARAMETERS

Our hyperparameter tuning strategy was designed for systematic evaluation and reproducibility
rather than exhaustive per-dataset optimization. We established a robust base configuration, de-
tailed in our publicly available configuration files, which was applied to all experiments by default.
For certain datasets, particularly those with very large or very small graphs, targeted adjustments
were made to key parameters like batch size and learning rate to ensure stable training.

Table 6 provides a comprehensive overview of these settings. The ”Default Configuration” column
represents the base values applied to all datasets unless otherwise specified. The subsequent columns
detail the specific overrides for datasets or groups of datasets that required adjustments. This unified
view clearly illustrates both our general training strategy and the specific exceptions made.

C.4 COMPUTATIONAL ENVIRONMENT

Software. Our implementation relies on a shared software stack to ensure consistency. The key
packages and their versions are listed below. For a complete and exhaustive list of dependencies,
please refer to the environment files in our public code repository.

• PyTorch: 2.1.2

• CUDA Toolkit: 12.1

• DGL: 2.4.0

• PyTorch Geometric (PyG): 2.4.0 (with corresponding libraries pyg-lib,
torch-scatter, etc.)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Unified hyperparameter specification. This table details the default values used for training
and the specific conditions under which they were overridden.

Parameter Default Value Exceptions & Conditions
General Settings
Optimizer AdamW —
Epochs 200 —
Weight Decay 0.1 —
Random Seed 42 —
Batch Size 32 16 on (DBLP, Peptides *, and COIL-DEL)

Serialization & Tokenizer Settings
Default Method Feuler —
BPE Enabled True —
BPE Merges (K) 2000 —

Finetuning Settings
Learning Rate 1e-5 5e-5 on (DBLP, molhiv, twitter)
LR Warmup Ratio 0.025 —
Max Gradient Norm 0.5 —
Early Stopping 20 epochs —

Pre-training (MLM) Settings
Learning Rate 1e-4 5e-5 on (muta, molhiv, qm9, twitter,

dblp) For GTE, to prevent training instability.
LR Warmup Ratio 0.12 —
Max Gradient Norm 2.0 —
Mask Probability 0.09 —

Hardware. All experiments were conducted on a heterogeneous cluster of NVIDIA GPUs, in-
cluding consumer grade (GeForce RTX 2080, 3090, 4090) and data center grade (A800, H800)
hardware. We verified that our results are stable and consistent across these different architectures.

D EXPERIMENTAL RESULTS

This section provides supplementary results to complement the experiments presented in the main
body of the paper. We include results for datasets omitted due to space constraints and provide
additional ablation studies and efficiency analyses.

D.1 QUALITATIVE ANALYSIS AND INTERPRETABILITY

Visualizing the Learned Vocabulary. To understand the structural patterns captured by our to-
kenizer, we visualize the vocabulary constructed by BPE’s merging process on the ZINC dataset.
Figure 3 illustrates how BPE iteratively merges simple, frequent substructures into progressively
more complex and chemically meaningful tokens.

Each row in the figure demonstrates such a merging sequence. For instance, the top row shows
that a basic structure representing a sulfonyl group (O=S=O at 731th merge iter) is established as
a token. In subsequent merge steps, BPE combines this token with adjacent atoms to form a more
complex token (C[SH](=O)=O) and then an even larger one (CC[SH](=O)=O). This progression
directly reflects BPE’s mechanism: greedily merging the most frequent adjacent symbol pairs to
build a vocabulary. Similarly, the bottom row shows the process starting from a classic benzene
ring, which is then merged with neighboring carbon chains to form tokens corresponding to toluene
and ethylbenzene.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 3: Illustration of the BPE merging process. Each row shows how a complex token produced
by BPE merging process, demonstrating the simple substructure (left) are iteratively merged to form
larger, chemically meaningful substructure (mid, and right).

Table 7: Additional classification results on datasets not shown in the main table. Best scores are in
bold, second-best are underlined. Std in parentheses.

Model
colors3

acc↑
twitter

acc↑
proteins

acc↑
dd

acc↑
GCN 66.0 (2.1) 52.7 (0.3) 73.2 (1.6) 62.7 (1.1)

GIN 69.3 (1.6) 55.6 (0.2) 64.3 (4.0) 65.2 (0.9)

GAT 76.6 (1.4) 53.6 (0.3) 70.5 (0.9) 58.5 (1.0)

GatedGCN 77.1 (1.2) 59.8 (0.4) 71.1 (1.2) 77.2 (0.7)

GraphGPS 77.4 (1.8) 53.0 (0.5) 67.9 (0.6) 76.3 (0.5)

Exphormer 73.9 (1.9) 55.1 (0.3) 74.1 (0.9) 74.6 (0.6)

GraphMamba 93.6 (0.9) 56.4 (0.7) 70.5 (1.1) 76.8 (0.4)

GCN+ 85.8 (2.3) 61.3 (0.2) 77.1 (0.9) 79.1 (0.5)

GT+BERT 96.2 (1.7) 62.3 (0.3) 75.0 (0.7) 72.0 (0.9)

GT+GTE 100.0 (0.0) 65.7 (0.2) 79.1 (0.6) 79.6 (0.6)

D.2 PERFORMANCE RESULTS

Classification and Regression We present the complete results for all datasets evaluated in our
main experiments. The experimental setup and reporting format are identical to those described in
the main text. The results for the remaining datasets are detailed in Table 7.

Sequence length and efficiency. To demonstrate the generalizability of our model’s efficiency,
we present visualizations of token efficiency and training throughput for the remaining datasets,
analogous to Figure 2 in the main paper. The results, shown in Figure 4 F̃igure 9, confirm that our
approach consistently maintains superior efficiency across a diverse range of datasets.

D.3 ABLATION STUDIES

To further validate our design choices, this section provides supplementary ablation studies that
complement the analysis in the main paper. First, we extend the ablation study for the GT+GTE
model in Table 8, which details the results for the remaining serialization methods and includes a
specific analysis for the COLORS-3 dataset. A complete ablation study for the GT+BERT model is
also presented in Table 9,Table 10. While the results are largely consistent with the trends discussed
in the main paper, COLORS-3 presents a notable exception due to its unique task of counting nodes
with a specific color. On this dataset, node-based serialization methods like DFS perform best as
they output each node exactly once, making the counting task trivial. In contrast, our edge-traversal
method can serialize a single node multiple times, which complicates direct counting. The moderate
performance of GNNs is also expected, as message passing tends to diffuse the discrete one-hot

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

dfs bfs topo smiles eulerian feuler cpp fcpp
Method

0

10000

20000

30000

40000

50000

Se
qu

en
ce

 L
en

gt
h

(K
)

w/o BPE
w/ BPE
Compression Ratio

1

2

3

4

5

6

7

8

9

C
om

pr
es

s
R

at
io5.78x

4.96x

6.69x

3.74x

6.13x 6.32x
6.93x 6.92x

(a) Average sequence length comparison.

DFS Eulerian CPP GatedGCN GraphGPS GMamba
Method

0

20

40

60

80

100

Ep
oc

h
Ti

m
e

(s
)

22.4s

61.5s
53.8s

15.7s
20.5s 18.6s

51.4s

89.6s

63.1s

w/o BPE
w/ BPE
GNN

(b) Average training time per epoch.

Figure 4: Efficiency analysis on the QM9 dataset.

dfs bfs topo eulerian feuler cpp fcpp
Method

0

5000

10000

15000

20000

25000

30000

35000

Se
qu

en
ce

 L
en

gt
h

(K
)

w/o BPE
w/ BPE
Compression Ratio

1

2

3

4

5

6

7

8

9

C
om

pr
es

s
R

at
io

5.47x 5.41x
5.78x

7.06x 7.23x

5.94x 5.95x

(a) Average sequence length comparison.

DFS Eulerian CPP GatedGCN GraphGPS GMamba
Method

0

20

40

60

80

100

Ep
oc

h
Ti

m
e

(s
)

43.9s

74.5s

60.8s

21.6s

31.8s

23.1s

11.9s

96.8s

31.1s

w/o BPE
w/ BPE
GNN

(b) Average training time per epoch.

Figure 5: Efficiency analysis on the MolHIV dataset.

bfs topo eulerian feuler cpp fcpp
Method

0

2000

4000

6000

8000

10000

12000

14000

16000

Se
qu

en
ce

 L
en

gt
h

(K
)

w/o BPE
w/ BPE
Compression Ratio

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

C
om

pr
es

s
R

at
io

1.84x 1.84x
1.96x

2.19x

1.85x 1.85x

(a) Average sequence length comparison.

DFS Eulerian CPP GatedGCN GraphGPS GMamba
Method

0

1

2

3

4

5

6

7

Ep
oc

h
Ti

m
e

(s
)

1.1s

1.8s 1.6s

0.9s 0.9s 0.7s

2.3s

6.8s

3.1s

w/o BPE
w/ BPE
GNN

(b) Average training time per epoch.

Figure 6: Efficiency analysis on the DD dataset.

color features, while the BPE tokenizer’s node-merging strategy can obscure the node identities
required for an accurate count. Despite these task-specific dynamics, a crucial finding remains
consistent: our guided serialization method still significantly outperforms the unguided version
(w.o. guidance), reinforcing the general effectiveness of our guidance mechanism even on
tasks not perfectly aligned with the strengths of edge traversal.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

dfs bfs topo eulerian feuler cpp fcpp
Method

0

2500

5000

7500

10000

12500

15000

17500

20000

Se
qu

en
ce

 L
en

gt
h

(K
)

w/o BPE
w/ BPE
Compression Ratio

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
om

pr
es

s
R

at
io3.15x 3.14x 3.15x

3.28x

3.62x

3.17x 3.17x

(a) Average sequence length comparison.

DFS Eulerian CPP GatedGCN GraphGPS GMamba
Method

0

5

10

15

20

25

Ep
oc

h
Ti

m
e

(s
)

2.1s

9.4s
8.4s

1.8s 2.1s 2.0s

5.6s

24.0s

8.9s

w/o BPE
w/ BPE
GNN

(b) Average training time per epoch.

Figure 7: Efficiency analysis on the COLORS-3 dataset.

dfs bfs topo eulerian feuler cpp fcpp
Method

0

2000

4000

6000

8000

10000

Se
qu

en
ce

 L
en

gt
h

(K
)

w/o BPE
w/ BPE
Compression Ratio

1.0

1.1

1.2

1.3

1.4

1.5

1.6

C
om

pr
es

s
R

at
io

1.06x 1.06x 1.06x

1.24x 1.24x 1.24x 1.24x

(a) Average sequence length comparison.

DFS Eulerian CPP GatedGCN GraphGPS GMamba
Method

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ep
oc

h
Ti

m
e

(s
)

2.1s

11.5s

7.4s

1.9s

8.4s

6.4s

4.3s

19.0s

7.1s

w/o BPE
w/ BPE
GNN

(b) Average training time per epoch.

Figure 8: Efficiency analysis on the COIL-DEL dataset.

dfs bfs topo smiles eulerian feuler cpp fcpp
Method

0

1000

2000

3000

4000

5000

6000

7000

8000

Se
qu

en
ce

 L
en

gt
h

(K
)

w/o BPE
w/ BPE
Compression Ratio

1

2

3

4

5

6

7

8

9

C
om

pr
es

s
R

at
io

5.53x
4.87x

6.15x

4.36x

7.43x 7.55x 7.45x 7.44x

(a) Average sequence length comparison.

DFS Eulerian CPP GatedGCN GraphGPS GMamba
Method

0

5

10

15

20

25

Ep
oc

h
Ti

m
e

(s
)

6.4s

9.1s
8.2s

3.4s 2.7s 2.4s

7.1s

25.0s

8.8s

w/o BPE
w/ BPE
GNN

(b) Average training time per epoch.

Figure 9: Efficiency analysis on the AQSOL dataset.

E ADDITIONAL EXPERIMENTS AND ANALYSIS

Note: This section contains additional experimental results and analyses conducted during the re-
buttal period to address specific reviewer inquiries for clarity. The contents herein will be integrated
into the main text and relevant appendices in the final revision of the paper.

E.1 PROOF-OF-CONCEPT: AUTO-REGRESSIVE GRAPH GENERATION

A core advantage of our framework is that it converts graph data into a format formally identi-
cal to natural language, thereby theoretically enabling the use of standard autoregressive (decoder-
only) models for graph generation. To empirically validate this capability, we conducted a proof-of-
concept experiment using the MNIST dataset, treating images as readily visualizable grid graphs.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 8: Ablation with GT+GTE on additional datasets not covered in the main table. The best
scores are shown in bold, the second-best are underlined, and standard deviations are in parentheses.
A dash (“—”) under SMILES indicates that the dataset either lacks SMILES representations or is
not a molecular graph.

Method

mutag
acc↑

colors3
acc↑

dblp
acc↑

aqsol
mae↓

p-struct
avg mae↓

w w/o w w/o w w/o w w/o w w/o

BFS 79.2 (0.9) 78.8 (0.6) 73.4 (0.8) 74.4 (0.3) 91.8 (0.19) 91.7 (0.22) 0.701 (0.017) 0.702 (0.008) 0.2495 (0.0018) 0.2494 (0.0005)

DFS 81.9 (0.7) 79.4 (1.5) 99.9 (0.1) 100.0 (0.0) 92.8 (0.09) 92.6 (0.12) 0.684 (0.013) 0.676 (0.011) 0.2421 (0.0026) 0.2468 (0.0040)

TOPO 80.1 (0.8) 78.4 (1.4) 76.6 (1.1) 98.3(1.3) 93.0 (0.09) 92.5 (0.13) 0.814 (0.004) 0.737 (0.003) 0.2626 (0.0022) 0.2556 (0.0002)

Eulerian 86.1 (0.9) 84.3 (1.3) 38.9 (1.0) 44.7 (2.2) 93.1 (0.09) 91.7 (0.17) 0.609 (0.001) 0.627 (0.016) 0.2514 (0.0027) 0.2499 (0.0035)

Feuler 90.1 (0.6) 86.7 (0.9) 41.0 (1.2) 45.3 (0.8) 93.6 (0.08) 88.9 (0.14) 0.621 (0.007) 0.623 (0.017) 0.2510 (0.0001) 0.2548 (0.0004)

CPP 87.7 (0.8) 85.4 (0.9) 36.9 (2.4) 45.9 (1.2) 90.9 (0.14) 92.1 (0.21) 0.654 (0.016) 0.643 (0.003) 0.2535 (0.0021) 0.2482 (0.0005)

FCPP 87.7 (0.4) 86.0 (0.7) 37.5 (1.4) 45.6 (0.6) 92.4 (0.08) 92.3 (0.16) 0.654 (0.017) 0.633 (0.010) 0.2537 (0.0039) 0.2481 (0.0006)

SMILES — — — — — — 0.741 (0.010) 0.673 (0.010) — —

Table 9: GT+BERT ablation of serialization orderings with and without BPE on main datasets. Best
scores in bold, second-best underlined, std in parentheses. . A dash (“—”) under SMILES indicates
the dataset lacks SMILES or is not a molecular graph.

Method
molhiv

auc↑
coildel

acc↑
p-func

ap↑
zinc
mae↓

qm9
mae↓

w w/o w w/o w w/o w w/o w w/o

BFS 76.5 (0.6) 76.1 (0.9) 81.2 (0.9) 80.1 (1.3) 66.9 (0.9) 63.2 (0.9) 0.612 (0.009) 0.961 (0.012) 0.227 (0.011) 0.324 (0.013)

DFS 74.6 (0.4) 79.5 (0.5) 80.5 (0.4) 79.8 (0.8) 71.3 (0.3) 67.5 (1.0) 0.537 (0.008) 0.976 (0.009) 0.275 (0.009) 0.281 (0.014)

TOPO 72.2 (0.6) 77.9 (0.8) 82.6 (0.8) 81.4 (1.2) 65.3 (0.5) 54.6 (1.0) 0.711 (0.011) 1.034 (0.012) 0.277 (0.010) 0.266 (0.011)

Eulerian 83.7 (0.7) 83.9 (1.0) 72.1 (0.6) 69.9 (2.9) 67.3 (0.9) 64.1 (1.6) 0.304 (0.008) 0.396 (0.012) 0.104 (0.006) 0.127 (0.007)

Feuler 82.6 (0.4) 81.8 (0.5) 74.1 (0.3) 76.1 (0.9) 68.5 (1.0) 65.4 (1.1) 0.241 (0.006) 0.432 (0.011) 0.122 (0.004) 0.128 (0.005)

CPP 85.0 (0.3) 82.8 (0.5) 72.5 (0.5) 83.3 (0.7) 65.6 (0.6) 59.5 (1.5) 0.319 (0.005) 0.464 (0.008) 0.115 (0.004) 0.131 (0.006)

FCPP 83.2 (0.3) 82.2 (0.6) 68.9 (0.3) 78.3 (1.0) 65.5 (1.8) 61.0 (1.2) 0.316 (0.005) 0.467 (0.007) 0.107 (0.005) 0.132 (0.007)

SMILES — — — — — — 0.273 (0.014) 0.320 (0.007) 0.117 (0.014) 0.120 (0.016)

Setup. We converted each 28×28 MNIST image into a regular grid graph, where pixels correspond
to nodes and are connected to their immediate spatial neighbors (up, down, left, right). These grid
graphs were then tokenized using our proposed framework (Frequency-Guided Serialization + BPE)
to produce discrete token sequences. We trained a standard, unmodified decoder-only Transformer
(GPT-style architecture) on these sequences using the conventional next-token prediction objective
(LCLM).

Results. As illustrated in Figure 10, the model successfully learns to generate coherent graph struc-
tures token-by-token. The reconstructed graphs clearly depict recognizable digits, demonstrating
that the model effectively captures the global topology and local connectivity patterns solely from
the serialized token sequence. This result confirms that our framework effectively bridges the gap
between graph generation and standard sequence modeling, opening the door for applying large-
scale generative pre-training (e.g., GPT) to graph domains such as molecular design and material
discovery.

E.2 EXTENDED COMPARISONS WITH STATE-OF-THE-ART MODELS

We significantly expanded our comparative evaluation to include a broader range of state-of-the-art
architectures and Graph Foundation Models (GFMs).

1. Broader SOTA Coverage. We conducted a comprehensive evaluation including recent Graph
Transformers (GraphGT, Graphormer), serialization-based or hybrid methods (FragNet, Graph-
ViT-MLPMixer), and classic baselines (HAN, ChebNet).

As shown in Table 11, our method consistently outperforms strong baselines, including special-
ized architectures like FragNet and Graph-ViT-MLPMixer, or generalized graph transformers like
GraphGT or Graphormer on graph classification (MOLHIV, COIL-DEL) and long-range model-
ing tasks (Peptide-func). On the ZINC regression task, our performance is also comparable to stan-
dard Graph Transformers (e.g., Graphormer). And as expected, classic architectures (ChebNet,
HAN) lag significantly behind modern methods. This confirms that a general-purpose tokenizer can

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: GT+BERT ablation on additional datasets (Appendix). Best scores in bold, second-best
underlined, std in parentheses. A dash (“—”) under SMILES indicates the dataset lacks SMILES
or is not a molecular graph.

Method

mutag
acc↑

colors3
acc↑

dblp
acc↑

aqsol
mae↓

p-struct
avg mae↓

w w/o w w/o w w/o w w/o w w/o

BFS 76.1 (0.6) 76.4 (0.7) 72.7 (0.9) 67.3 (4.1) 91.9 (0.17) 91.3 (0.26) 0.851 (0.002) 0.844 (0.002) 0.2477 (0.0014) 0.2620 (0.0021)

DFS 79.6 (0.5) 77.3 (0.6) 98.3 (0.1) 87.5 (4.4) 92.6 (0.08) 92.4 (0.13) 0.831 (0.002) 0.852 (0.002) 0.2526 (0.0036) 0.2550 (0.0012)

TOPO 74.9 (0.5) 71.2 (0.7) 60.4 (2.3) 66.6 (2.2) 92.7 (0.08) 92.7 (0.11) 0.810 (0.002) 0.840 (0.002) 0.2578 (0.0011) 0.2648 (0.0026)

Eulerian 85.5 (0.8) 82.0 (1.1) 37.8 (1.4) 40.7 (0.6) 93.1 (0.04) 91.8 (0.14) 0.648 (0.002) 0.677 (0.003) 0.2522 (0.0012) 0.2700 (0.0049)

Feuler 87.5 (0.4) 84.1 (0.8) 38.5 (1.1) 40.3 (1.0) 93.2 (0.06) 88.5 (0.11) 0.648 (0.002) 0.685 (0.004) 0.2476 (0.0010) 0.2615 (0.0045)

CPP 85.9 (0.6) 83.6 (0.9) 36.5 (2.0) 43.5 (1.2) 90.5 (0.11) 91.7 (0.22) 0.651 (0.018) 0.690 (0.018) 0.2547 (0.0018) 0.2734 (0.0022)

FCPP 85.7 (0.5) 85.0 (0.9) 37.1 (0.6) 44.5 (1.1) 91.8 (0.13) 91.9 (0.21) 0.670 (0.005) 0.695 (0.003) 0.2541 (0.0029) 0.2681 (0.0051)

SMILES — — — — — — 0.746 (0.003) 0.783 (0.003) — —

achieve state-of-the-art performance across diverse graph learning benchmarks without specialized
architectural modifications.
Table 11: Comparison with additional baselines. ‘*’ indicates results reproduced using official
implementations; ‘–’ denotes results not reported in the original papers.

Model ZINC (MAE ↓) MOLHIV (AUC ↑) Peptide-func (AP ↑) COIL-DEL (ACC ↑)*
GraphGT 0.226 (0.014) – 63.26 (1.26) 86.1 (0.8)

Graphormer 0.132 (0.006) 80.51 (0.53) – 88.4 (0.3)

FragNet 0.078 (0.005) 81.32 (0.86) 66.8 (0.5) 83.4 (0.6)

Graph-ViT-MLPMixer 0.073 (0.001) 79.97 (1.02) 69.7 (0.8) 89.1 (0.4)

HAN* 0.348 (0.042) 72.3 (0.6) 52.2 (1.1) 74.5 (0.6)

ChebNet* 0.423 (0.013) 70.1 (0.7) 51.3 (0.8) 71.4 (0.8)

Our Method 0.131 (0.007) 87.4 (0.2) 73.1 (0.2) 89.6 (0.2)

2. Performance against Graph Foundation Models. We evaluated GraphGPT and LLAGA
via forced adaptation (textualizing graph structures), as these models strictly require text-attributed
graphs (TAGs) as input. Since standard structural benchmarks typically lack natural language at-
tributes, we evaluated these models by treating graph features as textual tokens to satisfy their input
constraints. The results in Table 12 (e.g., near-random guessing on COIL-DEL) indicate that the tex-
tualization paradigm faces significant challenges in pure structural tasks, particularly in the absence
of rich semantic information.
Table 12: Performance of GraphGPT-like models via forced adaptation (Textualized Graphs). These
models struggle with pure structural tasks compared to our native tokenization.

Model ZINC (MAE ↓) COIL-DEL (ACC ↑)
GraphGPT 0.373 (0.021) 5.6 (0.9)

LLAGA 0.317 (0.016) 12.5 (1.1)

Our Method 0.131 (0.007) 89.6 (0.2)

E.3 DETAILED ABLATION STUDIES AND DESIGN VALIDATIONS

We conducted systematic ablation studies to validate our design choices regarding vocabulary size,
frequency guidance units, and serialization strategies for counting tasks.

1. Impact of Vocabulary Size (K). Our experiments identify K = 2000 as the optimal saturation
point for single dataset, effectively balancing sequence compression with model learnability. As
shown in Table 13, increasing K initially yields significant gains in compression (1.00x to 10.84x).
However, this benefit plateaus around K = 2000. Extending to K = 5000 offers diminishing returns
in compression (11.34x) but fails to improve MAE (0.132). This stagnation may be driven by the
”long-tail” effect: tokens added beyond K = 2000 appear too infrequently to receive sufficient
gradient updates(even appears lower than 10 times across entire ZINC dataset), thereby increasing
model complexity without contributing to generalization.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 10: Visualization of autoregressive graph generation on MNIST. The model generates the
graph structure token-by-token (left to right). The resulting sequences are decoded back into grid
graphs, forming coherent digit images. This demonstrates the framework’s capability to support
generative tasks using standard decoder-only Transformers.

2. Choice of Frequency Guidance Unit. The ablation confirms that node-edge-node trigrams of-
fer the superior trade-off, achieving the highest compression rate (10.84x) while maintaining linear
complexity. The results in Table 14 show that simpler units like Node-Node bigrams perform sub-
optimally (10.71x) because they discard critical edge label information. Conversely, more complex
units (2-hop/3-hop paths) surprisingly reduce compression (10.37x) despite their high computational
cost (O(E3/N2)). This counter-intuitive result may be due to data sparsity. Specifically, as pat-
terns grow longer, their exact recurrence becomes exponentially rarer, rendering the frequency map
too sparse to provide robust global guidance.

3. Validation of Serialization Impact on Counting Tasks. The observed performance on datasets
like COLORS-3 (Table 8 in main Appendix D.3) highlights the framework’s flexibility. The initial
performance gap arose from a mismatch between the node-counting task and our default edge-
covering serialization, where repeated node visits introduce ambiguity. We validated this behavior
on ZINC (counting carbon atoms) in Table 15. Switching to a DFS traversal immediately resolves

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 13: Impact of BPE merge count (K) on compression ratio and model performance (ZINC).
K = 2000 achieves the best balance; larger vocabularies yield diminishing compression returns and
do not improve performance due to token rarity.

Merge Count (K) Compression Ratio Performance (MAE ↓)
0 (Raw) 1.00x 0.171 (0.013)

100 2.86x 0.144 (0.012)

500 5.37x 0.137 (0.010)

1000 8.11x 0.131 (0.011)

2000 10.84x 0.131 (0.007)

5000 11.34x 0.132 (0.009)

Table 14: Impact of different statistical units on BPE compression ratio (ZINC). ‘Collect Cost’
denotes the complexity of gathering statistics. Trigrams achieve the highest compression with linear
overhead.

Unit Collect Cost Compression Ratio

W/O Guidance 0 10.46x
Node-Node Bigram O(E) 10.71x
Node-Edge Bigram O(E) 10.72x
Node-Edge-Node Trigram O(E) 10.84x
Multi-hop Path (2 hop) O(E2/N) 10.56x
Multi-hop Path (3 hop) O(E3/N2) 10.37x

this by ensuring unique node visits, confirming that the constraint stems from the serialization strat-
egy rather than the Transformer architecture itself.

Table 15: Performance on simulated node counting tasks (ZINC). Switching from edge-based to
node-based serialization resolves the counting failure, confirming the analysis in Appendix D.3.

Serialization Method Accuracy (w/ BPE) Accuracy (w/o BPE)

Edge-based (Feuler) 21.6% 24.8%
Node-based (DFS) 83.4% 88.4%

E.4 SCALABILITY ANALYSIS ON LARGE-SCALE OGB DATASETS

To validate the scalability of our method empirically, we extended our benchmarks to in-
clude large-scale OGB datasets with millions of edges (ogbn-arxiv, ogbg-code2, and
ogbn-products). We measured the runtime of each pipeline stage and normalized the results
to Time per 1 Million Nodes.

As shown in Table 16, the results confirm our theoretical analysis: (1) Linear Scalability:
The processing time remains in the order of seconds per million nodes. Even for the dense
ogbn-products graph, serialization takes less than 30 seconds on a single CPU thread. (2)
Bottleneck Analysis: While serialization time correlates with edge density (comparing sparse
ogbg-code2 vs. dense ogbn-products), the BPE encoding times remain consistently fast
(ms). This confirms the efficiency of BPE as encoder.

E.5 INTERPRETABILITY ANALYSIS OF LEARNED VOCABULARY

We conducted a detailed statistical analysis of the learned vocabulary (K=2000) on the ZINC dataset
to understand the BPE patterns. The results, detailed in Table 17, demonstrate that the vocabulary is
not dominated by small atomic tokens. Instead, it consists primarily of composite substructures that
effectively encode the graph’s semantic topology.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 16: Efficiency of different components of our method on large-scale OGB datasets (Normal-
ized to Time per 1 Million Nodes). Inference time assumes a 10x compression ratio via BPE.

Dataset Serialization (ms) BPE Encoding (ms)

ogbn-arxiv 14,948 57
ogbg-code2 4,108 74
ogbn-products 29,670 56

Our analysis reveals that the vocabulary exhibits a distinct preference for medium-scale patterns.
As shown in Table 17, atomic tokens (0-1 nodes) constitute only 7.1% of the vocabulary. In con-
trast, the distribution peaks in the 4-6 node range (41.5%), which corresponds to the typical size of
molecular functional groups and rings. Combined with the 7-9 node range, over 60% of the vocab-
ulary represents complex substructures. This distribution proves that BPE successfully identifies an
optimal compression level-producing tokens that are large enough to capture structural context (e.g.,
cycles, branches) yet frequent enough to ensure generalization.

Table 17: Fine-grained distribution of token sizes (node counts) in the learned BPE vocabulary on
ZINC. The distribution peaks at the 4-6 node range, indicating a preference for functional-group-
sized substructures.

Token Size (Nodes) Atomic (0 ∼ 1) Small (2 ∼ 3) Medium (4 ∼ 6) Large (7 ∼ 9) Huge (10+)

Vocabulary Proportion 7.1% 28.5% 41.5% 20.4% 2.5%

28

	Introduction
	Related Works
	Method
	Preliminaries
	Graph Tokenizer

	Experiments
	Experimental Setup
	Performance Results
	Ablation Studies

	Conclusion
	Discussion
	Limitations
	Future Works
	Use of Large Language Models

	Further Methodological Details
	Formal Analysis of Node-List Serialization Methods
	Formal Analysis of Edge-Covering Serialization Methods
	Disconnected Graphs
	Complexity Analysis

	Experimental Setup
	Datasets
	Model Architectures
	Hyperparameters
	Computational Environment

	Experimental Results
	Qualitative Analysis and Interpretability
	Performance Results
	Ablation Studies

	Additional Experiments and Analysis
	Proof-of-Concept: Auto-regressive Graph Generation
	Extended Comparisons with State-of-the-Art Models
	Detailed Ablation Studies and Design Validations
	Scalability Analysis on Large-Scale OGB Datasets
	Interpretability Analysis of Learned Vocabulary

