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Abstract

Federated Learning (FL) has emerged as a promising paradigm for collaborative model
training without sharing local data. However, a significant challenge in FL arises from
the heterogeneous data distributions across participating clients. This heterogeneity leads
to highly variable gradient norms in the model’s final layers, resulting in poor generaliza-
tion, slower convergence, and reduced robustness of the global model. To address these
issues, we propose a novel technique that incorporates a gradient penalty term into partial
variance control. Our method enables diverse representation learning from heterogeneous
client data in the initial layers while modifying standard SGD in the final layers. This
approach reduces variance in the classification layers, aligns gradients, and mitigates the
effects of data heterogeneity on image classification tasks. Through theoretical analysis,
we establish convergence rate bounds for the proposed algorithm, demonstrating its po-
tential for competitive convergence compared to current FL methods in highly heteroge-
neous data settings. Empirical evaluations on three computer vision image classification
datasets validate our approach, showing enhanced performance and faster convergence over
state-of-the-art baselines across various levels of data heterogeneity. Our code is available
at https://anonymous.4open.science/r/FedPGVC-7F18.

1 Introduction

Federated learning (FL) facilitates collaborative training of a global model across multiple clients while
preserving data privacy by avoiding the need to transmit local data to a central server, in contrast to
traditional centralized methods (McMahan et al., 2017). With the proliferation of decentralized data sources
like mobile devices, hospitals, and the Internet of Things (IoT), FL has gained traction as a solution for
training deep networks across distributed environments (Zhang et al., 2022). However, a significant practical
obstacle encountered during federated training is data heterogeneity across clients (Kairouz et al., 2021; Li
et al., 2020). Diverse user behaviors can lead to significant heterogeneity in the local data across different
clients, resulting in non-independent and identically distributed (non-IID) data. This heterogeneity has been
shown to cause unstable convergence, slow training progress, and ultimately suboptimal or even detrimental
model performance (Li et al., 2022; Zhao et al., 2018). While FedAvg (McMahan et al., 2017) has been
widely adopted and successful across multiple applications, it frequently encounters challenges in attaining
optimal accuracy and convergence, particularly in heterogeneous data distributions. This difficulty arises
from client drifts (Karimireddy et al., 2020), a phenomenon resulting from the varying nature of data among
participating clients. Prior research has addressed the issue of client drift by introducing penalties for the
divergence between client and server model (Li et al., 2020; 2021a), or by employing variance reduction
approaches during the client model update (Karimireddy et al., 2020; Acar et al., 2021). Luo et al. (2021)
tackled data heterogeneity through classifier re-training utilizing virtual features. Another study uncovers
that a biased classifier significantly undermines the performance of federated training on heterogeneous data
and introduces a novel algorithm by re-training the classifier with learnable features (Shang et al., 2022).
A recent study by Li et al. (2023) measures gradient variability across clients by calculating drift diversity,
especially in deeper layers, and proposes aligning classification layers using control variates. While this
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approach may enhance model performance, it can increase communication costs and relies on assumptions
that may not always hold in practical FL scenarios.

1.1 Empirical Observations

Based on these observations, we conducted two experiments: first, to empirically analyze gradient norms
for models trained on IID and non-IID data, aiming to understand gradient behavior across layers and its
impact on training stability; second, to determine which parts of the neural network are more sensitive to
data heterogeneity. We have taken the CIFAR100 dataset with concentration parameter (α) set to 0.5 to
create a non-IID data distribution and (α = 100) for an IID distribution, employing a 5-layer CNN for both
experiments. The detailed experimental setting can be found in Subsection 5.1.

Initially, we calculate aggregate metrics, including the mean, variance, and maximum gradient norms for all
layers. The Mean Gradient Norm is expressed as follows:

Mean(∥∇W∥) = 1
Z

Z∑
i=1
∥∇Wi∥, (1)

where Z is the total number of layers, and ∥∇Wi∥ is the gradient norm of the ith layer, defined as:

∥∇Wi∥ =

√√√√ n∑
j=1

(∇Wi,j)2, (2)

where n is the number of weights in each layer. The Variance of the Gradient Norm is calculated as:

Var(∥∇W∥) = 1
Z

Z∑
i=1

(∥∇Wi∥ −Mean(∥∇W∥))2. (3)

The Maximum Gradient Norm is defined as:

Max(∥∇W∥) = max
i=1,...,Z

∥∇Wi∥. (4)

We computed these metrics for each layer of the CNN model trained on both IID and non-IID data distri-
butions, averaging across all layers at the point of observed convergence. The results, presented in Table 1,
reveal that models trained on non-IID data exhibit higher average gradient norms and greater variance
compared to those trained on IID data. This indicates that non-IID training leads to larger updates and
potentially greater instability in the training process. In the second experiment, we analyzed the gradient
norms for each layer of the CNN model to understand the impact of distribution shifts. The results, shown in
Fig. 1, illustrate the variation of gradient norms across layers for both IID and non-IID cases. Initial layers
exhibit higher gradient norms, which decrease significantly in subsequent layers. Both models display similar
gradient patterns in the initial layers. However, the model trained on non-IID data exhibits higher gradient
norms in and near the classification layer, indicating larger updates and greater instability in these regions
due to data heterogeneity. These findings highlight that the classification layer, along with its neighboring
layers, significantly contributes to the observed instability and slower convergence when training with non-
IID data. Note that the odd layers in Fig. 1 are the MaxPooling layers following convolutional layers, which
lack trainable parameters and only downsample spatial dimensions by selecting the maximum value within
each window. As these pooling layers do not participate in learning, their gradient norms are inherently
zero.

Inspired by the above empirical observations, we propose Federated Partial Gradient Variance Control
(FedPGVC) to stabilize noisy gradient norms to mitigate data heterogeneity without incurring additional
communication costs. FedPGVC calculates a gradient penalty term for each individual client, updating the
last layers of the neural network while the remaining layers are updated using a Stochastic Gradient Descent
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Figure 1: Comparison of gradient norm of the two
models (IID and non-IID) trained using FedAvg.

Table 1: Aggregate metrics for gradient norms
averaged across all layers of models trained on
IID and non-IID data distribution.

Metric IID non-IID
Mean Gradient Norm 1.96 × 103 7.49 × 103

Variance of Gradient Norm 5.40 × 106 2.82 × 107

Maximum Gradient Norm 7.90 × 103 1.83 × 104

(SGD) optimizer. In this work, we calculate the gradient penalty term inspired by the Wasserstein Distri-
butionally Robust Optimization (WDRO) (Gao & Kleywegt, 2023). This approach addresses distributional
uncertainties and deviations, enhancing the global model’s resilience to non-IID data across clients and im-
proving generalization to unseen data samples, even when they deviate from the training distribution. We
have performed experiments on the three widely used datasets, MNIST, FMNIST, and CIFAR100 datasets,
with varying degrees of data heterogeneity among clients. Our experimental results demonstrate that the
proposed FedPGVC requires fewer communication rounds to achieve the same level of accuracy as existing
approaches. Furthermore, with a fixed number of communication rounds, FedPGVC attains comparable or
superior top-1 accuracy. The key contributions of this work are as follows:

• We introduce FedPGVC to tackle the challenges of data heterogeneity in federated training by
incorporating a partial variance reduction technique utilizing client-specific gradient penalty terms.

• We have proposed a gradient penalty term for the weight updates of the final classification layers to
mitigate client drift, stabilize gradient diversity, and accelerate convergence in federated training.

• We offer a theoretical convergence for FedPGVC in both convex and non-convex scenarios, outlining
its limited reliance on measures of data heterogeneity.

• Experimental analysis shows that the proposed FedPGVC surpasses prior state-of-the-art methods
in both performance and convergence efficiency across different levels of data heterogeneity and a
range of diverse datasets.

2 Related work

Numerous studies have explored effective strategies for addressing the challenges of data heterogeneity in FL.
We have broadly categorized these approaches into three groups: 1) client drift mitigation, which adjusts the
local objectives of clients to align their models more closely with the global model; 2) aggregation schemes,
which enhance the server-side fusion mechanism for model updates; 3) personalized federated learning, which
focuses on training personalized models for clients rather than a shared global model. In the proposed work,
we mainly focused on techniques based on client drift mitigation.

FedAvg is a predominant optimization method in FL and has witnessed widespread adoption (McMahan
et al., 2017). However, in heterogeneous settings where local objectives diverge significantly, FedAvg encoun-
ters performance degradation due to client drift, limiting its effectiveness in non-IID data scenarios (Karim-
ireddy et al., 2020). Li et al. (2020) introduced a proximal regularization term to manage the divergence
between client and server models but fails to align global and local optimal points effectively. Li et al. (2021b)
employs local batch normalization (LBN) to mitigate feature shift before server-side model averaging. Sahoo
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et al. (2024a) introduces a novel loss function and an innovative way of calculating adaptive proximal term
to tackle heterogeneous data settings. Additionally, it uses Self-organizing map (SOM) based server-side
aggregation. Several techniques like FedBabu (Oh et al., 2021) and TCT (Yu et al., 2022) aim to enhance
FL models by fine-tuning classifiers using standalone datasets or simulated features derived from client mod-
els. Similarly, Luo et al. (2021) addresses data heterogeneity by re-training classifiers with virtual features
obtained from an approximated GMM model. MOON introduces a model-contrastive FL framework that
aligns local client representations with the global model using a contrastive loss (Li et al., 2021a). It employs
a momentum encoder to provide a stable target for the contrastive loss, acting as a temporal ensemble of the
global model and mitigating client drift. Stochastic variance reduction based methods like SVRG (Johnson
& Zhang, 2013), SAGA (Defazio et al., 2014), and their variations utilize control variates to mitigate the
variance inherent in traditional SGD, enabling linear convergence rates for strongly convex optimization
problems. SCAFFOLD (Karimireddy et al., 2020) and DANE (Shamir et al., 2014) have incorporated vari-
ance reduction techniques for the whole model on convex problems without exploring their performance in
non-convex setups. Despite potential benefits, these approaches incur higher communication costs due to
transmitting additional control variates, posing challenges for resource-constrained IoT devices (Halgamuge
et al., 2009). Additionally, the existing methods have shown rapid convergence in simpler models, and their
effectiveness on deep networks, remains largely unexplored (Sahoo et al., 2024b). FedPVR (Li et al., 2023)
offers a novel perspective on FedAvg’s performance in deep neural networks, uncovering substantial hetero-
geneity in client-specific final classification layers. By introducing targeted variance reduction exclusively for
these last layers, FedPVR achieves remarkable improvements over established benchmarks. Motivated by
the previous observations, our research focuses on improving the partial variance control of individual clients
to mitigate data heterogeneity problems.

3 Method

3.1 Problem Statement

The primary aim of this work is to develop a robust model that can learn collaboratively from decentralized
clients without the need for data sharing. The focus is on enhancing performance during federated training,
particularly in scenarios with non-IID data. Given K clients, where each client k ∈ {1, . . . , K} possesses a
local dataset Dk, the aim is to learn a generalized global model over D =

⋃K
k=1 Dk. The global objective

function is defined as:

arg min
w

L(w) =
K∑

k=1

|Dk|
|D|

Lk(w), (5)

where the local objective function Lk(w) for client k measures the local empirical loss over the data distri-
bution Dk and is given by:

Lk(w) = Ex∼Dk
[ℓk(w; x)], (6)

here, ℓk is the loss function for client k, while w denotes the global model parameters to be optimized. This
work emphasizes addressing the issue of data heterogeneity in FL due to the non-IID distribution of data
across clients.

3.2 Theoretical Analysis

As mentioned in the introduction, non-IID data distributions among clients in federated learning environ-
ment result in increased gradient diversity, particularly in the last layers of the network. To tackle this
challenge, we suggest a straightforward but powerful enhancement to the standard FedAvg algorithm. Our
approach introduces a carefully designed gradient penalty term with the standard SGD to align gradient
norms effectively in the final layers. This method not only reduces the effects of client data heterogeneity
but also enhances model performance and accelerates convergence. In the FL framework, each client k is
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associated with a local dataset Dk and computes the gradient of the loss function with respect to the model
parameters w′. The local loss function for client k is defined by Eq. 7:

Lk(w′) = 1
|Dk|

∑
i∈Dk

ℓ(w′; xi, yi), (7)

where ℓ(w′; xi, yi) is the loss for sample (xi, yi). The gradient of the local loss function for client k is given
by Eq. 8:

∇Lk(w′) = 1
|Dk|

∑
i∈Dk

∇ℓ(w′; xi, yi). (8)

In the FedAvg algorithm, the global model parameters are updated according to the Eq. 9:

wt+1 = wt − ηg
1
K

K∑
k=1

∆w
′

k, (9)

where ηg is the global learning rate, ∆wk = ∇Lk(wt) is the local update from client k and wt is the global
model parameter for round t.

In IID settings, the data distribution remains consistent across all clients, leading to similar gradient norms.
Let σiid represent the standard deviation of gradient norms in IID settings presented in Eq. 10:

E[||∇Liid(w)||] = σiid. (10)

In non-IID settings, where data distributions vary across clients, we assume that gradient norms exhibit
higher variability compared to IID settings, as presented in Eq. 11:

E[||∇Lnon-iid(w)||] = σnon-iid ≫ σiid. (11)

Similarly, we assume that the deeper layers of a neural network are responsible for learning more specific
features, resulting in higher gradient norms in non-IID settings, as illustrated in Fig. 1 and presented in
Eq. 12:

E[||∇Ll,non-iid||]≫ E[||∇Ll,iid||], (12)

where l denotes the index for the last layers. To address this gradient diversity, we propose to use a client-
specific term called gradient penalty (ρi) for client i to ensure better alignment of the gradients of the last
layers of the model as presented in Eq. 13:

∆wt+1,l = wt − ηlρl∇Ll, (13)

where ρl reduces gradient norm variations, and ηl is the local learning rate. We choose ρl as presented in
Eq. 14:

ρl = σiid

||∇Ll,non-iid||
. (14)

This ensures that the gradients are aligned to resemble those in IID settings, as shown in Eq. 15:

||ρl∇Ll,non-iid|| = σiid. (15)

3.3 Proposed Method

Motivated by these empirical and theoretical observations, we introduce FedPGVC, an innovative method for
managing data heterogeneity in federated learning. Our algorithm (Algo. 1) includes three main components:
i) client update (Eq. 18 and Eq. 20), ii) computation of client gradient penalty term (Eq. 19), and iii)
server update (Eq. 21). Let e ∈ {0, 1}Z be a binary vector, where each element ej indicates whether the
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corresponding layer is included in the partial gradient variance control. The sum
∑

e represents the number
of selected layers to apply gradient variance control (refer to Eq. 16). This vector serves as a mask to
differentiate between the initial layers of the model and those adjacent to or comprising the classifier. For
the subset of indices j where ej = 1 (denoted as Sgvc in Eq. 17), we modify the corresponding weights
y(i,Sgvc) to minimize variance. This is achieved by introducing a client-specific gradient penalty term ρi ∈ Rv

as formulated in Eq. 19. Subsequently, we update the weights of the corresponding layer using Eq. 20. For
the remaining indices, denoted as Ssgd, we update the corresponding weights y(i,Ssgd) using standard SGD as
formulated in Eq. 18. In each communication round, the process unfolds as follows: Every client receives a
copy of the server model, denoted as w. Subsequently, each client independently executes E model updating
steps, leveraging the cross-entropy loss function as the optimization objective. These updating steps are
governed by the equations (refer to Eq. 18, Eq. 19, and Eq. 20), which encapsulate the core operations
involved in a single step. Once the local model updates are completed, the clients transmit their updated
models, represented as yi, back to the server. The server then aggregates these individual client models
through the aggregation mechanism defined in Eq. 21.

e ∈ {0, 1}Z , v =
Z∑

j=1
ej (16)

Sgvc := {j : ej = 1}, Ssgd := {j : ej = 0} (17)

y(i,Ssgd) ← y(i,Ssgd) − ηlgi(y(i,Ssgd)) (18)

ρi ←
1
B

B∑
b=1

ℓ(θ, xb)∇θℓ(θ, xb) (19)

y(i,Sgvc) ← y(i,Sgvc) − ηl ∗ ρi ∗ gi(y(i,Sgvc)) (20)

w ← (1− ηg)w + 1
K

∑
i∈K

yi (21)

Here, B is the batch size, ℓ(θ, xb) is the loss function evaluated on the bth data point xb with model parameters
θ, ∇θℓ(θ, xb) is the gradient of the loss function with respect to the model parameters θ, evaluated on the bth

data point xb. gi(θ) is defined as gi(θ) := ∇fi(θ; ζi), where gi(θ) is an unbiased gradient of local objective
of ith client fi with its variance bounded by σ2, represented as E[gi(x)] = ∇fi(x) and Var(gi(x)) ≤ σ2.
ζi represents a random variable, allowing gi(θ) to serve as an unbiased estimate of the true gradient of the
overall objective function.

3.3.1 Usefulness of Introducing Gradient Penalty (ρ)

The intuition behind introducing the gradient penalty term ρ into the standard SGD for the last layers of
the model is to encompass both the direction and strength of the gradients, along with the loss landscape
for each client’s data distribution. Prioritizing the gradients from clients which have data distributions that
significantly deviate from global distribution allows us to better handle the most challenging situations within
a specific range around each client’s observed data distribution. Incorporating ρ into the weight updates
for the final classification layers of the neural network allows us to achieve better alignment of these layers
across clients, mitigating the issue of client drift caused by data heterogeneity. Specifically, we update the
weights of the classification layers as presented in Eq. 19. This approach has the advantage of not requiring
any additional communication overhead like prior methods such as SCAFFOLD and FedPVR (Karimireddy
et al., 2020; Li et al., 2023). Moreover, it strikes a balance between diversity and uniformity across the layers
of the neural network, allowing the feature extraction layers to learn rich representations while ensuring
better alignment of the final layers across clients.
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Algorithm 1 Federated Partial Gradient Variance Control (FedPGVC)
1: Server: Initialize the global model parameters w0, Global learning rate ηg.
2: Client: Initialize the local model parameters y0

i , Local learning rate ηl.
3: Define a mask e ∈ {0, 1}Z , where ej = 1 for the last few layers and 0 for the rest layers.
4: Let Ssgd = {j : ej = 0} and Sgvc = {j : ej = 1}.
5: for r = 1, 2, . . . , R do
6: Server broadcasts the global model w0 to all clients.
7: for each client i = 1, 2, . . . , K in parallel do
8: for ϕ = 1, 2, . . . , E do
9: y

(r,ϕ)
(i,Ssgd) = y

(r,ϕ−1)
(i,Ssgd) − ηl∇Ssgdfi(y(r,ϕ−1)

i )
10: ρr−1

i ← 1
B

∑B
b=1 ℓ(θ, xb)∇θℓ(θ, xb)

11: y
(r,ϕ)
(i,Sgvc) = y

(r,ϕ−1)
(i,Sgvc) − ηl∇SgvcLi(y(r,ϕ−1)

i , ρr−1
i )

12: end for
13: Client i sends the updated model y

(r,E)
i to the server.

14: end for
15: Server aggregates the client models and updates the global model:
16: wr = (1− ηg)w(r−1) + 1

K

∑
i y

(r,E)
i

17: end for

4 Convergence Analysis

In this section, we provide the convergence analysis of the proposed FedPGVC, considering both convex and
non-convex scenarios. To enable a theoretical proof, we introduce the following notations and assumptions:
we consider K clients, each linked to a local objective function fi(x), where i = 1, . . . , K. We impose the
following assumptions on the objective functions:

Assumption 1: Lipschitz smoothness: |∇fi(x)−∇fi(y)| ≤ L|x−y| for all x, y and some constant L > 0.

Assumption 2: Bounded gradients: E|∇fi(x; ξi)|2 ≤ G2 for all x and some constant G > 0, where ξi

denotes the random variable representing the data samples used to compute stochastic gradients on client i.

Assumption 3: Non-convexity: We have first considered the non-convex setting, which is more general
and applicable to deep neural networks. Additionally, we assume a measure of data heterogeneity across
clients ζ̂2 such that:

1
K

K∑
i=1

E|∇fi(x)|2 ≤ ζ̂2, ∀x (22)

The above assumption 1 and 2 are aligned with those presented in (Li et al., 2020), (Wang et al., 2020), (Dur-
mus et al., 2021) and (Nguyen et al., 2018) respectively. The convexity and non-convexity assumptions align
with those presented in (Karimireddy et al., 2020).

Theorem 1:

Let F (x) = 1
K

∑K
i=1 fi(x), with F ∗ being the optimum value of F. For any L-smooth function fi, the output

of FedPGVC with ηg =
√

K and suitable values of ηl and number of FL rounds (R) satisfies:

Non-Convex:

1
R

R−1∑
r=0

E[F (x(r))]− F ∗ = O
(

G
√

K√
KR

+ ζ̂
√

E√
R

+ ζ̂p

√
E√

KR
+ F (x(0))− F ∗

R

)
. (23)

Convex:
1
R

R−1∑
r=0

E[F (x(r))]− F ∗ = O
(

G
√

E√
KR

+ ζ̂
√

E√
R

+ ζ̂p

√
E√

KR

)
. (24)
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where ζ̂p is a measure of the heterogeneity of the gradients for the layers where modified SGD is applied,
which is defined in Eq. 32. The proofs for Theorems 1 and 2 can be found in Section 6 of Appendix. By
setting explicitly mask e = 0 enforces ζ̂p2 =0, effectively removing the gradient penalty term for the last
layers and applying standard SGD across all layers. This reduction yields the standard FedAvg algorithm,
where each client’s model update relies solely on local gradients without additional variance control, making
FedAvg a specific instance of FedPGVC with no gradient stabilization.

(a) (b)

Figure 2: The distribution of MNIST data, indicating the number of images per client per class, varied
according to different levels of heterogeneity, with (a) α = 0.5 representing severe non-IID and (b) α = 1.0
indicating moderate non-IID.

5 Experimental results

5.1 Experimental setup

To evaluate the efficacy of FedPGVC, we conducted comprehensive experiments using three widely recognized
computer vision classification benchmarks: MNIST (LeCun et al., 2010), FMNIST (Xiao et al., 2017), and
CIFAR100 (Krizhevsky, 2009). For robustness and reliability, all experiments were repeated three times with
different seeds, and average value is reported along with standard deviation. We partitioned the entire dataset
client-wise using a strategy inspired by (Lin et al., 2020) to create a real-world non-IID distribution. This was
achieved by distributing the data among clients using a Dirichlet distribution with a concentration parameter
α, which can take any real positive value. The measure of data heterogeneity across clients is governed by
the α with a smaller value, resulting in a more skewed data distribution, mimicking real-world scenarios
where data is unevenly partitioned. Figure 2 illustrates an example of such a non-uniform data distribution
for the MNIST dataset. In our experiments, we adopted α values of 0.5 and 1.0, which are commonly
employed values (Lin et al., 2020) to simulate varying levels of data heterogeneity. Each client possesses its
own local data partition, which remains unchanged throughout the communication rounds. This static data
distribution allows us to access the performance of our proposed method under realistic conditions where
clients do not exchange data. To assess the classification performance of the global model, we hold out a test
dataset at the server, which remains unseen during the training process. For our experiments, we utilized
the well-established LeNet (LeCun et al., 1998) neural network for the MNIST and FMNIST datasets. For
CIFAR-100, we employed a 5-layer CNN following the approach described in (Duan et al., 2023). We applied
the variance reduction technique to the last two layers of the selected models to address data heterogeneity.
Our experimental setup involved 10 participating clients in each communication round, with a batch size
of 32, consistent with the configurations reported in prior studies (Li et al., 2023) and (Yu et al., 2022).
In our experimental setup, each client performed two local epochs of model updating. Consistent with the
configuration outlined in (Karimireddy et al., 2020), we fixed the server learning rate ηg = 1. To determine
the optimal client learning rate for each experiment, we conducted a grid search over 0.05, 0.01, 0.2, 0.3. Our
implementation of FedProx involved testing a range of proximal values 0.001, 0.1, 0.4, 0.7 to determine the
optimal setting. For FedNova, we selected the best proximal SGD value from the set 0.001, 0.003, 0.05, 0.1,
in accordance with the recommendations in (Li et al., 2024). Across all experiments, we employed the Adam
optimizer for consistency.
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Table 2: Top-1 accuracy (%) on MNIST, FMNIST, and CIFAR100 datasets with varying degrees of data
heterogeneity. The values in bold represent the highest accuracy achieved. Standard deviation values are
provided in parentheses.

MNIST FMNIST CIFAR100
α = 0.5 α = 1.0 α = 0.5 α = 1.0 α = 0.5 α = 1.0

Fedavg 99.00 (±0.03) 98.89 (±0.05) 88.65 (±0.22) 89.14 (±0.18) 24.25 (±0.16) 25.00 (±0.14)
FedProx 98.99 (±0.04) 99.02 (±0.03) 86.96 (±0.30) 89.10 (±0.21) 24.89 (±0.15) 25.56 (±0.13)
FedNova 98.91 (±0.05) 98.79 (±0.06) 87.52 (±0.25) 88.82 (±0.23) 22.29 (±0.19) 24.92 (±0.15)
FedBN 98.94 (±0.04) 99.03 (±0.04) 88.76 (±0.20) 89.17 (±0.18) 25.12 (±0.12) 25.66 (±0.13)
SCAFFOLD 98.95 (±0.05) 98.95 (±0.05) 87.98 (±0.28) 88.41 (±0.22) 24.30 (±0.17) 25.27 (±0.16)
FedPVR 98.93 (±0.04) 98.99 (±0.05) 87.28 (±0.31) 88.37 (±0.26) 20.59 (±0.25) 17.57 (±0.20)
Proposed 99.05 (±0.02) 99.04 (±0.03) 88.83 (±0.18) 89.35 (±0.17) 25.29 (±0.11) 25.74 (±0.12)

Figure 3: The performance comparison of proposed FedPGVC with baseline approaches: (a) and (b) depict
the graphs on the MNIST dataset for α = 0.5 and 1.0 respectively.

5.2 Comparison with the State-of-the-art Methods

We evaluate our proposed FedPGVC against several notable FL algorithms, including FedAvg, FedProx,
FedNova, FedBN, SCAFFOLD and FedPVR. FedPGVC consistently achieves the highest accuracy across
varying data heterogeneity levels (α = 0.5 and 1) on MNIST, FMNIST, and CIFAR100 datasets. On the
MNIST dataset with (α = 0.5), FedPGVC achieves a minimum accuracy improvement of 0.05% compared to
FedAvg and a maximum of 0.14% compared to FedNova. With (α = 1.0), it shows a minimum improvement
of 0.01% over FedBN and a maximum of 0.25% over FedNova. For the FMNIST dataset, under α = 0.5
settings, FedPGVC attains a minimum improvement of 0.07% over FedBN and a maximum of 1.87% over
FedProx. With α = 1.0, it achieves a minimum improvement of 0.18% over FedBN and a maximum of 0.98%
over FedPVR. On the CIFAR-100 dataset with α = 0.5, FedPGVC shows a minimum improvement of 0.17%
compared to FedBN and a maximum of 4.7% compared to FedPVR. Under α = 1.0, it achieves a minimum
improvement of 0.08% over FedBN and a maximum of 8.17% over FedPVR. While our method consistently
outperforms baseline approaches across all datasets, the performance gain on MNIST is less pronounced.
This can be attributed to the fact that MNIST is a relatively simple and well-studied dataset with low
intraclass variability and minimal noise. As a result, most modern federated learning algorithms already
achieve near-optimal accuracy on MNIST, leaving little room for further improvement. The narrow margin
of improvement suggests that MNIST has reached a saturation point, making even slight gains difficult.
Additionally, the dataset’s uniformity and simplicity reduce the impact of data heterogeneity, the primary
challenge our method is designed to address. The stronger performance gains on more complex datasets
like CIFAR-100, which exhibit higher intraclass variability and are more susceptible to the challenges of
data heterogeneity, further highlight the strengths of our approach. Please note that the lower classification
accuracy on the CIFAR100 dataset is due to the use of a simple 5-layer CNN and the introduction of severe
data heterogeneity in our experimental setup.
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Figure 4: The performance comparison of proposed FedPGVC with baseline approaches: (a) and (b) depict
the graphs on the FMNIST dataset for α = 0.5 and 1.0 respectively.

Figure 5: The performance comparison of proposed FedPGVC with baseline approaches: (a) and (b) depict
the graphs on the CIFAR100 dataset for α = 0.5 and 1.0 respectively.

5.3 Convergence Analysis

Figures 3, 4, and 5 depict the learning efficiency of FedPGVC in comparison to baseline methods on the
MNIST, FMNIST, and CIFAR100 datasets, respectively. FedPGVC consistently demonstrates faster learn-
ing and higher accuracy across various settings. On the MNIST dataset, FedPGVC achieves near 99%
accuracy within the first 23-27 rounds (Fig. 3), outperforming baselines that require more rounds for similar
performance. For FMNIST, FedPGVC reaches close to 88% accuracy in 15-18 rounds (Fig. 4), again faster
than the baselines. The advantage is even more pronounced on the CIFAR-100 dataset, where FedPGVC not
only converges faster but also achieves higher final accuracy (Fig. 5), significantly outperforming the base-
lines. Overall, FedPGVC requires fewer rounds across all experiments (refer to Table 3), achieving a speedup
of 1.1 to 4.3 times compared to baselines. This efficiency is attributed to the variance reduction technique
in FedPGVC, which promotes rapid convergence and mitigates the negative impact of data heterogeneity
among clients.

5.4 Effect of Partial Gradient Variance Control (PGVC)

We integrated the proposed PGVC with standard FL approaches, and the results are summarized in Table 4.
Additionally, extended results with standard deviations are provided in Table 6 in the Appendix section.
The table shows that most approaches incorporating PGVC on the client side improved overall accuracy
across datasets. FedAvg with PGVC achieves a 0.18% improvement on the FMNIST dataset and a 1.04%
improvement on CIFAR100. Similarly, FedPGVC enhances accuracy with FedProx and FedNova. However,
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Table 3: Number of communication rounds required (speedup compared to FedAvg) to achieve specific top-1
accuracy levels (99% for MNIST, 88% for FMNIST and 24% for CIFAR100). FedPGVC outperforms other
methods by requiring fewer rounds to achieve comparable accuracy. ‘*’ denotes the algorithm failed to
achieve given test accuracy.

MNIST FMNIST CIFAR100
α = 0.5 α = 1.0 α = 0.5 α = 1.0 α = 0.5 α = 1.0
Number of rounds Number of rounds Number of rounds

FedAvg 100 (1.0x) 100 (1.0x) 20 (1.0x) 20 (1.0x) 30 (1.0x) 30 (1.0x)
FedProx 77 (1.2x) 74 (1.3x) * 28 (0.7x) 43 (0.69x) *
FedNova 100 (1.0x) * * 34 (0.5x) * *
FedBN 50 (2.0x) 28 (3.5x) 26 (0.7x) 24 (0.8x) * 33 (0.90x)
SCAFFOLD * * * 25 (0.8x) 30 (1.0x) 30 (1.0x)
FedPVR * * * 22 (0.9x) * *
Proposed 23 (4.3x) 27 (3.7x) 18 (1.1x) 15 (1.3x) 27 (1.1x) 20 (1.5x)

FedBN with PGVC results in lower accuracy than FedBN alone, likely due to conflicting effects on training
dynamics and model regularization. These findings demonstrate that the proposed PGVC approach can
be effectively integrated with existing FL algorithms. For a comprehensive view of model convergence, we
have presented the learning curves in Fig. 10 and Fig. 11 of the Appendix. In terms of computational
efficiency, our proposed FedPGVC method requires 18 minutes for CIFAR100 training, compared to 12
minutes for standard FedAvg. Similarly, on FMNIST, training time increases from 15 to 21 minutes. While
this represents a modest increase in computational cost, we argue that the significant accuracy gains justify
this trade-off, especially in scenarios where model performance is paramount.

Figure 6: Performance of applying partial gradient
variance control on different layers of the CNN model
on the CIFAR100 dataset with α = 0.5.

Table 4: The effect of applying the proposed
method to existing popular baselines on the FM-
NIST and CIFAR100 dataset with α = 0.5.

Method FMNIST CIFAR100
FedAvg 88.65 24.25
FedAvg + PGVC 88.83 (0.18 ↑) 25.29 (1.04 ↑)
FedProx 86.96 24.89
FedProx + PGVC 88.07 (1.11 ↑) 24.58 (0.31 ↓)
FedBN 88.86 25.12
FedBN + PGVC 88.11 (0.75 ↓) 23.86 (1.26 ↓)
FedNova 87.52 22.29
FedNova + PGVC 87.87 (0.35 ↑) 24.82 (2.53 ↑)

5.5 Applying PGVC on the Different Layers of the Model

Given that the proposed approach partially applies the gradient variance control technique in the last layers
of the neural network, we investigated the effects of incorporating variance reduction in different layers. We
conducted experiments on the CIFAR100 dataset with α = 0.5, as shown in Fig. 6. The results indicate
that initiating variance reduction in the final layers of the model facilitates faster convergence and achieves
the highest top-1 accuracy. Activating variance control in layers closer to the classifier yields minimal
performance impact, whereas applying the technique in the initial layers leads to significant degradation.
This observation is further validated by the use of partial variance control exclusively in the final layer,
supporting our hypothesis that variance reduction is primarily required in the later layers of the network.
Preserving diversity in the middle and early layers enables the learning of rich feature representations while
promoting uniformity in the classifier layers, which helps make less biased decisions. This balance is crucial
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for leveraging the collective knowledge of distributed models while mitigating the adverse effects of excessive
variance. We have conducted the same experiment on the FMNIST dataset with α = 0.5, and the results
are presented in Section 7 of the Appendix.

5.6 Ablation study

We conducted two ablation studies. First, we assessed the scalability of our proposed method by varying
the number of clients participating in the federated learning process. Second, we applied our method to IID
data to compare its performance against the baselines.

Figure 7: Performance of the proposed model com-
pared to the baselines with varying numbers of
clients.

Figure 8: Performance of the proposed model com-
pared to the baselines in FMNIST IID data settings
with α = 100.

5.6.1 Scalibility

To demonstrate the scalability of the proposed FedPGVC in practical settings, we conducted experiments
on the FMNIST dataset (α = 0.5) with varying numbers of clients: 10, 20, and 50. Figure 7 depicts the
performance of the proposed model with the baselines. Notably, when the number of clients increases,
the accuracy drop of FedPGVC is considerably low compared to the baselines. This observation highlights
the robustness and scalability of our approach, as it can effectively harness a larger pool of clients while
maintaining high accuracy.

5.6.2 Results on IID data

To assess the efficacy of the proposed FedPGVC method on IID datasets, we created an IID partition of the
FMNIST dataset by setting α = 100 and compared its performance against other baselines. The results,
shown in Fig. 8, indicate that FedPGVC performs similarly to the baseline methods in the IID setting. This
finding highlights that FedPGVC is not only effective for non-IID data partitions but also performs well in
IID data settings.

5.7 Conclusion

This research introduces FedPGVC, an innovative FL-based approach to address the challenges posed by
heterogeneous data distributions among clients. By integrating a gradient penalty term into the partial
variance control strategy, FedPGVC effectively mitigates the adverse effects of data heterogeneity in federated
learning environments. Extensive experiments on diverse datasets reveal FedPGVC’s advantage over state-
of-the-art baseline methods. Moreover, FedPGVC exhibits faster convergence rates and excellent scalability,
consistently delivering performance benefits as the number of clients increases, thus positioning it as a
promising solution for large-scale, real-world FL-based computer vision applications.
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Appendix

6 Convergence Proof

Based on the assumptions in Section 4, we analyze the convergence rate of the proposed FedPGVC method
for both convex and non-convex cases.

6.0.1 Proof of Theorem 1

Non-convex setting: For the non-convex setting, we can derive the following descent lemma. Let us denote
the global model parameters at the beginning of round r as x(r), and the local model parameters on client
i after ϕ local updates as y

(r,ϕ)
i . The modified SGD update rule for the local model on client i is given in

Eq. 25:

y
(r,ϕ+1)
i = y

(r,ϕ)
i − ηl

(
g

(r,ϕ)
i + ρ

(r,ϕ)
i ⊙ e

)
, (25)

where g
(r,ϕ)
i = ∇fi(y(r,ϕ)

i ; ξ
(r,ϕ)
i ) is the stochastic gradient on client i, ρ

(r,ϕ)
i = E[g(r,ϕ)

i ⊙ (g(r,ϕ)
i − (e⊙ x(r)))]

is a vector denoting the gradient penalty term, e is the masking vector specifying which layers to apply
modified SGD on, and ⊙ denotes element-wise multiplication. The update rule for the global model after
aggregating the client models is given in Eq. 26:

x(r+1) = 1
K

K∑
i=1

y
(r,E)
i , (26)

where E is the total number of local updates performed by each client. We will now derive a descent lemma
that relates the expected decrease in the objective function after one round of client updates and global
model aggregation. Let F (x) = 1

K

∑K
i=1 fi(x) be the average of the client objective functions. Using the

assumption 1 and the update rule presented in Eq. 25, we can show:

E[F (x(r+1))] ≤ E

[
F
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1
K

K∑
i=1
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(r,E)
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+ L
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(27)

Here, due to the non-convex nature of f , we apply a smoothness-based error term L
8 E
[
∥x(r) − y

(r,E)
i ∥2

]
,

to account for possible deviations from convex-like behavior in the descent bound. Using the assumption 1
again and the update rule defined in Eq. 25, we can further bound the second term of Eq. 27 as:
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E
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(28)

Substituting the bound obtained from Eq. 28 back into the descent lemma obtained in Eq. 27 and rearranging
terms, we get Eq. 29:

E[F (x(r+1))] ≤ 1
K

K∑
i=1

fi

(
x(r)

)
− ηl

K

K∑
i=1

E−1∑
ϕ=0

E
[〈
∇fi

(
y

(r,ϕ
i

)
, g

(r,ϕ)
i

〉]

− ηl

K

K∑
i=1

E−1∑
ϕ=0

E
[〈
∇fi

(
y

(r,ϕ)
i

)
, ρ

(r,ϕ)
i ⊙ e

〉]
+ Lη2

l

K

K∑
i=1

E−1∑
ϕ=0

E
∣∣∣g(r,ϕ)

i + ρ
(r,ϕ)
i ⊙ e

∣∣∣2
+ L

2K

K∑
i=1

E
∣∣∣y(r,E)

i − x(r)
∣∣∣2 + L

8 E
[
∥x(r) − y

(r,E)
i ∥2

]
.

(29)

To telescope the descent lemma obtained in Eq. 29 over multiple FL rounds, we will make use of the inequality
shown in Eq. 30, where we use the assumption 2 and the data heterogeneity measure presented in Eq. 22.
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Similarly, we can bound the term involving the gradient penalty term ρ
(r,k)
i as:
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where ζ̂2
p is a measure of the heterogeneity of the gradients for the layers where modified SGD is applied,

which is defined in Eq. 32.

ζ̂p2 = 1
K

K∑
i=1

E
∣∣∣ρ(r,ϕ)

i ⊙ e
∣∣∣2 . (32)

Substituting bounds obtained from Eq. 31 and using Eq. 32 into the descent lemma obtained in Eq. 29 and
telescoping over R FL rounds, we get Eq. 33:
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(33)
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where F ∗ is the optimal value of the average objective function F (x).

To optimize the convergence rate bound, we need to choose the learning rates ηl and ηg (the global learning
rate, which we have not explicitly used yet but will be needed for the final convergence rate). We can set
ηg =

√
K and ηl = min

{
1

26EηgL , 1√
EL

}
to balance the terms in the bound. With these choices, and after

algebraic simplifications, we obtain the following convergence rate bound for non-convex functions as given
in Eq. 34:

1
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∥x(r) − y

(r,E)
i ∥2

])
.

(34)

This bound shows that the convergence rate of our approach depends on the number of communication
rounds R, the number of local updates E, the gradient bound G, the overall data heterogeneity ζ̂, and the
heterogeneity of the gradients for the layers where modified SGD is applied, ζ̂e.

Convex setting: In the convex setting, we apply Assumptions 1 and 2 from above, in conjunction with the
following Assumption 4:

Assumption 4 (Convexity): The local objective functions fi(x) are convex for all i = 1, . . . , K. With these
assumptions, we derive an alternative descent lemma as shown in Eq. 35:
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(35)

Following similar steps as in the non-convex case, we can iteratively apply inequality in Eq. 35 over multiple
FL rounds and leverage the convexity assumption to obtain inequality in Eq. 36:
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(36)

Note that in the convex case, we don’t have the term (F (x(0)) − F ∗)/R since the objective function is
convex, and we can initialize the model at the optimal point. Optimizing the bound by setting ηg =

√
K and

ηl = min
{

1
26EηgL , 1√

EL

}
as before, we get the following convergence rate for convex functions as in Eq. 37:

1
R

R−1∑
r=0

E[F (x(r))]− F ∗ = O
(

G
√

E√
KR

+ ζ̂
√

E√
R

+ ζ̂p

√
E√

KR

)
. (37)

This bound is similar to the non-convex case but without the (F (x(0)) − F ∗)/R term due to the convexity
assumption. The convergence rate depends on the number of communication rounds R, the number of local
updates E, the gradient bound G, the overall data heterogeneity ζ̂, and the heterogeneity of the gradients
for the layers where modified SGD is applied, ζ̂e. The convergence rate of the proposed FedPGVC algorithm
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relies on factors such as data heterogeneity among clients, the frequency of local updates, and the duration
of communication rounds. In non-convex scenarios, initialization also plays a crucial role.

7 Applying PGVC on the different layers of the model

To evaluate the impact of incorporating gradient variance control in various neural network layers, we
conducted experiments on the FMNIST dataset with α = 0.5. As illustrated in Fig. 9, our findings reveal
that applying variance reduction in the final layers accelerates convergence and achieves the highest top-1
accuracy. Given that the proposed approach partially applies the gradient variance control technique in the
last layers of the neural network, we investigated the effects of incorporating variance reduction in different
layers. We conducted experiments on the FMNIST dataset with α = 0.5, as shown in Fig. 9. The results
indicate that initiating variance reduction in the final layers of the model facilitates faster convergence and
achieves the highest top-1 accuracy.

Figure 9: Performance of applying partial gradient variance control on different layers of the CNN model on
the FMNIST dataset with α = 0.5.

8 Additional Experiments

To validate the effectiveness and generalizability of the proposed method, we employed more complex models,
including ResNet18 (He et al., 2016) and Vision Transformer (ViT) (ViT-B/32) (Dosovitskiy, 2020), and
utilized the Tiny-ImageNet dataset. Additionally, we included a language understanding task from the GLUE
benchmark (Wang et al., 2018), specifically the QQP dataset, following (Sun et al., 2024). All experiments
are conducted with α = 0.5 and the results are reported in Table 5. For both ResNet18 and ViT, we added
two linear layers and a classification layers on top of the pre-trained models. For the language understanding
task, we used an LSTM network with two LSTM layers, two linear layers, and a final classification layer.
For all the experiments, we maintain the same experimental settings as in the main experiments. On the
CIFAR-100 dataset, FedPGVC achieves a minimum improvement of 0.48% over FedProx and a maximum
of 5.74% over FedPVR using the ResNet18 model. In contrast, the ViT implementation shows a minimum
improvement of 0.90% compared to FedAvg and SCAFFOLD, with a maximum improvement of 4.11% over
FedPVR. On the Tiny-ImageNet dataset, the proposed method yields a minimum improvement of 0.92% over
FedPVR and a maximum of 2.33% over FedNova. Additionally, for the language understanding task, our
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Figure 10: Learning curves illustrating the integration of the proposed PGVC technique with the existing
algorithms on the FMNIST dataset at α = 0.5.

method outperforms the baselines with a minimum improvement of 0.72% over SCAFFOLD and a maximum
of 2.90% over FedPVR.

Table 5: Performance of the proposed approach across various complex models on the CIFAR-100 and Tiny-
ImageNet datasets, along with a language understanding task using the QQP dataset.

CIFAR100 (ResNet18) CIFAR100 (ViT) Tiny-ImageNet (ResNet18) QQP (LSTM)
Fedavg 33.37 ± 0.17 23.44 ± 0.11 27.26 ± 0.20 62.80 ± 0.20
FedProx 33.71 ± 0.09 22.60 ± 0.07 27.61 ± 0.23 62.20 ± 0.34
FedNova 33.00 ± 0.07 21.28 ± 0.03 26.96 ± 0.14 61.32 ± 0.52
FedBN 33.48 ± 0.12 22.64 ± 0.06 28.31 ± 0.25 63.10 ± 0.21
SCAFFOLD 33.52 ± 0.10 23.44 ± 0.02 28.35 ± 0.22 62.99 ± 0.36
FedPVR 28.45 ± 0.15 20.23 ± 0.03 28.37 ± 0.13 60.81 ± 0.44
Proposed 34.19 ± 0.08 24.34 ± 0.04 29.29 ± 0.20 63.71 ± 0.41

9 Limitation

While the proposed approach demonstrates significant improvements across various datasets, it is essential
to acknowledge certain limitations. Although the method effectively reduces gradient variability in the final
layers, the computation of the gradient penalty term may introduce additional processing overhead on the
client side. This increased computational cost could be a constraint for resource-limited devices, even though
the method is designed to minimize communication overhead. To address this challenge, future research could
focus on reducing the computational complexity of the gradient penalty term without sacrificing the method’s
effectiveness. Approaches like model pruning or quantization may be explored to make the method more

19



Under review as submission to TMLR

Figure 11: Learning curves illustrating the integration of the proposed PGVC technique with the existing
algorithms on the CIFAR100 dataset at α = 0.5.

Table 6: Extended results, including standard deviations, showing the effect of applying the proposed PGVC
method to existing popular baselines on the FMNIST and CIFAR100 datasets with α = 0.5.

Method FMNIST CIFAR100
FedAvg 88.65 ± 0.06 24.25 ± 0.22
FedAvg + PGVC 88.83 ± 0.11 25.29 ± 0.20
FedProx 86.96 ± 0.22 24.89 ± 0.17
FedProx + PGVC 88.07 ± 0.17 24.58 ± 0.11
FedBN 88.86 ± 0.12 25.12 ± 0.18
FedBN + PGVC 88.11 ± 0.15 23.86 ± 0.14
FedNova 87.52 ± 0.11 22.29 ± 0.16
FedNova + PGVC 87.87 ± 0.14 24.82 ± 0.19

viable for devices with limited resources. Additionally, incorporating differential privacy techniques into the
FedPGVC framework could broaden its applicability in privacy-sensitive areas, such as healthcare or finance.
Investigating the interaction between differential privacy and the gradient penalty term, as well as its impact
on model performance, would be a valuable direction for future research.
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