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ABSTRACT

Test set contamination poses a serious threat to reliable model evaluation. Whether
inadvertent or deliberate, contamination may lead to misrepresenting model capa-
bilities to both researchers and the public: this spurious performance augmentation
may in turn cause harm when these models are deployed in real-world applica-
tions. In this work, we propose a novel test set contamination detection method
that relies solely on analyzing loss trajectories during deliberate fine-tuning on
target benchmarks. Our key insight is that models exhibit quantifiably different
learning dynamics when exposed to previously encountered versus novel data.
Concretely, we systematically fine-tune models on test data mixed within decon-
taminated data at varying proportions to simulate contamination scenarios, and
fine-tune on decontaminated data only to simulate the clean counterparts. We
show that clustering methods using as few as 200 data points can distinguish
clean from contaminated scenarios with +95% accuracy. Our method also demon-
strates superior robustness in detecting contamination of paraphrased evaluation
data compared to membership inference attack baselines, which operate at the
individual sample level and typically target verbatim matches. Critically, our
approach represents a paradigm shift from static detection metrics to dynamic
training-based assessment: observing how models react to controlled fine-tuning
on target data rather than analyzing fixed outputs or input manipulations. We
posit that this intervention-based methodology offers inherently higher resistance
to detection evasion, as the metrics cannot be directly optimized as reward signals
during model development, providing a more robust foundation for maintaining
evaluation integrity.

1 INTRODUCTION

Test set contamination fundamentally undermines model evaluation by violating the core assump-
tion that evaluation data remains unseen during training. When evaluation benchmarks leak into
training corpora—whether through inadvertent web scraping or deliberate inclusion—the resulting
performance metrics cease to reflect true model capabilities. This contamination problem has in-
tensified as large language models (LLMs) train on increasingly vast web-scraped datasets that may
contain evaluation benchmarks, producing inflated performance reports that mislead researchers and
practitioners deploying these models in real-world applications.

Existing contamination detection methods face critical limitations. Static analysis approaches—
including output distribution analysis (Yang et al., 2023), perplexity-based metrics (Dong et al.,
2024), loss landscape examination, and membership inference attacks (Shokri et al., 2017; Yeom
et al., 2018a; Carlini et al., 2022; Shi et al., 2024)—primarily target exact matches and analyze
models in their final trained state. This creates two fundamental vulnerabilities: (1) susceptibility
to paraphrased or semantically equivalent contamination that preserves meaning while altering sur-
face form, and (2) potential for adversarial evasion, as developers aware of these detection metrics
can engineer training procedures to circumvent detection while preserving contamination benefits.
Behavioral probes such as the Data Contamination Quiz (Golchin & Surdeanu, 2023) and “Time
Travel” guided-instruction prompts (Golchin & Surdeanu, 2024) provide valuable complementary
approaches but remain focused on static model responses rather than learning dynamics.
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Figure 1: A high-level overview of our procedure. Given a model, we build a classifier that based
solely on the loss trajectory’s shape–not actual loss values– when fine-tuning on B it determines
whether B or a dataset similar to it has been seen during training.

We introduce a fundamentally different approach based on analyzing training dynamics rather than
static model outputs. Our key insight is that models exhibit measurably distinct learning trajectories
when re-exposed to previously encountered versus genuinely novel data during fine-tuning. Specifi-
cally, we fine-tune models exclusively on target benchmarks and classify contamination status based
solely on the resulting loss trajectory shapes—not absolute loss values, but the temporal patterns of
learning.

Our method achieves over 95% detection accuracy across three model families (OLMo-2-0425-
1B, Qwen2.5-3B, Qwen3-4B-Base) using Dynamic Time Warping distance metrics with k-nearest
neighbors and k-medoids clustering. The approach demonstrates three critical advantages over ex-
isting methods: (1) Cross-model generalization: 96%+ accuracy when training classifiers on one
model and evaluating on others, including effective 1B-to-4B parameter transfer; (2) Robustness
to semantic variations: maintaining detection performance on paraphrased evaluation data where
traditional membership inference attacks typically fail; (3) Early detection capability: achieving
95%+ accuracy using only the first 16 trajectory points, corresponding to exposure to just 256 eval-
uation samples.

Beyond binary detection, our approach enables contamination severity quantification through re-
gression on spurious performance gains, achieving Mean Absolute Error of 0.15 when predicting
the magnitude of contamination-induced performance improvements. Even in challenging scenarios
involving partial contamination of unknown benchmark subsets, detection accuracy exceeds 80%.

Our approach represents a paradigm shift toward intervention-based evaluation integrity assessment.
By observing how models react to controlled training interventions rather than analyzing static
outputs, we create detection mechanisms that are inherently more difficult to game during model
development. The training dynamics we analyze cannot be directly optimized as reward signals,
providing a more robust foundation for maintaining evaluation integrity in an era where benchmark
performance increasingly drives development decisions compared to exchangeability tests (Oren
et al., 2023) or static distributional analyses.

These findings suggest that training dynamics contain rich information about a model’s prior experi-
ences, opening new avenues for understanding model behavior and detecting other forms of training
irregularities beyond contamination detection. As models increasingly train on vast, web-scraped
datasets where benchmark leakage becomes unavoidable, robust contamination detection becomes
critical for ensuring reliable assessment of true model capabilities.

2 TEST SET CONTAMINATION DETECTION FRAMEWORK

2.1 EXPERIMENTAL DESIGN

Setup Let D be a general, large-scale supervised fine-tuning (SFT) dataset. To detect test set
contamination through loss trajectory analysis, we simulate contamination scenarios by training
models either on a target benchmark B mixed with general training data D′ ⊆ D (a poisoned model),
or solely on general training data (a clean model). We assume B ∩ D = ∅.
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Let the poisoning ratio p ∈ (0, 1] represent the fraction of a poisoned model’s total training data that
consists of benchmark samples: p = |B|/(|B|+ |D|). Let M (0) be a base model. We define:

• M
(1)
poison(B, p): model M (0) fine-tuned on B∪D′ with poisoning ratio p. To ensure poisoning

ratio p, we set |D′| := |B|/p− |B|.

• M
(1)
clean(|B|, p): model M (0) fine-tuned on D′′ ⊆ D only, where |D′′| = |B|/p.

This ensures both models are trained on the same total number of samples while maintaining the
target poisoning ratio for the contaminated model. Then, the difference in benchmark performance
between a poisoned model and its corresponding clean model corresponds to the spurious perfor-
mance augmentation ∆ := Perf(M (1)

poison,B)− Perf(M (1)
clean,B).

Loss Trajectory as the Sole Training Signal We use the loss trajectory obtained from fine-tuning
trained models solely on the target benchmark as our classification signal. Given a trained model
M (1) (either clean or poisoned), we fine-tune it exclusively on benchmark B and record the resulting
loss trajectory ℓ(M (1),B) = (ℓ1, ℓ2, . . . , ℓT ), where ℓt represents the training loss on the minibatch
from B used at step t. This curve ℓ(M (1),B) serves as the sole feature vector for our contamination
detection methods.

Problem Formulation Our primary setting is binary classification: given several trained models
M (1) and their corresponding loss trajectories ℓ(M (1),B), we classify each model as either clean or
poisoned. To ensure meaningful labels, we only retain poisoned models with spurious performance
augmentation ∆ > δ for some fixed threshold δ ≥ 0. In addition, we also consider a regression
version of this task where we directly predict the continuous contamination strength ∆ providing
fine-grained contamination severity estimates rather than binary labels.

2.2 MODELING TO DISTINGUISH AND QUANTIFY POISONED AND CLEAN SETTINGS

Our modeling choices aim to build classifiers in low-resource settings, and retain interpretability
when possible to gain insights into training dynamics. Our problem setup is naturally low-resource
since obtaining a single loss trajectory implies fine-tuning an LLM for two epochs.

We use two classification approaches: (1) k-NN classification and (2) k-medoids clustering, both
using Dynamic Time Warping (DTW) distance. k-NN performs classification via majority vote of
k nearest neighbors, while k-medoids clustering uses the Partitioning Around Medoids (PAM) algo-
rithm to select actual data points as cluster representatives (medoids), offering added interpretability
through concrete exemplar loss patterns that characterize clean versus contaminated dynamics. For
the regression version of our task, we adapt k-NN to predict continuous poisoning ratios via weighted
averaging.

Distance Metric between Loss Trajectories Given the sequential nature of loss trajectories, we
employ Dynamic Time Warping (DTW) (Sakoe & Chiba, 2003) as our distance metric. DTW com-
putes the minimum cumulative cost to align two sequences by allowing elastic matching—each
point in one sequence can match to multiple consecutive points in another while preserving tem-
poral order. For trajectories ℓ(i) = (ℓ

(i)
1 , . . . , ℓ

(i)
Ti
) and ℓ(j) = (ℓ

(j)
1 , . . . , ℓ

(j)
Tj

), DTW(ℓ(i), ℓ(j)) :=

minπ
∑

(s,t)∈π |ℓ
(i)
s − ℓ

(j)
t | where π is a warping path—a sequence of index pairs (s, t) that aligns

elements from both trajectories while satisfying monotonicity and boundary constraints. DTW is
computed via dynamic programming as: D(s, t) = (|ℓ(i)s − ℓ

(j)
t |)2 + min{D(s − 1, t), D(s, t −

1), D(s−1, t−1)} with boundary conditions D(1, 1) = (|ℓ(i)1 −ℓ
(j)
1 |)2 and D(s, 0) = D(0, t) = ∞.

The DTW distance is DTW(ℓ(i), ℓ(j)) =
√
D(Ti, Tj). This dynamic programming approach allows

each point in one trajectory to align with multiple points in the other while preserving monotonicity,
making it robust to temporal variations in loss dynamics.
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Figure 2: Classification accuracy for detecting whether a model has been fully poisoned with B at
poisoning ratios p ∈ {0.04, 0.08, 0.16, 0.32, 0.64, 1} using 8NN+DTW classifiers for each (model,
poisoning ratio) configuration. 20-fold Cross-validation partitioning by benchmarks.

3 SPURIOUS PERFORMANCE AUGMENTATION DETECTION

Experimental Setup We perform supervised fine-tuning (SFT) taking the loss signal from both
the prompts and completions, emulating the standard mid-training setup. We use 38 benchmarks
with at least 1000 samples in lm-eval-harness (Gao et al., 2024), consisting of either of multiple
choice questions, or are evaluated as short-form text generation where there are several possible
options and the one with lowest perplexity is taken as correct, and cover a variety of domains (see
App. A). Thus, all benchmarks are evaluated with some form of accuracy score ∈ [0, 1], where
higher is better. We use OLMo-2-0425-1B (?), Qwen2.5-3B (Qwen et al., 2025), and Qwen3-
4B-Base (Yang et al., 2025) for our experiments. We prioritized models that have not been post-
trained for our SFT experiments (the Qwen models) to imitate the usual LLM training pipeline, and
included a model from a different family to measure generalizability. We train M(0) models with
two variants (learning rates 1e-6 and 1e-5; 1 epoch) to create M(1) models. For loss trajectory
generation, we fine-tune M(1) models with a single variant (learning rate 1e-5; 1 epoch) given that
is our intervention to the models M(1) and not a simulation of data poisoning. For loss trajectories,
we subsample uniformly the loss trajectory to retain only 64 steps. Each step consists of 8 samples
(our batch size). We collect a total of ≈ 4500 curves, adding up all clean and poisoned models,
across model families and poisoning ratios. See App A.

Baselines Traditional Membership Inference Attacks (MIA) methods classify individual data sam-
ples, while our task requires classifying models as clean or contaminated. To provide fair compar-
ison, we adapt three MIA baselines by computing per-sample scores across the benchmark and
treating the resulting score vectors as features for model classification. Since these are not time-
series, we use 8NN classification with Manhattan distance instead of DTW: (1) Loss: Per-sample
loss values on the target benchmark (Yeom et al., 2018b), (2) Zlib: Compression ratios for each
sample (Carlini et al., 2021), and (3) Min-K: Minimum probability among k% lowest-probability
tokens (Shi et al., 2024).

3.1 DETECTING SPURIOUS PERFORMANCE AUGMENTATION ACROSS MODELS AND
BENCHMARKS

Strong Detection Across Benchmarks and Poisoning Ratios Our method effectively detects
contamination across varying poisoning ratios and model architectures. Figure 2 demonstrates
strong performance with classification accuracy consistently above 95% when |B| = 1000 and
substantial performance even with smaller benchmarks (|B| = 100), where some models may not
achieve meaningful gains from one-epoch fine-tuning. We therefore restrict |B| = 100 analysis
to cases with ∆ ≥ 0.05 to focus on detectable contamination effects (see App. A.1 for perfor-
mance gains distribution plots). We perform 20-fold cross validation across benchmarks to prevent
leakage. Accuracy decreases at higher poisoning ratios for OLMo2-1B, potentially due to limited
gradient updates making contamination harder to distinguish. Table 1 validates strong cross-model
generalization, with classifiers trained jointly on all poisoning ratios exhibiting robust performance
across models.
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Table 1: Contamination detection per-
formance using 8NN+DTW with 20-fold
cross-validation partitioning by bench-
marks. Results show mean accuracy ±
standard deviation across poisoning ratios.

Model used
in training Performance

OLMo-2-0425-1B 0.958 ± 0.105
Qwen2.5-3B 0.937 ± 0.127

Qwen3-4B-Base 0.966 ± 0.099

Table 2: Cross-model contamination detection perfor-
mance using 2NN+DTW. Classifiers trained on one
model and evaluated on another, with results showing
accuracy across all poisoning ratios and benchmarks.

Model used for evaluation

Model used
in training

OLMo2
1B

Qwen2.5
3B

Qwen3
4B Base

OLMo-2-0425-1B – 0.971 0.979
Qwen2.5-3B 0.978 – 0.998

Qwen3-4B-Base 0.967 0.967 –

Strong Cross-Model Detection, Across Model Families and Including 1B-to-4B Transfer Ta-
ble 2 shows that our method works across different model families, with cross-model detection ac-
curacy consistently above 96%. Notably, training on smaller models and evaluating on larger ones
maintains strong performance (e.g., OLMo2-1B → Qwen3-4B: 0.979), which is practically useful
since smaller models require less computational overhead for training classifiers. The consistent
bidirectional performance suggests that contamination patterns in loss trajectories generalize across
model scales and families.

3.2 EARLY TRAINING DYNAMICS RELIABLY REVEAL CONTAMINATION STATUS

Beyond high performance, our method provides some insight into the training dynamics that aid in
classification. Figure 3a demonstrates that the 8-medoids clustering achieves strong performance
(acc=0.956, AUC=0.98) while producing interpretable groupings: medoids represent actual loss
trajectories that characterize each cluster, with clean medoids (M1, M3, M4, M7, M8) distinctly
exhibiting sharp initial loss drops, while contaminated medoids show more gradual decay patterns.
The high cluster purity indicates that clusters meaningfully separate contamination behaviors rather
than relying on spurious correlations. Moreover, Figure 3b reveals that these discriminative patterns
emerge early during fine-tuning: classification accuracy reaches over 95% within just 16 loss data
points (corresponding to 16× 16 benchmark samples) and plateaus thereafter.
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Figure 3: Insights into distinct contamination patterns in loss trajectories. (a) 8-medoids clustering of
loss trajectories by contamination status, with class purity indicating percentage of cluster elements
matching the medoid’s true label. (b) Classification accuracy using 8NN+DTW as a function of
loss trajectory prefix length. Results from training on OLMo2-1B and evaluating on Qwen2.5-3B
(|B| = 1000, loss data points subsampled as described in Experimental Setup).

3.3 DETECTION REMAINS EFFECTIVE WITH NON-VERBATIM TEST SET CONTAMINATION

Real-world contamination may involve semantically equivalent rather than verbatim test data, mak-
ing detection more challenging for traditional methods. To evaluate robustness against such scenar-
ios, we poison models with benchmark B and assess detection performance using loss trajectories
from either the original B or paraphrased data B̃ (generated with GPT-4o). Figure 4 shows both
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(a) Classification accuracy training each poisoning ratio
separately, with 20-fold cross validation.
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(b) ROC curve considering all poisoning
ratios jointly.

Figure 4: Detection accuracy when leaking a benchmark B with |B| = 100 and ∆ ≥ 0.05 (requires
minimally meaningful performance gains), comparing when collecting loss trajectories from B or
from a semantically-equivalent dataset B̃. 8NN+DTW classifier. See ∆ ≥ 0 in Figure 9.

test sets achieve identical detection accuracy across poisoning ratios for |B| = 100 when restrict-
ing to test set contaminations that lead to meaningful performance gains (∆ ≥ 0.05; Figure 4a);
some classification accuracy is lost when considering cases with little gains, which we include for
completeness but does not represent our target behavior (see Figure 9).

While the most realistic setup would be to poison with paraphrased data and evaluate on both ver-
sions, this inverse setup demonstrates our method captures learning dynamics that persist despite
textual differences, providing robustness against sophisticated contamination while requiring half
the computation since M (1) models were already computed for other experiments.

Baseline Comparison (MIA) Figure 4a shows our method consistently outperforms MIA base-
lines across poisoning ratios. While MIA methods achieve 0.6-0.7 accuracy, our approach maintains
0.8+ performance even for small benchmarks (|B| = 100). These results demonstrates that dynamic
loss trajectories provide richer contamination signals than static sample-level indicators.

3.4 DETECTION UNDER PARTIAL TEST SET CONTAMINATION SCENARIOS

In practice, contamination may involve only a subset of the full benchmark rather than the entire test
set. To evaluate detection under these conditions, we assess performance when models are contam-
inated with an unknown subset B′ ⊂ B where |B′| = 100 from benchmarks with |B| = 1000. Fig-
ure 5 compares detection accuracy when fine-tuning on the leaked subset versus the full benchmark,
showing > 80% accuracy on average across poisoning ratios, and demonstrating applicability to
partial contamination scenarios. Counterintuitively, performance is even stronger when fine-tuning
using the whole B rather than having access to the smaller leaked subset B′—we hypothesize this is
because of having access to a larger training set for loss trajectory generation, as Figure 3b already
showed increased predictive power for longer curves.

Our method’s consistent performance on both original B and paraphrased B̃ data demonstrates ro-
bustness against semantic contamination—a key advantage over methods relying on exact string
matching. The learning dynamics we capture reflect deeper patterns that persist despite surface tex-
tual variations. The ∆ ≥ 0.05 threshold filters cases with negligible performance gains that would
not represent meaningful contamination in practice.

3.5 PREDICTING SPURIOUS PERFORMANCE GAINS BEYOND BINARY CLASSIFICATION

Our methodology enables extending beyond binary contamination detection to predict the magni-
tude of spurious performance gains ∆, where clean models have ∆ = 0 and contaminated models
may have ∆ > 0. Using loss trajectories as the only features, we train 8NN+DTW regressors with
Mean Absolute Error (MAE; the absolute difference between predicted and true ∆) as the evalua-
tion metric. Table 3 shows MAE of ≈ 0.15 when predicting only on contaminated models—a more
challenging setting than including all models, since clean model detection is already highly reliable
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(a) Classification accuracy training each poisoning ratio
separately, with 20-fold cross validation.
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Figure 5: Detection accuracy when leaking an unknown subset B′ ⊂ B with |B′| = 100 from
benchmarks B with |B| = 1000, compared to the case where we perfectly know the leaked set. We
use 8NN+DTW, over all cases with ∆ ≥ 0.05.

Table 3: Regression performance for predicting spu-
rious performance gains ∆ using 8NN+DTW on
|B| = 1000 settings. Mean Absolute Error (MAE;
lower is better) shown as mean ± standard devia-
tion across 20-fold cross-validation folds split across
benchmarks. “Poisoned” includes only contaminated
models; “All” includes both clean and contaminated
models.

Model MAE
(poisoned)

MAE
(all)

OLMo-2-0425-1B 0.157 ± 0.086 0.073 ± 0.034
Qwen2.5-3B 0.147 ± 0.067 0.070 ± 0.037

Qwen3-4B-Base 0.154 ± 0.089 0.063 ± 0.040
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Figure 6: Distribution of prediction resid-
uals (predicted ∆ - actual ∆) for con-
taminated models only. 8NN+DTW re-
gressor trained on OLMo2-1B trajecto-
ries and evaluated on Qwen2.5-3B using
8NN+DTW. All results in App A.2.

for |B| = 1000. Figure 6 shows residuals (predicted ∆ minus actual ∆) with mean of -0.027 and
substantial variance, indicating that loss trajectories contain useful signal but perfect prediction re-
mains elusive. Appendix A.2 shows extensive cross-model evaluation showing MAE 0.11-0.19 for
contaminated-only settings and MAE of just 0.05-0.09 when including clean models. This regres-
sion formulation opens research directions for quantifying contamination impact rather than solely
detecting test set contamination, with the loss trajectory as a useful first signal.

4 RELATED WORK

Test Set Contamination Detection Related to our work is research that detects benchmark leak-
age via black-box statistical tests or static behavioral probes rather than training dynamics. Oren
et al. test exchangeability by comparing canonical vs. shuffled orderings to provide provable,
low–false-positive evidence of contamination in black-box LMs (Oren et al., 2023). Behavioral
probes include the Data Contamination Quiz (multiple-choice perturbations) and “Time Travel”
guided-instruction prompts that elicit memorized continuations from dataset names and leading
spans (Golchin & Surdeanu, 2023; 2024). Survey and benchmarking efforts map contamination
at dataset/instance/sub-instance levels and synthesize mitigation directions (Xu et al., 2024), while
perplexity- and distribution-based detectors (e.g., CDD/TED) operationalize output-distribution
peakedness to flag leakage (Yang et al., 2023; Dong et al., 2024). In contrast, we intervene on
the model by fine-tuning on the target benchmark and classify contamination from the shape of
the loss trajectory (rather than one-shot likelihoods or order preferences), enabling robust detec-
tion—including under paraphrases—by clustering/nearest-neighboring entire loss curves. This dy-
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namic, training-based audit aligns with our central claim that previously seen vs. novel test data
induce measurably different learning dynamics during continued training.

Membership Inference Attacks Related to our work are MIAs that infer per-example mem-
bership from static model behavior. Classical and reference-based attacks include confidence/loss
thresholding (Shokri et al., 2017; Yeom et al., 2018a), LiRA’s likelihood-ratio test against shadow
references (Carlini et al., 2022), and robust likelihood-ratio testing (RMIA) with improved power at
very low FPRs (Zarifzadeh et al., 2024). For LLMs, neighborhood comparison replaces reference
datasets with synthetic neighbors (Mattern et al., 2023); Min- k% and Min-k%k++ leverage the tail
of token probabilities and a theoretically motivated local-maxima criterion to detect pretraining data
(Shi et al., 2024; Zhang et al., 2024). Semantic MIAs train a classifier over meaning-preserving per-
turbations to improve robustness to superficial lexical changes (Mozaffari & Marathe, 2024), while a
large-scale study finds many MIAs approach random guessing on realistic LLM pretraining regimes
absent distribution shift (Duan et al., 2024). Closer to our signal are works using trajectories: in vi-
sion, loss trajectories across intermediate models improve membership detection (Liu et al., 2022);
and contemporaneous work studies recovering/approximating training data from weights or train-
ing dynamics (Morris et al., 2025). Distinct from these, we treat the entire loss-time curve during
deliberate fine-tuning on the suspect benchmark as the feature—eschewing static, one-pass scores
and reference models—and show strong separability of clean vs. poisoned regimes via DTW-based
clustering/nearest neighbors.

RL, SFT and Memorization Related to our work is research dissecting how post-training choices
affect memorization vs. generalization. In RLHF pipelines for code completion, RLHF tends to
reduce memorization relative to direct fine-tuning, though samples memorized during SFT often
remain memorized after RL (Pappu et al., 2024). Yet RL/RM stages can exploit spurious signals:
response-length bias explains a surprisingly large fraction of RLHF gains (Singhal et al., 2023), and
broader analyses document reward hacking/misgeneralization (Bu et al., 2025). In parallel, training-
dynamics studies show token-level learning/forgetting signatures that are stable across runs (Chang
et al., 2024), while pretraining work charts how larger models memorize faster and forget less (Tiru-
mala et al., 2022). Very recent audits argue that dramatic RL gains on certain math benchmarks (e.g.,
Qwen2.5-Math) can be confounded by contamination, with improvements vanishing on leakage-free
data (Wu et al., 2025). Our approach is complementary: rather than proposing a new post-training
algorithm, we audit SFT/RL models by probing how their loss decays when trained on target bench-
marks—seeking contamination fingerprints in training dynamics instead of static outputs.

5 DISCUSSION

We introduce a contamination detection method that analyzes training dynamics rather than static
outputs, achieving over 95% accuracy by classifying loss trajectory shapes during fine-tuning on
target benchmarks. The method generalizes across model architectures (96% cross-model accu-
racy), maintains performance on paraphrased evaluation data, and detects partial contamination with
>80% accuracy using only 16 trajectory points. Unlike static detection metrics that can be opti-
mized during training, our intervention-based approach analyzes emergent learning dynamics that
resist manipulation. Our task formulation and method also enable contamination severity quantifica-
tion through regression on spurious performance gains, allowing a fine-grained assessment beyond
binary classification. As models increasingly train on web-scraped data where benchmark leakage is
unavoidable, robust contamination detection becomes critical for evaluation integrity. Our findings
demonstrate that models retain detectable signatures of their training history in learning dynamics,
providing a foundation for trustworthy evaluation.

Limitations and Future Work Our evaluation assumes specific contamination scenarios that may
not encompass all real-world practices. Adversaries might use lower poisoning ratios, sophisticated
paraphrasing techniques, or semantically similar data that differ from our LLM-generated para-
phrases. Additionally, post-training procedures like RLHF could alter the learning dynamics we rely
on, potentially affecting detection robustness. Investigating detection effectiveness across diverse
contamination strategies and post-training regimes, particularly reinforcement learning pipelines,
represents important directions for strengthening contamination auditing capabilities.
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A ADDITIONAL EXPERIMENTAL DETAILS

Benchmarks Throughout this paper we used 38 benchmarks, all hosted in lm-
eval. They focus on MCQ or short form generation benchmarks, and we list
them exhaustively: anli r1, anli r2, anli r3, arc easy, arc eu easy,
bigbench bbq lite json multiple choice, bigbench color multiple choice,
bigbench cs algorithms multiple choice, bigbench fact checker multiple choice,
bigbench hyperbaton multiple choice, bigbench navigate multiple choice,
bigbench social iqa multiple choice, bigbench temporal sequences multiple choice,
bigbench winowhy multiple choice, boolq, eus exams es osakidetza6c,
eus trivia, inverse scaling pattern matching suppression,
mastermind 24 easy, mastermind 35 hard, mastermind 46 easy,
mastermind 46 hard, medmcqa, medqa 4options, mnli, mnli mismatch,
moral stories, multirc, persona optionality-increasing,
persona optionality-preservation, persona politically-conservative,
persona politically-liberal, persona resource-acquisition, prost, qnli,
swag, sycophancy on philpapers2020, wmdp bio.

A.1 DISTRIBUTIONAL DETAILS ON CLEAN AND POISONED MODELS
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Figure 7: Histogram of perplexity (PPL) changes between the original model M (0) and M
(1)
clean

models, measured with the wikitext dataset. A lack of a significant absolute perplexity difference
serves as a validation of preserved modeling capabilities.
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(a) |B| = 1000
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(b) |B| = 100

Figure 8: Histogram of ∆ values depending on benchmark B size. Naturally, training on a larger
benchmark generally implies a much larger performance augmentation. Interestingly, when training
on a smaller benchmark, there is often no significant performance augmentation.
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(a) Classification accuracy training each poisoning ratio
separately, with 20-fold cross validation.
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(b) ROC curve considering all poisoning
ratios jointly.

Figure 9: Detection accuracy when leaking a benchmark B with |B| = 100 and ∆ ≥ 0, comparing
when collecting loss trajectories from B or from a semantically-equivalent dataset B̃. 8NN+DTW
classifier. Extension of Figure 4 with ∆ ≥ 0 (does not require meaningful gains).

A.2 BEYOND BINARY CLASSIFICATION

Table 4: Regression performance for predicting spurious performance gains ∆ using 8NN+DTW
cross-model. Regressors trained on one model and evaluated on another, with Mean Absolute Error
(MAE) used as metric to measure distance between the predicted and true ∆, as visualized in Fig-
ure 6. ”Poisoned” includes only contaminated models; ”All” includes both clean and contaminated
models.

Evaluation Models (MAE; poisoned only) Evaluation Models (MAE; all)

Model used
in training

OLMo2
1B

Qwen2.5
3B

Qwen3
4B Base

OLMo2
1B

Qwen2.5
3B

Qwen3
4B Base

OLMo-2-0425-1B – 0.112 0.166 – 0.052 0.063
Qwen2.5-3B 0.105 – 0.145 0.047 – 0.053

Qwen3-4B-Base 0.189 0.162 – 0.086 0.071 –
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